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ABSTRACT
We find periodic skyrmionic textures via conformal cartographic projections that map either an entire spherical parameter space or a hemi-
sphere onto every regular polygon that provides regular tessellations of the plane. These textures minimize the energy inherent to the mapping
and preserve the sign of the Skyrme density throughout the entire space. We show that 2D spinor fields (e.g., 2D polarization) that present
periodic textures preserving the sign of the Skyrme density unavoidably exhibit zeros. We implement these textures in the polarization state
of a laser beam.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0230959

I. INTRODUCTION

We refer to a 2D skyrmion as a distribution (or texture) over
a plane of a vector field that completely spans a spherical para-
meter space while maintaining the sign of the Skyrme density ρS (the
Jacobian between the sphere and the planar region occupied by the
skyrmion). By definition, the Skyrme number, NS, given by the inte-
gral of ρS over the region occupied by the skyrmion, is an integer.
Merons are distributions that span one hemisphere, north or south;
their Skyrme number is then ±1/2 when the hemisphere is spanned
once.

The best-known examples of this type of texture are magnetic
skyrmions,1,2 which, due to their exceptional stability at nanoscale
dimensions and low energy requirements for manipulation, are
promising candidates for high-density, energy-efficient data storage
technologies such as racetrack memory.3 However, skyrmions and
related 2D textures have been observed in a plethora of other physi-
cal systems, such as sound waves,4,5 superfluids,6,7 and optical fields.8

In nonparaxial optical fields, isolated skyrmions whose vector para-
meter is the normalized photonic spin angular momentum9,10 have
been found. Periodic textures such as skyrmion lattices for the elec-
tric field’s instantaneous orientation in evanescent waves11 and spin
optical meron lattices12–16 have also been observed.

In paraxial optics, 2D skyrmionic textures in the polarization
distribution over the transverse plane of monochromatic beams are
often referred to as Stokes textures8,17,18 since they span all normal-
ized values of the Stokes vector, that is, the Poincaré sphere. Full
Poincaré beams,19–22 which display a spatially variant polarization
pattern in a transverse section that is the stereographic projection of
the Poincaré sphere, can be regarded as isolated skyrmions. While
the motivation for studying optical skyrmions has perhaps been to
find analogs of these interesting magnetic textures, these are likely
to find applications for tailored light–matter interaction, such as
creating spin textures in Bose–Einstein condensates.23 Furthermore,
the techniques used for generating them can lead to other applica-
tions. For example, the birefringent elements used for generating
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Full Poincaré beams were later used in imaging polarimetry24 and
super-resolution fluorescence microscopy.25

Regarding periodic textures, optical polarization lattices of tiles
that separately map each Poincaré hemisphere can be recognized
as Stokes meron lattices. For example, the superposition of three
plane waves with appropriate polarizations and wavevectors results
in a triangular lattice.26 In this lattice, ρS oscillates in sign, as does
that in nonparaxial spin optical meron lattices.12–15 This oscillation
may lead to cancellation when integrating ρS, yielding NS ≈ 0 in
some regions. In contrast, a few periodic textures turn out to avoid
such cancellation since they preserve sgn(ρS) over all space, such
as optical nonparaxial skyrmion lattices,11 meron lattices in super-
fluid 3He–A,6 or textures in the velocity field of sound waves.5 We
recently proposed propagation-invariant optical polarization lattices
that were designed to present this property.27

The first goal of this work is to study skyrmionic textures that
preserve the sign of the Skyrme density. Such textures would result
naturally from the accumulation of skyrmions with equal (nonzero)
Skyrme numbers. We show that the subset of these textures for
which the mapping from the sphere to the plane is conformal min-
imizes a geometric measure of the energy of the mapping. These
textures are then stable when the interaction between skyrmions
follows the minimization of this energy. As it turns out, the peri-
odic conformal maps that describe these textures were developed in
nineteenth- and twentieth-century cartography, where the sphere is
mapped onto specific regular polygons. Physical space is then tessel-
lated with these polygons without reflections, only translations and
rotations. The spherical parameter space is then mapped as if it were
the Earth [Fig. 1(a)].

Our second goal is the implementation of these conformal
periodic skyrmion lattices as Stokes textures in paraxial monochro-
matic fields, for which the mapped spherical space is the Poincaré
(or Bloch) sphere. We propose a prescription that generates well-
behaved fields. We also find that the implementation of periodic

skyrmionic structures with uniform sgn(ρS) necessarily implies that
the field must present zeros, which makes the pattern sensitive to
perturbations.

II. ENERGY MINIMIZATION
Consider the spherical parameter space spanned by the unit

vector s = (sin θ cos ϕ, sin θ sin ϕ, cos θ). This sphere is then mapped
onto the plane (x, y) as s(x, y). The Skyrme number, NS, quan-
tifies how many times this map wraps around the sphere (its
sign giving the sense of wrapping) within a given planar region σ:
NS = (4π)−1

∬σ ρS(x, y) dx dy, where the Skyrme density ρS(x, y) is
defined as the Jacobian of the transformation, namely,

ρS(x, y) = s(x, y) ⋅ [∂xs(x, y) × ∂ys(x, y)]. (1)

Let us first write the conditions for the map to be conformal.
Infinitesimal changes of the same size in each of the two flat coor-
dinates x, y must result in changes over the unit sphere of s also of
equal size in two orthogonal directions. We can write this as

s × ∂xs = sgn (ρS)∂ys, (2a)

s × ∂ys = − sgn (ρS)∂xs, (2b)

where the operation s× performs a rotation of 90○ over the surface
of the sphere. We can combine these equations as

s ×∇s = sgn (ρS)σ1∇s, σ1 = (
0 1
−1 0

). (3)

That is, a rotation over the sphere corresponds to a rotation over the
plane. The equation above can also be written as

∇s = − sgn (ρS) s × (σ1∇)s, (4)

FIG. 1. (a) The Earth and a spanned spherical parameter space (e.g., the Poincaré sphere). (b)–(e) Periodic skyrmionic textures resulting from conformal cartographic
mappings providing regular tessellations: (b) Peirce’s quincuncial projection, (c) Adams’ world in a hexagon, (d) Lee’s world in a tetrahedron, and (e) Wray’s variation of
Lee’s projection. For all, the entire sphere is mapped onto regular polygons (outlined in black), one of them highlighted in darker blue in each case. Rotated versions of
these tessellate the plane. A northern and a southern hemisphere in each case are highlighted in red and purple, respectively.
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where we must be careful distinguishing the vector operations in the
two-dimensional flat space and the three-dimensional ambient space
for s (in this case the cross product). It is easy to see that

∇
2s = − sgn (ρS)[(∇s) × (σ1∇s) + s × (∇σ1∇)s] = 0. (5)

The stretching of s over the plane can be considered as a local
energy density given by the squared Euclidean norm of the 2 × 3
Jacobian matrix, that is

ε(x, y) =
1
2
∥∇s∥2

=
1
2
(∂isj)(∂isj), (6)

where we used Einstein’s convention of implicit summation over
repeated indices, with i = x, y and j = 1, 2, 3. The total energy over
a unit cell σ is then given by μ = ∬σ ε dxdy. We now consider the
functional derivative with respect to the function s of this energy. By
using integration by parts to remove the derivatives of each factor of
s and realizing that the integrated terms cancel due to the periodicity
of the pattern, we arrive at

δ
δs

μ = −∇2s. (7)

Equation (5) implies that this variation is then zero for a conformal
distribution.

Note that for a conformal map, ∂xs and ∂ys have the same
magnitude and are perpendicular, so the magnitude of the Skyrme
density becomes

∣ρS∣ = ∣s ⋅ ∂xs × ∂ys∣ = ∣∂xs∥∂ys∣ =
∣∂xs∣2 + ∣∂ys∣2

2
= ε. (8)

Thus, for all conformal maps, μ = 4π∣NS∣, and more generally, the
total energy over a unit cell of any periodic texture with con-
stant sgn(ρS) has a minimum value of 4π∣NS∣, this minimum being
achieved for conformal maps.

III. CARTOGRAPHIC MAPPINGS
We now present the conformal cartographic transformations

and their implementation as skyrmionic textures (Fig. 1). Only three
tiles provide regular tessellations:28 squares, equilateral triangles,
and regular hexagons. We explore conformal maps that yield reg-
ular tessellations where either the entire sphere or a hemisphere is
mapped onto each regular polygon. The only case left out is that
where a hemisphere is mapped onto a hexagon, since it is impossible
to tile the plane without edge conflicts using only rotated copies of
hexagonal merons (that is, one could not avoid having two hexagons
mapping the same hemisphere sharing a side).

We begin with Peirce’s quincuncial projection,29 which maps
the whole sphere and also each hemisphere onto a square. The ver-
tices of each square tile mapping a hemisphere are equally spaced
along the sphere’s equator [Fig. 1(b)]. The map is conformal except
at these four points. The resulting meron texture is topologically
equivalent and morphologically similar to a texture resulting from
energy minimization in superfluid 3He–A.6

We consider Adams’ world in a hexagon projection,30 which
maps the sphere onto a regular hexagon while mapping each hemi-
sphere onto an equilateral triangle. This map exhibits singular points

at the vertices of each triangular tile that spans a hemisphere, which
is again equally spaced along the equator [Fig. 1(c)]. We recently
generated a Stokes texture corresponding to the superposition of a
few plane waves that is topologically equivalent to this map, although
not conformal.27

Finally, we explore a map of the entire sphere onto an equi-
lateral triangle, known as Lee’s world in a tetrahedron projection.31

Here, the sphere is divided into four equal spherical equilateral tri-
angles, each being then projected onto the corresponding face of a
regular tetrahedron. Unfolding the tetrahedron yields an equilateral
triangle that tessellates the plane with rotated copies of itself. Note
that one of the tetrahedron’s vertices is chosen to be at the south pole
[Fig. 1(d)]. This texture is topologically equivalent and morphologi-
cally similar to one generated recently in the instantaneous velocity
field of sound waves.5 Wray proposed a modified version of Lee’s
mapping32 where the two poles are positioned at the midpoints of
two opposing edges of the tetrahedron [Fig. 1(e)]. Unlike Lee’s orig-
inal projection, in Wray’s transformation, the equator does not form
closed loops but meandering lines. Upon unfolding the tetrahedron,
the resulting triangle can be rearranged as a rectangle (with aspect
ratio

√
3 : 1), yielding a tessellation of rectangles. In both versions of

Lee’s projection [Figs. 1(d) and 1(e)], the singular points are placed
at the vertices of the tetrahedron.

These maps can be expressed as a sequence of two conformal
transformations: a planar map defined by an analytic function w(z),
where z = x + iy (x and y being the Cartesian coordinates in physi-
cal space), and a stereographic projection from the north pole. These
operations result in a map from the plane to the sphere’s azimuthal
and polar coordinates as ϕ = arg [w(z)] and θ = 2 arctan ∣w(z)∣,
respectively.

For Peirce’s and Adams’ projections, w(z) is the inverse func-
tion of the Schwarz–Christoffel transformation33 that maps the unit
disk onto a square34 and an equilateral triangle,32 respectively. The
expressions for w(z) for each of these projections (Peirce34, Adams,
Lee, and Wray32) are as follows:

wP(z) =
ei(ϕ0+α)
√

2
sd(z̃1,

1
√

2
), (9a)

wA(z) = ei(ϕ0+α)sm(z̃2), (9b)

wL(z) = 21/6ei(ϕ0+α)sm(z̃2)cm(z̃2), (9c)

wW(z) =
ei(ϕ0+α)

2
sd(z̃3,

√
3 − 1

2
√

2
), (9d)

where sd is the ratio between the Jacobi elliptic functions sn and
dn, while sm and cm correspond to the Dixon elliptic functions,
which can be expressed in terms of the Weierstrass elliptic func-
tion denoted as ℘(z) and its derivative ℘′(z): sm(z) = 6℘(z)/(1 −
3℘′(z)) and cm(z) = (3℘′(z) + 1)/(3℘′(z) − 1).35 The three com-
plex numbers z̃i are defined as z̃1,2,3 = γ1,2,3 e−iα

(z − z0)/d, with γ1 =

Γ2
(1/4)/(2

√
2π), γ2 = Γ3

(1/3)/(2π), and γ3 = 31/4Γ3
(1/3)/(21/3π),

where Γ denotes the gamma function. The angle α rotates the poly-
gon onto which the sphere is mapped, while ϕ0 sets the initial value
from which ϕ is swept within this polygon. Note that ϕ0 influences

APL Photon. 9, 110803 (2024); doi: 10.1063/5.0230959 9, 110803-3

© Author(s) 2024

 07 D
ecem

ber 2024 12:16:13

https://pubs.aip.org/aip/app


APL Photonics ARTICLE pubs.aip.org/aip/app

FIG. 2. Skyrme density for (a) Peirce, (b) Adams, and (c) Lee/Wray maps within
the area displayed in Fig. 1. The unit cell of each texture is outlined by dashed
lines.

the type of meron that appears in the textures (e.g., Néel- or Bloch-
type8). The real and imaginary parts of the complex number z0 are
the x and y coordinates defining the center of the map. Finally, d sets
the length of the edge of either the square or the equilateral triangle
spanning a hemisphere in the case of Peirce’s and Adams’ mappings,
while for Lee’s and Wray’s mappings, it corresponds to the length
of the edge of the triangle spanning the sphere. Note that, due to
the periodicity of the Jacobi and Dixon elliptic functions, these map-
pings work over the whole plane and not only within a central tile.
The periodicity of the tiling is then natural. The inverse transforma-
tions to each of the mappings in Eq. (9) are given in Sec. I of the
supplementary material.

The Skyrme number can be expressed as ρS = ρSPρw, where
ρSP = 4(1 + ∣w(z)∣2)−2 is the Jacobian of the stereographic pro-
jection, and ρw = [∂xRe(w(z))]2 + [∂yRe(w(z))]2 is that for the
transformation w(z) (simplified by using the Cauchy–Riemann con-
ditions). These equations imply that ρS is always positive, as shown
in Fig. 2. Within the context of cartography, this means that the
shapes of the continents are never reversed. A different convention
for the stereographic projection could be used that reverses its sign,
leading to textures with sgn(ρS) < 0.

Note that NS = 1 within the polygons that map the entire sphere
for all projections in Fig. 1. Peirce’s and Adams’ projections lead to
lattices of square and triangular merons, respectively, in which any
two neighboring merons map different hemispheres. Within each
meron, NS = 1/2. Nevertheless, in the first version of Lee’s projection
[Fig. 1(d)], there are merons that span twice the southern hemi-
sphere, leading to NS = 1. In fact, both in Lee’s and Wray’s versions
of the tetrahedron projection, different regions covering the same
hemisphere are in direct contact and not separated by a line corre-
sponding to the equator, so these textures do not classify as meron
lattices according to some definitions.1

IV. PERIODIC SKYRMIONIC TEXTURES IN
MONOCHROMATIC PARAXIAL OPTICAL FIELDS

We now explore the implementation of these skyrmionic tex-
tures in the spatial distribution of polarization for a monochro-
matic optical beam of frequency ω. The instantaneous transverse
real electric field at any point (x, y) and time t is given by E =
Re[E exp (−iωt)], where E is the complex field, which can be
parameterized as

E = E0[cos (θ/2)l + eiϕ sin (θ/2)r] = Ell + Err, (10)

with E0 being a complex function of x and y that provides an over-
all amplitude and phase and that does not affect the polarization
(defined by the expression in brackets). Here, the unit vectors l, r =
(x ± iy)/

√
2 represent left- and right-circular polarization, where x

and y are the unit vectors along the x and y axes, respectively. The
circular polarization components El,r are the complex functions of
x and y, whose relative phase is ϕ = ϕr − ϕl (with ϕr,l = arg[Er,l]).
At each point, E traces over each optical cycle an ellipse within the
transverse plane, whose ellipticity and handedness are determined
by θ, while ϕ gives twice the orientation angle of its major axis with
respect to x. Each possible polarization ellipse then corresponds to
a point on the Poincaré sphere [Fig. 1(a)] described by a normal-
ized Stokes vector s = (sin θ cos ϕ, sin θ sin ϕ, cos θ). Spanning the
Poincaré sphere then means achieving every paraxial polarization.
The northern and southern hemispheres correspond to left- and
right-handed ellipses, respectively, with the two poles correspond-
ing to the two circular polarizations, while linearly polarized ellipses
are positioned along the equator.

We now find equations for optical fields that implement
these textures independently of the mapping function w(z). Since
w(z) = tan(θ/2)eiϕ, E = El(z)[l + w(z)r], any reasonable choice for
El(z) leads to the desired polarization texture as long as Er(z) =
El(z)w(z). However, it is convenient to choose a functional form
that avoids singularities in the field and that treats the two
hemispheres similarly. In our convention, the hemisphere with
left(right)-handed ellipses corresponds to ∣w(z)∣ < (>)1, with the
pole representing left(right)-circular polarization corresponding to
w(z) = 0 (∞). It is then desirable to find an expression for El(z)
such that Er(z) = El(z)w(z) takes a similar functional form except
for the replacement w → w−1. One such solution is

El,r(z) = A
√

−w±1
0
[w±1
(z) − w±1

0 ]
∗

∣w±1
(z)∣2 + ∣w±1

0 ∣
2 , (11)

where A is a constant amplitude factor and w0 is a dimensionless
constant. Note that both polarization components vanish at points
where w(z) = w0, meaning that this construction forces zeros in the
field at points where the polarization is such that tan(θ/2)eiϕ

= w0.
As we discuss later, this feature has a topological origin. In what fol-
lows, we choose w0 = −1 to simplify the expressions so that the zeros
coincide with points of vertical linear polarization.

We now focus on Peirce’s texture as a representative example,
for which Fig. 3 shows the intensity and phase of El,r (a), as well as the
polarization and intensity distributions (b). The figures for the other
maps are shown in Sec. II of the supplementary material, which also
includes plots of the fields’ discrete Fourier spectra for the four maps.

These textures correspond to optical polarization lattices36

exhibiting polarization singularities such as L-lines (lines of linear
polarization) and C-points (points of circular polarization).37 C-
points emerge in regions where a vortex in ϕl,r with topological
charge ml,r is superimposed onto a region with no vortex in ϕr,l,
rendering a vortex in ϕ with topological charge mϕ = ∓ml,r. The
polarization ellipse undergoes a rotation of mϕπ radians around the
singularity in ϕ. For mϕ > 0, the ellipse performs a counterclockwise
rotation, while for mϕ < 0 it rotates clockwise. In the proximity of
C-points with mϕ = ±1, the ellipses exhibit distinct singular patterns
known as lemons (mϕ = 1) and stars (mϕ = −1).37

APL Photon. 9, 110803 (2024); doi: 10.1063/5.0230959 9, 110803-4

© Author(s) 2024

 07 D
ecem

ber 2024 12:16:13

https://pubs.aip.org/aip/app
https://doi.org/10.60893/figshare.app.c.7503441
https://doi.org/10.60893/figshare.app.c.7503441


APL Photonics ARTICLE pubs.aip.org/aip/app

FIG. 3. Unit cell of the beam implementing in its polarization state Peirce’s texture
according to Eq. (9) with α = π/4, ϕ0 = 7π/6, and z0 = (−1 + i)/2. (a) Theoret-
ical intensity and phase distributions of the circular polarization components El,r.
(b) Polarization and intensity distributions. Phase vortices result in either C-points
or scalar vortices.

The polarization distribution in Fig. 3(b) shows an important
feature: For a texture where ρS > 0 everywhere, all left(right)-handed
C-points originate from a ϕ vortex with mϕ > (<)0, and then all
C-points with mϕ = ±1 manifest as left-handed lemons and right-
handed stars. (For a texture where ρS < 0 everywhere, the situation
would reverse.) A way to understand this fact comes from consider-
ing mapping a small patch of the sphere. Let the polar coordinates
of the local planar map be (r, φ). When mapping the north pole,
r ≈ κθ, φ = ϕ, where κ is a positive constant. The Skyrme density
has the same sign as the Jacobian between (θ, ϕ) and (r, φ), which
equals 1/κ > 0. Now consider transporting continuously the map to
the south pole without reversing local directions (i.e., ρS does not
change sign). At the south pole, the coordinates can be set to r ≈
κ(π − θ), φ = −ϕ, which yield the same positive Jacobian. However,
mϕ = ∂φϕ is positive at the north pole (left-circular polarization) and
negative at the south pole (right-circular polarization).

Together with a well-established result from index theory, this
result implies that paraxial fields displaying periodic skyrmionic
Stokes textures that maintain sgn(ρS)must inevitably present zeros.
This is because, within a unit cell of a periodic complex scalar field,
the topological charges of its vortices must add up to zero. How-
ever, as just discussed, the vortices for each circular component that
leads to C-points all have the same charge. Each component must
then include extra vortices with the opposite charge, and the only
way for these not to produce extra C-points is if their locations coin-
cide for the two circular components, hence giving rise to field zeros.
The field construction in Eq. (11) naturally introduces these zeros,
placing them at points with a specific polarization.

It is important to emphasize that the presence of zeros for tex-
tures that maintain sgn(ρS) extends beyond textures implemented
in paraxial polarization; it applies to any texture in a 2D spinor field
achieved through the factorization of a global phase and amplitude
function in a 2D complex vector field. Consequently, in such fields,
a periodic texture that preserves sgn(ρS) inevitably presents zeros.

V. EXPERIMENTAL SETUP AND RESULTS
We experimentally generate the textures by implementing the

circular polarization distributions from Eq. (11) in a continuous-
wave laser beam using a spatial light modulator (SLM),38 as shown

FIG. 4. Scheme of the experimental setup. Half-wave plate (HWP), beam splitter
(BS), Wollaston prism (WP), lens (L), spatial light modulator (SLM), spatial filter
(SF), quarter-wave plate (QWP), linear polarizer (LP), and mirror (M).

in Fig. 4. The laser’s polarization is controlled by a half-wave plate
(HWP1) before entering a beam splitter (BS) and a Wollaston
prism (WP), which splits the linear polarization components. A
telescopic system magnifies these components onto the SLM. The
beams are modulated using an algorithm that enables both ampli-
tude and phase modulation with a phase-only SLM.39 (Instead of
directly modulating the circular polarization components, we mod-
ulate the horizontally and vertically polarized components, which
can be easily expressed in terms of the circular ones.)

A second half-wave plate (HWP2) is placed in one arm before
the SLM to align the polarization along the direction modulated by
the SLM. After reflection on the SLM, HWP2 restores the arm’s
original polarization state, allowing the beams to be recombined
after the WP. The recombined beams then travel through the BS
to a second telescopic system, which images the SLM plane onto
a CMOS camera. The field’s polarization distribution is analyzed
using a linear polarizer (LP) and a quarter-wave plate (QWP). The
measured intensities of various polarization projections are used
to compute the skyrmionic texture. More experimental details and
data processing steps are provided in Sec. III of the supplementary
material.

Figure 5 shows, for Peirce’s projection, the measured Stokes
vector distribution (a) and ρS (b). Similar results for the other three
projections are given in Sec. IV of the supplementary material. For
all cases, small regions of highly negative ρS emerge near the points
where Eq. (11) predicts the field’s zeros (corresponding to vertical
polarization). This is because these zeros are unstable: any small
relative misalignment of the polarization components causes the

FIG. 5. Unit cell of the measured (a) Stokes vector distribution and (b) Skyrme
density for Peirce’s field.
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intensity not to vanish exactly and the polarization to vary rapidly,
covering within a small region the entire sphere in the opposite
sense. Possible experimental sources of zero misalignment are defo-
cus or the clipping of diffraction orders by the aperture. Excluding
some orders carrying low intensities has little effect on the over-
all pattern but leads to rapid polarization variation in low-intensity
regions (see Sec. V of the supplementary material), similar to that in
the measured data.

VI. CONCLUSIONS
The skyrmionic lattices presented here represent different mor-

phologies and topologies that preserve sgn(ρS). The fact that they
are conformal implies that they minimize the energy inherent to
the mapping. Note that rotated versions (in the spherical space) of
each of these cartographic maps can also be considered, such as the
two forms of Lee’s projection. Similarly, some of these maps accept
deformations while still tessellating the plane but not with regular
polygons, and perhaps not conformally. It is possible, for example,
to deform continuously Wray’s map by transporting the singular
points along meridians to the equator, arriving at a rotated version
of Peirce’s map. This means that Lee’s, Wray’s and Peirce’s maps are
topologically equivalent. Note, however, that changing the spacing
of the singular points in Peirce’s map until two of them merge would
not lead to Adams’ map (and would not be consistent with tessella-
tion of the plane), meaning that this latter map (with three singular
points) is topologically different from the others (with four singular
points).

Other conformal projections that tessellate the plane can also be
explored,32,34 such as maps of the sphere onto a triangle or a square
using Lagrange’s projection of the sphere onto a disk40 instead of
the stereographic projection. An interesting case is Adams’ world in
a square projection,41 which renders merons spanning a hemisphere
four times for both hemispheres. Another texture with merons span-
ning a hemisphere six times for one of the hemispheres results from
Cox’s world in a triangle projection.42

For polarization textures (or any spinor field resulting from
a 2D complex vector field), achieving uniform sgn(ρS) requires
zeros in the vector field, making the texture unstable to perturba-
tions, although instability under propagation can be reduced in some
cases.27 Exploring the inevitable occurrence of zeros in spinor fields
beyond optics, such as Bose–Einstein condensates,23 opens up an
area for further investigation.

Finally, it would be interesting to study if periodic textures
with uniform sgn(ρS), conformal or not, exist for higher dimen-
sionalities. Recently, optical implementations of skyrmionic struc-
tures spanning three-spheres43,44 and four-spheres45 were proposed,
the latter corresponding to a space–time periodic texture span-
ning all states of monochromatic nonparaxial polarization but with
nonuniform sgn(ρS).

SUPPLEMENTARY MATERIAL

The supplementary material covers the inverse transforma-
tions of the mappings, theoretical and measured distributions for
Adams, Lee, and Wray textures, spectra of the fields, experimental

implementation, and the effects of clipping low-intensity diffraction
orders by the aperture.
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