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ABSTRACT
Bayesian Networks is a family of machine learning models widely used in various applications 
such as speech recognition, Protocol Reverse Engineering, or more generally the retrieval of 
hidden information in data. These models, at the crossroads of probability theory and graph 
theory, allow intuitive modelling and simple interpretation of the results. In this paper, we are 
interested in inferring the most probable state of a discrete Bayesian network. In the case of a 
Hidden Markov Model, the Viterbi algorithm is usually used. However, although accurate, it is not 
optimized, and when generalized to any number of variables per time slice, its complexity increases 
exponentially. This is why we have developed an optimized version of the Viterbi algorithm, 
Automatic Markov Boundaries construction optimized Viterbi (AMBV), taking advantage of the 
fact that once a model is trained, it is usually used to analyze many observations. Moreover, in 
case of sparse probability distributions of the variables, an additional level of optimization is 
used. Finally, in order to make possible the inference of the most probable state of any discrete 
Bayesian network, a mechanism for automatically generating a set of Markov Boundaries for 
the network has been proposed. We will show that AMBV performs significantly better than the 
classical Viterbi algorithm as soon as the complexity of the network increases sufficiently.

Keywords: Viterbi, Bayesian Networks, Optimized, Generic, Most probable network state, 
Automatic Markov Boundaries, Sparse probability distributions.

INTRODUCTION

Bayesian Networks (BNs) is a family of mathematical models at 
the crossroads of probability and graph theory. Their use extends 
to many fields, such as genetics, biomonitoring, document 
classification, speech or image recognition. For example, they 
are used in[1] to generate Gene Regulatory Networks from gene 
expression observations. They are also found in,[2] where the 
authors propose to analyse the sentiment about an election in posts 
on social media like Twitter. Paper[3] also exposes how, associated 
to deep neural networks, they can be used to perform Voice 
Activity Detection. In,[4] the authors use the Viterbi algorithm 
to find the most probable sequence of states of a Compound 
Hidden Markov Model, in order to identify human activities 
from cameras and depth captors’ data. Lastly, paper[5] makes use 
of an adaptive Viterbi algorithm to perform image segmentation 
with the help of an adaptive Hidden Markov Model.

They allow to easily model a system through the probabilistic 
interactions between the different variables characterizing it. 
It is then possible, if necessary, from observations, to learn the 
different conditional probability distributions of the system 
variables.[6] It is also possible to infer the joint probabilities of 
each variable or group of variables, as well as the most probable 
global state of the network. 

In this paper, we are interested in the latter inference applied 
to discrete BNs. If the reader is interested in the other types of 
inference, the paper[7] constitutes a good starting basis. In the 
case of Hidden Markov Models (HMMs),[8] one of the simplest 
and most widely used BNs, this problem is solved by the Viterbi 
algorithm.[9] However, HMMs, containing only two variables 
per time slice, one hidden and one observed, are only a special 
case of Dynamic Bayesian Networks (DBNs),[10] in which the 
number of variables per time slice is arbitrary, and in which each 
variable is likely to be observed or not at each instant. The Viterbi 
algorithm is therefore not applicable in its original form, but its 
principle is nevertheless extensible to DBNs by considering the 
global state of all the variables of a time slice as the hidden state, 
and by checking that the considered states are compatible with 
the observation. For a more in-depth approach to DBN,[7] is a 
reference in the domain.

Received: 23-07-2022;  
Revised: 21-11-2022;  
Accepted: 03-08-2023.

Correspondence:
Pierre-Samuel Gréau-Hamard
Informatics and Telecommunications 
Laboratory, ECAM Rennes Louis de 
Broglie, Bruz, FRANCE.
Email: greauhamard.pierresamuel@gmail.
com



Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024746

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

In turn, DBNs can be seen as a special case of BNs containing 
a cyclic repetition of a pattern where each variable has a single 
conditional probability distribution common to all patterns. It is 
therefore once again possible to apply the principle of the Viterbi 
algorithm, but it is necessary to define beforehand the different 
Markov Boundaries (MBs) describing the network, as they are no 
longer directly equivalent to time slices. The changes mentioned 
earlier for the application to DBNs must also be used here.

We called the algorithm resulting from our suggestions Automatic 
Markov Boundaries construction optimized Viterbi (AMBV). 
However, AMBV, like Viterbi, has a complexity that increases 
exponentially with the number of links between variables and 
linearly with the number of variables and inferences to be made. 
To partially overcome this problem, we have explored two 
optimization directions: the precomputation of all the quantities 
that do not depend on the observations, and a mechanism 
that allows us to ignore the transition subsets from a state of 
a Markov Boundary to a state of the next Markov Boundary 
whose probability are zero. This allows us to greatly reduce the 
complexity when a large number of inferences are made with the 
same network, and/or the probability distributions of the variables 
are relatively sparse. On the other hand, for simple networks, the 
large overhead required makes AMBV much slower than a simple 
unoptimized Viterbi extended to BNs.

The rest of this paper is organized as follows: in section II, 
discrete Bayesian Networks are briefly introduced; in section 
III, we present the basic Viterbi algorithm extended to Bayesian 
Networks that we use as a reference; in section IV, we describe 
the proposed algorithm, AMBV; in section V, we experimentally 
compare AMBV to the state of the art; and finally, we conclude 
in section VI.

DISCRETE BAYESIAN NETWORKS

Bayesian networks are a family of graphical models that represent 
a system through the probabilistic links between its different 
characteristic variables. The nodes of the graph represent the 
variables, while the directed arcs represent the conditional links 
between variables. The interest of this network lies in the fact 
that it gives the possibility to infer at low cost any probabilistic 
relationships between the variables.
In a Bayesian network, any conditional relationship is possible, 
as long as no cyclic relationship appears, i.e. no variable depends 
directly or indirectly on itself.
The construction of such a network takes place in four steps. 
Firstly, the characteristic random variables of the system are 
identified. Then, the number of possible states for each variable 
is defined. Afterwards there is the specification of the conditional 
links between variables. This step, unlike the two previous ones, 
can be done in two ways: manually, if the relationships between 
variables are known a priori, as it is the case in this article, or 
automatically, by learning, if it is not the case. Finally, the last 

step consists in specifying the exact parameters of the probability 
tables for each of the variables. Generally, and it is the case in 
this article, all or part of the distributions of the variables are 
unknown, and this is why a learning process is set up in order 
to find parameters allowing to explain the observations of the 
system as well as possible.

There are three types of variables in a BN:

• Input variables, which are controlled and observable

• Output variables, which are not controlled, but are observable

• Hidden variables, which are neither controlled nor observable

Let’s take the example of Figure 1. This network has four variables: 
a, b, c, and d. The variable a is an input variable, having three 
possible states: a0, a1, and a2. The variables b and c are hidden and 
can take two states: b0 and b1, c0 and c1, respectively. d is an output 
variable, having two possible states: d0 and d1. b is conditionally 
dependent on a, and d is conditionally dependent on b and c. 
From a graphical point of view, it can be said that b is a child 
of a or a parent of b, and that d is a child of b and c, or b and 
c are parents of d. This means that the probability distributions 
explicitly included in the network are: P(a), P(b|a), P(c), and 
P(d|b,c). A possible representation of the probability tables is also 
given in Figure 1.

Bayesian networks have a fundamental property, allowing 
inference and learning at low cost: conditional independence. The 
independence between two variables conditional on a third one, 
for example a and d conditionally on b in our network, translates 
into the fact that if the state of b is known, then the state of a 
has no influence on d and vice versa; this property allows us to 
consider independently the variables (a, b) and (b, d), and thus to 
reduce the complexity of the calculations.

VITERBI INFERENCE

In this section, we present the Viterbi algorithm extended to work 
on any BN we use as a comparison reference.

Markov Boundaries

The Viterbi inference is based on the conditional independence 
property in Bayesian networks. In this context, let us define the 
notion of Markov Boundary of a set of variables of the network 
as the minimal set of variables of the network necessary to 
completely define the considered variables.

Practically, the Markov Boundary corresponds to the parents of 
the considered variables, their children, and the parents of their 
children. In the example in Figure 2, the Markov Boundary for 
Variable B would consist of Variables A (parent and parent of 
child), D (child), F (child), and C (parent of child).

Now that the notion of Markov Boundary is established, it will 
be used in Viterbi inference to compute the most probable state 
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of the network. The general principle is to recurrently ‘cut’ the 
network using MBs. Given a subnetwork S of a network N, the 
subnetwork consisting of the variables of N not included in S can 
be ‘cut’ into two parts: a subnetwork R and a Markov Boundary 
B (which is also a subnetwork) separating S and R. Note that 
the subnetwork R can be empty if the Markov Boundary of the 

subnetwork S includes all the variables of the network N not 
included in the subnetwork S.

Then, if the new network N is considered as consisting of R and B, 
and assuming the Markov Boundary B as the new subnetwork S, 
the same operation can be repeated, until the network cannot be 
cut anymore, i.e. when R becomes empty. For instance, applied to 
our example, if the variable A is considered as subnetwork S, then 
the subnetwork B is made up of the variables B, C, and D, and the 
subnetwork R of the variables F and G, as illustrated in Figure 3.

At this stage, if the starting subnetwork S and all the successive 
subnetworks B are gathered, a set of MBs containing all the 
variables of the network is obtained. Each of these boundaries, 
by definition, only depends on the ones directly adjacent to it, so 
it is not necessary to consider more than two consecutive MBs 
simultaneously to perform the probability calculations. In order 
to take into account the dependence with the two neighboring 
boundaries, the window is sliding, i.e. the boundaries n-1 and n 
are first considered, then n and n+1.

In the case of Viterbi inference, the objective is to propagate 
probabilistic information from one Markov Boundary to the 
next, in order to scan the entire network while controlling the 
complexity of the operation. To do this, the joint distribution 
of the starting subnetwork S must be completely known. In 

Figure 1: An example of Bayesian Network.

Figure 2: Markov Boundary determination example.
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practice, this translates into a starting subnetwork ‘upstream’ of 
the network, i.e. having no parent.

If the Markov Boundary determination procedure is applied to 
our example, the starting point would be variable A, the first 
Markov Boundary variables B, D, and C, the second F, and the 
third G, as shown in Figure 4.

Viterbi Algorithm

Concretely, the Viterbi inference algorithm is applied to the 
sequence of MBs, and proceeds in three steps:

The computation of the probability of each possible state of 
the starting subnetwork, given the observations (i.e. if a state is 
incompatible with the observations, its probability is null).

For each Markov Boundary and each possible state of this 
boundary, the registration of the state of the previous boundary 
giving the highest probability of the current boundary state 
considered, and calculation of this probability.

Recovering the states of the successive MBs giving the highest 
probability at the end of the network scan.  They constitute the 
most probable global state of the network. The Viterbi inference 
procedure is formalized in Algorithm 1.

  O  o  
v   represents the observation of variable v in realisation o, 

States(MBr) denotes the set of possible states of Markov Boundary 
r, and iv represents the value of variable v in state of Markov 
Boundary i.   jMB  r  

i   denotes the state of variable j in Markov 
Boundary r in state i.   A  r  

i   is the element of the structure recording 
the antecedents associated to state i of Markov Boundary r. par(j) 
= (  par (  j )  MBr

i         ,  par (  j )  MB  r−1  
k   ) means that the parents of j can be both in 

the current Markov Boundary and in the previous one. Sr denotes 
the rth element of S.

The complexity of this algorithm is   O (  O × MB ×  N  s  
M× N  v  + N  v    )    , 

where O is the number of network realisations to infer, MB is 
the number of Markov Boundaries, Nv is the typical number of 
variables in a Markov Boundary, Ns is the typical number of states 
of a variable, and M is the typical missing observations ratio 
within a realisation.

AMBV ALGORITHM

In this section, we describe in detail AMBV, the proposed 
algorithm to compare to Viterbi algorithm.

Algorithm
AMBV automatically generates MBs for any BN while at the same 
time precalculating probabilities independent from observations, 
and saving them into structures later used during inference of the 
most probable state given the observations. This algorithm does 
not claim to find the best possible MBs, but only a good set of 
boundaries ensuring the inference success, in a simple and fast 
way.

The overall flow of the algorithm is as follows. The initial current 
Markov Boundary is formed by placing the variables with no 
parent in it.

As long as there are variables in the current Markov Boundary, 
the following procedure is repeated. The order of the variables in 
the set consisting of the current and previous Markov Boundary 
is optimized, so that certain subsets of states can be skipped when 
scanning all possible transitions. The probabilities of transitions 
from each state of the previous Markov Boundary (if it exists) 
to each state of the current Markov Boundary are computed, 
considering no observation, and each possible transition 
(probability greater than 0) is stored, as well as its associated 
probability. This allows reducing to the maximum the considered 
transitions from one Markov Boundary to the next. The states 

Figure 4: Cutting a network into a sequence of Markov Boundaries.

Figure 3: Example of "cutting" using the Markov Boundary.
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of the current Markov Boundary that can be accessed are also 
stored, in order to reduce the states considered for each Markov 
Boundary in subsequent iterations. Then, each variable in the 
current Markov Boundary votes for its children, and each child 
in turn votes for its own children. All variables that have at least 
one parent in the current Markov Boundary, have received at 
least one vote from each of their parents (and are not part of 
the current Markov Boundary), are put into the next Markov 
Boundary. If all the children of a variable in the current Markov 
Boundary are not included in the next Markov Boundary, the 
current Markov Boundary, or one of the previous MBs, that 
variable is put in the next Markov Boundary. Afterwards, the 
current Markov Boundary becomes the previous one and the 
next Markov Boundary becomes the current one.

Finally, when there are no more variables in the current Markov 
Boundary, for each realization of the network in the dataset, 
the stored data is used to compute at a minimal cost the most 
probable path given the observations, using the principle of the 
Viterbi algorithm. The algorithm is formalized in Algorithms 2, 
3 and 4.

JMB stands for Jointed Markov Boundaries, the junction of the 
variables of two consecutive MBs, and OJMB is it ordered version. 
We precise that States (OJMB) is swept through by systematically 
incrementing the variables of OJMB in ascending order. The 
states skipped inside the loop s ∈ States (OJMB) count as having 
been swept through, and so contribute to fulfilling the end loop 
criterion.

Algorithm 1: Viterbi algorithm applied to BNs.
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Algorithm 3: AMBV-Optimization structure generation.

Algorithm 4: AMBV-Inference.

Xi represents the ith network variable, par(v) represents all of v 

parents, and sk denotes the state of variable k in states of Markov 

Boundary. S is the structure containing the accessible states of 

each Markov Boundary. So, Si-1 contains all the accessible states of 

Markov Boundary i-1.

Algorithm 2: AMBV-Initialization.

  P   MB  i  
  s    is a variable gradually calculated, representing the probability 

of Markov Boundary i given considered states of OJMB. Card 
(MBi) represents the number of variables in MBi, OJMBk 
represents the kth variable of the previous and current Markov 
Boundary ordered, and   s  O JMB  1  Card (   MB  i   )       denotes the states in s of the 
variables in OJMB from 1 to Card(MBi).

T is a three-dimensional structure containing the transition 
data, whose first dimension is characterized by the two Markov 
Boundaries concerned by the transition, the second dimension 
is characterized by the target state of the transition, and the 
third dimension by the source state. Thus,   i − 1

iT   s  O JMB  Card ( MB  i  ) +1  Card (  OJMB )      = P   MB  i  
  s     s  O JMB  1  Card (   MB  i   )         is the 

element of structure T giving the probability of the transition 
from state      s  O JMB  Card ( MB  i  ) +1  Card (  OJMB )        of Markov Boundary i-1 to state   s  O JMB  1  Card (   MB  i   )       
of Markov Boundary i.  chi(j) represents the children of variable 
j, and V(k,j) represents the number of votes for variable k from 
variable j. 

Card(MB) is the number of network Markov Boundaries, O  o  
v    

denotes the observation of variable v, t(target) is the target state 
of the transition t, and t(target)v denotes the state of variable v in 
t(target).

The complexity of this algorithm is   O (MB ×   ( (1 − S)   N  s  )    2 N  v   )  + o 
(  O × MB ×       ( (1 − S)   N  s  )    M× N  v  + N  v    )    , where S is the sparsity of the 
conditional probability tables of the variables.

Example of Markov Boundaries Generation
Part of the presented algorithm will now be applied to a network 
example, in order to show how MBs are generated. Figure 
5 graphically illustrates the main elements of the following 
description of the mechanism. Each type of dashed outline 
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represents a Markov Boundary, and the numbers indicate the 
position of the variable in the Markov Boundary concerned.

First, the variables F and H are placed in Markov Boundary 1, 
because they are the only ones without parents.

Then, adding the variables from the previous boundary is a 
non-operation because the boundary does not exist. Also, 
since the variables have no children in boundary 1, they are not 
reordered.

Variable F votes for its children C, G, and I, then C votes for its 
own children A and D, G votes for B, D and J, and I votes for 
A. H votes for E and J, which do not vote because they have no 
children.

C, as well as G and I received a vote from their unique parent, 
which is in Markov Boundary 1, so they are included in Markov 
Boundary 2. A and D did receive votes from all their parents, 
but none of them belong to Markov Boundary 1, so they are not 
included in Markov Boundary 2. Variables B, J, and E did not 
receive a vote from each of their parents, so they are not included 
in Markov Boundary 2 either.

Since the variables E and J are not included in MBs 1 or 2, the 
variable H must also be inserted in Markov Boundary 2.

Markov Boundary 2 therefore contains the variables C, G, H, and 
I.

None of these variables has a child in Markov Boundary 2, so they 
are not reordered.

Variable C votes for its children A and D, then A votes for B, and 
D does not vote because it has no children. G votes for B, D and 
J, then B votes for E and J, and D and J do not vote because they 
have no children. H votes for E and J, which do not vote because 
they have no children. I votes for A, which votes for B.

A, D, B, J, and E have received one or more votes from each of 
their parents, at least one of whom being in Markov Boundary 2, 
so they are included in Markov Boundary 3.

The Markov Boundary 3 thus contains the variables A, B, D, E 
and J.

Then, a systematic scan of all variables in Markov Boundary 3 
is performed. Variable A having one child in Markov Boundary 
3, it is put aside. B having two children in Markov Boundary 3, 
it is set aside. Since D has no children in Markov Boundary 3, 
it is placed in first position of the ordered Markov Boundary 3 
and removed from the original Markov Boundary 3. Variable A 
is then reconsidered; it still has one child in the original Markov 
Boundary 3, so it is set aside again. B still has two children in the 
original Markov Boundary 3, so it is set aside. E has no children in 
the original Markov Boundary 3, so it is placed in second position 
of the ordered Markov Boundary 3, and removed from the 
original Markov Boundary 3. Once again, A is considered; it still 
has one child in the original Markov Boundary 3, so it is set aside 
once more. B now has one child in the original Markov Boundary 
3, so it is still set aside. J has no children in the original Markov 
Boundary 3, so it is added in third place to the ordered Markov 
Boundary 3. Back to A: it still has one child in the original Markov 
Boundary 3, so it is set aside again. B now has no more children, 
so it is placed in fourth position of the ordered Markov Boundary 
3. Finally, since A is now alone in the boundary, it has no more 
children, so it is added in last position of the ordered Markov 
Boundary 3. The Markov Boundary 3, after being ordered, now 
contains, in order, D, E, J, B, and A.

Since none of the variables in Markov Boundary 3 have children 
outside it, no variable can be added to Markov Boundary 4, which 
is thus empty, ending the generation of MBs.

Figure 5: Markov Boundaries generated on a network example.
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EXPERIMENTAL COMPARISON

In this section we compare experimentally the complexity of 
AMBV to the Viterbi algorithm we presented.

Simulation Context

There are two cases of comparison: when the network is a DBN, 
and when it is a BN. In the first case, the MBs used by the Viterbi 
algorithm used as a reference are directly deduced from the 
time slices. In the second case, a set of MBs is generated using 
the mechanism employed in AMBV, and given to the reference 
Viterbi algorithm. In all cases, AMBV computes its own MBs.

The two algorithms will be compared in terms of computational 
time for the same inference task and on the same platform (2 Intel 
Xeon CPU E5-2620 v4 @ 2.1GHz and 64GB of RAM), excluding 
the generation time of the MBs by the reference Viterbi algorithm.

The six parameters of the inference whose influence is studied are 
gathered in Table 1. First, the Number of Variables per (Time) 
Slice, set to 3 by default, and evaluated on the interval [1;5] by 
steps of 2, in campaign 1. It can be noted that only one variable 
corresponds to a simple Markov Model. Then, the Number of 
States per Variable, fixed at 4 by default, and evaluated on the 
interval [2;6] by steps of 2, in campaign 2. Next, the Sparsity ratio, 
set to 0 by default, and evaluated on the interval [0;0.8] by steps of 
0.4, in campaign 3. Then, the Number of (Time) Slices, set to 10 
by default, and evaluated for the values 3, 10, and 30, in campaign 
4. Next, the Missing Values Percentage, set to 20 by default, and 
evaluated on the interval [20;100] by steps of 40, in campaign 
5. Finally, the Number of Realizations to be evaluated, i.e., 
inferences to perform, which is evaluated on the interval [1;1000] 
by logarithmic step, in all campaigns. Only one parent per variable 
is considered, as it has nearly no influence on computation time. 
In order to smooth the results, an averaging is performed over 
ten repetitions of each simulation. Note that some curves may 
present artefacts when the number of realizations involved is low 
(<10).

The graph in Figure 6 shows the computation time of both 
Viterbi and AMBV algorithms, as a function of the number of 
realizations, and parameterized by the number of variables per 
slice.

It can be seen that Viterbi algorithm computation time is 
proportional to the number of inferences performed, which 
is coherent with its complexity. On the other hand, AMBV 
computation time also displays a linear growth with the number of 
realizations; however, its coefficient decreases when the number of 
variables per slice increases. This behaviour is perfectly coherent 
with the complexity of AMBV, and is explained by the fact that 
the optimization structure generation's complexity increases 
far quicker than the inferences. Both algorithms also follow an 
exponential law whose exponent is the number of variables per 
slice, as expected from their complexities.

This graph tells us that above a certain number of realizations, 
AMBV is always faster than Viterbi, and that this threshold 
increases with the number of variables per slice. Moreover, the 
size of the number of realizations gaps in-between the consecutive 
thresholds slowly decrease as the number of variables per slice 
increases.

The graph in Figure 7 displays the computation time of both 
AMBV and Viterbi algorithms as a function of the number 
of realizations, and parameterized by the number of states per 
variable. The two algorithms follow an exponential law whose 
base is the number of states per variable. As observed in most 
graphs, AMBV always ends up better than Viterbi, and the higher 
the number of states per variable, the smaller the realization gap 
between the intersections of two consecutive couples of curves.

The graph in Figure 8 displays the computation time of both AMBV 
and Viterbi algorithms as a function of the number of realizations, 
and parameterized by the sparsity of the distributions. It can be 
observed that sparsity has no effect on Viterbi algorithm, as we 
might expect from its complexity. On the other hand, AMBV 
follows an exponential law whose base is the complement to 1 
of the sparsity (1-S), which means its computation time greatly 

Parameter Campaign 1 Campaign 2 Campaign 3 Campaign 4 Campaign 5
Number of Variables per Slice 1;3;5 3 3 3 3
Number of States per Variable 4 2;4;6 4 4 4
Sparsity 0 0 0;04;0;8 0 0
Number of Slices 10 10 10 3;10;30 10
Missing Values Percentage 20 20 20 20 20;60;100
Number of Realizations 1 to 1000 by log 

10 steps
1 to 1000 by log 
10 steps

1 to 1000 by log 
10 steps

1 to 1000 by log 
10 steps

1 to 1000 by log 
10 steps

Number of Parents per Variable 1 1 1 1 1
Number of Repetitions 10 10 10 10 10

Table 1: Campaigns parameters.
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Figure 7: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of states per 
variable.

Figure 6: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of variables per slice.
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Figure 8: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the sparsity.

decreases when the distributions become sparse. It can be noted 
that the effect is more noticeable on the optimization structure 
generation part than the inference part. The graph clearly shows 
us that when sparsity increases, AMBV algorithm becomes better 
than Viterbi algorithm with far less inferences needed.

The graph in Figure 9 displays the computation time of both 
AMBV and Viterbi algorithms as a function of the number of 
realizations, and parameterized by the number of slices. Both 
algorithms computation times increase linearly with the number 
of slices, in coherence with their complexities. However it is not 
obvious for AMBV for less than 10 slices, as the temporal slices 
are not directly used as MBs, like in the case of Viterbi algorithm. 
So, AMBV might use a slightly different number of boundaries, 
but the difference may be huge when the total number of slices 
is small. It can also be seen that, as the number of slice increases, 
AMBV needs more and more realizations to be more efficient than 
Viterbi, but it always ends up better. The number of realizations 
gaps between the intersections of each couple of curves also 
decreases as the number of slices increases.

Finally, the graph in Figure 10 shows the computation time 
of both AMBV and Viterbi algorithms as a function of the 
number of realizations, and parameterized by the missing values 
percentage. The Viterbi algorithm behaves as expected from the 
complexity, i.e., it follows an exponential law whose exponent is 
the missing values percentage. AMBV was expected to display the 
same behaviour, but the missing values percentage ends up with 

no influence on its computation time. Two reasons explain this: 
first and foremost, the inference part of the computation is very 
short compared to the optimization structure generation (less 
than 1%), and this is true whatever the parameters. The second 
reason is that the probability computation performed in each of 
the inference threads is far shorter than the time to create and 
destroy the thread, in the case of low parameter values such as 
the ones used here. The two phenomena add up, leading to a total 
computation time variance being far more important than the 
computation time saved with less missing values. However, with 
a more optimized implementation, it would be possible to take 
advantage of less missing values.

CONCLUSION

In this paper, we presented the Automatic Markov Boundaries 
construction optimized Viterbi (AMBV) algorithm, which 
performs Viterbi inferences in any discrete Bayesian Network 
by generating its own Markov Boundaries. It takes advantage 
of the fact that when doing multiple inferences with the same 
network, everything independent from the observations, i.e., 
the transition probabilities from one Markov Boundary to the 
following one, can be pre-calculated to save some computation 
power. It also cleverly orders the variables within each Markov 
Boundary to enable skipping some boundary state subsets when 
the distributions are sparse. We compared its computation time 
to that of a classic Viterbi for the same task and on the same 
platform. AMBV ended up being always faster when enough 
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Figure 10: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the missing values percentage.

Figure 9: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of slices.
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realizations are performed; this threshold generally increases with 
the complexity of the network and decreases with the sparsity 
of the distributions. However, the gaps in terms of realizations 
between two consecutive thresholds also decrease with the 
complexity of the network, so it becomes more efficient as the 
complexity increases. We can conclude that AMBV is relevant for 
large networks, but underperforms on small networks because of 
its important overhead. To further increase AMBV performance, 
the optimization structure generation could be parallelized, like 
the inference part and Viterbi are. Moreover, when switching 
from one Markov Boundary state to the next, only one variable 
changes state, so it may be interesting to only recalculate the 
necessary probabilities. Finally, it might be useful to design 
a heuristic process to choose the variables in each Markov 
Boundary, in order to limit the number of each boundary states, 
with the help of a first sweeping across the network, for instance.
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