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Long short term memory networks 
for predicting resilient Modulus of 
stabilized base material subject to 
wet-dry cycles
Mohammad A. Al-Zubi1, Mahmood Ahmad2,3,11, Shahriar Abdullah4, Beenish Jehan Khan5, 
Wajeeha Qamar6, Gamil M. S. Abdullah7, Roberto Alonso González-Lezcano8, Sonjoy Paul4, 
N. S. Abd EL-Gawaad9, Tariq Ouahbi10 & Muhammad Kashif3

The resilient modulus (MR) of different pavement materials is one of the most important input 
parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is 
the most often used method for evaluating the MR, although it is expensive, time-consuming, and 
requires specialized lab facilities. The purpose of this study is to establish a new model based on Long 
Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various 
additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input 
parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, 
Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining 
stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of 
determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model 
outperforms other developed models, such as support vector regression and least squares approaches, 
in the literature. A sensitivity analysis study has determined that the DMR parameter is the most 
significant factor, while the σd parameter is the least significant factor in predicting the MR of the 
stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is 
employed to elucidate the optimal model and examine the impact of its features on the final result.

Keywords Resilient modulus, Pavements, Stabilized base, Wet-dry cycles, Long short-term memory 
networks, Graphical user interface

For rigid and flexible pavements, the stabilized aggregate bases are substantial parts of pavement structures, 
providing structural support and durability. Stabilized aggregate bases are prepared from aggregates, water, and 
stabilizing additives like cement, lime, fly ash, or asphalt emulsion By adding the stabilizing agents it can enhance 
the properties of base materials such as the strength, stiffness, and resistance to moisture damage1. The stiffness 
of a soil or pavement layer during repeated loading and unloading situations are defined by Resilient modulus 
(MR)2. The MR is utilized to construct flexible pavements that deform elastically under traffic loads3. The MR 
is also used to assess the performance and durability of stabilized aggregate bases when subjected to Wet-Dry 
cycles (WDC)4. The MR, which defined subgrade soil stiffness, was incorporated into the pavement design guide 
of the American Association of State Highway and Transportation Officials (AASHTO) in 19935. Since then, 
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the MR has been frequently employed to characterize materials in flexible pavement structural design as a vital 
attribute6,7. The MR of pavement materials is determined using a variety of laboratory experiments that simulate 
the repeated loading conditions encountered by roads8–14.

The prevalent environmental factors that can deteriorate the stabilized aggregate bases is the WDC, that is 
the repeated exposure of the base materials to moisture and drying15. Several research studies show that WDC 
and freeze-thaw cycles (FTC) affect the performance of stabilized aggregate bases. Pavement design standards 
like AASHTO 1993 and Mechanistic-Empirical Design Guide identify such challenges and their implications5,16. 
According to other research studies and these guidelines, WDC and FTC damage engineering properties and 
lead to pavement degradation and premature failure4,17–24. Volume change, strength loss, and a reduction in 
the resilient modulus are a few of the physical and mechanical properties that can be induced by WDC in 
stabilized aggregate bases1. Zaman et al.19 investigated the impact of WDC and FTC on resilient modulus values 
of cement-kiln-dust-stabilized Meridian limestone aggregate. Freezing/thawing proves more damaging than 
wetting/drying at low deviator stresses, with initial freeze/thaw stages causing significant strength reduction; 
wetting/drying induces greater strength reduction at high deviator stresses. The resilient modulus decreases as 
WDC and FTC increase, according to a study conducted by Diagne et al.25 to assess the properties of base courses 
made from recycled materials. Khoury et al.26,27 investigated the impact of moisture fluctuations subsequent to 
compaction on the unconfined compressive strength (UCS), modulus of elasticity (E), and resilient modulus 
(MR) of cementitious stabilized subgrade soils. The stabilizers utilized in these soils were hydrated lime and Class 
C fly ash (CFA). Prior to evaluating MR, UCS, and E, compacted specimens with varied stabilizer ratios (10% 
CFA and 6% lime) were either dried or wet. The findings demonstrated that drying increased MR, UCS, and E, 
while soaking decreased these values.

Over the past few years, there has been rapid development in the field of artificial intelligence techniques. 
This development has led to the emergence of machine learning (ML) algorithms that have been proposed and 
are now widely used in various fields. ML applications have transformed the way how complex problems can 
be tackled using new and innovative solutions. Due to their learning ability, ML algorithms became a desirable 
tool for revealing relationships between many soil parameters. Therefore, the growing interest in studying the 
potential applications of ML algorithms on geotechnical issues has been witnessed in the past decades28–38. 
Furthermore, several researchers have also utilized ML algorithms to solve some other specific problems39–42. 
Researcher used ML algorithms to accurately calculates the resilient modulus (MR) such as Khoury and Zaman4 
employed a least squares (LS) regression model to develop a correlation amongst the MR and the following 
variables: the ratio of calcium oxide to SAF (silica, alumina, and ferric oxide compound), the maximum dry 
density to the optimum moisture content ratio, deviator stress, and confining stress.

Malouf et al.43 used Support Vector Regression (SVR) approach for determining MR under WDC in his study. 
Support Vector Regression (SVR) was used by Maalouf et al.43 to find MR under WDC in his work. The evaluation 
performed in this research exhibits the potential efficacy of the SVR approach in predicting the responses of MR 
values induced by WDC. Comparative analyses performed between the SVR and LS methods underscore that 
the SVR outcomes significantly surpass the conventional LS technique. On the basis of a comparison of six data 
sets and the algorithms Kernel Ridge Regression (KRR), SVM, and Least Squares Support Vector Machines (LS-
SVM), Maalouf and Homouz44 determined that the TR-KRR algorithm is both as accurate as and significantly 
faster than the others. Ghanizadeh and Rahrovan45 used ANN approach for the prediction of MR under WDCs 
and compared them with SVM. Comparing the results of modeling resilient modulus using ANN with modeling 
using SVM confirms that ANN is more accurate than the SVM approach. Ghanizadeh et al.46 used Adaptive 
Neuro-Fuzzy Inference System (ANFIS) for prediction of MR under WDCs of aggregate bases. Results exhibited 
a high degree of model accuracy, with coefficients of determination (R2) for the training and testing data sets 
are 0.9669 and 0.9625, respectively, and 0.9655 for the whole dataset. Kaloop et al.1 developed three models in 
their study Particle Swarm Optimization Algorithm-Extreme Learning Machine (PSO-ELM), Particle Swarm 
Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM) for the prediction of 
MR and found that PSO-ELM has high accuracy than PSO-ANN and KELM. Ghanizadeh et al.47 developed 
Gaussian Process Regression (GPR) for prediction of MR and compared them with SVM and PSO-ELM. The 
results indicate that GPR has high accuracy with (R2 = 0.995) than SVM and PSO-ELM. Khan et al.15 evaluated 
the effect of WDC on the MR of CaO-stabilized aggregate bases and cementitious materials, both of which 
are critical for pavement long-term service life. They created two models using ANN and Gene Expression 
Programming (GEP), which are ML approaches that can learn complex nonlinear correlations from data 
without requiring explicit assumptions or equations. The GEP beat the ANN in terms of accuracy, efficiency, 
and generalization ability while predicting the MR of stabilized aggregate bases under WDC.

The extensive literature review demonstrates that computational techniques are quite capable of predicting 
the MR. However, researchers and professionals predicted the MR using a variety of computational models 
and datasets. The SHapley Additive exPlanations approach for describing the importance and participation of 
input variables that influence the resilient modulus of stabilized base material with various additives—Rhyolite, 
Richard Spur, Sawyer, and Meridian using cementitious materials, subjected to WDC has not been investigated. 
Furthermore, the LSTM model has not been implemented and compared. As a result, it is difficult to identify 
which computational approach is suitable for predicting the MR. Still, it is noted that this field, is currently 
being investigated. Thus, the following problems are attempted to be addressed in this paper: (1) providing an 
accurate and efficient LSTM model for predicting the MR of stabilized base material with various additives—
Rhyolite, Richard Spur, Sawyer, and Meridian using cementitious materials, under WDC; (2) examining the 
prediction accuracy of the best LSTM model against that of existing ML models; (3) describing the significance 
and contribution of input variables that affect the MR of stabilized base material with various additives under 
WDC using the SHAP method; and (4) development of online graphical user interface for simulating developed 
LSTM model for further application.
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Dataset
In this research, the experimental data were collected from Maloof et al. study43, In this study, four aggregates—
Rhyolite, Richard Spur, Sawyer, and Meridian—were stabilized utilizing cementitious materials, subjected 
to WDC, and assessed for MR. Meridian is a limestone aggregate that comprises around 97% calcium 
carbonate (CaCO3). Richard Spur, and limestone aggregate, has a less CaCO3 proportion than Meridian, at 
87% approximately. Sawyer aggregate, a sandstone aggregate, contains approximately 94% SiO2. Hanson is 
an aggregate variety of rhyolite. Samples were prepared with optimum moisture content and maximum dry 
density, then cured for 28 days in a wet environment maintaining a temperature of 21℃ (70℉) and a regulated 
relative humidity of 90% (2.5%). Specimens underwent 0, 8, 16, and 30 WDC, with zero being reference control 
specimens that received no WDC. For more details on material properties, specimen preparation, and the WDC 
procedure, the reader might refer to Maalouf et al.43 research. The parameters σd and σ3 have a major impact on 
material behavior, clarify relationships, and provide insights into mechanical responses. This strategy improves 
feature engineering and model performance. The resilient modulus outcomes are composed of 704 records (see 
Appendix A, Tables A1 and A2) and five features, where WDC, calcium oxide to silica, alumina, and ferric oxide 
compound ratio (CSAFR), Maximum dry density to the optimal moisture content ratio (DMR), deviator stress 
(σd), and confining stress (σ3) are regarded input parameters, while MR is taken as an output parameter. Table 1 
shows the experimental results for MR testing, mentioning the minimum (Min), maximum (Max), mean, and 
standard deviation (SD) of the input and output variables. The database, as shown in the table, includes input 
parameters i.e., WDC, CSAFR, DMR, σd, and σ3, and one output parameter i.e., resilient modulus (MR).

To determine which representation was the most resilient, a statistical analysis was performed on the input 
and output variables of the training and testing datasets (refer to Table 2). The minimum and maximum values 
indicate the data spread out, mean shows the central value for the dataset and standard deviation indicates how 
much variation exists from the mean for training and testing datasets respectively. The acquired data is divided 
into training (80%) and testing (20%) datasets. It was attained through trial and error. Previous studies show that 
the MR of stabilized base material with various additives is a function of WDC, CSAFR, DMR, σd, and σ3

21,43,48.
All of the input and output variables under study were correlated using the Pearson correlation coefficient 

(r). Each cell in the plot has a correlation coefficient, which represents the strength of relationship between two 
factors. Figure 1 depicts the correlations between several parameters in the dataset. The “r” between the various 
parameters in Fig. 1 is evaluated as follows:

 
r(m,m′) =

cov(m,m′)

σmσm′
 (1)

Statistical Parameters Dataset WDC CSAFR DMR σ3 σd MR

Min
T 0.00 0.11 2.34 0.00 69.00 585.00

T* 30.00 0.11 2.48 0.00 69.00 1373.00

Max
T 30.00 0.51 4.63 138.00 277.00 9803.00

T* 30.00 0.51 4.40 138.00 277.00 7617.00

Mean
T 8.49 0.25 3.25 70.65 171.21 3836.16

T* 30.00 0.28 3.33 68.02 174.23 3076.72

SD
T 7.93 0.18 0.72 48.96 77.59 1915.50

T* 0.00 0.19 0.67 48.61 78.08 1479.12

Table 2. Training and testing dataset parameter statistics. Note: T: Training; T*: Testing.

 

S. No. WDC CSAFR DMR σ3 σd MR

1 0 0.130 2.34 138 69 1681

2 0 0.130 2.34 138 138 1784

3 0 0.130 2.34 138 208 2210

. . . . . . . . . . . . . . . . . . . . .

702 30 0.510 3.37 34.5 208 2043

703 30 0.510 3.37 34.5 277 2250

704 30 0.510 3.37 0 277 1632

Min 0 0.113 2.34 0 69 585

Max 30 0.51 4.63 138 277 9803

Mean 12.79545 0.254602 3.266051 70.12713 171.8182 3684.058

SD 11.1579 0.182769 0.711926 48.86403 77.63804 1860.495

Table 1. Input and output data for the current study.
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where cov = covariance, σ m = the standard deviation of m while σ m′ = the standard deviation of m’. The 
coefficients range from − 1 to 1, indicating the strength and direction of the correlation. One notable observation 
is the strong positive correlation between MR and DMR. As DMR increases, MR tends to increase as well. 
Additionally, there’s a moderate positive correlation between MR and the CSAFR, suggesting a potential link 
between these two factors. Interestingly, WDC exhibit a weak negative correlation with MR, implying that 
higher WDC values might be associated with slightly lower resilient modulus values. Conversely, the correlation 
between WDC and other parameters is generally minimal, as most correlation coefficients are close to zero. DMR 
displays a strong positive correlation with MR, indicating that these two parameters tend to increase in tandem. 
Moreover, a weak positive correlation between DMR and CSAFR suggests some degree of alignment between 
these factors. The σ3 and σd show weak correlations with other parameters, as most correlation coefficients are 
near zero.

LSTM modeling
LSTM networks are a type of recurrent neural network (RNN) architecture capable of detecting long-term 
dependencies and patterns in sequential data. They were created to overcome the vanishing gradient issue that 

Fig. 1. Correlation among different parameters in the dataset.

 

Scientific Reports |        (2024) 14:27928 4| https://doi.org/10.1038/s41598-024-79588-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


afflicted traditional RNNs, restricting their capacity to accurately capture long-term relationships in sequences. 
The LSTM has been utilized in various sectors for data prediction and proven excellent performance on a wide 
range of problems49–53. Hochreiter and Schmidhuber54,55 designed LSTM to address the problem posed by 
classical RNNs56 and ML methods. The central component of an LSTM model is a memory cell known as a ‘cell 
state’ that maintains its state across time. The horizontal line across the top of Fig. 2 represents the cell state. It can 
be likened to a conveyor belt through which information flows unaltered. The LSTM is implemented in Python 
with the Keras library.

A typical LSTM unit consists of a cell, an input gate, an output gate, and a forget gate. The cell holds values 
for arbitrary time intervals, and the three gates regulate the flow of information into and out of the cell. Forget 
gates determine what information to discard from a previous state based on a comparison of the previous state 
and the current input, resulting in a value between 0 and 1. A number of one suggests that information should 
be maintained, whereas a value of zero indicates that information should be deleted. Input gates, like forget 
gates, determine which new information to store in the current state. Output gates control the information 
that is output from the current state by assigning a value between 0 and 1, while taking past and current states 
into account. This selective output of important information enables LSTM networks to sustain resilient long-
term dependencies, allowing for accurate predictions across multiple time steps. Equations (2)–(7) depict the 
processes that occur in an LSTM cell.

 ft = σ g (Wfxt + Ufht−1 + bf) (2)

 it = σ g (Wixt + Uiht−1 + bi) (3)

 ot = σ g (Woxt + Uoht−1 + bo) (4)

Fig. 2. Architecture of LSTM Model.
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 c′ t = σ g (Wcxt + Ucht−1 + bc) (5)

 ct = ft ⊙ ct−1 + it ⊙ ct−1 (6)

 ht = ot ⊙ σ h (ct) (7)

Where ft is the forget gate, it is the input gate, ot is the output gate, σ is the sigmoid activation function, ht is 
the hidden state, ct and c′ t is the cell state, ⊙ represents element-wise multiplication, bf , bi, bo , and bc  are bias 
vectors. Wf , Wi, and Wi weight for the forget gate, input gate and output gate respectively.

Proposed LSTM Model
The process involves acquiring a dataset (see Appendix A, Tables A1 and A2), dividing it into training (80%) and 
testing (20%) datasets, and then constructing an LSTM model within a chosen framework. This LSTM model 
is trained using the training data through multiple epochs, where the model’s parameters are optimized using 
an optimization algorithm to minimize a selected loss function. Following training, the model’s performance is 
assessed on the testing set as shown in Fig. 3.

The deep learning techniques employed in this study were put into action using the Python programming 
language within a Python idle environment. The execution of these models took place on a Windows 10 system 
equipped with an Intel(R) Core i3–5th Generation central processing unit and 4 GB of random access memory. 
the process commences by loading the dataset and segregating the characteristics and the target variable. 
Following this, the characteristics are standardized utilizing the StandardScaler technique from the ‘sklearn.
preprocessing’ module to standardize the input features before feeding them into the model. StandardScaler is a 
common technique used in machine learning to normalize the input data so that it has a mean of 0 and a standard 
deviation of 1. The LSTM model’s structure is defined, encompassing LSTM layers, dropout for regularization, 
and dense layers. This model is compiled employing an optimizer and a loss function. Subsequently, the model 
is trained on the training dataset and used to predict output variable on the test dataset. The hyperparameters 
chosen for the LSTM-based model are crucial in determining its effectiveness in analyzing sequential data. The 
model comprises two LSTM layers, each containing 50 hidden units. The use of the rectified linear unit (relu) 
activation function within the LSTM layers increases nonlinearity, which improves the ability of the model 
to capture complicated patterns in the data. To mitigate overfitting, a dropout rate of 0.2 is employed, which 
randomly deactivates a portion of neurons during training, thus aiding in generalization. The architecture also 
incorporates two dense layers: the first consists of 10 units, followed by a single output unit. By employing relu 
activation in the initial dense layer and linear activation in the final one, the model gains the capacity to decipher 
intricate data relationships while producing continuous outputs. The rmsprop optimizer is applied to facilitate 
efficient parameter optimization by adaptively adjusting learning rates. The choice of the mean absolute error 
(MAE) as the loss function assesses prediction accuracy by quantifying the magnitude of errors. The model 
undergoes training for 500 epochs, each involving a batch size of 4, striking a balance between computational 
efficiency and convergence precision (see Table  3). These hyperparameters collectively shape the model’s 
architecture, poised to extract meaningful insights from sequential data with precision and efficiency.

Evaluation parameters of LSTM model
Several regression performance indices like R-squared (R2), Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute 

Fig. 3. Workflow of proposed LSTM Model.

 

Scientific Reports |        (2024) 14:27928 6| https://doi.org/10.1038/s41598-024-79588-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Deviation (MAD) are calculated during the evaluation stage. These metrics serve to gauge the efficacy of the 
model’s performance, shedding light on the extent to which the model’s predictions correlate with the actual 
target values. The formulations used to calculate these performance metrics are expressed in Eqs. (8)–(13)57–66.

 
R2 =

∑ n
i=1(di − dmean)

2 −
∑ n

i=1(di − yi)
2

∑ n
i=1(di − dmean)

2  (8)

 
RMSE =

√
1

N

∑ n

i=1
(di − yi)

2 (9)

 
MAE =

1

N

∑ n

i=1
|(yi − di)| (10)

 
MAPE =

1

N

∑ n

i=1

∣∣∣∣
di − yi
di

∣∣∣∣ ∗ 100 (11)

 
MSE =

1

N

∑
n
i=1(yi − di)

2 (12)

 
MAD =

1

N

∑ n

i=1
|(yi − dmean)| (13)

where di is the ith observed value, yi is the ith predicted value, dmean is the mean value of the observed values, n 
is the training or testing samples and N indicates the total number of samples.

Results and discussion
LSTM models comparative performance
The LSTM was the data analysis model of choice for this work. The LSTM accuracy is determined by the number 
of hidden layers, the number of units in each layer, the activation function, the dropout rate, the optimizer, and 
the loss function. The settings of these parameters that provide the best generalization are often chosen from 
a range of different values (normally user defined). Table 4 shows the values of the parameters chosen for this 
study. In this analysis four different LSTM models are developed with different combinations of input variables. 
Model A considers all five input variables, model B considers four input variables by excluding σd, model C 
considers four input variables by excluding σ3, and model D considers three input variables by excluding both σd 
and σ3. The performance of these four LSTM models is demonstrated in Figs. 4, 5, 6 and 7, where the predicted 
values of MR are compared with actual values of MR for both training and testing subsets.

The Model A plots (see Fig. 4) depict the model’s performance on both the training and testing datasets. It 
is evident that the model fits well for both sets, as a large number of data points are in close proximity to the 

Model

Inputs Training Testing

WDC CSAFR DMR σ3 σd R2 RMSE R2 RMSE

A √ √ √ √ √ 0.995 128.315 0.980 242.463

B √ √ √ √ 0.920 533.233 0.902 566.948

C √ √ √ √ 0.949 423.977 0.939 445.568

D √ √ √ 0.905 583.745 0.903 540.15

Table 4. Results for testing dataset and training dataset.

 

Hyper-parameter Value

Number of LSTM layers 4

Number of hidden units per LSTM layer 300

Activation function for LSTM layers relu

Dropout rate for LSTM layers 0.1

Number of dense layers 2

Number of units per dense layer 300 and 1

Activation function for dense layers relu and linear

Optimizer rmsprop

Loss function mean_absolute_error

Number of epochs 500

Batch size 4

Table 3. Hyper-parameters used for LSTM Model.
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line with R2 = 0.995 and 0.980 in training and testing datasets respectively. The values of RMSE (128.315), MSE 
(16464.860), MAE (94.905), MAPE (2.696), and MAD (1421.357) for training dataset and RMSE (242.463), 
MSE (58788.263), MAE (152.427), MAPE (4.139), and MAD (1248.695) for testing dataset indicating that the 
model A has a low error rate when compared to the models B, C and D. Furthermore, The ANN model yielded 
the values for MAE of 245, respectively, the GEP model manifested 764 respectively15, whereas the GPR model 
resulted R2 (0.9979), RMSE (85.5743), MAPE (1.2873), MAD (1060.7312), and MAE (47.4161) in training 
dataset and R2 (0.9849), RMSE (242.6246), MAPE (4.3140), MAD (1068.1651), and MAE (159.0427) in testing 
dataset with five inputs of Model A47. The GPR and LSTM models almost showed compatible performance based 
on their performance indices but exceeded in accuracy in comparison with the GEP and ANN models.

The Model B plots (see Fig. 5) show the actual vs. predicted MR values for training and testing sets, after 
removing σd variable from input. Comparing these plots to the previous ones, where five input variables were 
utilized, it is clear that excluding variable σd has a detrimental impact on the model’s performance. The accuracy 
of predictions is reduced, and the errors are increased when σd is removed from the model. This finding suggests 
that σd is an essential and relevant variable that significantly influences MR concentration. By eliminating this 
variable, the model loses valuable information critical for making accurate predictions. Therefore, it is evident 
that σd plays a crucial role in the model’s ability to capture the complexities and variations in MR concentration.

The Model C plots (see Fig. 6) show the actual vs. predicted MR values for both viz. training and testing sets, 
after removing σ3 variable from input. The Model C plots clearly demonstrate that σ3 does not play a significant 
role in determining MR.

Fig. 5. The predicted versus measured resilient moduli for model “B” based on the training and testing 
datasets.

 

Fig. 4. The predicted versus measured resilient moduli for model “A” based on the training and testing 
datasets.
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The Model D plots (see Fig. 7) show the actual vs. predicted MR values for both the training and testing 
datasets, after removing the σ3 and σd variables from the input set. Comparing these plots to the previous 
ones, where four input variables were utilized, it becomes apparent that removing variable σd has a negative 
impact on the model’s performance. Although the reduction in accuracy and increase in error are slight, they 
are still noticeable. This observation suggests that σd is an important and relevant variable that significantly 
influences MR concentration. By removing σ3 and σd variables from the model, valuable information related to 
MR concentration is lost, which affects the model’s ability to make accurate predictions.

The accuracy of all developed models at predicting MR values is depicted in Fig. 8a-d for the training dataset 
and Fig.  9a-d for the testing dataset. The LSTM Model A (see Fig.  8 (a) and Fig.  9 (a)) provided the most 
reliable prediction, as seen in these graphs. Except for a few noise points, this is demonstrated by the increased 
aggregation of data around the y axis (i.e., y = 0). In contrast to the other models, namely Models B, C, and D, 
the comparison results are sufficiently consistent, indicating that the proposed LSTM Model A is capable of 
predicting MR values.

Comparison with literature
Table 5 lists the performance indices’ values as well as the various input parameter combinations. The results 
shown in Table 5 demonstrate that LSTM model A works better when all the input factors are used with R2 
of 0.995 and MSE of 16464.860. This accuracy is significantly more than the R2 value of 0.6851 for the LS 
approach43 and R2 value of 0.9593 for SVM method43 as Table 5 indicates, on any combination. In addition, with 

Fig. 7. The predicted versus measured resilient moduli for model “D” based on the training and testing 
datasets.

 

Fig. 6. The predicted versus measured resilient moduli for model “C” based on the training and testing 
datasets.
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the exception of model A, LSTM models B and D outperformed the LS and SVM approaches, with R2 values of 
0.920 and 0.905, respectively. As can be seen, depending on the number of input parameters, the accuracy of the 
LSTM model can be more than the SVM and LS methods except in model C. However, if all input parameters 
are considered, the accuracy of the LSTM model is much higher than the SVM and LS models, so that the R2 
for the LSTM model is 0.995 more than the R2 (0.6400) for the SVM model and R2 (0.6851) for the LS model. 
Furthermore, the scatter plots (Figs. 4 and 5, and 7) show that the LSTM model outperforms the LS and SVM 
approaches in predicting MR, with variations around the 45◦ line. In general, the LSTM model A outperforms in 
terms of generalization and reliability, yielding superior prediction outcomes.

SHAP Analysis
The SHAP method effectively depicts the impact of each input variable on an ML model’s predictions. The 
idea is based on cooperative game theory, in which the Shapley values are employed to evaluate each player’s 
contribution to the coalition. Equation  (14) determines the Shapley values Φi, which are the core of this 
methodology. F is the set of all input features, and S is a subset of F that excludes the feature with index i. 
Equation (14) defines the impact of a feature as the differences in model outputs when a feature is included and 
deleted from the collection of input features.

 
Φ i =

∑
S⊆ F{i}

|S|! (|F | − |S| − 1)!

|F |!
[fS∪ {i}

(
xS∪ {i}

)
− fS(xS )] (14)

Figure 10 shows a SHAP summary graphic that ranks each input feature based on its influence on the output 
of the LSTM model A. Each feature’s SHAP value indicates its contribution to the model’s prediction. Positive 
SHAP values suggest that the feature increases the prediction, while negative values indicate a decrease (see 
Fig. 10). Figure 10 shows that DMR is the most important factor in predicting MR, followed by the WDC. It can 
be seen that increasing the DMR and WDC, has an increasing effect on model predictions. The same is validated 
from the literature that DMR is the most influential input followed by WDC in the GEP model15.

The SHAP values of all features added together indicate why the prediction differed from the baseline. This 
enables us to decompose a prediction in the graph depicted in Fig. 11. The predicted model output value is 
4325.87, whereas the base value is 3733. The greater the size of the arrow, the greater the impact. A red arrow 
moves the result to the right (increases the model output value), while a blue arrow moves the result to the left 
(decreases the model output value). The greatest influence comes from σ3 being 1.39. Despite the fact that the 
DMR value has a significant effect on the prediction.

Fig. 8. Comparison of the LSTM Models results in the training dataset (a) Model A, (b) Model B, (c) Model C, 
and Model D in predicting MR values.
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Fig. 10. SHAP summary plot for the LSTM model A.

 

Model

Inputs SVM [43] LS [43] LSTM (This study)

WDC CSAFR DMR σ3 σd R2 MSE R2 MSE R2 MSE

A √ √ √ √ √ 0.6400 1,287,300 0.6851 1,079,400 0.995 16464.860

B √ √ √ √ 0.8750 435,270 0.6581 1,172,200 0.920 2844326.460

C √ √ √ √ 0.9593 137,870 0.6805 1,094,800 0.949 179756.766

D √ √ √ 0.9001 352,290 0.6538 1,186,600 0.905 340757.835

Table 5. Comparative performance of LSTM models with models developed in literature.

 

Fig. 9. Comparison of the LSTM Models results in the testing dataset (a) Model A, (b) Model B, (c) Model C, 
and Model D in predicting MR values.
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Sensitivity analysis
Sensitivity analysis is a technique that helps to understand how different factors or inputs affect the output of 
a model. The Cosine amplitude approach is used to calculate the relationship between the MR and the input 
parameters. The following equation is used to calculate the degree of sensitivity index for each input parameter.

 

Rij =

∑
n
j=1xijyj√∑

n
j=1xij

2
∑

n
j=1yj

2
 (15)

where Rij shows the degree of sensitivity index of each input parameter, xij  presents the ith independent variable 
for the jth dependent variable and yj represents the dependent variable for the jth data point. Strong correlation 
between the input and output variable is indicated by a Rij value close to 1, whereas weak correlation between the 
input and output variable is indicated by a Rij value close to 0. WDC has the highest degree of sensitivity index 
(0.273), as seen in Fig. 12, which means that changing WDC has the most impact on MR. On the other hand, σ3 
has the lowest degree of sensitivity index (0.003), which means that changing σ3 has the least impact on MR. The 
degree of importance can be presented as WDC > CSAFR > DMR > σd > σ3.

Graphical user interface
Graphical User Interface (GUI) is user-friendly tool that leverage ML-based prediction model to predict the 
MR. The package has a broad collection of LSTM algorithm. The prediction model does not need to be retrained 
for MR estimation because it was already trained on experimental data points. The GUI is well-designed and 
simple to use (see Fig. 13). Once the user enters the required parameters into the GUI, the trained ML algorithm 

Fig. 12. Degree of sensitivity analysis for predicted MR.

 

Fig. 11. SHAP force plot for the LSTM model A.
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can accurately predict the MR. When compared to other approaches, the GUI offers fast and cost-effective MR 
estimation with great accuracy. Furthermore, it is a significant platform for academics interested in accumulating 
MR-related datasets. The computing time for an LSTM model is less than 60 s. The GUI is available online at 
https:   //lstmmrpredicti on-7m6j96pn2qmxemkeqxu z aq.strea mlit.app/.

Conclusions
LSTM model is developed in this study for the prediction of resilient modulus of stabilized base material with 
input parameters, including WDC, CSAFR, DMR, σd, and σ3. The main findings are given as:

(1) Pearson correlation coefficient results indicate the strength of the association between two variables: 
DMR and CSAFR have a strong positive correlation with MR, while WDC has a negative correlation with MR. 
Furthermore, σ3 and σd show a weak positive coorealtion with MR in experimental data.

(2) Model “A” performs best with R2 and RMSE values of 0.995 and 128.315 for the training set and 0.980 
and 242.463 for the testing set, while model “D” performs lower with R2 and RMSE values of 0.905 and 583.745 
for the training set and 0.903 and 540.150 for the testing set. The results conclude that LSTM model A accuracy 
is significantly more than the R2 value of 0.6851 for the LS approach and R2 value of 0.9593 for SVM method 
reported in literature.

(3) The results showed that omitting the σd variable in model “B” resulted in a more substantial loss in model 
accuracy compared to excluding the σ3 variable in model “C”. This shows that the MR of stabilized base materials 
is more influenced by deviator stress (σd) than by confining stress (σ3), as evidenced by the greater impact on 
accuracy when σ3 is omitted from the model. The DMR has the greatest influence in predicting the MR, followed 
by the WDC and σd.

(4) The DMR was the most significant input variable according to the SHAP approach, followed by the WDC, 
σd, CSAFR, and σ3.

(5) The sensitivity analysis unveiled that WDC held the highest level of significance in its contribution 
to MR. Moreover, CSAFR and DMR were identified as the subsequent key factors. In contrast, σd and σ3 
demonstrated the least significance in the prediction of MR values. The degree of importance can be presented 
as WDC > CSAFR > DMR > σd > σ3.

(6) To enhance the prediction of the MR for engineering challenges, a cutting-edge GUI for the LSTM-based 
model was meticulously developed.

In the future, a larger database can be established to further illustrate the adequacy of LSTM algorithm for 
the prediction of resilient modulus. The influences of other indicators on the prediction results are essential to 
be analyzed. The methodology can also be applied in other fields, such as the liquefaction-induced lateral spread, 
unconfined compressive strength of rocks, and settlement of shallow foundation.

Fig. 13. The developed GUI.
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Data availability
Data is provided within the manuscript or supplementary information files.

Appendix A

WDC CSAFR DMR σ3 σd MR

0 0.130 2.34 138 69 1681

0 0.130 2.34 138 138 1784

0 0.130 2.34 138 208 2210

0 0.130 2.34 138 277 2277

0 0.130 2.34 103.5 69 1652

0 0.130 2.34 103.5 138 1718

0 0.130 2.34 103.5 208 1914

0 0.130 2.34 103.5 277 2152

0 0.130 2.34 69 69 1619

0 0.130 2.34 69 138 1692

0 0.130 2.34 69 208 1849

0 0.130 2.34 69 277 2119

0 0.130 2.34 34.5 69 1609

0 0.130 2.34 34.5 138 1688

0 0.130 2.34 34.5 208 1835

0 0.130 2.34 34.5 277 2368

0 0.130 2.34 0 69 1612

0 0.130 2.34 0 138 1673

0 0.130 2.34 0 208 1796

0 0.130 2.34 0 277 2093

0 0.130 3.43 138 69 4387

0 0.130 3.43 138 138 4636

0 0.130 3.43 138 208 4995

0 0.130 3.43 138 277 5516

0 0.130 3.43 103.5 69 4318

0 0.130 3.43 103.5 138 4401

0 0.130 3.43 103.5 208 4755

0 0.130 3.43 103.5 277 5121

0 0.130 3.43 69 69 4290

0 0.130 3.43 69 138 4332

0 0.130 3.43 69 208 4671

0 0.130 3.43 69 277 4969

0 0.130 3.43 34.5 69 3907

0 0.130 3.43 34.5 138 4084

0 0.130 3.43 34.5 208 4104

0 0.130 3.43 34.5 277 4736

0 0.130 3.43 0 69 3968

0 0.130 3.43 0 138 4191

0 0.130 3.43 0 208 4198

0 0.130 3.43 0 277 5148

0 0.130 2.84 138 69 3218

0 0.130 2.84 138 138 3646

0 0.130 2.84 138 208 4334

0 0.130 2.84 138 277 4820

0 0.130 2.84 103.5 69 3112

0 0.130 2.84 103.5 138 3447

0 0.130 2.84 103.5 208 3943

0 0.130 2.84 103.5 277 4546

0 0.130 2.84 69 69 3123

0 0.130 2.84 69 138 3408

0 0.130 2.84 69 208 3949

0 0.130 2.84 69 277 4306
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WDC CSAFR DMR σ3 σd MR

0 0.130 2.84 34.5 69 3141

0 0.130 2.84 34.5 138 3338

0 0.130 2.84 34.5 208 4012

0 0.130 2.84 34.5 277 4134

0 0.130 2.84 0 69 3113

0 0.130 2.84 0 138 3377

0 0.130 2.84 0 208 3888

0 0.130 2.84 0 277 4063

0 0.130 2.48 138 69 2585

0 0.130 2.48 138 138 2767

0 0.130 2.48 138 208 2843

0 0.130 2.48 138 277 3221

0 0.130 2.48 103.5 69 2601

0 0.130 2.48 103.5 138 2603

0 0.130 2.48 103.5 208 2707

0 0.130 2.48 103.5 277 3140

0 0.130 2.48 69 69 2559

0 0.130 2.48 69 138 2578

0 0.130 2.48 69 208 2640

0 0.130 2.48 69 277 2972

0 0.130 2.48 34.5 69 2586

0 0.130 2.48 34.5 138 2596

0 0.130 2.48 34.5 208 2754

0 0.130 2.48 34.5 277 3035

0 0.130 2.48 0 69 2557

0 0.130 2.48 0 138 2597

0 0.130 2.48 0 208 2718

0 0.130 2.48 0 277 2996

0 0.113 4.08 138 69 5081

0 0.113 4.08 138 138 5529

0 0.113 4.08 138 208 6199

0 0.113 4.08 138 277 6579

0 0.113 4.08 103.5 69 5013

0 0.113 4.08 103.5 138 5049

0 0.113 4.08 103.5 208 5140

0 0.113 4.08 103.5 277 5377

0 0.113 4.08 69 69 4893

0 0.113 4.08 69 138 5029

0 0.113 4.08 69 208 5046

0 0.113 4.08 69 277 5274

0 0.113 4.08 34.5 69 4994

0 0.113 4.08 34.5 138 5023

0 0.113 4.08 34.5 208 5050

0 0.113 4.08 34.5 277 5286

0 0.113 4.08 0 69 4889

0 0.113 4.08 0 138 4974

0 0.113 4.08 0 208 5085

0 0.113 4.08 0 277 5147

0 0.113 3.45 138 69 3872

0 0.113 3.45 138 138 4177

0 0.113 3.45 138 208 4701

0 0.113 3.45 138 277 5751

0 0.113 3.45 103.5 69 3884

0 0.113 3.45 103.5 138 3898

0 0.113 3.45 103.5 208 4001

0 0.113 3.45 103.5 277 5557

0 0.113 3.45 69 69 3862
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WDC CSAFR DMR σ3 σd MR

0 0.113 3.45 69 138 3892

0 0.113 3.45 69 208 3996

0 0.113 3.45 69 277 5151

0 0.113 3.45 34.5 69 3762

0 0.113 3.45 34.5 138 3842

0 0.113 3.45 34.5 208 3944

0 0.113 3.45 34.5 277 5110

0 0.113 3.45 0 69 3803

0 0.113 3.45 0 138 3813

0 0.113 3.45 0 208 3838

0 0.113 3.45 0 277 4998

0 0.510 2.61 138 69 4500

0 0.510 2.61 138 138 4761

0 0.510 2.61 138 208 5039

0 0.510 2.61 138 277 6290

0 0.510 2.61 103.5 69 4502

0 0.510 2.61 103.5 138 4502

0 0.510 2.61 103.5 208 4732

0 0.510 2.61 103.5 277 6289

0 0.510 2.61 69 69 4488

0 0.510 2.61 69 138 4619

0 0.510 2.61 69 208 4700

0 0.510 2.61 69 277 6290

0 0.510 2.61 34.5 69 4445

0 0.510 2.61 34.5 138 4589

0 0.510 2.61 34.5 208 4746

0 0.510 2.61 34.5 277 5620

0 0.510 2.61 0 69 4438

0 0.510 2.61 0 138 4553

0 0.510 2.61 0 208 4726

0 0.510 2.61 0 277 5575

0 0.510 4.63 138 69 8691

0 0.510 4.63 138 138 8838

0 0.510 4.63 138 208 9062

0 0.510 4.63 103.5 69 8798

0 0.510 4.63 103.5 138 8956

0 0.510 4.63 103.5 208 9404

0 0.510 4.63 69 69 8832

0 0.510 4.63 69 138 9120

0 0.510 4.63 69 208 9788

0 0.510 4.63 34.5 69 8880

0 0.510 4.63 34.5 138 9142

0 0.510 4.63 34.5 208 9665

0 0.510 4.63 0 69 8900

0 0.510 4.63 0 138 9205

0 0.510 4.63 0 208 9803

0 0.510 3.89 138 69 4146

0 0.510 3.89 138 138 4617

0 0.510 3.89 138 208 4988

0 0.510 3.89 138 277 5222

0 0.510 3.89 103.5 69 4119

0 0.510 3.89 103.5 138 4306

0 0.510 3.89 103.5 208 4588

0 0.510 3.89 103.5 277 5002

0 0.510 3.89 69 69 4113

0 0.510 3.89 69 138 4254

0 0.510 3.89 69 208 4505
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WDC CSAFR DMR σ3 σd MR

0 0.510 3.89 69 277 5344

0 0.510 3.89 34.5 69 4128

0 0.510 3.89 34.5 138 4236

0 0.510 3.89 34.5 208 4541

0 0.510 3.89 34.5 277 5241

0 0.510 3.89 0 69 4133

0 0.510 3.89 0 138 4204

0 0.510 3.89 0 208 4492

0 0.510 3.89 0 277 5358

0 0.510 3.37 138 69 3440

0 0.510 3.37 138 138 3786

0 0.510 3.37 138 208 4129

0 0.510 3.37 138 277 4464

0 0.510 3.37 103.5 69 3392

0 0.510 3.37 103.5 138 3434

0 0.510 3.37 103.5 208 3525

0 0.510 3.37 103.5 277 3821

0 0.510 3.37 69 69 3405

0 0.510 3.37 69 138 3426

0 0.510 3.37 69 208 3455

0 0.510 3.37 69 277 3821

0 0.510 3.37 34.5 69 3362

0 0.510 3.37 34.5 138 3392

0 0.510 3.37 34.5 208 3476

0 0.510 3.37 34.5 277 3751

0 0.510 3.37 0 69 3392

0 0.510 3.37 0 138 3427

0 0.510 3.37 0 208 3503

0 0.510 3.37 0 277 3749

8 0.130 2.34 138 69 1299

8 0.130 2.34 138 138 1458

8 0.130 2.34 138 208 1550

8 0.130 2.34 138 277 1721

8 0.130 2.34 103.5 69 1363

8 0.130 2.34 103.5 138 1364

8 0.130 2.34 103.5 208 1386

8 0.130 2.34 103.5 277 1489

8 0.130 2.34 69 69 1272

8 0.130 2.34 69 138 1307

8 0.130 2.34 69 208 1346

8 0.130 2.34 69 277 1403

8 0.130 2.34 34.5 69 1252

8 0.130 2.34 34.5 138 1279

8 0.130 2.34 34.5 208 1331

8 0.130 2.34 34.5 277 1375

8 0.130 2.34 0 69 1229

8 0.130 2.34 0 138 1260

8 0.130 2.34 0 208 1315

8 0.130 2.34 0 277 1358

8 0.130 3.43 138 69 4062

8 0.130 3.43 138 138 4248

8 0.130 3.43 138 208 4625

8 0.130 3.43 138 277 5003

8 0.130 3.43 103.5 69 3877

8 0.130 3.43 103.5 138 3992

8 0.130 3.43 103.5 208 4357

8 0.130 3.43 103.5 277 4792
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WDC CSAFR DMR σ3 σd MR

8 0.130 3.43 69 69 3929

8 0.130 3.43 69 138 3931

8 0.130 3.43 69 208 4194

8 0.130 3.43 69 277 4650

8 0.130 3.43 34.5 69 3648

8 0.130 3.43 34.5 138 3656

8 0.130 3.43 34.5 208 3704

8 0.130 3.43 34.5 277 4210

8 0.130 3.43 0 69 3527

8 0.130 3.43 0 138 3732

8 0.130 3.43 0 208 3763

8 0.130 3.43 0 277 4737

8 0.130 2.84 138 69 4278

8 0.130 2.84 138 138 4537

8 0.130 2.84 138 208 5232

8 0.130 2.84 138 277 6069

8 0.130 2.84 103.5 69 4163

8 0.130 2.84 103.5 138 4354

8 0.130 2.84 103.5 208 4987

8 0.130 2.84 103.5 277 5617

8 0.130 2.84 69 69 4202

8 0.130 2.84 69 138 4291

8 0.130 2.84 69 208 4653

8 0.130 2.84 69 277 5374

8 0.130 2.84 34.5 69 4348

8 0.130 2.84 34.5 138 4668

8 0.130 2.84 34.5 208 4754

8 0.130 2.84 34.5 277 5252

8 0.130 2.84 0 69 4105

8 0.130 2.84 0 208 4812

8 0.130 2.84 0 277 5278

8 0.130 2.48 138 69 2179

8 0.130 2.48 138 138 2328

8 0.130 2.48 138 208 2524

8 0.130 2.48 138 277 2752

8 0.130 2.48 103.5 69 2124

8 0.130 2.48 103.5 138 2154

8 0.130 2.48 103.5 208 2155

8 0.130 2.48 103.5 277 2425

8 0.130 2.48 69 69 2032

8 0.130 2.48 69 138 2049

8 0.130 2.48 69 208 2074

8 0.130 2.48 69 277 2194

8 0.130 2.48 34.5 69 2014

8 0.130 2.48 34.5 138 2029

8 0.130 2.48 34.5 208 2075

8 0.130 2.48 34.5 277 2193

8 0.130 2.48 0 69 1947

8 0.130 2.48 0 138 1958

8 0.130 2.48 0 208 2020

8 0.130 2.48 0 277 2195

8 0.113 4.08 138 69 4043

8 0.113 4.08 138 138 4632

8 0.113 4.08 138 208 5129

8 0.113 4.08 138 277 6125

8 0.113 4.08 103.5 69 4042

8 0.113 4.08 103.5 138 4174
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WDC CSAFR DMR σ3 σd MR

8 0.113 4.08 103.5 208 4328

8 0.113 4.08 103.5 277 5200

8 0.113 4.08 69 69 4054

8 0.113 4.08 69 138 4102

8 0.113 4.08 69 208 4222

8 0.113 4.08 69 277 4836

8 0.113 4.08 34.5 69 4067

8 0.113 4.08 34.5 138 4211

8 0.113 4.08 34.5 208 4263

8 0.113 4.08 34.5 277 4912

8 0.113 4.08 0 69 4047

8 0.113 4.08 0 138 4081

8 0.113 4.08 0 208 4242

8 0.113 4.08 0 277 5180

8 0.113 3.45 138 69 3248

8 0.113 3.45 138 138 3656

8 0.113 3.45 138 208 4535

8 0.113 3.45 138 277 5263

8 0.113 3.45 103.5 69 3222

8 0.113 3.45 103.5 138 2965

8 0.113 3.45 103.5 208 3066

8 0.113 3.45 103.5 277 3190

8 0.113 3.45 69 69 2934

8 0.113 3.45 69 138 2832

8 0.113 3.45 69 208 2951

8 0.113 3.45 69 277 3145

8 0.113 3.45 34.5 69 2871

8 0.113 3.45 34.5 138 2748

8 0.113 3.45 34.5 208 2924

8 0.113 3.45 34.5 277 3111

8 0.113 3.45 0 69 2742

8 0.113 3.45 0 138 2712

8 0.113 3.45 0 208 2902

8 0.113 3.45 0 277 3097

8 0.510 2.61 138 69 4538

8 0.510 2.61 138 138 5462

8 0.510 2.61 138 208 6157

8 0.510 2.61 138 277 6658

8 0.510 2.61 103.5 69 3948

8 0.510 2.61 103.5 138 3951

8 0.510 2.61 103.5 208 4193

8 0.510 2.61 103.5 277 4297

8 0.510 2.61 69 69 3581

8 0.510 2.61 69 138 3639

8 0.510 2.61 69 208 3942

8 0.510 2.61 69 277 4174

8 0.510 2.61 34.5 69 3456

8 0.510 2.61 34.5 138 3518

8 0.510 2.61 34.5 208 3824

8 0.510 2.61 34.5 277 4100

8 0.510 2.61 0 69 3371

8 0.510 2.61 0 138 3427

8 0.510 2.61 0 208 3768

8 0.510 2.61 0 277 4110

8 0.510 4.63 138 69 7979

8 0.510 4.63 138 138 8253

8 0.510 4.63 138 208 8658
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WDC CSAFR DMR σ3 σd MR

8 0.510 4.63 138 277 9318

8 0.510 4.63 103.5 69 7414

8 0.510 4.63 103.5 138 8253

8 0.510 4.63 103.5 208 8708

8 0.510 4.63 103.5 277 9306

8 0.510 4.63 69 69 7601

8 0.510 4.63 69 138 8378

8 0.510 4.63 69 208 8923

8 0.510 4.63 69 277 9321

8 0.510 4.63 34.5 69 8101

8 0.510 4.63 34.5 138 8196

8 0.510 4.63 34.5 208 9101

8 0.510 4.63 34.5 277 9591

8 0.510 4.63 0 69 8055

8 0.510 4.63 0 138 8307

8 0.510 4.63 0 208 8915

8 0.510 4.63 0 277 9644

8 0.510 3.89 138 69 3091

8 0.510 3.89 138 138 3358

8 0.510 3.89 138 208 3745

8 0.510 3.89 138 277 4055

8 0.510 3.89 103.5 69 2953

8 0.510 3.89 103.5 138 2765

8 0.510 3.89 69 69 2459

8 0.510 3.37 138 69 2902

8 0.510 3.37 138 138 2924

8 0.510 3.37 138 208 3060

8 0.510 3.37 138 277 3193

8 0.510 3.37 103.5 69 2496

8 0.510 3.37 103.5 138 2595

8 0.510 3.37 103.5 208 2917

8 0.510 3.37 103.5 277 3180

8 0.510 3.37 69 69 2364

8 0.510 3.37 69 138 2549

8 0.510 3.37 69 208 2881

8 0.510 3.37 69 277 3160

8 0.510 3.37 34.5 69 2382

8 0.510 3.37 34.5 138 2530

8 0.510 3.37 34.5 208 2885

8 0.510 3.37 34.5 277 3205

8 0.510 3.37 0 69 2437

8 0.510 3.37 0 138 2658

8 0.510 3.37 0 208 2945

8 0.510 3.37 0 277 3278

16 0.130 2.34 138 69 1071

16 0.130 2.34 138 138 1183

16 0.130 2.34 138 208 1260

16 0.130 2.34 138 277 1405

16 0.130 2.34 103.5 69 1039

16 0.130 2.34 103.5 138 1041

16 0.130 2.34 103.5 208 1081

16 0.130 2.34 103.5 277 1384

16 0.130 2.34 69 69 1008

16 0.130 2.34 69 138 1018

16 0.130 2.34 69 208 1033

16 0.130 2.34 69 277 1277

16 0.130 2.34 34.5 69 985
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WDC CSAFR DMR σ3 σd MR

16 0.130 2.34 34.5 138 994

16 0.130 2.34 34.5 208 1006

16 0.130 2.34 34.5 277 1195

16 0.130 2.34 0 69 960

16 0.130 2.34 0 138 969

16 0.130 2.34 0 208 989

16 0.130 2.34 0 277 1151

16 0.130 3.43 138 69 3012

16 0.130 3.43 138 138 3530

16 0.130 3.43 138 208 5466

16 0.130 3.43 138 277 5970

16 0.130 3.43 103.5 69 3377

16 0.130 3.43 103.5 138 3017

16 0.130 3.43 103.5 208 3564

16 0.130 3.43 103.5 277 2957

16 0.130 3.43 69 69 3250

16 0.130 3.43 69 138 2916

16 0.130 3.43 69 208 3559

16 0.130 3.43 69 277 2941

16 0.130 3.43 34.5 69 3408

16 0.130 3.43 34.5 138 3443

16 0.130 3.43 34.5 208 2971

16 0.130 3.43 34.5 277 2943

16 0.130 3.43 0 69 3299

16 0.130 3.43 0 138 3334

16 0.130 3.43 0 208 2904

16 0.130 3.43 0 277 2897

16 0.130 2.84 138 69 3295

16 0.130 2.84 138 138 3612

16 0.130 2.84 138 208 4178

16 0.130 2.84 138 277 4184

16 0.130 2.84 103.5 69 3346

16 0.130 2.84 103.5 138 3552

16 0.130 2.84 103.5 208 4550

16 0.130 2.84 103.5 277 5002

16 0.130 2.84 69 69 3430

16 0.130 2.84 69 138 3606

16 0.130 2.84 69 277 4972

16 0.130 2.84 34.5 69 3427

16 0.130 2.84 34.5 138 3598

16 0.130 2.84 0 69 3590

16 0.130 2.84 0 138 3597

16 0.130 2.48 138 69 1618

16 0.130 2.48 138 138 1798

16 0.130 2.48 138 208 2102

16 0.130 2.48 138 277 2991

16 0.130 2.48 103.5 69 1595

16 0.130 2.48 103.5 138 1638

16 0.130 2.48 103.5 208 1749

16 0.130 2.48 103.5 277 2273

16 0.130 2.48 69 69 1565

16 0.130 2.48 69 138 1603

16 0.130 2.48 69 208 1666

16 0.130 2.48 69 277 2201

16 0.130 2.48 34.5 69 1558

16 0.130 2.48 34.5 138 1574

16 0.130 2.48 34.5 208 1656
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WDC CSAFR DMR σ3 σd MR

16 0.130 2.48 34.5 277 2111

16 0.130 2.48 0 69 1543

16 0.130 2.48 0 138 1550

16 0.130 2.48 0 208 1634

16 0.130 2.48 0 277 2068

16 0.113 4.08 138 69 3576

16 0.113 4.08 138 138 3855

16 0.113 4.08 138 208 4246

16 0.113 4.08 138 277 4391

16 0.113 4.08 103.5 69 3470

16 0.113 4.08 103.5 138 3700

16 0.113 4.08 103.5 208 4193

16 0.113 4.08 103.5 277 4473

16 0.113 4.08 69 69 3471

16 0.113 4.08 69 138 3767

16 0.113 4.08 69 208 4237

16 0.113 4.08 69 277 4522

16 0.113 4.08 34.5 69 3418

16 0.113 4.08 34.5 138 3779

16 0.113 4.08 34.5 208 4179

16 0.113 4.08 34.5 277 4475

16 0.113 4.08 0 69 3389

16 0.113 4.08 0 138 3819

16 0.113 4.08 0 208 4067

16 0.113 4.08 0 277 4469

16 0.113 3.45 138 69 2596

16 0.113 3.45 138 138 2898

16 0.113 3.45 138 208 2908

16 0.113 3.45 138 277 3006

16 0.113 3.45 103.5 69 1901

16 0.113 3.45 103.5 138 2164

16 0.113 3.45 103.5 208 2582

16 0.113 3.45 103.5 277 2936

16 0.113 3.45 69 69 1766

16 0.113 3.45 69 138 2094

16 0.113 3.45 69 208 2483

16 0.113 3.45 69 277 2886

16 0.113 3.45 34.5 69 1683

16 0.113 3.45 34.5 138 2043

16 0.113 3.45 34.5 208 2433

16 0.113 3.45 34.5 277 2808

16 0.113 3.45 0 69 1537

16 0.113 3.45 0 138 1895

16 0.113 3.45 0 208 2305

16 0.113 3.45 0 277 2709

16 0.510 2.61 138 69 4057

16 0.510 2.61 138 138 4511

16 0.510 2.61 138 208 5210

16 0.510 2.61 138 277 5575

16 0.510 2.61 103.5 69 3531

16 0.510 2.61 103.5 138 3525

16 0.510 2.61 103.5 208 3735

16 0.510 2.61 103.5 277 3861

16 0.510 2.61 69 69 3182

16 0.510 2.61 69 138 3307

16 0.510 2.61 69 208 3550

16 0.510 2.61 69 277 3753
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WDC CSAFR DMR σ3 σd MR

16 0.510 2.61 34.5 69 3115

16 0.510 2.61 34.5 138 3183

16 0.510 2.61 34.5 208 3464

16 0.510 2.61 34.5 277 3708

16 0.510 2.61 0 69 3022

16 0.510 2.61 0 138 3136

16 0.510 2.61 0 208 3437

16 0.510 2.61 0 277 3696

16 0.510 4.63 138 69 5124

16 0.510 4.63 138 138 5984

16 0.510 4.63 138 208 7128

16 0.510 4.63 138 277 9058

16 0.510 4.63 103.5 69 5174

16 0.510 4.63 103.5 138 5761

16 0.510 4.63 103.5 208 7290

16 0.510 4.63 103.5 277 8780

16 0.510 4.63 69 69 5247

16 0.510 4.63 69 138 5859

16 0.510 4.63 69 208 7304

16 0.510 4.63 69 277 8540

16 0.510 4.63 34.5 69 5408

16 0.510 4.63 34.5 138 5971

16 0.510 4.63 34.5 208 7279

16 0.510 4.63 34.5 277 8358

16 0.510 4.63 0 69 5473

16 0.510 4.63 0 138 6107

16 0.510 4.63 0 208 8289

16 0.510 4.63 0 277 9448

30 0.130 2.34 138 69 935

30 0.130 2.34 138 138 935

30 0.130 2.34 138 208 965

30 0.130 2.34 138 277 1019

30 0.130 2.34 103.5 208 835

30 0.130 2.34 103.5 277 894

30 0.130 2.34 34.5 69 603

30 0.130 2.34 34.5 208 773

30 0.130 2.34 34.5 277 846

30 0.130 2.34 0 69 585

30 0.130 2.34 0 138 666

30 0.130 2.34 0 208 757

30 0.130 2.34 0 277 838

30 0.130 3.43 138 69 3322

30 0.130 3.43 138 138 3315

30 0.130 3.43 138 208 3547

30 0.130 3.43 138 277 3556

30 0.130 3.43 103.5 69 2632

30 0.130 3.43 103.5 138 2787

30 0.130 3.43 103.5 208 3043

30 0.130 3.43 103.5 277 3300

30 0.130 3.43 69 69 2557

30 0.130 3.43 69 138 2762

30 0.130 3.43 69 208 2993

30 0.130 3.43 69 277 3284

30 0.130 3.43 34.5 69 2517

Table A1. Training dataset used in LSTM modeling.
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WDC CSAFR DMR σ3 σd MR

30 0.130 3.43 34.5 138 2765

30 0.130 3.43 34.5 208 2965

30 0.130 3.43 34.5 277 3257

30 0.130 3.43 0 69 2453

30 0.130 3.43 0 138 2739

30 0.130 3.43 0 208 2943

30 0.130 3.43 0 277 3239

30 0.130 2.84 138 69 2812

30 0.130 2.84 138 138 2938

30 0.130 2.84 138 208 3765

30 0.130 2.84 138 277 4355

30 0.130 2.84 103.5 69 3038

30 0.130 2.84 103.5 138 2775

30 0.130 2.84 103.5 208 3465

30 0.130 2.84 103.5 277 2782

30 0.130 2.84 69 69 2961

30 0.130 2.84 69 138 2721

30 0.130 2.84 69 208 3321

30 0.130 2.84 69 277 2741

30 0.130 2.84 34.5 69 2665

30 0.130 2.84 34.5 138 3275

30 0.130 2.84 34.5 208 2683

30 0.130 2.84 34.5 277 2714

30 0.130 2.84 0 69 2597

30 0.130 2.84 0 208 2660

30 0.130 2.84 0 277 2692

30 0.130 2.48 138 69 1519

30 0.130 2.48 138 138 1672

30 0.130 2.48 138 208 1735

30 0.130 2.48 138 277 1823

30 0.130 2.48 103.5 69 1468

30 0.130 2.48 103.5 138 1484

30 0.130 2.48 103.5 208 1554

30 0.130 2.48 103.5 277 1574

30 0.130 2.48 69 69 1421

30 0.130 2.48 69 138 1457

30 0.130 2.48 69 208 1478

30 0.130 2.48 69 277 1533

30 0.130 2.48 34.5 69 1392

30 0.130 2.48 34.5 138 1435

30 0.130 2.48 34.5 208 1438

30 0.130 2.48 34.5 277 1506

30 0.130 2.48 0 69 1373

30 0.130 2.48 0 138 1411

30 0.130 2.48 0 208 1421

30 0.130 2.48 0 277 1458

30 0.113 4.08 138 69 3599

30 0.113 4.08 138 138 3619

30 0.113 4.08 138 208 3705

30 0.113 4.08 138 277 3867

30 0.113 4.08 103.5 69 3059

30 0.113 4.08 103.5 138 3406

30 0.113 4.08 103.5 208 3654

30 0.113 4.08 103.5 277 3939

30 0.113 4.08 69 69 3108

30 0.113 4.08 69 138 3364
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WDC CSAFR DMR σ3 σd MR

30 0.113 4.08 69 208 3637

30 0.113 4.08 69 277 3913

30 0.113 4.08 34.5 69 3049

30 0.113 4.08 34.5 138 3422

30 0.113 4.08 34.5 208 3711

30 0.113 4.08 34.5 277 3869

30 0.113 4.08 0 69 2987

30 0.113 4.08 0 138 3338

30 0.113 4.08 0 208 3684

30 0.113 4.08 0 277 3975

30 0.113 3.45 138 69 2291

30 0.113 3.45 138 138 2249

30 0.113 3.45 138 208 2465

30 0.113 3.45 138 277 2537

30 0.113 3.45 103.5 69 1981

30 0.113 3.45 103.5 138 1955

30 0.113 3.45 103.5 208 2089

30 0.113 3.45 103.5 277 2197

30 0.113 3.45 69 69 1927

30 0.113 3.45 69 138 1914

30 0.113 3.45 69 208 2043

30 0.113 3.45 69 277 2160

30 0.113 3.45 34.5 69 1872

30 0.113 3.45 34.5 138 1871

30 0.113 3.45 34.5 208 1998

30 0.113 3.45 34.5 277 2126

30 0.113 3.45 0 69 1827

30 0.113 3.45 0 138 1867

30 0.113 3.45 0 208 1977

30 0.113 3.45 0 277 2127

30 0.510 2.61 138 69 3493

30 0.510 2.61 138 138 3647

30 0.510 2.61 138 208 4118

30 0.510 2.61 103.5 69 3166

30 0.510 2.61 103.5 138 2714

30 0.510 2.61 103.5 208 3001

30 0.510 2.61 103.5 277 3330

30 0.510 2.61 69 69 2876

30 0.510 2.61 69 138 2532

30 0.510 2.61 69 208 2846

30 0.510 2.61 69 277 3240

30 0.510 2.61 34.5 69 2820

30 0.510 2.61 34.5 138 2428

30 0.510 2.61 34.5 208 2775

30 0.510 2.61 34.5 277 3202

30 0.510 2.61 0 69 2742

30 0.510 2.61 0 138 2389

30 0.510 2.61 0 208 2753

30 0.510 2.61 0 277 3192

30 0.510 4.4 138 69 5461

30 0.510 4.4 138 138 5675

30 0.510 4.4 138 208 6251

30 0.510 4.4 138 277 7617

30 0.510 4.4 103.5 69 5427

30 0.510 4.4 103.5 138 5709

30 0.510 4.4 103.5 208 6247

30 0.510 4.4 103.5 277 7591
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WDC CSAFR DMR σ3 σd MR

30 0.510 4.4 69 69 5485

30 0.510 4.4 69 138 5685

30 0.510 4.4 69 208 6248

30 0.510 4.4 69 277 7203

30 0.510 4.4 34.5 69 5454

30 0.510 4.4 34.5 138 5732

30 0.510 4.4 34.5 208 6189

30 0.510 4.4 34.5 277 7435

30 0.510 4.4 0 69 5400

30 0.510 4.4 0 138 5564

30 0.510 4.4 0 208 5894

30 0.510 4.4 0 277 7283

30 0.510 3.37 138 69 2504

30 0.510 3.37 138 138 2624

30 0.510 3.37 138 208 2418

30 0.510 3.37 138 277 2517

30 0.510 3.37 103.5 69 1814

30 0.510 3.37 103.5 138 2009

30 0.510 3.37 103.5 208 2227

30 0.510 3.37 103.5 277 2340

30 0.510 3.37 69 69 1724

30 0.510 3.37 69 138 1883

30 0.510 3.37 69 208 2090

30 0.510 3.37 69 277 2302

30 0.510 3.37 34.5 69 1694

30 0.510 3.37 34.5 138 1846

30 0.510 3.37 34.5 208 2043

30 0.510 3.37 34.5 277 2250

30 0.510 3.37 0 277 1632

Table A2. Testing dataset used in LSTM model validation.
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