
HAL Id: hal-04825380
https://hal.science/hal-04825380v1

Submitted on 9 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

AMBV: An Optimized Generic Viterbi Algorithm for
Bayesian Networks

Pierre Samuel Greau Hamard, Moïse Djoko-Kouam, Yves Louët

To cite this version:
Pierre Samuel Greau Hamard, Moïse Djoko-Kouam, Yves Louët. AMBV: An Optimized Generic
Viterbi Algorithm for Bayesian Networks. Journal of Scientometric Research, 2024, 13 (3), pp.745-
756. �10.5530/jscires.20040285�. �hal-04825380�

https://hal.science/hal-04825380v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Scientometric Research, 2024; 13(3):745-756.
https://www.jscires.org Research Article

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 745

DOI: 10.5530/jscires.20040285

Copyright Information :

Copyright Author (s) 2024 Distributed under

Creative Commons CC-BY 4.0

Publishing Partner : Manuscript Technomedia. [www.mstechnomedia.com]

AMBV: An Optimized Generic Viterbi Algorithm for Bayesian
Networks
Pierre-Samuel Gréau-Hamard1,2,*, Moïse Djoko-Kouam1,2, Yves Louët2

1Informatics and Telecommunications Laboratory, ECAM Rennes Louis de Broglie, Bruz, FRANCE.
2Institut d’Electronique et des Technologies du numéRique (IETR), CentraleSupélec, Rennes, FRANCE.

ABSTRACT
Bayesian Networks is a family of machine learning models widely used in various applications
such as speech recognition, Protocol Reverse Engineering, or more generally the retrieval of
hidden information in data. These models, at the crossroads of probability theory and graph
theory, allow intuitive modelling and simple interpretation of the results. In this paper, we are
interested in inferring the most probable state of a discrete Bayesian network. In the case of a
Hidden Markov Model, the Viterbi algorithm is usually used. However, although accurate, it is not
optimized, and when generalized to any number of variables per time slice, its complexity increases
exponentially. This is why we have developed an optimized version of the Viterbi algorithm,
Automatic Markov Boundaries construction optimized Viterbi (AMBV), taking advantage of the
fact that once a model is trained, it is usually used to analyze many observations. Moreover, in
case of sparse probability distributions of the variables, an additional level of optimization is
used. Finally, in order to make possible the inference of the most probable state of any discrete
Bayesian network, a mechanism for automatically generating a set of Markov Boundaries for
the network has been proposed. We will show that AMBV performs significantly better than the
classical Viterbi algorithm as soon as the complexity of the network increases sufficiently.

Keywords: Viterbi, Bayesian Networks, Optimized, Generic, Most probable network state,
Automatic Markov Boundaries, Sparse probability distributions.

INTRODUCTION

Bayesian Networks (BNs) is a family of mathematical models at
the crossroads of probability and graph theory. Their use extends
to many fields, such as genetics, biomonitoring, document
classification, speech or image recognition. For example, they
are used in[1] to generate Gene Regulatory Networks from gene
expression observations. They are also found in,[2] where the
authors propose to analyse the sentiment about an election in posts
on social media like Twitter. Paper[3] also exposes how, associated
to deep neural networks, they can be used to perform Voice
Activity Detection. In,[4] the authors use the Viterbi algorithm
to find the most probable sequence of states of a Compound
Hidden Markov Model, in order to identify human activities
from cameras and depth captors’ data. Lastly, paper[5] makes use
of an adaptive Viterbi algorithm to perform image segmentation
with the help of an adaptive Hidden Markov Model.

They allow to easily model a system through the probabilistic
interactions between the different variables characterizing it.
It is then possible, if necessary, from observations, to learn the
different conditional probability distributions of the system
variables.[6] It is also possible to infer the joint probabilities of
each variable or group of variables, as well as the most probable
global state of the network.

In this paper, we are interested in the latter inference applied
to discrete BNs. If the reader is interested in the other types of
inference, the paper[7] constitutes a good starting basis. In the
case of Hidden Markov Models (HMMs),[8] one of the simplest
and most widely used BNs, this problem is solved by the Viterbi
algorithm.[9] However, HMMs, containing only two variables
per time slice, one hidden and one observed, are only a special
case of Dynamic Bayesian Networks (DBNs),[10] in which the
number of variables per time slice is arbitrary, and in which each
variable is likely to be observed or not at each instant. The Viterbi
algorithm is therefore not applicable in its original form, but its
principle is nevertheless extensible to DBNs by considering the
global state of all the variables of a time slice as the hidden state,
and by checking that the considered states are compatible with
the observation. For a more in-depth approach to DBN,[7] is a
reference in the domain.

Received: 23-07-2022;
Revised: 21-11-2022;
Accepted: 03-08-2023.

Correspondence:
Pierre-Samuel Gréau-Hamard
Informatics and Telecommunications
Laboratory, ECAM Rennes Louis de
Broglie, Bruz, FRANCE.
Email: greauhamard.pierresamuel@gmail.
com

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024746

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

In turn, DBNs can be seen as a special case of BNs containing
a cyclic repetition of a pattern where each variable has a single
conditional probability distribution common to all patterns. It is
therefore once again possible to apply the principle of the Viterbi
algorithm, but it is necessary to define beforehand the different
Markov Boundaries (MBs) describing the network, as they are no
longer directly equivalent to time slices. The changes mentioned
earlier for the application to DBNs must also be used here.

We called the algorithm resulting from our suggestions Automatic
Markov Boundaries construction optimized Viterbi (AMBV).
However, AMBV, like Viterbi, has a complexity that increases
exponentially with the number of links between variables and
linearly with the number of variables and inferences to be made.
To partially overcome this problem, we have explored two
optimization directions: the precomputation of all the quantities
that do not depend on the observations, and a mechanism
that allows us to ignore the transition subsets from a state of
a Markov Boundary to a state of the next Markov Boundary
whose probability are zero. This allows us to greatly reduce the
complexity when a large number of inferences are made with the
same network, and/or the probability distributions of the variables
are relatively sparse. On the other hand, for simple networks, the
large overhead required makes AMBV much slower than a simple
unoptimized Viterbi extended to BNs.

The rest of this paper is organized as follows: in section II,
discrete Bayesian Networks are briefly introduced; in section
III, we present the basic Viterbi algorithm extended to Bayesian
Networks that we use as a reference; in section IV, we describe
the proposed algorithm, AMBV; in section V, we experimentally
compare AMBV to the state of the art; and finally, we conclude
in section VI.

DISCRETE BAYESIAN NETWORKS

Bayesian networks are a family of graphical models that represent
a system through the probabilistic links between its different
characteristic variables. The nodes of the graph represent the
variables, while the directed arcs represent the conditional links
between variables. The interest of this network lies in the fact
that it gives the possibility to infer at low cost any probabilistic
relationships between the variables.
In a Bayesian network, any conditional relationship is possible,
as long as no cyclic relationship appears, i.e. no variable depends
directly or indirectly on itself.
The construction of such a network takes place in four steps.
Firstly, the characteristic random variables of the system are
identified. Then, the number of possible states for each variable
is defined. Afterwards there is the specification of the conditional
links between variables. This step, unlike the two previous ones,
can be done in two ways: manually, if the relationships between
variables are known a priori, as it is the case in this article, or
automatically, by learning, if it is not the case. Finally, the last

step consists in specifying the exact parameters of the probability
tables for each of the variables. Generally, and it is the case in
this article, all or part of the distributions of the variables are
unknown, and this is why a learning process is set up in order
to find parameters allowing to explain the observations of the
system as well as possible.

There are three types of variables in a BN:

• Input variables, which are controlled and observable

• Output variables, which are not controlled, but are observable

• Hidden variables, which are neither controlled nor observable

Let’s take the example of Figure 1. This network has four variables:
a, b, c, and d. The variable a is an input variable, having three
possible states: a0, a1, and a2. The variables b and c are hidden and
can take two states: b0 and b1, c0 and c1, respectively. d is an output
variable, having two possible states: d0 and d1. b is conditionally
dependent on a, and d is conditionally dependent on b and c.
From a graphical point of view, it can be said that b is a child
of a or a parent of b, and that d is a child of b and c, or b and
c are parents of d. This means that the probability distributions
explicitly included in the network are: P(a), P(b|a), P(c), and
P(d|b,c). A possible representation of the probability tables is also
given in Figure 1.

Bayesian networks have a fundamental property, allowing
inference and learning at low cost: conditional independence. The
independence between two variables conditional on a third one,
for example a and d conditionally on b in our network, translates
into the fact that if the state of b is known, then the state of a
has no influence on d and vice versa; this property allows us to
consider independently the variables (a, b) and (b, d), and thus to
reduce the complexity of the calculations.

VITERBI INFERENCE

In this section, we present the Viterbi algorithm extended to work
on any BN we use as a comparison reference.

Markov Boundaries

The Viterbi inference is based on the conditional independence
property in Bayesian networks. In this context, let us define the
notion of Markov Boundary of a set of variables of the network
as the minimal set of variables of the network necessary to
completely define the considered variables.

Practically, the Markov Boundary corresponds to the parents of
the considered variables, their children, and the parents of their
children. In the example in Figure 2, the Markov Boundary for
Variable B would consist of Variables A (parent and parent of
child), D (child), F (child), and C (parent of child).

Now that the notion of Markov Boundary is established, it will
be used in Viterbi inference to compute the most probable state

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 747

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

of the network. The general principle is to recurrently ‘cut’ the
network using MBs. Given a subnetwork S of a network N, the
subnetwork consisting of the variables of N not included in S can
be ‘cut’ into two parts: a subnetwork R and a Markov Boundary
B (which is also a subnetwork) separating S and R. Note that
the subnetwork R can be empty if the Markov Boundary of the

subnetwork S includes all the variables of the network N not
included in the subnetwork S.

Then, if the new network N is considered as consisting of R and B,
and assuming the Markov Boundary B as the new subnetwork S,
the same operation can be repeated, until the network cannot be
cut anymore, i.e. when R becomes empty. For instance, applied to
our example, if the variable A is considered as subnetwork S, then
the subnetwork B is made up of the variables B, C, and D, and the
subnetwork R of the variables F and G, as illustrated in Figure 3.

At this stage, if the starting subnetwork S and all the successive
subnetworks B are gathered, a set of MBs containing all the
variables of the network is obtained. Each of these boundaries,
by definition, only depends on the ones directly adjacent to it, so
it is not necessary to consider more than two consecutive MBs
simultaneously to perform the probability calculations. In order
to take into account the dependence with the two neighboring
boundaries, the window is sliding, i.e. the boundaries n-1 and n
are first considered, then n and n+1.

In the case of Viterbi inference, the objective is to propagate
probabilistic information from one Markov Boundary to the
next, in order to scan the entire network while controlling the
complexity of the operation. To do this, the joint distribution
of the starting subnetwork S must be completely known. In

Figure 1: An example of Bayesian Network.

Figure 2: Markov Boundary determination example.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024748

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

practice, this translates into a starting subnetwork ‘upstream’ of
the network, i.e. having no parent.

If the Markov Boundary determination procedure is applied to
our example, the starting point would be variable A, the first
Markov Boundary variables B, D, and C, the second F, and the
third G, as shown in Figure 4.

Viterbi Algorithm

Concretely, the Viterbi inference algorithm is applied to the
sequence of MBs, and proceeds in three steps:

The computation of the probability of each possible state of
the starting subnetwork, given the observations (i.e. if a state is
incompatible with the observations, its probability is null).

For each Markov Boundary and each possible state of this
boundary, the registration of the state of the previous boundary
giving the highest probability of the current boundary state
considered, and calculation of this probability.

Recovering the states of the successive MBs giving the highest
probability at the end of the network scan. They constitute the
most probable global state of the network. The Viterbi inference
procedure is formalized in Algorithm 1.

 O o
v represents the observation of variable v in realisation o,

States(MBr) denotes the set of possible states of Markov Boundary
r, and iv represents the value of variable v in state of Markov
Boundary i. jMB r

i denotes the state of variable j in Markov
Boundary r in state i. A r

i is the element of the structure recording
the antecedents associated to state i of Markov Boundary r. par(j)
= (par (j) MBr

i , par (j) MB r−1
k) means that the parents of j can be both in

the current Markov Boundary and in the previous one. Sr denotes
the rth element of S.

The complexity of this algorithm is O (O × MB × N s
M× N v + N v) ,

where O is the number of network realisations to infer, MB is
the number of Markov Boundaries, Nv is the typical number of
variables in a Markov Boundary, Ns is the typical number of states
of a variable, and M is the typical missing observations ratio
within a realisation.

AMBV ALGORITHM

In this section, we describe in detail AMBV, the proposed
algorithm to compare to Viterbi algorithm.

Algorithm
AMBV automatically generates MBs for any BN while at the same
time precalculating probabilities independent from observations,
and saving them into structures later used during inference of the
most probable state given the observations. This algorithm does
not claim to find the best possible MBs, but only a good set of
boundaries ensuring the inference success, in a simple and fast
way.

The overall flow of the algorithm is as follows. The initial current
Markov Boundary is formed by placing the variables with no
parent in it.

As long as there are variables in the current Markov Boundary,
the following procedure is repeated. The order of the variables in
the set consisting of the current and previous Markov Boundary
is optimized, so that certain subsets of states can be skipped when
scanning all possible transitions. The probabilities of transitions
from each state of the previous Markov Boundary (if it exists)
to each state of the current Markov Boundary are computed,
considering no observation, and each possible transition
(probability greater than 0) is stored, as well as its associated
probability. This allows reducing to the maximum the considered
transitions from one Markov Boundary to the next. The states

Figure 4: Cutting a network into a sequence of Markov Boundaries.

Figure 3: Example of "cutting" using the Markov Boundary.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 749

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

of the current Markov Boundary that can be accessed are also
stored, in order to reduce the states considered for each Markov
Boundary in subsequent iterations. Then, each variable in the
current Markov Boundary votes for its children, and each child
in turn votes for its own children. All variables that have at least
one parent in the current Markov Boundary, have received at
least one vote from each of their parents (and are not part of
the current Markov Boundary), are put into the next Markov
Boundary. If all the children of a variable in the current Markov
Boundary are not included in the next Markov Boundary, the
current Markov Boundary, or one of the previous MBs, that
variable is put in the next Markov Boundary. Afterwards, the
current Markov Boundary becomes the previous one and the
next Markov Boundary becomes the current one.

Finally, when there are no more variables in the current Markov
Boundary, for each realization of the network in the dataset,
the stored data is used to compute at a minimal cost the most
probable path given the observations, using the principle of the
Viterbi algorithm. The algorithm is formalized in Algorithms 2,
3 and 4.

JMB stands for Jointed Markov Boundaries, the junction of the
variables of two consecutive MBs, and OJMB is it ordered version.
We precise that States (OJMB) is swept through by systematically
incrementing the variables of OJMB in ascending order. The
states skipped inside the loop s ∈ States (OJMB) count as having
been swept through, and so contribute to fulfilling the end loop
criterion.

Algorithm 1: Viterbi algorithm applied to BNs.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024750

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

Algorithm 3: AMBV-Optimization structure generation.

Algorithm 4: AMBV-Inference.

Xi represents the ith network variable, par(v) represents all of v

parents, and sk denotes the state of variable k in states of Markov

Boundary. S is the structure containing the accessible states of

each Markov Boundary. So, Si-1 contains all the accessible states of

Markov Boundary i-1.

Algorithm 2: AMBV-Initialization.

 P MB i
 s is a variable gradually calculated, representing the probability

of Markov Boundary i given considered states of OJMB. Card
(MBi) represents the number of variables in MBi, OJMBk
represents the kth variable of the previous and current Markov
Boundary ordered, and s O JMB 1 Card (MB i) denotes the states in s of the
variables in OJMB from 1 to Card(MBi).

T is a three-dimensional structure containing the transition
data, whose first dimension is characterized by the two Markov
Boundaries concerned by the transition, the second dimension
is characterized by the target state of the transition, and the
third dimension by the source state. Thus, i − 1

iT s O JMB Card (MB i) +1 Card (OJMB) = P MB i
 s s O JMB 1 Card (MB i) is the

element of structure T giving the probability of the transition
from state s O JMB Card (MB i) +1 Card (OJMB) of Markov Boundary i-1 to state s O JMB 1 Card (MB i)
of Markov Boundary i. chi(j) represents the children of variable
j, and V(k,j) represents the number of votes for variable k from
variable j.

Card(MB) is the number of network Markov Boundaries, O o
v

denotes the observation of variable v, t(target) is the target state
of the transition t, and t(target)v denotes the state of variable v in
t(target).

The complexity of this algorithm is O (MB × ((1 − S) N s) 2 N v) + o
(O × MB × ((1 − S) N s) M× N v + N v) , where S is the sparsity of the
conditional probability tables of the variables.

Example of Markov Boundaries Generation
Part of the presented algorithm will now be applied to a network
example, in order to show how MBs are generated. Figure
5 graphically illustrates the main elements of the following
description of the mechanism. Each type of dashed outline

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 751

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

represents a Markov Boundary, and the numbers indicate the
position of the variable in the Markov Boundary concerned.

First, the variables F and H are placed in Markov Boundary 1,
because they are the only ones without parents.

Then, adding the variables from the previous boundary is a
non-operation because the boundary does not exist. Also,
since the variables have no children in boundary 1, they are not
reordered.

Variable F votes for its children C, G, and I, then C votes for its
own children A and D, G votes for B, D and J, and I votes for
A. H votes for E and J, which do not vote because they have no
children.

C, as well as G and I received a vote from their unique parent,
which is in Markov Boundary 1, so they are included in Markov
Boundary 2. A and D did receive votes from all their parents,
but none of them belong to Markov Boundary 1, so they are not
included in Markov Boundary 2. Variables B, J, and E did not
receive a vote from each of their parents, so they are not included
in Markov Boundary 2 either.

Since the variables E and J are not included in MBs 1 or 2, the
variable H must also be inserted in Markov Boundary 2.

Markov Boundary 2 therefore contains the variables C, G, H, and
I.

None of these variables has a child in Markov Boundary 2, so they
are not reordered.

Variable C votes for its children A and D, then A votes for B, and
D does not vote because it has no children. G votes for B, D and
J, then B votes for E and J, and D and J do not vote because they
have no children. H votes for E and J, which do not vote because
they have no children. I votes for A, which votes for B.

A, D, B, J, and E have received one or more votes from each of
their parents, at least one of whom being in Markov Boundary 2,
so they are included in Markov Boundary 3.

The Markov Boundary 3 thus contains the variables A, B, D, E
and J.

Then, a systematic scan of all variables in Markov Boundary 3
is performed. Variable A having one child in Markov Boundary
3, it is put aside. B having two children in Markov Boundary 3,
it is set aside. Since D has no children in Markov Boundary 3,
it is placed in first position of the ordered Markov Boundary 3
and removed from the original Markov Boundary 3. Variable A
is then reconsidered; it still has one child in the original Markov
Boundary 3, so it is set aside again. B still has two children in the
original Markov Boundary 3, so it is set aside. E has no children in
the original Markov Boundary 3, so it is placed in second position
of the ordered Markov Boundary 3, and removed from the
original Markov Boundary 3. Once again, A is considered; it still
has one child in the original Markov Boundary 3, so it is set aside
once more. B now has one child in the original Markov Boundary
3, so it is still set aside. J has no children in the original Markov
Boundary 3, so it is added in third place to the ordered Markov
Boundary 3. Back to A: it still has one child in the original Markov
Boundary 3, so it is set aside again. B now has no more children,
so it is placed in fourth position of the ordered Markov Boundary
3. Finally, since A is now alone in the boundary, it has no more
children, so it is added in last position of the ordered Markov
Boundary 3. The Markov Boundary 3, after being ordered, now
contains, in order, D, E, J, B, and A.

Since none of the variables in Markov Boundary 3 have children
outside it, no variable can be added to Markov Boundary 4, which
is thus empty, ending the generation of MBs.

Figure 5: Markov Boundaries generated on a network example.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024752

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

EXPERIMENTAL COMPARISON

In this section we compare experimentally the complexity of
AMBV to the Viterbi algorithm we presented.

Simulation Context

There are two cases of comparison: when the network is a DBN,
and when it is a BN. In the first case, the MBs used by the Viterbi
algorithm used as a reference are directly deduced from the
time slices. In the second case, a set of MBs is generated using
the mechanism employed in AMBV, and given to the reference
Viterbi algorithm. In all cases, AMBV computes its own MBs.

The two algorithms will be compared in terms of computational
time for the same inference task and on the same platform (2 Intel
Xeon CPU E5-2620 v4 @ 2.1GHz and 64GB of RAM), excluding
the generation time of the MBs by the reference Viterbi algorithm.

The six parameters of the inference whose influence is studied are
gathered in Table 1. First, the Number of Variables per (Time)
Slice, set to 3 by default, and evaluated on the interval [1;5] by
steps of 2, in campaign 1. It can be noted that only one variable
corresponds to a simple Markov Model. Then, the Number of
States per Variable, fixed at 4 by default, and evaluated on the
interval [2;6] by steps of 2, in campaign 2. Next, the Sparsity ratio,
set to 0 by default, and evaluated on the interval [0;0.8] by steps of
0.4, in campaign 3. Then, the Number of (Time) Slices, set to 10
by default, and evaluated for the values 3, 10, and 30, in campaign
4. Next, the Missing Values Percentage, set to 20 by default, and
evaluated on the interval [20;100] by steps of 40, in campaign
5. Finally, the Number of Realizations to be evaluated, i.e.,
inferences to perform, which is evaluated on the interval [1;1000]
by logarithmic step, in all campaigns. Only one parent per variable
is considered, as it has nearly no influence on computation time.
In order to smooth the results, an averaging is performed over
ten repetitions of each simulation. Note that some curves may
present artefacts when the number of realizations involved is low
(<10).

The graph in Figure 6 shows the computation time of both
Viterbi and AMBV algorithms, as a function of the number of
realizations, and parameterized by the number of variables per
slice.

It can be seen that Viterbi algorithm computation time is
proportional to the number of inferences performed, which
is coherent with its complexity. On the other hand, AMBV
computation time also displays a linear growth with the number of
realizations; however, its coefficient decreases when the number of
variables per slice increases. This behaviour is perfectly coherent
with the complexity of AMBV, and is explained by the fact that
the optimization structure generation's complexity increases
far quicker than the inferences. Both algorithms also follow an
exponential law whose exponent is the number of variables per
slice, as expected from their complexities.

This graph tells us that above a certain number of realizations,
AMBV is always faster than Viterbi, and that this threshold
increases with the number of variables per slice. Moreover, the
size of the number of realizations gaps in-between the consecutive
thresholds slowly decrease as the number of variables per slice
increases.

The graph in Figure 7 displays the computation time of both
AMBV and Viterbi algorithms as a function of the number
of realizations, and parameterized by the number of states per
variable. The two algorithms follow an exponential law whose
base is the number of states per variable. As observed in most
graphs, AMBV always ends up better than Viterbi, and the higher
the number of states per variable, the smaller the realization gap
between the intersections of two consecutive couples of curves.

The graph in Figure 8 displays the computation time of both AMBV
and Viterbi algorithms as a function of the number of realizations,
and parameterized by the sparsity of the distributions. It can be
observed that sparsity has no effect on Viterbi algorithm, as we
might expect from its complexity. On the other hand, AMBV
follows an exponential law whose base is the complement to 1
of the sparsity (1-S), which means its computation time greatly

Parameter Campaign 1 Campaign 2 Campaign 3 Campaign 4 Campaign 5
Number of Variables per Slice 1;3;5 3 3 3 3
Number of States per Variable 4 2;4;6 4 4 4
Sparsity 0 0 0;04;0;8 0 0
Number of Slices 10 10 10 3;10;30 10
Missing Values Percentage 20 20 20 20 20;60;100
Number of Realizations 1 to 1000 by log

10 steps
1 to 1000 by log
10 steps

1 to 1000 by log
10 steps

1 to 1000 by log
10 steps

1 to 1000 by log
10 steps

Number of Parents per Variable 1 1 1 1 1
Number of Repetitions 10 10 10 10 10

Table 1: Campaigns parameters.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 753

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

Figure 7: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of states per
variable.

Figure 6: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of variables per slice.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024754

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

Figure 8: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the sparsity.

decreases when the distributions become sparse. It can be noted
that the effect is more noticeable on the optimization structure
generation part than the inference part. The graph clearly shows
us that when sparsity increases, AMBV algorithm becomes better
than Viterbi algorithm with far less inferences needed.

The graph in Figure 9 displays the computation time of both
AMBV and Viterbi algorithms as a function of the number of
realizations, and parameterized by the number of slices. Both
algorithms computation times increase linearly with the number
of slices, in coherence with their complexities. However it is not
obvious for AMBV for less than 10 slices, as the temporal slices
are not directly used as MBs, like in the case of Viterbi algorithm.
So, AMBV might use a slightly different number of boundaries,
but the difference may be huge when the total number of slices
is small. It can also be seen that, as the number of slice increases,
AMBV needs more and more realizations to be more efficient than
Viterbi, but it always ends up better. The number of realizations
gaps between the intersections of each couple of curves also
decreases as the number of slices increases.

Finally, the graph in Figure 10 shows the computation time
of both AMBV and Viterbi algorithms as a function of the
number of realizations, and parameterized by the missing values
percentage. The Viterbi algorithm behaves as expected from the
complexity, i.e., it follows an exponential law whose exponent is
the missing values percentage. AMBV was expected to display the
same behaviour, but the missing values percentage ends up with

no influence on its computation time. Two reasons explain this:
first and foremost, the inference part of the computation is very
short compared to the optimization structure generation (less
than 1%), and this is true whatever the parameters. The second
reason is that the probability computation performed in each of
the inference threads is far shorter than the time to create and
destroy the thread, in the case of low parameter values such as
the ones used here. The two phenomena add up, leading to a total
computation time variance being far more important than the
computation time saved with less missing values. However, with
a more optimized implementation, it would be possible to take
advantage of less missing values.

CONCLUSION

In this paper, we presented the Automatic Markov Boundaries
construction optimized Viterbi (AMBV) algorithm, which
performs Viterbi inferences in any discrete Bayesian Network
by generating its own Markov Boundaries. It takes advantage
of the fact that when doing multiple inferences with the same
network, everything independent from the observations, i.e.,
the transition probabilities from one Markov Boundary to the
following one, can be pre-calculated to save some computation
power. It also cleverly orders the variables within each Markov
Boundary to enable skipping some boundary state subsets when
the distributions are sparse. We compared its computation time
to that of a classic Viterbi for the same task and on the same
platform. AMBV ended up being always faster when enough

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024 755

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

Figure 10: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the missing values percentage.

Figure 9: Computation time of Viterbi and AMBV algorithms as a function of the number of realizations and parameterized by the number of slices.

Journal of Scientometric Research, Vol 13, Issue 3, Sep-Dec, 2024756

Gréau-Hamard, et al.: Optimized Generic Viterbi Algorithm

realizations are performed; this threshold generally increases with
the complexity of the network and decreases with the sparsity
of the distributions. However, the gaps in terms of realizations
between two consecutive thresholds also decrease with the
complexity of the network, so it becomes more efficient as the
complexity increases. We can conclude that AMBV is relevant for
large networks, but underperforms on small networks because of
its important overhead. To further increase AMBV performance,
the optimization structure generation could be parallelized, like
the inference part and Viterbi are. Moreover, when switching
from one Markov Boundary state to the next, only one variable
changes state, so it may be interesting to only recalculate the
necessary probabilities. Finally, it might be useful to design
a heuristic process to choose the variables in each Markov
Boundary, in order to limit the number of each boundary states,
with the help of a first sweeping across the network, for instance.

AUTHORS’ CONTRIBUTION

Pierre-Samuel Gréau-Hamard: conceptualization, literature
search, data collection, algorithm formulation, writing, result
analysis and editing. Moïse Djoko-Kouam: reviews paper content
and finalization. Yves Louët: : organization and analysis.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES
1. Han M, Liu X, Zhang W, Wang M, Bu W, Chang C, et al. TSMiner: A novel framework

for generating time-specific gene regulatory networks from time-series expression
profiles. Nucleic Acids Research. 2021;49(18):e108. DOI: 10.1093/nar/gkab629.

2. Irsalinda N, Haswat H, Sugiyarto S, Fitrianawati M. Hidden markov model for
sentiment analysis using viterbi algorithm. EKSAKTA. 2021;2(1):18-23.

3. Bai L, Zhang Z, Hu J. Voice activity detection based on deep neural networks and
Viterbi. IOP Conference Series: Materials Science and Engineering. 2017;231(1):12-42.
DOI: 10.1088/1757-899x/231/1/012042.

4. Figueroa-Angulo JI, Savage J, Bribiesca E, Escalante B, Sucar LE. Compound Hidden
Markov Model for Activity Labelling. International Journal of Intelligence Science.
2015;5(5):177-95.

5. Song Y, Adobah B, Qu J, Liu C. Segmentation of Ordinary Images and Medical Images
with an Adaptive Hidden Markov Model and Viterbi Algorithm. Current Signal
Transduction Therapy. 2020;15(2):109-23.

6. Mouafo SRT, Vaton S, Courant JL, Gosselin S. A tutorial on the EM algorithm for
Bayesian networks: Application to self-diagnosis of GPON-FTTH Networks. In:
Proceedings of IWCMC 2016: 12th International Wireless Communications and
Mobile Computing Conference, Paphos, Cyprus. 2016:369-76.

7. Murphy K. Dynamic bayesian networks: Representation, inference and learning.
Ph.D. dissertation. Fall. 2002.

8. Rabiner L, Juang B. An introduction to hidden Markov models. IEEE ASSP Magazine.
1986;3(1):4-16.

9. Forney GD. The viterbi algorithm. In Proceedings of the IEEE. 1973;61(3):268-78.
10. Mihajlovic V, Petkovic M. Petkovic, Dynamic Bayesian Networks: A State of the Art.

CTIT Technical Report Series. 2001;34(1):1-37.

Cite this article: Gréau-Hamard PS, Djoko-Kouam M, Louët Y. AMBV: An Optimized Generic Viterbi Algorithm for Bayesian Networks. J Scientometric Res.
2024;13(3):745-56.

