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Continuous variable quantum key distri-
bution with discrete modulation has the
potential to provide information-theoretic
security using widely available optical el-
ements and existing telecom infrastruc-
ture. While their implementation is sig-
nificantly simpler than that for protocols
based on Gaussian modulation, proving
their finite-size security against coherent
attacks poses a challenge. In this work
we prove finite-size security against co-
herent attacks for a discrete-modulated
quantum key distribution protocol involv-
ing four coherent states and heterodyne
detection. To do so, and contrary to
most of the existing schemes, we first dis-
cretize all the continuous variables gener-
ated during the protocol. This allows us
to use the entropy accumulation theorem,
a tool that has previously been used in
the setting of discrete variables, to con-
struct the finite-size security proof. We
then compute the corresponding finite-key
rates through semi-definite programming
and under a photon-number cutoff. Our
analysis provides asymptotic rates in the
range of 0.1 − 10−4 bits per round for dis-
tances up to hundred kilometres, while in
the finite case and for realistic parameters,
we get of the order of 10 Gbits of secret key
after n ∼ 1011 rounds and distances of few
tens of kilometres.
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1 Introduction

Arguably one of the most technologically ad-
vanced applications of quantum information
theory nowadays is quantum key distribution
(QKD), which allows two honest parties, Alice
and Bob, to obtain a cryptographic key, the se-
curity of which is guaranteed by the laws of
quantum physics. Whereas QKD was originally
conceived in a setting involving discrete vari-
ables [1, 2, 3], e.g. requiring the generation, or
at least approximation, of single photon states,
there exist a number of protocols based on con-
tinuous variable systems, such as squeezed or
coherent states [4, 5, 6, 7]. These protocols,
known as continuous variable quantum key dis-
tribution (CVQKD), provide a number of advan-
tages over discrete variable quantum key distribu-
tion (DVQKD) in terms of implementation using
present-day telecom infrastructure.

The security of DVQKD has been proven both
in theory and in realistic implementations us-
ing diverse approaches, see for instance [8, 9, 10,
11, 12]. Different security proofs have also been
provided for CVQKD, many of which make use
of a particular feature of the protocol, namely
that the quantum states sent from Alice to Bob
are chosen according to a Gaussian distribution.
Such protocols are also known as Gaussian mod-
ulated CVQKD protocols. An important ingre-
dient when proving security of Gaussian modu-
lated CVQKD against collective attacks is the
extremality of Gaussian states [13]. Gaussian ex-
tremality implies that, for a given covariance ma-
trix of Alice and Bob’s system, the maximum over
the Holevo quantity in the Devetak-Winter for-
mula for the key rate [14], which involves an op-
timisation over Eve’s full Fock space, is attained
by the corresponding Gaussian state. Combin-
ing this with the fact that, in the case of Gaus-
sian modulation, the covariance matrix of Alice
and Bob’s system can be directly computed from
the observed statistics [15], security against col-
lective attacks has been shown for Gaussian mod-
ulated coherent and squeezed states protocols in-
volving both homodyne and heterodyne detec-
tion [16, 17, 18, 19]. Security against general
attacks has been shown for protocols using co-
herent [20, 21, 19, 22] as well as squeezed states
[23, 24]. The main tools that have been used
are the de Finetti Theorem [20, 22], postselection
techniques [25, 21] and entropic uncertainty rela-

tions [23, 24].

Unfortunately, the implementation of CVQKD
protocols with Gaussian modulation turns out
to be challenging because it is never achieved
in practice [26], and is in fact often approxi-
mated by finite sets of states. A discrete modu-
lation therefore significantly simplifies the prepa-
ration of states but also the error correction part,
as much simpler reconciliation schemes can be
used [27]. Discrete-modulated protocols involve
Alice sending coherent states taken from a typi-
cally small set, e.g. containing two or four states,
according to some distribution, to Bob, who then
applies a homo- or heterodyne measurement and
discretises his outcome. Despite their simplicity,
less is known about the security of such schemes.

The main challenge is that, unlike in the case
of Gaussian modulation, the first and second mo-
ment of Alice and Bob’s state are generally not
sufficient to determine Eve’s information, as one
cannot invoke Gaussian extremality. Neverthe-
less, security against collective attacks has been
shown in a number of scenarios. In [27], secu-
rity was proven for a limited class of transmis-
sion channels. For a protocol using Gaussian
modulation for parameter estimation and discrete
modulation for key generation, which requires de-
coy states, security against collective attacks and
general security in the asymptotic limit has been
shown in [28]. The authors of [29] apply an op-
timisation over possible covariance matrices of
Alice and Bob’s state as well as a reduction to
the Gaussian optimality method to show security
against collective attacks in the asymptotic limit.
Higher key rates, which are secure against collec-
tive attacks in the asymptotic limit, are obtained
by [30], which use an optimisation over all possi-
ble density matrices of Alice and Bob’s state that
are compatible with the observed statistics and
without invoking the arguments of Gaussian op-
timality, but using a cutoff assumption that limits
the number of photons in the state. This assump-
tion was removed in [31] for the asymptotic case,
and in [32] for the finite-size case; however both
works only consider collective attacks. Security
of discrete modulated coherent state protocols
with homodyne or heterodyne detection against
collective attacks was also shown by [33, 34] in
the asymptotic case, and by [35] in the finite-size
case. In the limit of a high number of coher-
ent states, asymptotic security against collective
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attacks was shown in [36]. In the setting of col-
lective Gaussian attacks, the security of discrete
modulated coherent state protocols with hetero-
dyne detection, for any number of coherent states,
has also been proven in the finite-size regime [37].
Finally, finite-size security against general attacks
has been shown for a protocol involving a discrete
modulation using two coherent states [38, 39, 40].

In this work, we consider a protocol involving
a discrete modulation using four coherent states
[41], and heterodyne detection [6], which is closely
related to the protocol presented in [30]. The
main difference with respect to [30] is that all the
information generated by the protocol, for key
generation and parameter estimation, is discre-
tised, in a similar way as was done in the en-
tropic uncertainty relation approach of [23, 24].
This allows us to prove security against general
attacks, as well as finite block sizes, using the
entropy accumulation theorem (EAT) [42, 43],
which has previously been used to prove the se-
curity of device independent quantum key distri-
bution against general attacks [44, 45, 46].

The EAT is a powerful tool that allows one to
lower bound the conditional smooth min-entropy,
a quantity that can be used to quantify the
amount of secret key obtainable from a (gener-
ally unstructured) classical-quantum (cq) state
by means of privacy amplification, using hash
functions [11]. This is in fact the relevant sit-
uation in QKD protocols, since a cq-state is pro-
duced where Alice and Bob hold classical infor-
mation, resulting in our case from Alice’s prepa-
ration and Bob’s measurements, whereas Eve’s
system remains quantum. The EAT requires the
cq-state being the result of a sequence of maps,
known as EAT channels, each of which provides
classical outputs and side-information, while also
passing on a quantum system to the next map.
The lower bound on the conditional smooth min-
entropy is in terms of a so-called ‘min-tradeoff
function’, mapping the observed statistic of clas-
sical outputs of the EAT channels to a real num-
ber which cannot exceed the single round condi-
tional von Neumann entropies of any of the EAT
channels.

A major challenge, when applying the EAT in
security proofs for QKD, is that the EAT chan-
nels need to fulfill a Markov condition, ensuring
that in each round, given all past-side informa-
tion, there are no new correlations between pre-

vious outcomes and the new side information. As
information used for parameter estimation is ob-
tained from measurements by Alice and Bob on
systems which Eve could potentially have corre-
lated in a way incompatible with the Markov con-
dition, the EAT cannot be applied to the QKD
protocol directly. Rather, a hypothetical EAT
process is introduced which produces the same
marginal states on the subsystems relevant to
the security proof, and the smooth min-entropy
of the QKD protocol is lower bounded using a
combination of chain rules, as well as a min-
tradeoff function corresponding to the EAT pro-
cess [44, 45, 46].

As was recently pointed out by the authors of
[47], another issue arises when applying the EAT
in device dependent prepare-and-measurement
protocols. Such protocols can be translated into
entanglement based protocols, where Alice, in-
stead of randomly sending states, prepares an en-
tangled state, part of which is sent to Bob via an
insecure channel, while the remaining part is kept
in Alice’s lab. Alice and Bob then perform mea-
surements on their respective parts. The issue
which arises is that the statistics obtained from
the measurements is not sufficient to certify that
the state between Alice and Bob is entangled, re-
quiring additional constraints on Alice’s marginal
in the final key rate optimisation, which are in-
compatible with the EAT. We overcome this issue
by adding an additional tomography performed
by Alice in randomly chosen rounds, thus ensur-
ing that Alice and Bob’s measurement statistics
are sufficient to certify entanglement between Al-
ice and Bob.

Having overcome these challenges, we are able
to derive a min-tradeoff function using the numer-
ical approach presented in [48], which requires a
photon number cutoff assumption. It involves a
linearisation of the objective function and the use
of duality, finally reducing the problem to a semi-
definite programming optimisation, which can be
efficiently handled numerically. Our numerical
analysis also suggests that the values of the key
rate do not significantly vary once the cutoff be-
comes large enough. Using this approach, we are
able to obtain asymptotic rates in the range of
0.1−10−4 bits per round for distances up to hun-
dred kilometres. In the finite setting, and for re-
alistic parameters, we get of the order of 10 Gbits
of secret key after n ∼ 1011 rounds and distances
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of few tens of kilometres.
After most of the work that went into this re-

sult was completed, a generalised version of the
EAT has been presented [49, 50], which offers
an alternative method of overcoming the chal-
lenges to prove the security of device-dependent
prepare-and-measure protocols mentioned in the
previous two paragraphs. In another recent re-
sult, the authors of [32] have overcome the photon
number cutoff assumption on Bob’s state needed
to compute the min-tradeoff function that defines
the asymptotic rates by means of adding an ad-
ditional energy test, as well as a dimension re-
duction technique presented in [31]. Their proof
also works in the finite setting, albeit only against
collective attacks.

2 Preliminaries

2.1 Basic notations

In this section we introduce some definitions and
concepts we use throughout the paper. For a
Hilbert space HA, we denote by D(HA) the set of
density operators, i.e. positive semidefinite op-
erators with unit trace, ρA, acting on quantum
system A. Sometimes it will be convenient to
consider subnormalised states, i.e. states with
Tr[ρ] ≤ 1, in which case we use the notation
D≤(HA). The notation HAB denotes a tensor
product Hilbert space HA⊗HB, and ρAB the cor-
responding bipartite density operator. Classical
random variables X, taking values {x} according
to the distribution {px} can be expressed as den-
sity operators as ρX =

∑
x px |x⟩ ⟨x|X . By XY

we denote the Cartesian product of random vari-
ables X and Y . Further, we will be using the
notation An

1 = A1A2...An and Xn
1 = X1X2...Xn

for quantum and classical systems. We express cq
states using the notation ρXA =

∑
x px |x⟩ ⟨x|X ⊗

ρx
A. For a cq state ρCQ =

∑
c p(c) |c⟩ ⟨c| ⊗ ρc,

an event Ω is defined as a subset of the ele-
ments {c}. The conditional state is then given
by ρCQ|Ω = 1

Prρ[Ω]
∑

c∈Ω p(c) |c⟩ ⟨c| ⊗ ρc where
Prρ[Ω] :=

∑
c∈Ω p(c). When the state ρ is clear

from the context, we use Pr[Ω] in place of Prρ[Ω].
For two subnormalised states ρ, σ ∈ D≤(HA),

we define the generalised fidelity

F (ρ, σ) =
(

Tr
∣∣√ρ√

σ
∣∣+√

(1 − Tr[ρ])(1 − Tr[σ])
)2
,

(1)

the generalised trace distance

∆(ρ, σ) = 1
2∥ρ− σ∥1 + 1

2 |Tr[ρ− σ]| , (2)

as well as the purified distance

P (ρ, σ) =
√

1 − F (ρ, σ). (3)

The generalised trace distance and the purified
distance are metrics on D≤(HA). They are re-
lated by the Fuchs-van de Graaf inequality

∆(ρ, σ) ≤ P (ρ, σ) ≤
√

2∆(ρ, σ) − ∆(ρ, σ)2

≤
√

2∆(ρ, σ). (4)

In this work we make use of a number of en-
tropic quantities. In addition to the well known
von Neumann entropy, H(A)ρ = H(ρA) =
− Tr[ρA log ρA], the conditional von Neumann en-
tropy, H(A|B)ρ = H(AB)ρ − H(B)ρ, as well as
the Umegaki relative entropy,

D(ρ||σ) = 1
Tr[ρ] Tr [ρ(log ρ− log σ)] , (5)

when supp(ρ) ⊂ supp(σ) and +∞ otherwise, for
positive semidefinite ρ and σ, we make use of min
and max conditional entropies, defined for a sub-
normalised quantum state ρAB ∈ D≤(HAB) by
[51],

Hmin(A|B)ρ

= sup
σB∈D≤(HB)

sup {λ ∈ R : ρAB ≤ exp(−λ)1A ⊗ σB} ,

(6)
Hmax(A|B)ρ = max

σB∈D≤(HB)
logF (ρAB, 1A ⊗ σB) .

(7)

For ϵ ≥ 0, we can then define the smooth min
and max entropies as [51],

Hϵ
min(A|B)ρ = max

ρ̄∈Bϵ(ρAB)
Hmin(A|B)ρ̄, (8)

Hϵ
max(A|B)ρ = min

ρ̄∈Bϵ(ρAB)
Hmax(A|B)ρ̄, (9)

where Bϵ(ρA) is the ϵ-ball around a state ρA in
terms of purified distance, i.e. the set of subnor-
malised states τ ∈ D≤(HA) such that P (τ, ρ) ≤ ϵ.
For parameter a ∈ (1, 2), let us further define the
sandwiched Rényi divergence [52, 53] for a quan-
tum state ρ and positive semidefinite σ as

Da(ρ||σ) = 1
a− 1 log Tr

[(
σ−

a−1
2a ρσ−

a−1
2a

)a]
,

(10)
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when supp(ρ) ⊂ supp(σ) and +∞ otherwise, and
the conditional Rényi entropy as

H↑a(A|B)ρ = inf
σB∈D≤(HB)

Da(ρAB||1A⊗σB). (11)

2.2 Security definition
When two parties, Alice and Bob, wish to com-
municate in perfect secrecy in the presence of a
quantum eavesdropper Eve, they need to perform
a QKD protocol, typically consisting of n rounds
of quantum communication and local measure-
ments, followed by classical post-processing steps
involving parameter estimation, error correction
and privacy amplification. An instance of a QKD
protocol may be aborted if certain tests included
in the protocol, such as parameter estimation,
fail, or if a subprotocol, such as error correction
aborts. If the protocol does not abort, the goal
is to obtain a state close to a so-called perfect
classical-classical-quantum (ccq) state of the form

ρperfect ccq
KAKBE = 1

d

d−1∑
x=0

|xx⟩ ⟨xx|KAKB
⊗ ρE , (12)

where Alice and Bobs’s systems are classical,
whereas Eve’s system may be quantum. Such a
state corresponds to log d bits of an ideal clas-
sical key between Alice and Bob which is secret
in that it is completely uncorrelated from Eve,
even if Eve is allowed to possess a quantum sys-
tem. And it is correct in the sense that Alice and
Bob’s systems are perfectly classically correlated.

A proof of security of a QKD protocol then
involves two parts: Firstly, it has to be shown
that it results in a state that is sound, i.e. close to
a perfect ccq-state. Formally, for ϵsou > 0, a QKD
protocol is said to be ϵsou-sound, if it results in a
state ρQKD

KAKBE , such that if we condition on the
event ΩNA of not aborting the protocol it holds

PrρQKD [ΩNA]12

∥∥∥ρQKD
KAKBE |ΩNA − ρperfect ccq

KAKBE

∥∥∥
1

≤ ϵsou.

(13)
As we wish to treat the error correction protocol
separately from the the remaining protocol, it is
convenient to split the soundness property into a
secrecy and correctness part. Namely, let ϵsec > 0
and ϵcor > 0. A QKD protocol is said to be ϵsec-
secret if

PrρQKD [ΩNA]12

∥∥∥ρQKD
KAE |ΩNA − ρperfect ccq

KAE

∥∥∥
1

≤ ϵsec.

(14)

The protocol is further said to be ϵcor-correct if

PrρQKD [KA ̸= KB ∧ ΩNA] ≤ ϵcor. (15)

If the protocol is both ϵsec-secret and ϵcor-correct,
it is ϵsec + ϵcor-sound. The second part of a secu-
rity proof is to show completeness, meaning that
there is an honest implementation, i.e. an im-
plementation without presence of Eve, that does
succeed, i.e. does not abort, with high probabil-
ity. Formally, for ϵcom > 0, we say that a QKD
protocol is ϵcom-complete, if

1 − Prhon[ΩNA] ≤ ϵcom, (16)

where the subscript “hon" refers to the fact that
we compute the probability with respect to the
honest implementation specified by the protocol.

3 The QKD protocol
The QKD protocol we consider is based on the
four coherent-state protocol using heterodyne de-
tection described in [30]. However, we perform a
discretisation of Bob’s measurement outputs in
both key and parameter rounds rather than just
in key rounds. Our protocol also differs from
the one presented in [30] in that we do not in-
clude post-selection. In each round of the pro-
tocol, Alice prepares one of four coherent states
|φx⟩ ∈ {|α⟩ , |−α⟩ , |iα⟩ , |−iα⟩} for some prede-
termined α ∈ R, with probability 1

4 . The state
is then sent to Bob via a noisy channel that is
potentially compromised by Eve. Bob then per-
forms a heterodyne measurement.

We will prove security using an equivalent
entanglement-based QKD protocol. Such a pro-
tocol can be defined by the source replacement
scheme [3, 15, 54, 55]. Namely, in each round
i = 1, ..., n, Alice prepares an independent copy
of the pure state

|ψ⟩AA′ = 1
2

3∑
x=0

|x⟩A |φx⟩A′ . (17)

Alice sends the A′ subsystem to Bob via a noisy
quantum channel, keeping the A subsystem. Al-
ice and Bob then both perform measurements on
their respective subsystems.

Whereas this kind of introduction of an
entanglement-based protocol is commonly used
when proving security of prepare-and-measure
protocols, we face an additional challenge when
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combining this approach with the EAT [47].
Namely, unlike in a device independent setting,
the statistics obtained from Alice and Bobs mea-
surement, even in an honest implementation, is
not sufficient to certify entanglement of eq. (17).
In fact, as in the entanglement-based version Al-
ice only implements one measurement in the com-
putational basis, the statistics produced by the
protocol can equally be explained by the separa-
ble state

ρAA′ = 1
4

3∑
x=0

|x⟩ ⟨x|A ⊗ |φx⟩ ⟨φx|A′ . (18)

This is why to derive a positive secret-key rate,
one includes a constraint on the marginal of Al-
ice’s state in the optimisation for the key rate [30]
. Namely, the marginal is required to take the
form

ρA = 1
4

3∑
x,y=0

⟨φy|φx⟩ |x⟩ ⟨y|A , (19)

which is not satisfied by the separable state (18).
The challenge then is to express such a constraint
in terms of a distribution obtained by statisti-
cal analysis, which is required when applying the
EAT.

We overcome this challenge by considering a
hypothetical version of our protocol, where, in
randomly chosen rounds, Alice performs tomo-
graphic measurements of her marginal on A and,
in the end, verifies whether the obtained statis-
tics are compatible with her marginal being equal
to eq. (19). If this is not the case, the protocol
gets aborted. As the data obtained in the to-
mography rounds is not used for key generation,
the key rate obtained in this hypothetical proto-
col is never larger than the key rate obtained in
the physically implemented protocol, where Al-
ice performs no tomography. Also, as we are in
a device dependent setting, where we can assume
Alice’s state preparation to be perfect, the only
scenario under which the hypothetical protocol
aborts after the tomography test is due to im-
perfect tomography, the probability of which be-
comes negligible for large enough n. In the follow-
ing, we use the term ‘hypothetical QKD protocol’
when we consider the entanglement-based proto-
col including tomography and ‘physical QKD pro-
tocol’ when referring to the entanglement-based
protocol which does not include tomography. By
the source-replacement scheme the latter is equiv-
alent to the prepare-and-measure protocol that is

actually performed in the laboratory by Alice and
Bob.

When the state eq. (17) is sent from Alice to
Bob, we assume that Eve can attack the chan-
nel used to send the A′ subsystem coherently.
This is equivalent to a scenario where Alice ini-
tially prepares all n independent and identically
distributed (iid) copies of the state (17), which
are then acted upon a channel NA′n

1→Bn
1
. Let

UNA′n→BnE be an isometric extension of the chan-
nel and let us define

|Ψ⟩An
1 Bn

1 E = idAn ⊗ UNA′n
1→Bn

1 E |ψ⟩⊗n
An

1 A′n
1
. (20)

It has to be assumed that the E subsystem goes
to Eve. Alice and Bob are left with the mixed
state

ρAn
1 Bn

1
= TrE [ΨAn

1 Bn
1 E ]. (21)

3.1 The hypothetical QKD protocol

We now describe a round of the hypothetical
QKD protocol in detail. Let 0 ≤ pkey ≤ 1,
0 ≤ pPE ≤ 1 and 0 ≤ ptom ≤ 1, where
pkey + pPE + ptom = 1, be the respective proba-
bilities for a given round being used for key gen-
eration, parameter estimation and tomography
of Alice’s marginal. For each round i = 1, ..., n,
Alice and Bob perform the following steps:

(1) Alice’s Measurement: Alice uses a random
number generator to create a random variable Ri,
taking values Ri = 0, 1, 2 with respective proba-
bilities pkey, pPE and ptom. If Ri = 0, the round
is used for key generation. For Ri = 1, the round
is employed for parameter estimation. In both
cases Alice performs a projective measurement
{|x⟩ ⟨x|}3

x=0 on subsystem Ai. If Ri = 2, Alice
performs a tomography, using an informationally
complete (IC) measurement defined by a Positive-
Operator-Valued-Measure (POVM) {Γx′}15

x′=0 on
her subsystem. The outcome of Alice’s measure-
ment is described by a random variableXi, taking
values xi. We define, for the sake of convenience,
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the random variables

X̂i =
{
xi if Ri = 0,
⊥ else.

(22)

X̃i =
{
xi if Ri = 1,
⊥ else.

(23)

X ′i =
{
xi if Ri = 2,
⊥ else.

(24)

The random variable Ri is then sent to Bob via
an authenticated channel.

(2) Bob’s Measurement: Bob performs a het-
erodyne measurement on subsystem Bi. From
the outcome, Bob obtains a continuous random
variable Yi, taking values yi ∈ C. Again, it will
be convenient to define

Ŷi =
{
yi if Ri = 0,
⊥ else.

(25)

Ỹi =
{
yi if Ri = 1,
⊥ else.

(26)

(3) Discretisation: Bob discretises his hetero-
dyne outcomes. For key rounds, let ŷi = |ŷi|eiθ̂i

for θ̂i ∈ [−π
4 ,

7π
4 ). Bob then creates a random

variable

Ẑi =



0 if θ̂i ∈ [−π
4 ,

π
4 )

1 if θ̂i ∈ [π
4 ,

3π
4 )

2 if θ̂i ∈ [3π
4 ,

5π
4 )

3 if θ̂i ∈ [5π
4 ,

7π
4 )

⊥ else,

(27)

where Ẑi =⊥ is taken for non-key rounds. For pa-
rameter estimation rounds, Bob defines a discreti-
sation given by an amplitude ∆ and modules of
length δ, such that ∆/δ ∈ N. Let j ∈ {0, 1, 2, 3}
and k ∈ {0, . . . , ∆

δ − 1} and let ỹi = |ỹi|eiθ̃i . Bob
then creates a random variable Z̃i according to

Z̃i =


j + 4k if θ̃i∈[ π

4 (2j−1), π
4 (2j+1))

|ỹi|∈[δk,δ(k+1)),

j + 4∆
δ if θ̃i∈[ π

4 (2j−1), π
4 (2j+1))

|ỹi|∈[∆,∞),
⊥ else.

(28)

Summarising steps (1) - (3), round i of the pro-
tocol has taken as inputs quantum systems AiBi

of the initial state (21), and created discrete clas-
sical random variables X̂i and Ẑi for key gener-
ation, X̃i and Z̃i to be used for parameter es-
timation, as well as X ′i to be used for tomog-
raphy of Alice’s marginal state. Let us define

Figure 1: Discretisations of phase space by Bob for
parameter estimation rounds (left) and key generation
rounds (right). In this figure, the modulation for pa-
rameter estimation in phases and amplitudes is given by
∆/δ = 2, with the outmost modules extending to infin-
ity.

Oi := X̃iX
′
iẐiZ̃i as the ‘output’ and Si := Ri

as the ‘side information’. Let us further define
Ci = X̃iZ̃iX

′
i as all the information used in sta-

tistical analysis. The reason we define Oi, Si and
Ci in this way is that we will later use these ran-
dom variables when applying the EAT. The EAT
requires the statistical analysis variable Ci to be
obtainable from a simple read-out of ‘output’ and
‘side-information’ variables Oi and Si. On the
other hand, we cannot include X̃i, Z̃i or X ′i into
Si because of the Markov condition, eq. (55). We
therefore have to include them into Oi despite the
fact that X̃i has to be communicated classically,
and treat X̃i as additional side-information when
applying Proposition 1.

Any round i of the protocol can then be de-
scribed by a channel

MQKD : AiBi → X̂iOiSiCi. (29)

After n rounds, the relevant systems of Alice, Bob
and Eve are in the state

σQKD
X̂n

1 On
1 Cn

1 Sn
1 E

= idE ⊗MQKD⊗n
(
ΨAn

1 Bn
1 E

)
.

(30)
The next step is to perform parameter estima-

tion. To that purpose, Alice sends X̃n
1 to Bob,

who then performs the parameter estimation pro-
tocol deciding whether the protocol gets aborted
or not. Further, Alice uses X ′n1 , obtained from
her tomographic measurement, to reconstruct her
marginal state. If the reconstructed state is not
equal to the expected one up to a certain margin
of confidence, the protocol is aborted. Alice in-
forms Bob of her decision, and in the latter case
the protocol is aborted.

In order to formalise the decision to abort, we
need to introduce some notation. Let us de-
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note by C the alphabet of all possible values of
ci = (x̃i, z̃i, x

′
i) that can occur in the protocol.

Such values are ci = (⊥,⊥,⊥) in key rounds,
(x, z,⊥) with x ∈ {0, ..., 3} and z ∈ {0, ...,m−1},
(where m = 4∆/δ + 4 is the total number of
modules) in parameter estimation rounds, as well
as (⊥,⊥, x′) with x′ ∈ {0, ..., 15} in tomography
rounds. It will also be convenient to define by
C̃ the alphabet of all possible values ci can take
in parameter estimation and tomography rounds,
only. For a given string cn

1 ∈ Cn, we denote by
freqcn

1
∈ PC the probability distribution corre-

sponding to the frequency of symbols c ∈ C in cn
1 ,

defined by freqcn
1
(c) = |{i : ci = c}|/n.

In order to decide whether or not to abort,
Alice and Bob need to benchmark their ob-
tained statistics, given by a frequency distribu-
tion freqcn

1
, against a distribution p0 ∈ PC , which

can be obtained in an honest implementation of
the protocol. Let psim

0 be the distribution of pa-
rameter estimation random variables (X̃, Z̃) in
the honest setting with no attack and ptom

0 be the
distribution of the tomography random variable
X ′. Now, we define

p0(x, z,⊥) = pPEpsim
0 (x, z), (31)

p0(⊥,⊥, x′) = ptomptom
0 (x′), (32)

p0(⊥,⊥,⊥) = 1 −
∑
xz

p0(x, z,⊥) −
∑
x′

p0(⊥,⊥, x′)

(33)

for x ∈ {0, ..., 3}, z ∈ {0, ...,m − 1}, and x′ ∈
{0, ..., 15}. We will provide an explicit form of
the psim

0 and ptom
0 we use in Section 5.

In order to compare the two distributions
freqcn

1
and p0 ∈ PC , we need to introduce figures

of merit, which quantify the suitability of the dis-
tributions for key generation. For now, let us only
assume that these figures of merit are given by
affine functions fPE : PC → R and f tom : PC → R
of the form

fPE(p) =
3∑

x=0

m−1∑
z=0

hx,z,⊥p(x, z,⊥), (34)

f tom(p) =
15∑

x′=0
h⊥,⊥,x′p(⊥,⊥, x′), (35)

for some coefficients hx,z,⊥, h⊥,⊥,x′ ∈ R. We will
provide an explicit form of the functions later,
together with the methodology that compares
freqcn

1
and p0. For the moment, let us note that a

reduced number of binnings (i.e., employing as

few modules as possible for parameter estima-
tion) decreases the overall differences of distri-
butions freqcn

1
and p0 in the case of fPE. This is

eventually reflected as an increase in pkey, since
fewer rounds must be spent on bounding the dif-
ferences between said distributions. We now de-
fine the respective sets of probabilities for which
we do not abort after parameter estimation or
tomography as

PΩPE :=
{
p ∈ PC : fPE(p) ≥ fPE(p0) − δtol

PE

}
,

(36)

PΩtom :=
{
p ∈ PC : f tom(p) ≥ f tom(p0) − δtol

tom

}
,

(37)

for some δtol
PE, δ

tol
tom > 0. Let us also define δtol =

δtol
PE + δtol

tom, as well as the events of passing the
parameter estimation and the tomography test as

ΩPE :=
{
cn

1 ∈ Cn : freqcn
1

∈ PΩPE

}
, (38)

Ωtom :=
{
cn

1 ∈ Cn : freqcn
1

∈ PΩtom

}
, (39)

ΩEA = ΩPE ∩ Ωtom. (40)

Assuming that Alice and Bob do not abort
after parameter estimation or tomography, they
perform an error correction protocol using reverse
reconciliation. The information exchanged be-
tween Alice and Bob in this step is denoted L,
and at the end of this step Alice computes a
string X̄n

1 . In order to check that the error correc-
tion was successful, Bob chooses a random hash
function H and sends to Alice a description of
H as well as the value H ′ = H(Ẑn

1 ). Whenever
H(Ẑn

1 ) ̸= H(X̄n
1 ), the protocol is aborted. Let us

denote by H and H ′ the register containing the
description and value of the hash function, re-
spectively. Formally, we define the event of pass-
ing the error correction step as

ΩEC =
[
H(Ẑn

1 ) = H(X̄n
1 )
]
. (41)

We assume that there is a small probability,
upper bounded by ϵEC > 0, of the error correc-
tion being passed by mistake. For any ẑn

1 ̸= x̄n
1 ,

Pr[H(ẑn
1 ) = H(x̄n

1 )] ≤ ϵEC, where Pr here is
over the choice of H. Further we assume that
the probability of not passing the error correction
in an honest implementation is upper bounded
by Prhon

[
H(Ẑn

1 ) ̸= H(X̄n
1 )
]

≤ ϵcEC, for some
ϵcEC > 0.
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Protocol 1 Hypothetical QKD protocol

1. Alice prepares state |Ψ⟩⊗n
AA′ given by eq. (17)

and sends subsystems A′n1 to Bob via a noisy
channel, and Bob receives subsystems Bn

1 .
The total state is then given by eq. (20).

2. For round i = 1, ..., n the following steps are
performed:

(a) Alice chooses Ri ∈ {0, 1, 2} accord-
ing to (pkey, pPE, ptom) and sends Ri to
Bob.

(b) If Ri = 0, Alice measures Ai in a com-
putational basis and stores output in
X̂i. Bob measures Bi using a hetero-
dyne measurement, discretises accord-
ing to eq. (27), and stores the result in
Ẑi.

(c) If Ri = 1, Alice measures Ai in com-
putational basis and stores output in
X̃i. Bob measures Bi using heterodyne
measurements, discretises according to
eq. (28), and stores the result in Z̃i.

(d) If Ri = 2, Alice measures Ai using an
informationally complete measurement
and stores output in X ′i.

3. Alice and Bob use X̃n
1 Z̃

n
1 for parameter esti-

mation. Alice uses X ′n1 for the tomograpahy
test. If either fails the protocol is aborted.

4. If the protocol has not been aborted, error
correction is performed using reverse recon-
ciliation. If error correction fails, the proto-
col is aborted. Otherwise privacy amplifica-
tion is performed resulting in the final key.

Now, we define the event of not aborting the
protocol after either parameter estimation, to-
mography or error correction as

ΩNA = ΩEA ∩ ΩEC. (42)

We note that ΩEA only depends on the Cn
1 reg-

isters, whereas ΩEC depends on the HH ′X̄n
1 reg-

isters. The description of the protocol together
with an attack of Eve leads to the final state

σQKD
X̄n

1 On
1 Sn

1 Cn
1 HH′LE

= Pr[ΩNA]σQKD
X̄n

1 On
1 Sn

1 Cn
1 HH′LE

|ΩNA

+ (1 − Pr[ΩNA])σQKD
X̄n

1 On
1 Sn

1 Cn
1 HH′LE

|¬ΩNA .

At this point, if Alice and Bob did not abort,
they proceed with a privacy amplification pro-
tocol (e.g. via two-universal hash functions) to
distill the final, secret key.

3.2 The physical QKD protocol

Finally, let us describe the physical QKD proto-
col, which is the equivalent entanglement-based
version of the prepare-and-measure protocol that
is actually performed in a realistic implementa-
tion. The physical QKD protocol is essentially
equal to the hypothetical protocol except for the
following two differences: Firstly, in step (1) of
the protocol, whenever Ri = 2 Alice does not
perform tomography—the round is simply dis-
carded. Hence, the random variable X ′i will be ei-
ther ⊥ or undefined. Secondly, as a consequence
of not performing the tomography, abortion or
non-abortion at the end of the protocol will only
be determined by parameter estimation and error
correction. I.e., the event ΩNA will be replaced
by Ωphys

NA = ΩPE ∩ ΩEC.

In principle, a more efficient physical protocol
can be obtained if no round is discarded. That is,
if we set ptom = 0. In our case, however, a non-
zero value of ptom is chosen because the compari-
son of the two protocols, hypothetical and physi-
cal, results in a much simpler analysis when using
the same values for the probabilities pkey, pPE and
ptom in both protocols. It is nevertheless worth
noting that the value taken for ptom below is very
small, so the possible impact on the key rate does
not represent a significant loss.

All in all, the physical protocol is composed by
the following steps
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Protocol 2 Physical QKD protocol

1. Alice prepares state |Ψ⟩⊗n
AA′ given by eq. (17)

and sends subsystems A′ni to Bob via a noisy
channel, and Bob receives subsystems Bn

1 .
The total state is then given by eq. (20).

2. For round i = 1, ..., n the following steps are
performed:

(a) Alice chooses Ri ∈ {0, 1, 2} accord-
ing to (pkey, pPE, ptom) and sends Ri to
Bob.

(b) If Ri = 0, Alice measures Ai in a com-
putational basis and stores output in
X̂i. Bob measures Bi using a hetero-
dyne measurement, discretises accord-
ing to eq. (27), and stores the result in
Ẑi.

(c) If Ri = 1, Alice measures Ai in a com-
putational basis and stores output in
X̃i. Bob measures Bi using a hetero-
dyne measurement, discretises accord-
ing to eq. (28), and stores the result in
Z̃i.

(d) If Ri = 2, the round is not used.

3. Alice and Bob use X̃n
1 Z̃

n
1 for parameter esti-

mation. If it fails, the protocol is aborted.

4. If the protocol has not been aborted, error
correction is performed using reverse recon-
ciliation. If error correction fails, the proto-
col is aborted. Otherwise privacy amplifica-
tion is performed resulting in the final key.

4 Security of the QKD protocol

In this section we show the security against co-
herent attacks of the physical QKD protocol. The
proof consists of two parts: Firstly, in Subsection
4.1 we show the soundness of the protocol and
provide a lower bound on the key rate. We first
show the soundness of the hypothetical protocol,
which we then show implies the soundness of the
physical protocol. The soundness proof of the
hypothetical protocol is based on the EAT and
depends on the choice of a min-tradeoff function
of a particular form. Secondly, in Subsection 4.2,
we show the completeness of the physical QKD

protocol, i.e. that there is a nonzero probability
of it not being aborted. Finally, in Subsection
4.3, we show how a suitable min-tradeoff func-
tion can be derived from the numerical approach
presented by [30, 48].

4.1 Soundness
In this section we provide a lower bound on the
achievable key rate rphys = ℓ/n, where ℓ is the
length of the key and n the number of rounds,
conditioned on the event Ωphys

NA of not aborting the
physical QKD protocol. Such a lower bound can
be obtained from Proposition 1 below, which is
based on the leftover-hash Lemma [51]. To derive
this proposition, we make the following

Bounded energy assumption: the attack by the
eavesdropper involves states of finite energy.

Under this assumption, Eve’s attack can be ar-
bitrarily approximated by an attack using finite-
dimensional systems. Or, in other words, we can
assume Eve’s attack to be defined in a Hilbert
space of arbitrary finite dimension. This allow
us to use the original version of the leftover hash
lemma. We leave for future work how to gener-
alise the security proof to infinite Hilbert space
dimensions, for which a version of the leftover-
hash Lemma has been derived in [56, 57].

Proposition 1 [11, 51] Let ϵphys, ϵEC ≥ 0. Let
further leakEC be the amount of information lost
to Eve during error correction. Then Alice and
Bob are able to extract a key of length,

ℓ ≤Hϵphys
min (Ẑn

1 |Rn
1 X̃

n
1E)σphys,QKD|

Ωphys
NA

− leakEC

− 2 log 1
ϵphys , (43)

which is 3ϵphys + ϵEC-sound, in the sense that

Prσphys,QKD [Ωphys
NA ]12∥σphys,QKD|Ωphys

NA
− σperfect ccq∥1

≤ 3ϵphys + ϵEC.

In order to apply Proposition 1, we need to
lower bound the smooth min-entropy using the
EAT. However, as noted in the introduction, we
are unable to apply the EAT directly to our phys-
ical QKD protocol due to the need to characterise
Alice’s marginal system in a prepare-and-measure
scenario. To that purpose we first consider the
hypothetical QKD protocol that includes addi-
tional tomography measurements. However, due
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to issues with the Markov condition, we will not
be able to directly apply the EAT to our hypo-
thetical protocol either. Instead, we will make
use of various chain rules for smooth entropies
in order to relate the output of our hypothetical
QKD protocol to that of a series of n EAT chan-
nels, which we call the ‘EAT process’, and then
apply the EAT to the EAT process, while dealing
with the remaining terms separately.

We begin by considering the hypothetical QKD
protocol. Let n ∈ N and ϵ > 0. Conditioned
on not aborting, the hypothetical QKD protocol
results in the state σQKD|ΩNA . By application of
chain rules for smooth entropies (eq. (6.63) and
eq. (6.56) in [51]), it holds

Hϵ
min(Ẑn

1 |Rn
1 X̃

n
1E)σQKD|ΩNA

≥ H
ϵ/4
min(Ẑn

1 X̃
n
1 |Rn

1E)σQKD|ΩNA

−Hϵ/4
max(X̃n

1 |Rn
1E)σQKD|ΩNA

− 2Γ(ϵ/4), (44)

where Γ(x) := − log
(
1 −

√
1 − x2

)
. By another

application of a chain rule (eq. (6.57) in [51]), we
obtain

H
ϵ/4
min(Ẑn

1 X̃
n
1 |Rn

1E)σQKD|ΩNA

≥ H
ϵ/16
min (X̃n

1X
′n
1 Ẑ

n
1 Z̃

n
1 |Rn

1E)σQKD|ΩNA
− 3Γ(ϵ/16)

−Hϵ/16
max (X ′n1 Z̃n

1 |Ẑn
1 X̃

n
1R

n
1E)σQKD|ΩNA

. (45)

We can now apply the same argument as used
in [42] to upper bound the max entropy terms in
eqs. (44) and (45). We begin by upper bounding
the term H

ϵ/4
max(X̃n

1 |Rn
1E)σQKD|ΩNA

in eq. (44).
We note that by the strong subadditivity of the
smooth max entropy [51], it holds

Hϵ/4
max(X̃n

1 |Rn
1E)σQKD|ΩNA

≤ Hϵ/4
max(X̃n

1 |Rn
1 )σQKD|ΩNA

,

(46)
where the r.h.s. only involves classical registers.
We further note that X̃i =⊥, unless Ri = 1,
which happens with probability pPE, in which
case X̃i takes a value in {0, ..., 3}. Introducing
a binary random variable R̃i that takes value 1
when Alice’s random variable is Ri = 1, and takes
value 0 when Ri = 0 or Ri = 2, we can apply the
data processing inequality and Lemma 6 in Ap-

pendix C, showing that

Hϵ/4
max(X̃n

1 |Rn
1 )σQKD|ΩNA

≤ Hϵ/4
max(X̃n

1 |R̃n
1 )σQKD|ΩNA

≤ npPE log 5 +
√
n

2 ln 32
ϵ2 PrσQKD [ΩNA] log 5.

(47)

In a similar way we can provide an upper bound
on the term H

ϵ/16
max (X ′n1 Z̃n

1 |Ẑn
1 X̃

n
1R

n
1E)σQKD|ΩNA

in eq. (45). Again, it holds by strong subad-
ditivity,

Hϵ/16
max (X ′n1 Z̃n

1 |Ẑn
1 X̃

n
1R

n
1E)σQKD|ΩNA

≤ Hϵ/16
max (X ′n1 Z̃n

1 |Rn
1 )σQKD|ΩNA

, (48)

where the r.h.s. is classical. Further, it holds
that X ′iZ̃i =⊥⊥, unless Ri = 1 or Ri = 2, which
happens with probability pPE + ptom = 1 − pkey.
In this case X ′iZ̃i takes a value in {0, ..., 15,⊥
} × {0, ...,m − 1,⊥}. Let us again introduce a
binary random variable R̄i, taking value 1 when
Ri = 1 or Ri = 2 and value 0 when Ri = 0.
We can now apply Lemma 6, identifying the pair
X ′iZ̃i with Xi and the value ⊥⊥ with ⊥, and
obtain

Hϵ/16
max (X ′n1 Z̃n

1 |Rn
1 )σQKD|ΩNA

≤ Hϵ/16
max (X ′n1 Z̃n

1 |R̄n
1 )σQKD|ΩNA

(49)

≤ n(1 − pkey) log (17(m+ 1))

+
√
n

2 ln 512
ϵ2 PrσQKD [ΩNA] log (17(m+ 1)).

(50)

What remains to be done is to lower bound the
term H

ϵ/16
min (On

1 |Rn
1E)σQKD|ΩNA

in eq. (45) using
the EAT.

4.1.1 Reduction to Collective Attacks via Entropy
Accumulation

In order to apply the EAT, we wish to condi-
tion on an event that is only defined on the
statistical information Cn

1 , where we recall that
Ci = X̃iZ̃iX

′
i is given by classical information

extracted from the outputs Oi = X̃iX
′
iẐiZ̃i

and the side information Si = Ri. For such
conditioning, note that we can write σQKD|ΩNA

as (σQKD|ΩEA)|ΩEC where the probability of the
event ΩEC with respect to the state σQKD|ΩEA is
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given by PrσQKD [ΩEC|ΩEA]. Now we use Lemma
B.5 of [42] to show that for a ∈ (1, 2)

H
ϵ/16
min (On

1 |Sn
1E)σQKD|ΩNA

≥ H↑a(On
1 |Sn

1E)σQKD|ΩNA
− Γ(ϵ/16)

a− 1 (51)

≥ H↑a(On
1 |Sn

1E)σQKD|ΩEA
− Γ(ϵ/16)

a− 1

− a

a− 1 log
( 1

PrσQKD [ΩEC|ΩEA]

)
. (52)

In order to apply the EAT, we now consider
the EAT process, which results in the same
marginal state σQKD

On
1 Sn

1 E |ΩEA , hence the same value
for H↑a(On

1 |Sn
1E)σQKD|ΩEA

, as the hypothetical
QKD protocol. The EAT process will be closely
related to the hypothetical QKD protocol, how-
ever it will not include the output X̂i, which is
not necessary in this context. Also, the EAT pro-
cess will not include an error correction or privacy
amplification protocol.

We begin by defining our EAT channels. To
that purpose, we take the channel MQKD defined
in eq. (29); however we omit the output of X̂i,
resulting in a channel

MEAT : AiBi → OiCiSi, (53)

which performs steps (1) - (3) of the hypothetical
QKD protocol, but in the end does not output
Alice’s key system X̂i. It is easy to see that Ci

can be obtained by readout of classical informa-
tion contained in Oi and Si. As it only contains
discretised information, Oi is finite dimensional.
Further defining Qi := An

i+1B
n
i+1, we can now de-

fine a channel MEAT
i : Qi−1 → QiOiSiCi by

MEAT
i := idQi ⊗MEAT

AiBi→OiSiCi
. (54)

In order to apply the EAT, we still have to show
that the Markov condition

Oi−1
1 ↔ Si−1

1 E ↔ Si (55)

or, equivalently I(Oi−1
1 : Si|Si−1

1 E) = 0, is ful-
filled for all i ∈ {1, .., n}. In our case this holds
trivially as Si = Ri is obtained by a local random
number generator, which is used independently
in each round.

We can now define our EAT process as a con-
catenation of EAT channels MEAT

n ◦ · · · ◦ MEAT
1 ,

yielding the following state,

σEAT
On

1 Sn
1 Cn

1 E

= idE ⊗
(
MEAT

n ◦ · · · ◦ MEAT
1

) (
ΨAn

1 Bn
1 E

)
(56)

= idE ⊗MEAT⊗n
(
ΨAn

1 Bn
1 E

)
(57)

= TrX̂n
1

[
idE ⊗MQKD⊗n

(
ΨAn

1 Bn
1 E

)]
. (58)

The EAT process then concludes with Alice and
Bob using Cn

1 to perform the tomography test as
well as parameter estimation. This is done in the
same way as in the hypothetical QKD protocol.
Consequently it holds,

σQKD
On

1 Sn
1 E |ΩEA = σEAT

On
1 Sn

1 E |ΩEA , (59)

H↑a(On
1 |Sn

1E)σQKD|ΩEA
= H↑a(On

1 |Sn
1E)σEAT|ΩEA

.

(60)

Hence, it will be sufficient to lower bound the
r.h.s. of eq. (60) using the EAT. We can now
define a min-tradeoff function as a function f :
PC → R such that for all i = 1, ..., n it holds

f(p) ≤ inf
|ρ⟩∈Σi(p)

H(Oi|SiẼ)ρEAT,i , (61)

where Ẽ can be chosen isomorphic to Qi−1, and
we have defined

Σi(p) =
{

|ρ⟩Qi−1Ẽ ∈ HQi−1Ẽ : ⟨c| ρEAT,i
Ci

|c⟩ ≡ p(c)
}
,

(62)
for a state

ρEAT,i

OiSiCiQiẼ
= idẼ ⊗MEAT

i (ρQi−1Ẽ)

= idQiẼ
⊗MEAT

AiBi→OiSiCi

(
ρAiBiQiẼ

)
.

(63)

Here ≡ stands for equality for all c ∈ C. Note that
|ρ⟩ can be chosen pure by strong subadditivity as
remarked in [42].

In the following we will consider the case where
f(p) = fPE(p)+f tom(p)+const, with affine func-
tions fPE and f tom of the form given by eqs.
(34,35), respectively. In that case, it holds for
all cn

1 ∈ ΩEA that f(freqcn
1
) ≥ f(p0) − δtol. We

can then formulate the entropy accumulation the-
orem, given by [43, Proposition V.3], in the fol-
lowing way:

Proposition 2 [43] Let n ∈ N. Let p0 be given by
eqs. (31,32). Let ΩEA be the event defined by eqs.
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(36-40) for some δtol
PE, δ

tol
tom > 0, δtol = δtol

PE +δtol
tom,

and an affine min-tradeoff function f such that
f(p) = fPE(p) + f tom(p) + const. Then for a ∈
(1, 2), and a set of registers On

1S
n
1E fulfilling the

Markov chain (55),

H↑a(On
1 |Sn

1E)σEAT|ΩEA

≥ nf(p0) − n

(
δtol + (a− 1) ln 2

2 V 2
)

− a

a− 1 log 1
PrσEAT [ΩEA] − n(a− 1)2Ka,

(64)

where we have defined

V =
√

Var(f) + 2 + log(2d2
O + 1), (65)

Ka = 2(a−1)(2 log dO+max(f)−minΣ(f))

6(2 − a)3 ln 2
× ln3

(
22 log dO+max(f)−minΣ(f) + e2

)
,

(66)

where max(f) = maxp∈PC f(p) and minΣ(f) =
minp:Σ̸=∅ f(p) and Var(f) denotes the variance of
f .

We will now use Proposition 2 to show the
soundness of the hypothetical protocol. For that
purpose, we need the following Lemma, which for-
malises the intuition that in order to upper bound
the probability of aborting after tomography, we
have to choose the corresponding tolerance pa-
rameter large enough.

Lemma 1 Let n ∈ N and ϵtom ∈ (0, 1). Let us
assume it holds

δtol
tom ≥ 2

√√√√log
(

n

ϵtom

) 16∑
i=1

γ′ic
′2
i

n
+ 3D′

n
log n

ϵtom ,

(67)
where we have defined for, i ∈ {1, ..., 16},

γ′i :=
π′i(1 −

∑i
j=1 π

′
j)

1 −
∑i−1

j=1 π
′
j

, (68)

c′i := h′i −
∑17

j=i+1 h
′
jπ
′
j

1 −
∑i

j=1 π
′
j

, (69)

D′ := max
i,j∈{1,...,17}

|h′i − h′j |, (70)

for π′x′+1 = p0(⊥,⊥, x′), and h′x′+1 = h⊥,⊥,x′, for
x′ = 0, ..., 15, as well as π′17 = 1 −

∑16
i=1 π

′
i, and

h′17 = 0. Then it holds

PrσQKD [¬Ωtom] ≤ ϵtom. (71)

Proof. As the tomography is performed entirely
within Alice’s lab, with no influence of Eve or
the noisy channel, we can restrict our attention
to an honest implementation of the protocol, i.e.
PrσQKD [¬Ωtom] = Prhon[¬Ωtom]. Let us assume
an honest application gives us the distribution

p0(⊥,⊥, x′) = (1 − pkey)p̃0(⊥,⊥, x′)
= ptomptom

0 (x′), (72)

for x′ ∈ {0, ..., 15}. Let us further assume that
Alice and Bob observe some frequency distribu-
tion freqcn

1
. Recalling the definition of the event

Ωtom, we note that it holds

Prhon[Ωtom]

≥ Prhon
[∣∣∣f tom(freqcn

1
) − f tom(p0)

∣∣∣ ≤ δtol
tom

]
.

(73)
An honest implementation of the protocol corre-
sponds to n independent multinoulli trials with
parameter p0. In order to provide lower bounds
we can therefore make use of a concentration re-
sult provided by Proposition 2 of [58]. Namely, it
holds with probability 1 − ϵtom that∣∣∣f tom(freqcn

1
) − f tom(p0)

∣∣∣ =
∣∣∣(π̂′ − π′)Th′

∣∣∣
≤ 2

√√√√log
(

n

ϵtom

) 16∑
i=1

γ′ic
′2
i

n
+ 3D′

n
log n

ϵtom , (74)

where π̂′x′+1 = freqcn
1
(⊥,⊥, x′) for x′ = 0, ..., 15,

as well as π̂′17 = 1 −
∑16

i=1 π̂
′
i. Hence, if we choose

the tolerance parameter δtol
tom fulfilling eq. (67),

we obtain the desired bound

Prhon
[∣∣∣f tom(freqcn

1
) − f tom(p0)

∣∣∣ ≤ δtol
tom

]
≥ 1−ϵtom,

(75)
finishing the proof.

In order to show the soundness of the physical
QKD protocol, which does not include tomogra-
phy of Alice’s marginal system, we also need the
following Lemma, which relates the smooth min
entropies of the physical and hypothetical proto-
col.

Lemma 2 Let the smoothing parameters
ϵ ∈

(
0, 1 −

√
2 PrσQKD [¬Ωtom|ΩEC ∩ ΩPE]

)
and

ϵphys ∈
(
ϵ+

√
2 PrσQKD [¬Ωtom|ΩEC ∩ ΩPE], 1

)
.

Then it holds

Hϵphys
min (Ẑn

1 |Sn
1 X̃

n
1E)σphys,QKD|

Ωphys
NA

≥ Hϵ
min(Ẑn

1 |Sn
1 X̃

n
1E)σQKD|ΩNA

. (76)
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Proof. We begin by noting that Alice’s tomogra-
phy in the hypothetical protocol does not change
the Ẑn

1 S
n
1 X̃

n
1E subsystems of the final state, i.e.

σphys,QKD
Ẑn

1 Sn
1 X̃n

1 HH′X̄n
1 Ỹ n

1 E
= σQKD

Ẑn
1 Sn

1 X̃n
1 HH′X̄n

1 Ỹ n
1 E
. (77)

This is by non-signalling. As the events ΩEC
and ΩPE, defined by eqs. (38) and (41), respec-
tively, depend only on the systems HH ′Ẑn

1 X̄
n
1

and Ỹ n
1 X̃

n
1 , it also holds

σphys,QKD
Ẑn

1 Sn
1 X̃n

1 HH′X̄n
1 Ỹ n

1 E

∣∣
ΩEC∩ΩPE

= σQKD
Ẑn

1 Sn
1 X̃n

1 HH′X̄n
1 Ỹ n

1 E

∣∣
ΩEC∩ΩPE

. (78)

Using the triangle inequality, it follows that∥∥∥∥σQKD
Ẑn

1 Sn
1 X̃n

1 E
|ΩEC∩ΩPE∩Ωtom − σphys,QKD

Ẑn
1 Sn

1 X̃n
1 E

∣∣
ΩEC∩ΩPE

∥∥∥∥
1

≤
∥∥∥∥σQKD

Ẑn
1 Sn

1 X̃n
1 E

|ΩEC∩ΩPE∩Ωtom − σQKD
Ẑn

1 Sn
1 X̃n

1 E
|ΩEC∩ΩPE

∥∥∥∥
1

+
∥∥∥∥σQKD

Ẑn
1 Sn

1 X̃n
1 E

|ΩEC∩ΩPE − σphys,QKD
Ẑn

1 Sn
1 X̃n

1 E

∣∣
ΩEC∩ΩPE

∥∥∥∥
1

≤ 2 PrσQKD [¬Ωtom|ΩEC ∩ ΩPE]. (79)

Hence by eq. (4) it holds

P

(
σQKD

Ẑn
1 Sn

1 X̃n
1 E

|ΩEC∩ΩPE∩Ωtom , σ
phys,QKD
Ẑn

1 Sn
1 X̃n

1 E
|ΩEC∩ΩPE

)
≤
√

2 PrσQKD [¬Ωtom|ΩEC ∩ ΩPE]. (80)

Further, by the triangle inequality, the ϵ-
ball (in terms of purified distance) around
σQKD

Ẑn
1 Sn

1 X̃n
1 E

|ΩNA is contained in the ϵphys-ball

around σQKD
Ẑn

1 Sn
1 X̃n

1 E
|Ωphys

NA
, implying eq. (76).

We are now ready to prove the soundness phys-
ical QKD protocol, which is our main result.

Theorem 1 (Soundness) Let n ∈ N. Let
ϵphys
NA , ϵtom, ϵEC ∈ (0, 1) such that ϵtom <

1
2ϵ

phys
NA . Let ϵ ∈

(
0, 1 −

√
2ϵtom/ϵphys

NA

)
, and

define ϵphys = ϵ +
√

2ϵtom/ϵphys
NA . Let 0 ≤

pkey, pPE, ptom ≤ 1 such that pkey+pPE+ptom = 1.
Let f be an affine min-tradeoff function of the
form f(p) = fPE(p) + f tom(p) + const. Let p0 be
given by eqs. (31,32). Let δtol

PE > 0 and define

δtol
tom = 2

√√√√log
(

n

ϵtom

) 16∑
i=1

γ′ic
′2
i

n
+ 3D′

n
log n

ϵtom .

(81)

Let further ΩPE, Ωtom, ΩEC, and ΩNA be defined
by eqs. (38-42). Let leakEC be the amount of in-
formation leaked during error correction. Then, if
Prσphys,QKD [ΩPE∩ΩEC] ≥ ϵphys

NA , for any a ∈ (1, 2),
the physical QKD protocol provides an 3ϵphys +
ϵEC-sound key at rate rphys = ℓ/n with

rphys|Ωphys
NA

≥ f(p0) − δtol
PE − δtol

tom − (a− 1) ln 2
2 V 2

− (a− 1)2Ka − pPE log 5
− (1 − pkey) log(17(m+ 1))

− 1√
n

[√
1
2 ln 32

ϵ2(ϵphys
NA − ϵtom)

log 5

+
√

1
2 ln 512

ϵ2(ϵphys
NA − ϵtom)

log (17(m+ 1))
]

− 1
n

[
Γ(ϵ/16)
a− 1 + a

a− 1 log 1
ϵphys
NA − ϵtom

+leakEC + 2 log 1
ϵphys + 2Γ(ϵ/4) + 3Γ(ϵ/16)

]
.

(82)

Proof. We begin by lower bounding
Hϵ

min(Ẑn
1 |Sn

1 X̃
n
1E)σQKD|ΩNA

using eqs. (44 -
52). We then note that by eq. (59) it holds
H↑a(On

1 |Sn
1E)σQKD|ΩEA

= H↑a(On
1 |Sn

1E)σEAT|ΩEA
,

allowing us to apply Proposition 2. Since
PrσQKD [ΩEC|ΩEA] PrσQKD [ΩEA] = PrσQKD [ΩNA],
the terms a

a−1 log 1
Pr

σQKD [ΩEC|ΩEA] and
a

a−1 log 1
Pr

σQKD [ΩEA] in eqs (52) and (64), can be
merged, resulting in a term that dependents only
on PrσQKD [ΩNA]. Formally, we obtain

Hϵ
min(Ẑn

1 |Sn
1 X̃

n
1E)σQKD|ΩNA

≥ n

[
f(p0) − δtol

PE − δtol
tom − (a− 1) ln 2

2 V 2

− (a− 1)2Ka − pPE log 5

−(1 − pkey) log(17(m+ 1))
]

−
√
n

[√
1
2 ln 32

ϵ2PrσQKD [ΩNA] log 5

+
√

1
2 ln 512

ϵ2PrσQKD [ΩNA] log (17(m+ 1))
]

− Γ(ϵ/16)
a− 1 − a

a− 1 log 1
PrσQKD [ΩNA]

− 2Γ(ϵ/4) − 3Γ(ϵ/16). (83)
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Further, it holds

PrσQKD [ΩNA]
= PrσQKD [ΩPE ∩ ΩEC]

− PrσQKD [ΩPE ∩ ΩEC ∩ ¬Ωtom]
≥ PrσQKD [ΩPE ∩ ΩEC] − PrσQKD [¬Ωtom]. (84)

By eq. (81) and Lemma 1, we can bound
PrσQKD [¬Ωtom] ≤ ϵtom. Further, by eq.
(77), it holds that Prσphys,QKD [ΩPE ∩ ΩEC] =
PrσQKD [ΩPE ∩ ΩEC]. Hence, by assumption, it
holds

PrσQKD [ΩNA] ≥ ϵphys
NA − ϵtom. (85)

Now we can apply Lemma 2 to show that for our
choice of ϵ, and ϵphys = ϵ+

√
2ϵtom/ϵphys

NA , it holds

Hϵphys
min (Ẑn

1 |Sn
1 X̃

n
1E)σphys,QKD|

Ωphys
NA

≥ Hϵ
min(Ẑn

1 |Sn
1 X̃

n
1E)σQKD|ΩNA

(86)

and apply Proposition 1, finishing the proof.

4.2 Completeness

In this section we show that the physical QKD
protocol is complete, i.e. we provide a lower
bound on the probability Prhon[Ωphys

NA ] of an hon-
est application not aborting.

Theorem 2 (Completeness) Let ϵcPE ∈ (0, 1).
Let ΩPE be as defined in eq. (38), with

δtol
PE = 2

√√√√log
(
n

ϵcPE

) 4m∑
i=1

γic2
i

n
+ 3D

n
log n

ϵcPE
,

(87)
where we have defined an ordering (x, z,⊥) → i
by (0, 0,⊥) → 1, (0, 1,⊥) → 2, ..., (0,m − 1,⊥
) → m, (1, 0,⊥) → m + 1, (1, 1,⊥) → m +
2, ..., (3,m − 1,⊥) → 4m. We then set πi =
p0(x, z,⊥), π̂i = freqcn

1
(x, z,⊥) hi = hx,z,⊥ for

i = 1, ..., 4m, as well as π4m+1 := 1 −
∑4m

i=1 πi,
π̂4m+1 := 1 −

∑4m
i=1 π̂i and h4m+1 = 0. Let us

further define

γi :=
πi

(
1 −

∑i
j=1 πj

)
1 −

∑i−1
j=1 πj

, (88)

ci := hi −
∑4m+1

j=i+1 hjπj

1 −
∑i

j=1 πj

, (89)

for i = 1, ..., 4m, as well as D :=
maxi,j∈{1,...,4m+1} |hi − hj |. Let further ϵcEC ∈
(0, 1) be a suitable completeness parameter for the
error correction protocol used. Then the phys-
ical QKD protocol is ϵcPE + ϵcEC-complete, i.e.
Prhon[Ωphys

NA ] ≥ 1 − ϵcPE − ϵcEC.

Proof. We consider the following honest imple-
mentation: We apply the physical QKD proto-
col, as described in Section 3, where the noisy
channel NA′n

1→Bn
1

is given by n iid uses of a
phase-invariant Gaussian channel with transmit-
tance η and excess noise ξ, however without an
attack by Eve. By simulating this channel we
obtain a distribution psim

0 (x, z), which depends
on η and ξ and is given by eq. (156), and set
p0(x, z,⊥) = pPEpsim

0 (x, z) for x ∈ {0, ..., 3},
z ∈ {0, ...,m− 1}. We note that the protocol can
abort after parameter estimation or error correc-
tion. By the union bound it holds

1−Prhon[Ωphys
NA ] ≤ 1−Prhon[ΩPE]+1−Prhon[ΩEC].

(90)
We begin by considering abortion after param-

eter estimation. Let us assume an honest ap-
plication gives us p0(x, z,⊥), for x ∈ {0, ..., 3},
z ∈ {0, ...,m − 1} according to eq. (31). Let us
further assume that Alice and Bob observe some
frequency distribution freqcn

1
. Recalling the defi-

nition of the event ΩPE, we note that it holds

Prhon[ΩPE]

≥ Prhon
[∣∣∣fPE(freqcn

1
) − fPE(p0)

∣∣∣ ≤ δtol
PE

]
. (91)

An honest implementation of the protocol corre-
sponds to n independent multinoulli trials with
parameter p0. In order to provide lower bounds
we can again make use of the concentration result
provided by Proposition 2 of [58].

Let now ϵcPE ∈ (0, 1). By Proposition 2 of [58],
it then holds with probability 1 − ϵcPE that∣∣∣fPE(freqcn

1
) − fPE(p0)

∣∣∣ =
∣∣∣(π̂ − π)Th

∣∣∣
≤ 2

√√√√log
(
n

ϵcPE

) 4m∑
i=1

γic2
i

n
+ 3D

n
log n

ϵcPE
. (92)

Hence, if we choose the tolerance parameter δtol
PE

as in eq. (87), we obtain the desired completeness
bound

Prhon
[∣∣∣fPE(freqcn

1
) − fPE(p0)

∣∣∣ ≤ δtol
PE

]
≥ 1−ϵcPE.

(93)
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Finally, we have to consider the error correc-
tion. Let ϵcEC ∈ (0, 1), such that 1−Prhon[ΩEC] ≤
ϵcEC, i.e. the error correction is assumed to abort
with probability at most ϵcEC, finishing the proof.

For a given empirical distribution p0 and a
suitable choice of a min-tradeoff function, The-
orems 1 and 2 combined show the security of
the finite round physical QKD protocol. In
order to obtain the best finite size key rate,
for given n ∈ N, as well as some choice
for the parameters ϵphys

NA , ϵtom, ϵEC, ϵ
c
EC, ϵ

c
PE ∈

(0, 1), such that ϵtom ≪ 1
2ϵ

phys
NA , as well as

ϵ ∈
(

0, 1 −
√

2ϵtom/ϵphys
NA

)
and ϵphys = ϵ +√

2ϵtom/ϵphys
NA , we can set the tolerance param-

eters as in eqs. (81,87), and maximise the
key rate given by (82) over probabilities 0 ≤
pkey, pPE, ptom ≤ 1 such that pkey+pPE+ptom = 1,
and over a ∈ (1, 2). We note that in order to get a
non-trivial result, we will have to choose ϵcPE and
ϵcEC such that the success probability of the hon-
est implementation meets the threshold ϵphys

NA used
in Theorem 1, i.e. we need 1 − ϵcPE − ϵcEC > ϵphys

NA .

4.3 The Min-Tradeoff Function
The main task now is to find a min-tradeoff func-
tion f that provides a non-trivial bound for our
protocol. As we will choose the number of key
rounds to be significantly larger than the num-
ber of test rounds (i.e. rounds used for parame-
ter estimation or tomography), it will be conve-
nient to use the infrequent sampling framework
introduced in [43], in which the statistical analy-
sis only includes outputs in test rounds. To that
purpose, we divide MEAT

i into a key part, incor-
porating its action in key rounds; and a test part,
incorporating its action in parameter estimation
and tomography rounds, MEAT,key

i : Qi−1 →
QiOiSi and MEAT,test

i : Qi−1 → QiOiSiCi, such
that

MEAT
i (·) = pkeyMEAT,key

i (·) ⊗ |⊥⟩ ⟨⊥|Ci

+ (1 − pkey)MEAT,test
i (·). (94)

Let us now define a crossover min-tradeoff func-
tion [43] as a function g : PC̃ → R such that for
all i = 1, ..., n and p̃ ∈ PC̃ it holds

g(p̃) ≤ inf
|ρ⟩∈Σ̃i(p̃)

H(Oi|SiẼ)ρEAT,i , (95)

where Ẽ can be chosen isomorphic to Qi−1, and
we have defined

Σ̃i(p̃) =
{

|ρ⟩Qi−1Ẽ ∈ HQi−1Ẽ :

⟨c| ρEAT,test,i
Ci

|c⟩ ≡ p̃(c)
}
, (96)

for states

ρEAT,test,i
OiSiCiQiẼ

= idẼ ⊗MEAT,test
i (ρQi−1Ẽ)

= idQiẼ
⊗MEAT,test

AiBi→OiSiCi

(
ρAiBiQiẼ

)
. (97)

Further, it holds for all i = 1, ..., n,

inf
|ρ⟩∈Σ̃i(p̃)

H(Oi|SiẼ)ρEAT,i ≥ inf
HÊ≃HQ1
|ρ⟩∈Σ̃Ê(p̃)

H(O|SÊ)ρEAT ,

(98)
where we have defined the states
ρEAT

OSCÊ
= idÊ ⊗MEAT

AB→OSC

(
ρABÊ

)
and

ρEAT,test
OSCÊ

= idÊ ⊗MEAT,test
AB→OSC

(
ρABÊ

)
,

as well as the set Σ̃Ê(p̃) ={
|ρ⟩ABÊ ∈ HABÊ : ⟨c| ρEAT,test

C |c⟩ ≡ p̃(c)
}
.

We can therefore relax the problem to finding a
function g : PC̃ → R such that

g(p̃) ≤ inf
HÊ≃HQ1
|ρ⟩∈Σ̃Ê(p̃)

H(O|SÊ)ρEAT . (99)

According to Lemma V.5 of [43], we translate
our crossover min-tradeoff function g into a min-
tradeoff function f via the definition

f(δc) = max(g) + g(δc) − max(g)
1 − pkey ∀c ∈ C̃,

(100)
f(δ(⊥,⊥,⊥)) = max(g), (101)

where δc denotes the distribution that equals 1
for c and 0 everywhere else. Further, max(g) =
maxp̃∈PC̃

g(p̃) and min(g) = minp̃∈PC̃
g(p̃). If p is

of the form p(c) = (1 − pkey)p̃(c) for c ∈ C̃ and
p(⊥,⊥,⊥) = pkey, it holds f((1 − pkey)p̃) = g(p̃)
for all p̃ ∈ PC̃ . Further it holds

max(f) = max(g), (102)
min

Σ
(f) ≥ min(g), (103)

0 ≤Var(f) ≤ 1
1 − pkey (max(g) − min(g))2 .

(104)

Hence we can upper bound the expressions in eqs.
(65,66) by
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V ≤ Ṽ =
√

1
1 − pkey (max(g) − min(g))2 + 2

+ log(2d2
O + 1), (105)

Ka ≤ K̃a = 2(a−1)(2 log dO+max(g)−min(g))

6(2 − a)3 ln 2
× ln3

(
22 log dO+max(g)−min(g) + e2

)
.

(106)

In what follows, we provide a crossover min-
imum tradeoff function for our choice of EAT
channels {MEAT

i }n
i=1, lower bounding the r.h.s.

of (95). We begin by noting that, by the chain
rule for the von Neumann entropy [59], it holds

inf
HÊ≃HQ1
|ρ⟩∈ΣÊ(p̃)

H(O|SÊ)ρEAT

≥ inf
HÊ≃HQ1
|ρ⟩∈ΣÊ(p̃)

(
H(Ẑ|SÊ)ρEAT +H(Z̃X̃X ′|ẐSÊ)ρEAT

)
(107)

≥ inf
HÊ≃HQ1
|ρ⟩∈ΣÊ(p̃)

H(Ẑ|SÊ)ρEAT , (108)

where we have used that, as Z̃X̃X ′ is classi-
cal, there cannot be any entanglement across the
Z̃X̃X ′ : ẐSÊ partition, hence the second term in
(107) has to be non-negative. Let us now define
g : PC̃ → R,

g(p̃) := inf
HÊ≃HQ1
|ρ⟩∈ΣÊ(p̃)

H(Ẑ|SÊ)ρEAT , (109)

which can serve as a crossover min-tradeoff func-
tion for EAT channels {MEAT

i }. In order
to obtain an efficiently numerically computable
crossover min-tradeoff function, we now make use
of the framework presented in [48] to remove the
dependency on Eve’s subsystem.

4.3.1 Removing the dependence on the Ê subsys-
tem

The idea is to consider a coherent version of a
round of the protocol leading to Bob’s raw key
Ẑ. Namely, Alice and Bob’s measurements are
performed in a coherent fashion, i.e. by means
of isometries acting on the system to be mea-
sured and adding a quantum register containing
the quantum information which, once dephased,

will provide the measurement result, but not yet
dephasing it. Alice and Bob then publicly an-
nounce partial information about their measure-
ment outcomes, while keeping part of the infor-
mation stored coherently. From that information
they decide whether they use the round for key
generation, parameter estimation or tomography
of Alice’s part. If they use the round for key
generation, in the case of reverse reconciliation,
Bob applies a key map to his coherently stored
measurement outcomes, which provides a coher-
ent key register. The key can then be obtained
by means of a so-called pinching operation, i.e. a
measurement that dephases the key register.

As all steps of the protocol before the pinch-
ing are performed coherently, we can express the
outcome as a pure state, allowing us to apply
Theorem 1 in [60], which removes the depen-
dence on the Ê subsystem. In order to formu-
late our result, we need to introduce the CP map
G : AB → ABẐ that describes the coherent ver-
sion of the protocol. This map is given by a single
Kraus operator

G = 1A ⊗
3∑

z=0

√
Rz

B ⊗ |z⟩Ẑ , (110)

where we have defined the region operators

Rz
B = 1

π

∫ ∞
0

∫ π
4 (2z+1)

π
4 (2z−1)

γ
∣∣∣γeiθ

〉〈
γeiθ

∣∣∣ dθdγ,
(111)

for z ∈ {0, 1, 2, 3}.
Furthermore, we define the pinching operation

Z : Ẑ → Ẑ, defined by Kraus operators

Zj = |j⟩ ⟨j|Ẑ ⊗ 1, (112)

for j ∈ {0, 1, 2, 3}, and the identity is extended
to all registers other than Ẑ. It then holds

Lemma 3 The crossover min-tradeoff function
defined by eq. (109) can be reformulated as fol-
lows

g(p̃) = inf
HÊ≃HQ1
|ρ⟩∈ΣÊ(p̃)

H(Ẑ|SÊ)ρEAT

=pkey inf
ρ∈Σ(p̃)

D(G(ρAB)||Z(G(ρAB)), (113)

where we have defined the set Σ(p̃) ={
ρAB ∈ D(HAB) : ⟨c| MEAT,test(ρ)C |c⟩ ≡ p̃(c)

}
,

which is independent of the reference system.
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The proof of Lemma 3 goes along the line of the
discussion in [30] and can be found in Appendix
A. Let us note that, by definition of the protocol,
it holds dim(A) = 4, but the dimension of Bob’s
states can be infinite. We address this problem
by invoking again the bounded-energy assump-
tion, implying that the solution to (113) can be
arbitrarily well approximated by taking a large
enough finite dimension. We then take dB to be
arbitrary but finite. Under said assumption, the
set Σ(p̃) is compact and, as the objective is con-
tinuous [48], a minimum is attained in eq. (113).
Following [61] we can show

Lemma 4 For a given 0 < pkey ≤ 1,

g(p̃) = pkey min
ρ∈Σ(p̃)

D(G(ρAB)||Z(G(ρAB))) (114)

is a convex function on PC̃.

The proof can be found in Appendix B.

4.3.2 Finding an affine crossover min-tradeoff
function

We note that, for any given distribution p̃ ∈ PC̃ ,
eq. (114) is a convex optimisation problem with
semidefinite constraints. As the objective is not
affine, however, it is not a semidefinite program
(SDP). Also, the dependence of g on the distri-
bution p̃ is hidden in the constraints. We will
now follow the steps taken in [48] and perform a
first order Taylor expansion (around some state
ρ̃AB ∈ D(HAB)) providing a lower bound on the
optimisation problem in eq. (114). The resulting
expression contains an SDP with a linear objec-
tive.

We then consider the dual of the SDP, which
for any dual feasible point provides an affine lower
bound on the original SDP. By the nature of du-
ality, which roughly speaking incorporates the
constraints into the objective, the objective of
the dual problem will explicitly depend on p̃ in
an affine way, as will the entire expression lower
bounding the optimising problem in eq. (114).
Thus, for any given state ρ̃AB ∈ D(HAB), as well
any dual feasible point, we can obtain an affine
crossover min-tradeoff function.

To begin with, let us explicitly consider the
optimisation problem in eq. (114). Let m =
4∆/δ + 4 represent the total number of modules

in Bob’s discretisation. For a probability distri-
bution p̃ ∈ PC̃ , the optimisation takes the form

min
ρAB

D(G(ρAB)||Z(G(ρAB))) (115)

s.t. ρAB ≥ 0, Tr[ρAB] = 1,
∀x ∈ {0, 1, 2, 3}, ∀z ∈ {0, ...,m− 1} :

p̃PE Tr
[(

|x⟩ ⟨x|A ⊗ R̃z
B

)
ρAB

]
= p̃(x, z,⊥),

∀x′ ∈ {0, ..., 15} :
p̃tom Tr [Γx′ρA] = p̃(⊥,⊥, x′),

where we have defined p̃PE = pPE

1−pkey and p̃tom =
1− p̃PE. Further, R̃z are region operators defined
in analogy to (111), but with the discretisation
used for parameter estimation given by eq. (28).
Regarding the constraints, the region operators
related to parameter estimation add up to the
identity matrix, so that there is no need to im-
pose the constraint Tr[ρAB] = 1. We now closely
follow [48] to lower bound eq. (115). For brevity,
let us define r(ρ) := D(G(ρ)||Z(G(ρ))). By the
properties of the pinching quantum channel, this
expression can be rewritten without loss of gen-
erality in terms of von Neumann entropies

r(ρ) = H(Z(G(ρ)) −H(G(ρ)). (116)

Using the methodology of [62], it is possible to
apply here a facial reduction to reformulate the
maps Z and G into maps which are strictly pos-
itive definite; this does not only assure that the
new objective function is differentiable for any
ρ > 0, but also reduces the dimension of both
maps which simplifies the subsequent numerical
analysis. This process can be seen as a unitary
transformation, such that 1

G(ρ) =
[
U V

] [G̃(ρ) 0
0 0

] [
U †

V †

]
, (117)

where G̃(ρ) > 0 for ρ > 0. A similar proce-
dure follows for Z(G(ρ)), resulting in a new map
Z̃(ρ) > 0. Hence, by taking advantage of the fact
that the von Neumann entropy is invariant under
unitary transformations, we arrive at a simpler
objective function

r(ρ) = H(Z̃(ρ)) −H(G̃(ρ)). (118)

1For the numerical implementation, this decomposition
can be obtained in MATLAB by using the function rank.
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With the maps Z̃, G̃ the matrix gradient ∇r(ρ)
is now given by

∇r(ρ)T = [G̃†(log G̃(ρ)) + G̃†(1)]
− [Z̃†(log Z̃(ρ)) + Z̃†(1)]. (119)

Let now p̃ ∈ PC̃ and ρ∗p̃ ∈ Σ(p̃) be the minimiser
of (115). For any ρ̃ ∈ D(HAB), it then holds

g(p̃)
pkey = r(ρ∗p̃)

≥ r(ρ̃) + Tr
[
(ρ∗p̃ − ρ̃)T ∇r(ρ̃)

]
(120)

≥ r(ρ̃) − Tr
[
ρ̃T ∇r(ρ̃)

]
+ min

σ∈Σ(p̃)
Tr
[
σT ∇r(ρ̃)

]
, (121)

where the first inequality is due to the fact that r
is a convex, differentiable function over the con-
vex set D(HAB), hence it can be lower bounded
by its first order Taylor expansion at ρ̃ (see e.g.
[63] p.69), and the second inequality is due to the
fact that ρ∗p̃ ∈ Σ(p̃). For any ρ̃ ∈ D(HAB) and p̃,
the optimisation problem in eq. (121) is an SDP
in standard form, explicitly given by

min
σAB

Tr
[
σT ∇r(ρ̃)

]
(122)

s.t. σAB ≥ 0,
∀x ∈ {0, 1, 2, 3}, ∀z ∈ {0, ...,m− 1} :

p̃PE Tr
[(

|x⟩ ⟨x|A ⊗ R̃z
B

)
σAB

]
= p̃(x, z,⊥),

∀x′ ∈ {0, ..., 15} :
p̃tom Tr [Γx′σA] = p̃(⊥,⊥, x′).

The dual problem of the SDP (122) takes the form

max
ν⃗∈Σ∗

ρ̃

ℓp̃(ν⃗), (123)

where the dual objective is given by

ℓp̃(ν⃗) =
3∑

x=0

m−1∑
z=0

νxz
p̃(x, z,⊥)
p̃PE +

15∑
x′=0

ν ′x′
p̃(⊥,⊥, x′)

p̃tom ,

(124)
which is affine with respect to p̃. Further, the set
Σ∗ρ̃ is defined as

Σ∗ρ̃ =
{
ν⃗ ∈ R4m+16 :

∇r(ρ) −
3∑

x=0

m−1∑
z=0

νxz

(
|x⟩ ⟨x|A ⊗ R̃z

B

)T

−
15∑

x′=0
ν ′x′ΓT

x′ ≥ 0
}

(125)

which is independent of p̃. By weak duality it
then holds

g(p̃) = pkeyr(ρ∗p̃)

≥ pkey

(
r(ρ̃) − Tr

[
ρ̃T ∇r(ρ̃)

]
+ max

ν⃗∈Σ∗
ρ̃

ℓp̃(ν⃗)
)

(126)

≥ pkey
(
r(ρ̃) − Tr

[
ρ̃T ∇r(ρ̃)

]
+ ℓp̃(ν⃗)

)
(127)

=: g̃ν⃗,ρ̃(p̃) (128)

for any ρ̃ ∈ D(HAB) and any ν⃗ ∈ Σ∗ρ̃. We
note that for any such choice of ρ̃, ν⃗, the function
g̃ν⃗,ρ̃ : PC̃ → R is an affine crossover min-tradeoff
function.

4.3.3 Optimisation of the crossover min-tradeoff
function

In this section we describe how we can numeri-
cally obtain almost optimal, i.e. optimal up to
numerical imprecision, choices for our parame-
ters ρ̃ and ν⃗ in the crossover min-tradeoff func-
tion (128), for a given distribution p̃0 ∈ PC̃ .
The distribution will be of the form p̃0(x, z,⊥
) = p̃PEpsim

0 (x, z), for all x ∈ {0, 1, 2, 3} and
z ∈ {0, ...,m − 1}, where psim

0 (x, z) is a distribu-
tion obtained by simulating an honest implemen-
tation of the physical QKD protocol. Similarly,
p̃0(⊥,⊥, x′) = p̃tomptom

0 (x′) for all x′ ∈ {0, ..., 15},
where ptom

0 (x′) is the distribution obtained in the
hypothetical tomography. For the explicit form
of psim

0 (x, z) and ptom
0 (x′), given by a simulation

of the hypothetical QKD protocol, see Section 5.

We note that whereas the choices for ρ̃ and
ν⃗ will only be optimal up to numerical impreci-
sion, it is possible to analytically confirm their
feasibility, i.e. that ρ̃ ∈ D(HAB) and ν⃗ ∈ Σ∗ρ̃.
Thus we can analytically verify that the corre-
sponding function gν⃗,ρ̃ is indeed a valid crossover
min-tradeoff function.

Our numerical method now works as follows:
We begin with some ρ̃(0) ∈ D(HAB) and, for i =
1, ..., niter, where niter ∈ N, iteratively compute
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∆ρ̃(i) = arg min
σAB

Tr
[
σT ∇r(ρ̃(i−1))

]
(129)

s.t. σAB ≥ 0,
∀x ∈ {0, 1, 2, 3}, ∀z ∈ {0, ...,m− 1} :

Tr
[(

|x⟩ ⟨x|A ⊗ R̃z
B

)
σAB

]
= psim

0 (x, z),

∀x′ ∈ {0, ..., 15} :
Tr [Γx′σA] = ptom

0 (x′).

Once this SDP is solved and ∆ρ̃(i) is known, the
value of the relative entropy is minimized accord-
ing to

min
κ∈(0,1)

r(ρ̃(i−1) + κ∆ρ̃(i)). (130)

Such minimization can be computed in MATLAB
with the function fminbnd. Then, we set a new
density matrix ρ̃(i) = ρ̃(i−1) + κ∗∆ρ̃(i), with the
optimal coefficient κ∗, and repeat the optimisa-
tion (129). After niter we set ρ̃0 = ρ̃(niter).

The numerical computation of the dual of (122)
requires to take into account the difference in the
numerical representation of the states and opera-
tors with respect to their analytical values, which
leads to a violation of the constraints due to the
computational limitations of the computers. Ac-
cording to Theorem 3 of [48], this error may be
taken into account by introducing a new parame-
ter ε′, which takes the absolute value of the max-
imal such error, and expands the feasible set to
provide a lower bound while preserving the reli-
ability of the approach. With this methodology,
the dual takes the form [63],

max
(ν⃗,µ⃗)∈Σ̃∗

ρ̃0

ℓ0p̃0,ε′(ν⃗, µ⃗), (131)

where the dual objective is given by

ℓ0p̃0,ε′(ν⃗, µ⃗) =
3∑

x=0

m−1∑
z=0

νxzp
sim
0 (x, z)

+
15∑

x′=0
ν ′x′ptom

0 (x′)

− ε′
4m+16∑

z′=1
µz′ , (132)

with the set Σ̃∗ρ̃0 defined as

Σ̃∗ρ̃0 =
{

(ν⃗, µ⃗) ∈ (R4m+16,R4m+16) : −µ⃗ ≤ ν⃗ ≤ µ⃗,

∇r(ρ̃0) −
3∑

x=0

m−1∑
z=0

νxz

(
|x⟩ ⟨x|A ⊗ R̃z

B

)T

−
15∑

x′=0
ν ′x′ΓT

x′ ≥ 0
}
. (133)

From this maximization, as well as a fixed value ε′

taken according to the maximal numerical error
at the constraints, we obtain ν⃗0, and note that
ν⃗0 ∈ Σ∗ρ̃0 . This allows us to define our crossover
min-tradeoff function as

g̃0(p̃) := g̃ν⃗0,ρ̃0(p̃)

= pkey
(
r(ρ̃0) − Tr

[
ρ̃T

0 ∇r(ρ̃0)
]

+ ℓp̃(ν⃗0)
)

(134)

= pkey

(
G0 +

3∑
x=0

m−1∑
z=0

ν0,xz
p̃(x, z,⊥)
p̃PE

+
15∑

x′=0
ν ′0,x′

p̃(⊥,⊥, x′)
p̃tom

)
, (135)

with a constant

G0 := r(ρ̃0) − Tr
[
ρ̃T

0 ∇r(ρ̃0)
]
. (136)

In order to compute the higher order terms
of the EAT, we need to find max(g̃0) =
maxp̃∈PC̃

g̃0(p̃) and min(g̃0) = minp̃∈PC̃
g̃0(p̃). We

note that, as PC̃ is convex and g̃0 is affine, we can
restrict to the extreme points of PC̃ . Namely we
get

max(g̃0) = pkeyG0 + pkey max(ν0), (137)
min(g̃0) = pkeyG0 + pkey min(ν0), (138)

where we have defined

max(ν0) := max

{ν0,xz

p̃PE

}(3,m−1)

(x,z)=(0,0)
∪
{
ν ′0,x′

p̃tom

}15

x′=0


(139)

min(ν0) := min

{ν0,xz

p̃PE

}(3,m−1)

(x,z)=(0,0)
∪
{
ν ′0,x′

p̃tom

}15

x′=0


(140)

In the case where the minimisers are non-positive
and and the maximisers are non-negative, we can
upper bound

max(g̃0) − min(g̃0) ≤ max(ν0) − min(ν0),
(141)
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which is independent of pkey. Finally, we can in-
troduce the min-tradeoff function induced by our
crossover min-tradeoff function g̃0, given by eq.
(135), via eqs. (100,101).

f(p) =
∑
c∈C̃

p(c)
(

max(g̃0) + g̃0(δc) − max(g̃0)
1 − pkey

)
+ p(⊥,⊥,⊥) max(g̃0) (142)

= max(g̃0) +
∑
c∈C̃

p(c) (g̃0(δc) − max(g̃0))
1 − pkey

(143)
= pkey (G0 + max(ν0))

+
3∑

x=0

m−1∑
z=0

pkey ν0,xz/p̃
PE − max(ν0)
1 − pkey p(x, z,⊥)

+
15∑

x′=0
pkey ν

′
0,x′/p̃tom − max(ν0)

1 − pkey p(⊥,⊥, x′).

(144)

Let us now observe that we can split the min-
tradeoff function according to a constant term
(since it does not depend on the probabilities)
and the previously-defined functions (34-35) for
parameter estimation and tomography

f(p) = const + fPE(p) + f tom(p), (145)

with

fPE(p) =
3∑

x=0

m−1∑
z=0

hx,z,⊥p(x, z,⊥), (146)

f tom(p) =
15∑

x′=0
h⊥,⊥,x′p(⊥,⊥, x′). (147)

The affine coefficients of the functions, given
in terms of the crossover min-tradeoff function
(144), provide the means for calculating the sta-
tistical deviations δtol

PE and δtol
tom. Thanks to the

affine structure of 145, we can use f(p) as a min-
tradeoff function in Theorem 1. When applying
such Theorem, we evaluate the min-tradeoff func-
tion in our simulated honest distribution, f(p0).
However, we use the properties of the distribution
p0 to reformulate our function in more convenient
shape

f(p0) = pkeyG0

+
3∑

x=0

m−1∑
z=0

ν0,xzp
sim
0 (x, z)

+
15∑

x′=0
ν ′0,x′ptom

0 (x′) (148)

= g̃0(p̃0). (149)

4.4 Asymptotic Rates
With our choice of a min-tradeoff function f(p),
we can now compute the asymptotic key rate in
Theorem 1, and show that we can achieve sound-
ness and completeness in the asymptotic limit.

Let n ∈ N. We begin by noting that, for fixed
m ∈ N, our numerically obtained values ν0,xz, for
x = 0, ..., 3, z = 0, ...,m − 1, and ν ′0,x′ , for x′ =
0, ..., 15, are constant, i.e. independent of n. Let
us consider some fixed values for the parameters
ϵphys
NA , ϵtom, ϵEC, ϵ

c
EC, ϵ

c
PE ∈ (0, 1), such that ϵtom <

1
2ϵ

phys
NA , as well as ϵ ∈

(
0, 1 −

√
2ϵtom/ϵphys

NA

)
,

ϵphys = ϵ +
√

2ϵtom/ϵphys
NA . Let us also consider

some constant 0 ≤ p̃PE ≤ 1, and p̃tom = 1 − p̃PE.
Since n → ∞, we can select any scaling such

that all rounds tend asymptotically to be spent
on key generation, and the finite size effects
are reduced. For simplicity, let us then take
a = 1 + n−3/4, as well as pkey = 1 − n−

1
2 and

pPE = p̃PEn−
1
2 , implying ptom = p̃tomn−

1
2 . It

then holds that hx,z,⊥ = O(n
1
2 ) and h⊥,⊥,x′ =

O(n
1
2 ), as well as p0(x, z,⊥) = O(n−

1
2 ) and

p0(⊥,⊥, x′) = O(n−
1
2 ), for all x ∈ {0, ..., 3},

z ∈ {0, ...,m − 1} and x′ ∈ {0, ..., 15}. Hence,
for all i = 1, ..., 4m, the quantities defined in
eqs. (88-89) scale as follows: γi = O(n−

1
2 ),

ci = O(n
1
2 ), and D = O(n

1
2 ). Consequently,

in order to fulfill eq. (87), we have to choose
δtol

PE = O((logn)
1
2n−

1
4 ). Similarly, it can be

shown that that we need δtol
tom = O((logn)

1
2n−

1
4 ),

in order to satisfy eq. 81).
As for the remaining higher order terms in eq.

(82), we note that by eqs. (105,106,141) it holds

V ≤ Ṽ = O
(
n

1
4
)

(150)

Ka ≤ K̃a = O(1). (151)

Although Ṽ and K̃a do not decrease with the
number of rounds, we note that in (82) they ap-
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pear multiplied by a − 1. This eventually leads
to

(a− 1)Ṽ = O
(
n−

1
2
)
, (152)

(a− 1)2K̃a = O
(
n−

3
2
)
. (153)

Hence, all remaining higher order terms, except
1
n leakEC, which we keep open, scale as O(n−

1
4 ) or

less. Further, the term f(p0) in Theorem 1, given
by eq. (148), only depends on n via the prefactor
pkey. In summary, we can obtain the following
bound on the asymptotic key rate.

Theorem 3 (Asymptotic rate) For the above
mentioned values of the parameters, it holds

rphys∣∣
Ωphys

NA
≥ G0 +

3∑
x=0

m−1∑
z=0

ν0,xzp
sim
0 (x, z)

+
15∑

x′=0
ν ′0,x′ptom

0 (x′) − 1
n

leakEC

+ O((logn)
1
2n−

1
4 ) (154)

lim
n→∞

rphys∣∣
Ωphys

NA
≥ G0 +

3∑
x=0

m−1∑
z=0

ν0,xzp
sim
0 (x, z)

+
15∑

x′=0
ν ′0,x′ptom

0 (x′)

− lim
n→∞

1
n

leakEC. (155)

5 Numerical implementation and re-
sults
In order to show that our approach produces
non-trivial key rates in a realistic implementa-
tion, we consider the same scenario that was used
in [30]. Namely, we simulate an experiment in
which Alice and Bob are linked by an optical fi-
bre of lengthD with excess noise ξ, transmittance
η = 10−ωD/10 and an attenuation of ω = 0.2
dB/km. This provides us with a simulated dis-
tribution that can be computed efficiently using
MATLAB

psim
0 (x, z) =

∫
R̃z

γ exp
(
−|γeiθ−√ηφx|2

1+ηξ/2

)
4π(1 + ηξ/2) dθdγ,

(156)
where R̃z represents the fragment of the phase
space corresponding to each module z ∈

{0, ...,m − 1}, defined according to the intervals
described in (28), and φx ∈ {α, iα,−α,−iα} are
the coherent state amplitudes used by Alice with
α ∈ R. The region operators for the constraints
R̃z

B are given by the same intervals as in (156)

R̃z
B = 1

π

∫
R̃z

γ
∣∣∣γeiθ

〉〈
γeiθ

∣∣∣ dθdγ, (157)

while their numerical implementation requires to
switch to the Fock basis. This is done via the
inner product [64],

〈
γeiθ | k⟩ = γke−γ2/2e−ikθ

√
k!

. (158)

For the hypothetical tomography, we choose an
IC POVM {Γx′}15

x′=0, which completely describes
Alice’s marginal with a probability distribution

ptom
0 (x′) = 1

4

3∑
x,y=0

⟨φy|φx⟩ Tr [Γx′ |x⟩ ⟨y|A] .

(159)

As argued, under the bounded-energy assump-
tion, the computation of the trade-off requires
solving the optimisation for arbitrary finite di-
mension dB. At the moment we are unable to
do this, so we truncate operators by introducing
a photon number cutoff Nc. That is, we impose
that all operators, when expressed in the Fock
basis, involve terms having at most Nc photons,
which implies that dB = Nc +1. We solve the op-
timisation for increasing values of Nc and we al-
ways observe that the obtained trade-offs numer-
ically converge, see for instance Fig 2 below. A
value ofNc = 15 provides a good balance between
the execution time of the solver and the reliabil-
ity of the numerics, which is consistent with what
was previously observed in [30, 62, 29]. Based on
all the obtained numerical evidence, we make the
following

Numerical convergence assumption: The de-
rived numerical trade-offs for the considered cut-
offs provide reliable approximations to the trade-
off for arbitrary finite dimension.

In our view, this assumption is quite plausible
in the considered setup, as the amplitude of the
states detected by Bob decreases with the chan-
nel losses, which eventually means a decreasing
average number of received photons.

With all the elements of the optimisation de-
fined, we minimize the SDP (129) according to
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the Frank-Wolfe algorithm. For this process we
use the toolbox YALMIP [65] together with the
interior point solver SDPT3 [66, 67]. Once the
suboptimal bound is obtained, we compute the
dual (131) using the optimization software CVX
[68, 69], since it provides slightly better results
than YALMIP and SDPT3. For the iterative
process of the Frank-Wolfe algorithm, we set a
stopping criterion based on calculating the lower
bound (126) every 15 iterations of the minimiza-
tion (129); if the relative difference between the
upper bound given by minimising (118) and the
reliable lower bound is smaller than a 2%, the al-
gorithm stops the optimization. If this margin is
not reached, the algorithm continues until a to-
tal of 300 iterations are performed. Using this
approach we obtain ρ̃0 and ν⃗0, the feasibility of
which can be checked analytically. This allows
us to obtain a crossover min-tradeoff function g̃0
via eq. (134). By Theorem 3, we observe the
asymptotic rate

r∞ ≥ G0 +
3∑

x=0

m−1∑
z=0

ν0,xzp
sim
0 (x, z)

+
15∑

x′=0
ν ′0,x′ptom

0 (x′) − lim
n→∞

1
n

leakEC.

(160)

For the classical information leaked during er-
ror correction, we can assume an honest, iid im-
plementation of the protocol. We introduce a pa-
rameter f that quantifies the the error correction
efficiency with respect to the ideal Shannon limit,
so that we write

1
n

leakEC ≤ pkey(1 + f)H(Ẑ|X̂) (161)

where X̂, Ẑ represent the key string bits (after
removing the symbol ⊥) of Alice and Bob respec-
tively. On the other hand, the parameter pkey

comes from the fact that only the signals coming
from key rounds require error correction. The er-
ror correction efficiency may depend on several
factors, such as the chosen code, the block size or
the form of the probability distribution between
Alice and Bob. Here we take f from values that
range from 0% to 5% as a showcase of the po-
tential results for our scheme given diverse effi-
ciencies for error correction. The Shannon term
H(Ẑ|X̂) can be computed numerically according

to the distribution (156) adapted for the modu-
lation of the key rounds, namely

pEC
0 (x, z)

=
∫ ∞

0

∫ π
4 (2z+1)

π
4 (2z−1)

γ exp
(
−|γeiθ−√ηφx|2

1+ηξ/2

)
4π(1 + ηξ/2) dθdγ.

(162)

With the error correction cost, it is not only
possible to calculate the asymptotic secret key
rate, but also optimise the amplitude α that Al-
ice chooses for her coherent states, which is not
attainable with only the results from the SDP.

To test the accuracy of our approach, we com-
pared our results for different values of the cut-
off, as well as with the so far standard method
of computing the asymptotic key rate based on
performing parameter estimation with moments
of the quadrature operators [30]. The compar-
ison can be found in Figure 2 where one can
see that, while using moments to constrain the
state shared by Alice and Bob produces better
rates for distances shorter than 15 km, both ap-
proaches provide comparable results for larger
distances. Note that computing moments and
coarse-grained probabilities are different ways of
discretising the information contained in a CV
distribution. These results show that taking mo-
ments is better for short distances, albeit the two
approaches lead to almost the same values when
losses become large. Moreover, as announced, in
both cases the asymptotic key rates seem to satu-
rate when increasing the cutoff value. We verified
such hypothesis at the inset of Figure 2, where it
can be observed that the curves for our modula-
tion converge to the same values.

Figure 3 shows the asymptotic key rates ac-
cording to eq. (160), where a modulation
(∆, δ) = (0.9, 0.9) was employed together with a
cutoff Nc = 15 for ideal error correction f = 0%.
For distances below 150 km, the algorithm typ-
ically needs 120 or less iterations to converge.
For larger distances, it was necessary to reach
the limit of 300 iterations before using eq. (123)
to obtain the reliable lower bound. On the
other hand, we observed a numerical error at the
constraints ε′ typically between 10−10 for small
lengths and 10−15 for very long distances, which
ensures both the reliability of the code and the
tightness of the key rates.

Switching to the finite-size regime, we can use
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Figure 2: Asymptotic secret key generation rate with
ξ = 2% according to the parameter estimation described
in Lin et al. [30] and our modulation (∆, δ) = (0.9, 0.9),
both with ideal error correction (i.e., Shannon limit) f =
0%, and diverse values for the cutoff Nc. The amplitude,
taken to be the same for all curves, was optimised with
respect to the distance. The inset shows the convergence
of our modulation.

our crossover min-tradeoff function g̃0 in Theo-
rem 1 to observe the finite key generation rates.
Choosing the parameters ξ = 1%, f = 1%,
Nc = 12, ϵ = 10−10, ϵphys

NA = 10−4, ϵtom = 10−10

and ϵcPE = 10−10 together with a grid search opti-
misation over a and pkey, we obtain non-zero key
rates for n ≥ 1012 rounds and distances D ≥ 15
km. The outcomes of this process are illustrated
in Figure 4, where the curves represent different
values for the finite key generation rates with re-
spect to the number of rounds taken for the pro-
tocol.

In this regard, the simplest approach to per-
form the finite-key analysis is to use the result-
ing data from the asymptotic regime, particu-
larly the dual point (131), in order to build the
min-tradeoff function. However, this leads in
general to suboptimal results for the finite case
since the calculated dual point is optimal only
in the asymptotic regime—the dual variables ap-
pear in the correction terms of the finite-key rate,
whose optimization is not included in the Frank-
Wolfe method. For instance, K̃a scales exponen-
tially with the spread of the min-tradeoff func-
tion, which depends on the dual variables ac-
cording to (139-140). Therefore, the dual vari-
ables severely affect the finite-key rates. In or-
der to ameliorate this inconvenience, we make use
of a perturbative analysis based on genetic algo-
rithms, which reduces the value of the dual vari-
ables while preserving a reasonable performance
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Figure 3: Asymptotic secret key generation rate accord-
ing to (160) in terms of distances D and excess noise
ξ with a modulation (∆, δ) = (0.9, 0.9), ideal error cor-
rection f = 0% and cutoff Nc = 15. The amplitude of
the coherent states was optimized with respect to the
distance.

for any block sizes n. We defer the details of the
method to Appendix D, and refer to the complete
code available in [70].

We also note that the overall numerical perfor-
mance of our code enables us to derive the asymp-
totic secret key in the order of minutes with a rea-
sonable value of the cutoff, Nc = 12. Although
the perturbative analysis described here increases
the overhead of the computations, a fine-tuned
implementation can increase the efficiency of the
code and perform the complete finite-size analysis
for a given distance in a few minutes—such that
it can be used in real, on-demand applications.
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Figure 4: Finite-size secret key generation rate according
to (82) for ξ = 1%, f = 1%, Nc = 12, n rounds for
the protocol and a modulation (∆, δ) = (0.9, 0.9). The
parameters a, pkey and p̃PE were optimised according
to a grid search, and we set ϵ = 10−10, ϵphys

NA = 10−4,
ϵtom = 10−10 and ϵcPE = 10−10.

Finally, we explore the impact of error correc-
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tion efficiency in the observed key rates. It is
well known that in standard CVQKD protocols,
as considered in this work, the value of Alice’s
and Eve’s conditional entropies on Bob’s results,
H(Ẑ|X̂) and H(Ẑ|Ê), are very close, especially
for large distances. Hence, a non-zero value of f
severely affects the possibility of having non-zero
key rates. To study this, we plot the finite key
rates for blocks of size n = 5 × 1012 as a function
of the error correction efficiency in Fig. 5. As it
can be seen, small values of f , or in other words,
error correction codes with efficiency very close
to the Shannon limit, are necessary to generate a
secret key for distances beyond 20 km.
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Figure 5: Finite-size secret key generation rates for
n = 5 × 1012 rounds and different values of the error
correction efficiency f . The parameters were taken to
be the same as in Figure 4.

6 Discussion

In this work we have provided a security proof
against arbitrary general attacks for a discrete
modulated CVQKD protocol, in which Alice pre-
pares four coherent states and Bob performs het-
erodyne measurements. The proof exploits the
fact that the information used for parameter esti-
mation consists of coarse grained probabilities of
the generated continuous measurement outcomes
instead of moments, as is the case in most of
previous approaches of CVQKD. As shown, this
hardly affects the asymptotic key rates, but sig-
nificantly simplifies the security analysis, as one
can employ methods originally introduced in the
context of DVQKD, such as the EAT.

Despite the simplifications, the application of
the EAT, in its original form [42, 43], to the
considered prepare-and-measure QKD protocol

is not straightforward. The challenging aspect
of this has been the fact that, in order to de-
scribe the QKD protocol as a sequence of EAT
channels, where Eve’s reference system cannot be
updated by the EAT channels, we had to use
an entanglement-based version of the protocol
when applying the EAT. Whereas any prepare-
and-measure QKD protocol can be easily trans-
formed to an entanglement-based protocol using
the source replacement scheme, we have been
faced with the issue that the minimisation defin-
ing our min-tradeoff function in eq (61) can be
constrained only in terms of the observed statis-
tics from Alice and Bob’s measurements in pa-
rameter estimation rounds, i.e. by a distribution
of the classical output Cn

1 . Such constraints are
sufficient to obtain a nonzero key rate in DIQKD
protocols, as has been considered in [44, 45, 46].
This is due to the fact that in device indepen-
dent settings the observed statistics alone has to
be sufficient to certify an entangled state between
Alice and Bob, which is a prerequisite to obtain
secure key. In device dependent settings, such
as the one we have considered here, however, the
observed statistics from Alice and Bob’s parame-
ter estimation rounds does not necessarily suffice
to certify entanglement. Consequently, if we only
use statistics from parameter estimation rounds,
the bound on the key rate becomes trivial. We
have overcome this issue by considering a hypo-
thetical protocol in which Alice uses some ran-
domly chosen rounds to perform a state tomogra-
phy on her marginal state, the outcome of which
is included in Cn

1 . Thus, the observed statistics
becomes sufficient to obtain nontrivial bounds on
the key rate.

The introduction of the hypothetical tomogra-
phy poses some additional challenges in the finite
size security proof. In particular there is a possi-
bility that the tomography test does not pass, in
which case the hypothetical protocol would abort.
In order to ensure that this only happens with
negligible probability, we have introduced a tol-
erance parameter δtol

tom in Lemma 1, which has
to be subtracted from our key rate. Also, in or-
der to prove security of the physical protocol, it
is necessary to show that the raw key states ob-
tained in the hypothetical and physical protocol
do not differ by too much and adapt the smooth-
ing parameter accordingly. We have done this in
Lemma 2, again at the cost of a reduction of the
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key rate. We note that other approaches, such
as using the Asymptotic Equipartition Property
[19, 35, 32], provide higher finite key rates with-
out the need to add a virtual tomography—such
frameworks prove to be simpler, and the numer-
ical key rates (via e.g. [32, Theorem 6]) can be
calculated faster, but they are limited to the case
of collective attacks, which is surpassed in this
work.

As mentioned in the introduction, after much
of the work going into this result was finished, a
generalised version of the EAT has been presented
in [49], known as Generalised EAT (GEAT). In
contrast to the original EAT, the new version al-
lows for Eve’s reference system to be updated,
while also relaxing the Markov condition to a non-
signalling condition. Using GEAT, it is possible
to express a prepare-and-measure QKD protocol
directly into a sequence of EAT channels, without
the need to use an entanglement based version of
the protocol, as was shown in [50]. When using
this new method, there is no need to introduce
a hypothetical tomography, hence our Lemmas 1
and 2 would not be needed and higher key rates
may be expected. The only caveat when using
GEAT is that it makes an additional assump-
tion on Eve’s attack, namely only allowing her
to have one quantum system at a time. This con-
dition can be enforced by Alice waiting for Bob
to confirm he has received a state before send-
ing the next one [50], which might not always be
practical. Our method of applying the original
EAT does not need this assumption. We there-
fore believe that our current method of using an
hypothetical protocol with tomography of Alice’s
marginal, is of interest not only for discrete mod-
ulated CVQKD, but for proving security of device
dependent QKD in settings where the condition
that Eve only holds one system at a time is not
practical.

Our security analysis can be improved in sev-
eral directions. As mentioned, being a prepare-
and-measure protocol, it is natural to consider the
application of GEAT. This may not only provide
larger finite-key generation rates, but also allow
one to study variants of the protocol using ho-
modyne measurements, which we were unable to
accommodate within our security analysis. An-
other related question is to analyse using GEAT
how the obtained rates vary with the number of
states prepared by Alice and, in particular, how

they approximate the rates of Gaussian modu-
lated protocols.

The derived key rates are valid under the
bounded-energy assumption, stating that Eve’s
attack involves states of bounded energy, and a
numerical-convergence assumption, stating that
the numerical curves obtained for increasing num-
ber of photons are very close to the trade-off for
arbitrary finite dimension. The first assumption
is physically realistic and implies that the states
in the protocol can be arbitrarily well approxi-
mated by states in a finite dimensional Hilbert
space of large enough dimension [71]. This allows
the use of EAT since, whereas this theorem does
not require an explicit bound on the Hilbert space
dimension of Eve, all Hilbert space dimensions
are assumed finite [42]. It would be interesting
to remove this assumption using recent advances
towards a generalisation of the EAT to infinite
dimensional Hilbert spaces [72].

The second assumption seems quite plausible
in the considered setup, as Alice first prepares
coherent states with a small average number of
photons that are later sent through a lossy chan-
nel. Yet, it is interesting to study how to remove
the cutoff in the computation of the asymptotic
key rates. This has been achieved for collective
attacks in the case where the information used
in parameter estimation is made of moments of
Bob’s quadratures [31, 32]. The idea in [31] is
to introduce a cutoff parameter that depends on
the expectation values obtained in parameter es-
timation and replace the infinite dimensional op-
timization by a finite dimensional one, plus a cor-
rection term, both of which depend on the cutoff
parameter. Combining such an approach with
the EAT, while possible in principle, is hindered
by the dependence of the cutoff parameter on the
observed statistics, which has to be taken into
account when defining a min-tradeoff function.
Namely, the correction term, which is non-affine
in the cutoff parameter would have to be included
in the min-tradeoff function, and the constraints
of the optimisation from which we obtain our
min-tradeoff function would contain non-affine
terms in the cutoff parameter, greatly complicat-
ing the derivation of an affine min-tradeoff func-
tion.We leave for future work a complete analysis
of how to adapt this framework, and overcome
these limitations.

Besides, while presented for a specific proto-
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col consisting of four coherent states, our security
proof can be adapted to any other constellation of
coherent states. It deserves further investigation
to study how the key rate changes when using
more states and whether and how one can ap-
proximate the rate of protocols using Gaussian
modulation. It is in fact expected that, as it
happens for four coherent states (see Fig 2), the
rates obtained when using coarse-grained proba-
bilities will be very close to those obtained when
using moments [30]. Moreover, our approach pro-
vides a wide framework for the security analy-
sis of CVQKD since the EAT is naturally device
independent. Thus, we build a finite size secu-
rity proof from the asymptotic regime via a min-
tradeoff function without making any assump-
tions on the attack besides the Markov condition
(55), here trivially satisfied. This is a fact of im-
portance, provided that the optimal attack for
DM CVQKD is not known.

Finally, it is worth noting that, for excess
noise ξ ≥ 0.01, both our proof and the one
in [38, 39, 40] require block sizes of the order
of 1011 − 1012 to obtain a positive key rate,
which are significantly larger than what needed
for DVQKD. It is an interesting open question
to understand whether a different proof strategy
(e.g. the GEAT) can improve this substantially
or if this is an intrinsic requirement of CVQKD.
Comparing our results with [40], for ξ = 0.01 and
n = 1012, our method provides higher rates for
distances around 10 km, although different mod-
elling of the error correction efficiency [73] com-
plicates a direct comparison of the rates.

To conclude, we provide a security proof for
CVQKD protocols in which the information in
parameter estimation consists of coarse-grained
probabilities instead of moments, as done so far.
The analysis consist of two main ingredients: (i)
the application of EAT including a local tomog-
raphy process to derive the finite-key rates (ii)
the computation of the asymptotic key rates us-
ing the formalism of [30] for increasing number
of photons. Our work therefore shows that use
use of coarse-grained probabilities in parameter
estimation opens new avenues to prove the secu-
rity of discrete modulated CVQKD protocols, as
well-established methods developed in DVQKD
can be applied in a rather straightforward way
without any significant impact on the obtained
key rates.
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A Proof of Lemma 3
Let HÊ be a Hilbert space. We begin with a pure state |ρ⟩ABÊ ∈ HABÊ . Alice and Bob’s measurements
are then performed coherently by means of a series of isometries. Alice’s measurement, as well as the
random number generator determining what the round is used for, are described by

WA
ARX←A =

2∑
r=0

√
pr

(∑
xr

√
P xr

A ⊗ |r⟩R ⊗ |xr⟩X

)
, (163)

where p0 = pkey, p1 = pPE, p2 = ptom, and P xr
A denotes the x-th POVM element applied by Alice when

her random bit provides an outcome r

{P x0
A }x0 = {P x1

A }x1 = {|x⟩ ⟨x|A}3
x=0,

{P x2
A }x2 = {Γx

A}15
x=0.

Note that the POVM elements are given by a square root to preserve the isometric characteristics of
the measurement. Register R will announce whether the bit will be used for the generation of the key,
parameter estimation or tomography, whereas X stores the result of Alice’s measurement. Bob will
perform a heterodyne measurement, which he will later discretise according to the goal of the round.
Such measurement is given by the isometry

WB
BY←B =

∫
d2y

√
|y⟩ ⟨y|B

π
⊗ |y⟩Y . (164)

Where the integral is given by the fact that coherent states form a continuous basis. The classical
communication of R between Alice and Bob, which is wiretapped by Eve, can be expressed coherently
by adding ancillary subsystems followed by CNOTs.

V c1
[R]←R = UCNOT

R:R′R′′ |00⟩R′R′′ , (165)

where R′ is distributed to Bob and R′′ to Eve, and we have introduced the simplifying notation
[R] := RR′R′′. Furthermore, UCNOT

R:R′R′′ is the unitary describing a double CNOT taking R as control
and R′ and R′′ as targets. Now that Bob and Alice have made their public announcements, we have
to apply a new isometry where Bob discretises the key,

V K
RY Ẑ←RY

= |0⟩ ⟨0|R ⊗
3∑

z=0

√
Rz

Y ⊗ |z⟩Ẑ +
(

|1⟩ ⟨1|R + |2⟩ ⟨2|R
)

⊗ 1Y ⊗ |⊥⟩Ẑ . (166)

Here, the set {Rz
Y }3

z=0 represents the region operators for the discretisation in key rounds, whose
definitions are given in (111). The state that results after applying all the isometries is then given by
(where we have omitted identities on systems not involved)

|ω⟩ABXY Ẑ[R]Ê = V KV c1WBWA |ρ⟩ABÊ . (167)

Finally, the key register is dephased by a pinching map Z ′ : Ẑ → Ẑ, defined with the Kraus operators

Zj = |j⟩ ⟨j|Ẑ ⊗ 1, (168)

for j ∈ {0, 1, 2, 3,⊥}. Note that this is same definition as in (112), albeit here with the symbol ⊥
included. We can now apply Theorem 1 from [60], to show that

H(Ẑ|R′′Ê)Z(ω) = D(ωABXY ẐRR′ ||Z ′(ωABXY ẐRR′)) (169)

Now, the r.h.s. does no longer depend on Ê. Let us also observe that in the marginal ωABXY ẐRR′[P ]
registers RR′ have decohered due to traceout of R′′. We can then reformulate it as

ωABXY ẐRR′ = pkey |00⟩ ⟨00|RR′ ⊗ ωkey
ABXY Ẑ

+ (1 − pkey) (|11⟩ ⟨11|RR′ + |22⟩ ⟨22|RR′) ⊗ ω⊥ABXY ⊗ |⊥⟩ ⟨⊥|Ẑ ,
(170)
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where pkey denotes the probability that Alice will use the round for the generation of the key. The
state (170) has a cq structure, so that by the properties of the relative entropy on cq-states [59], we
can simplify (169) by splitting the state according to the classical registers RR′. Moreover, the state
ω⊥ABXY ⊗ |⊥⟩ ⟨⊥|Ẑ is invariant under the pinching, so that the relative entropy for such state is zero.
The whole process adds up to the equality

D(ωABXY RR′Ẑ ||Z ′(ωABXY RR′Ẑ)) = pkeyD(ωkey
ABXY Ẑ

||Z(ωkey
ABXY Ẑ

)), (171)

where we have also substituted Z ′ for Z since we have removed ⊥ from the key register Ẑ. The explicit
form of the key state ωkey

ABXY Ẑ
is then given by

ωkey
ABXY Ẑ

= 1
pkey TrR′′Ê

[
⟨00|RR′ ωABXY [R]ẐÊ |00⟩RR′

]
. (172)

Following the arguments provided in Appendix A of [30], we can further simplify (171). First of all,
the reduction of the state (167) according to the properties of the relative entropy for cq-states has
suppressed the sum over r at (163), leaving only the term related to the key generation, namely r = 0.
Hence, Alice’s operator for the key state is given by

W ′AAX←A =
3∑

x=0
|x⟩ ⟨x|A ⊗ |x⟩X , (173)

where we used the fact that Alice’s POVM elements in A are projectors, so that the square root can
be removed. This operator now merely copies and projects the information stored in A to the new
register X, which effectively represents an isometry that is invariant under the pinching (since both
registers are not related to the key register Ẑ). Hence we can simplify this isometry by removing X,
and the final operator for Alice will be a mere identity in A.

As for the key rounds, Bob only needs to obtain the discretised key variable Ẑ. Thus, he can group
the POVM elements corresponding to a particular value of Ẑ, forming a coarse grained POVM {Ri

B}3
i=0

that acts directly on register B, and is given by the region operators defined in (111). Hence, register
Y is not necessary and Bob’s measurement and discretisation will thus be given by

W ′B
BẐ←B

=
3∑

z=0

√
Rz

B ⊗ |z⟩Ẑ . (174)

Now, the simplified maps for Alice and Bob are combined to provide the CP map G : AB → ABẐ
that represents the postprocessing, which as shown in (110) is given by the superoperator

G = W ′A ⊗W ′B = 1A ⊗
3∑

z=0

√
Rz

B ⊗ |z⟩Ẑ . (175)

We can now conclude with the redefinition of the relative entropy at (171) in terms of the postprocessing
map,

D(ωkey
ABXY Ẑ

||Z(ωkey
ABXY Ẑ

)) = D(G(ρAB)||Z(G(ρAB))). (176)

By definition, register R′′ is identical to register S in (109) and for any HÊ and any |ρ⟩ABÊ ∈
HABÊ it holds Z(ω)ẐSÊ =

(
idÊ ⊗MEAT(ρ)

)
ẐSÊ

, for ω defined as in (167). Combining the equations
(169,171,176), we obtain that for all p̃ ∈ PC̃ ,

g(p̃) = inf
ρ∈Σ(p̃)

H(Ẑ|R′′Ê)Z(ω) = pkey inf
ρ∈Σ(p̃)

D(G(ρAB)||Z(G(ρAB))), (177)

which finishes the proof.
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B Proof of Lemma 4
Let p, q ∈ PC̃ , 0 ≤ λ ≤ 1. Without loss of generality we can assume that Σ(p) is not empty. Then
there exist states ρAB ∈ Σ(p) and τAB ∈ Σ(q) such that

pkeyD(G(ρAB)||Z(G(ρAB))) = g(p), (178)
pkeyD(G(τAB)||Z(G(τAB))) = g(q). (179)

Let us now consider the flag state

ωABF = λρAB ⊗ |0⟩ ⟨0|F + (1 − λ)τAB ⊗ |1⟩ ⟨1|F . (180)

It then holds [59]

pkeyD(G ⊗ idF (ωABF )||Z ◦ G ⊗ idF (ωABF )) = λpkeyD(G(ρAB)||Z(G(ρAB)))
+ (1 − λ)pkeyD(G(τAB)||Z(G(τAB)))

= λg(p) + (1 − λ)g(q), (181)

As tracing out the flag system F cannot increase the relative entropy, it holds

D(G(ωAB)||Z(G(ωAB))) ≤ D(G ⊗ idF (ωABF )||Z ◦ G ⊗ idF (ωABF )). (182)

Let now c ∈ C̃. It then holds

⟨c| TrOS

[
MEAT,test(ωAB)

]
|c⟩ = λ ⟨c| TrOS

[
MEAT,test(ρAB)

]
|c⟩ + (1 − λ) ⟨c| TrOS

[
MEAT,test(τAB)

]
|c⟩

= λp(c) + (1 − λ)q(c). (183)

This implies that ωAB ∈ Σ (λp+ (1 − λ)q). By definition of g, and eqs. (182) and (181), it then holds

g(λp+ (1 − λ)q) ≤ pkeyD(G(ωAB)||Z(G(ωAB)))
≤ pkeyD(G ⊗ idF (ωABF )||Z ◦ G ⊗ idF (ωABF ))
= λg(p) + (1 − λ)g(q), (184)

finishing the proof.

C Upper bounding the classical smooth max entropy
Let n ∈ N, and for 1 = 1, ..., n, let Yi be a binary classical random variable such that PYi(1) = p and
PYi(0) = 1 − p. Further, define classical random variable Xi such that Xi =⊥ if Yi = 0. Otherwise the
values are chosen from an alphabet X such that |X ∪ {⊥}| = d. We use the operator representation to
describe the joint state as

ρXn
1 Y n

1
=

∑
x1,...,xn∈X∪{⊥}

1∑
y1,...,yn=0

PXn
1 Y n

1
(x1, ..., xn, y1, ..., yn)

× |x1, ..., xn⟩ ⟨x1, ..., xn|Xn
1

⊗ |y1, ..., yn⟩ ⟨y1, ..., yn|Y n
1
, (185)

etc.

Lemma 5 For any ϵ > 0 it holds

Hϵ
max(Xn

1 |Y n
1 )ρ ≤ np log d+

√
n

2 ln 2
ϵ2

log d. (186)
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Proof.
Let ϵ > 0 and define δ :=

(
ln 2−2 ln ϵ

2n

) 1
2 . We can divide the sum in eq. (185) into a part with up to

⌊n(p+ δ)⌋ terms with Yi = 1, hence non-trivial Xi, and a part with more than ⌊n(p+ δ)⌋ such terms,
ρXn

1 Y n
1

= ρ′Xn
1 Y n

1
+ ρ′′Xn

1 Y n
1

, where

ρ′Xn
1 Y n

1
=

∑
x1,...,xn∈X∪{⊥}

∑
y1,...,yn∈{0,1}n∑

i
yi≤⌊n(p+δ)⌋

PXn
1 Y n

1
(x1, ..., xn, y1, ..., yn)

× |x1, ..., xn⟩ ⟨x1, ..., xn|Xn
1

⊗ |y1, ..., yn⟩ ⟨y1, ..., yn|Y n
1
, (187)

ρ′′Xn
1 Y n

1
=

∑
x1,...,xn∈X∪{⊥}

∑
y1,...,yn∈{0,1}n∑

i
yi>⌊n(p+δ)⌋

PXn
1 Y n

1
(x1, ..., xn, y1, ..., yn)

× |x1, ..., xn⟩ ⟨x1, ..., xn|Xn
1

⊗ |y1, ..., yn⟩ ⟨y1, ..., yn|Y n
1
, (188)

Let us define

κ := Tr
[
ρ′′Xn

1 Y n
1

]
=

n∑
k=⌊n(p+δ)⌋+1

pk(1 − p)n−k

(
n

k

)
, (189)

and note that by Hoeffding’s inequality, it holds κ ≤ e−2nδ2 ≤ ϵ2

2 . By [51], Lemma 3.17, it then holds
for the purified distance

P (ρXn
1 Y n

1
, ρ′Xn

1 Y n
1

) ≤
√∥∥∥ρXn

1 Y n
1

− ρ′Xn
1 Y n

1

∥∥∥
1

+ Tr
(
ρXn

1 Y n
1

− ρ′Xn
1 Y n

1

)
=

√
2κ ≤ ϵ (190)

hence ρ′ is in the ϵ-ball around ρ. Consequently, as only the non trivial Xi contribute to the max
entropy, it holds

Hϵ
max(Xn

1 |Y n
1 )ρ ≤ Hmax(Xn

1 |Y n
1 )ρ′ ≤ log d⌊n(p+δ)⌋. (191)

Inserting our choice for δ completes the proof.

Now, let’s add conditioning on an event Ω that occurs with probability pΩ > 0. We can express the
state (185) as ρXn

1 Y n
1

= Pr[Ω]ρXn
1 Y n

1
|Ω + (1 − Pr[Ω])ρXn

1 Y n
1

|¬Ω.

Lemma 6 For any ϵ > 0 and 0 < pΩ ≤ 1 it holds

Hϵ
max(Xn

1 |Y n
1 )ρ|Ω ≤ np log d+

√
n

2 ln 2
ϵ2 Pr[Ω] log d. (192)

Proof.
Let ϵ > 0 and define δ :=

(
ln 2−ln pΩ−2 ln ϵ

2n

) 1
2 . Again, we divide ρXn

1 Y n
1

|Ω = ρ′Xn
1 Y n

1
|Ω +ρ′′Xn

1 Y n
1

|Ω, where

ρ′Xn
1 Y n

1
|Ω =

∑
x1,...,xn∈X∪{⊥}

∑
y1,...,yn∈{0,1}n∑

i
yi≤⌊n(p+δ)⌋

PXn
1 Y n

1
(x1, ..., xn, y1, ..., yn|Ω)

× |x1, ..., xn⟩ ⟨x1, ..., xn|Xn
1

⊗ |y1, ..., yn⟩ ⟨y1, ..., yn|Y n
1
, (193)

ρ′′Xn
1 Y n

1
|Ω =

∑
x1,...,xn∈X∪{⊥}

∑
y1,...,yn∈{0,1}n∑

i
yi>⌊n(p+δ)⌋

PXn
1 Y n

1
(x1, ..., xn, y1, ..., yn|Ω)

× |x1, ..., xn⟩ ⟨x1, ..., xn|Xn
1

⊗ |y1, ..., yn⟩ ⟨y1, ..., yn|Y n
1
, (194)
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Let us define

κ := Tr
[
ρ′′Xn

1 Y n
1

|Ω
]

(195)

=
n∑

k=⌊n(p+δ)⌋+1
Pr (|{i : Yi = 1}| = k|Ω) (196)

= 1
Pr[Ω]

n∑
k=⌊n(p+δ)⌋+1

Pr (|{i : Yi = 1}| = k ∩ Ω) (197)

≤ 1
Pr[Ω]

n∑
k=⌊n(p+δ)⌋+1

pk(1 − p)n−k

(
n

k

)
(198)

= 1
Pr[Ω] Pr[k > n(p+ δ)]. (199)

By Hoeffding’s inequality, it holds κ ≤ e−2nδ2

pΩ
≤ ϵ2

2 . By [51], Lemma 3.17, it then holds for the purified
distance

Pr(ρXn
1 Y n

1
|Ω, ρ′Xn

1 Y n
1

|Ω) ≤
√∥∥∥ρXn

1 Y n
1

|Ω − ρ′Xn
1 Y n

1
|Ω
∥∥∥

1
+ Tr

(
ρXn

1 Y n
1

|Ω − ρ′Xn
1 Y n

1
|Ω
)

=
√

2κ ≤ ϵ (200)

hence ρ′|Ω is in the ϵ-ball around ρ|Ω. Consequently, as only the non-trivial Xi contribute to the max
entropy, it holds

Hϵ
max(Xn

1 |Y n
1 )ρ|Ω ≤ Hmax(Xn

1 |Y n
1 )ρ′|Ω ≤ log d⌊n(p+δ)⌋. (201)

Inserting our choice for δ completes the proof.

D Perturbative analysis for finite-key distillation

The framework presented in (4.3) provides a method to derive finite secret key rates via Frank-Wolfe and
the dual problem (131) using a min-tradeoff function. This technique has the drawback that the dual
variables appear in the correction terms of the finite key rate (82), and thus these corrections are not
directly optimised. Eventually, this poses a problem that harms the performance of our methodology,
especially for small numbers of rounds n. We overcome this obstacle by employing a perturbative
analysis via genetic algorithms—for the original dual objective (131), we apply a modification

ℓ0p̃0,ε′(ν⃗, µ⃗) → ℓ0p̃0,ε′(ν⃗, µ⃗) − ζp̃0(κ⃗) (202)

given by a perturbative term

ζp̃0(κ⃗) = κ0∥p̃0∥1 + κ1∥p̃0∥2 + κ2∥p̃0∥∞. (203)

Let us observe that, for κ⃗ ∈ R3
+, the perturbed dual objective serves as a lower bound for the original

one. Moreover, the perturbation acts as a term that reduces the spread of the dual variables when
the new objective dual is employed, and since both maximisations are executed under the same set of
constraints, we can solve the SDP given by the perturbed objective function, and insert the solution
in the original version (131) to build the min-tradeoff function. In order to derive useful values for κ⃗
that balance a minimised value for the dual variables with an increased performance in the finite-key
analysis, we use a step inspired by genetic algorithms. The method goes as follows.
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Algorithm 1 Genetic subroutine

For round m ∈ {1, ..., 5} perform the following steps:

1. Generate a set of random vectors {κ⃗j}100
j=1, with coefficients ranging between 0 and 10−3.

2. For every vector, define a perturbed objective dual as (202) for the maximisation (131).

3. Solve the resulting SDP, and use the solution to calculate both the min-tradeoff function and the
finite secret key rate according to Theorem 1.

4. Record as Sm the highest finite key rate achieved for the iteration.

5. Discard the vectors that provide finite rates below the percentile 10, and those whose value for
the spread of the min-tradeoff function is above the percentile 95.

6. Combine randomly the remaining vectors in 90 pairs (κ⃗i, κ⃗j), with the associated finite rates
(Fi, Fj), and create a new population of vectors.

7. For each pair (κ⃗i, κ⃗j), create a vector κ⃗k by means of genetic crossings. For l ∈ {0, 1, 2}, every
entry κl,k of the new vector is evaluated with the following procedure:

• Generate a random value p ∈ [0, 1] using a uniform distribution. If p > 0.9, assign to κl
k a

random value between 10−8 and 10−1.

• Otherwise, draw a value from a binomial distribution with a bias Fi/(Fi + Fj) towards the
zero. If the value is zero, evaluate κl,k := κl,i, and otherwise κl,k := κl,j .

8. Complete the new population by adding the 10 best performing vectors (in terms of finite key
rates) from the previous round.

9. Start over the routine with the new set of vectors.

Once this subroutine is complete, the final secret key rate is given by the maximum value in
{S1, ..., S5}. We note that this approach is purely heuristic, and it can be further improved by finely
adjusting the number of iterations and the range of values for the coefficients. Nevertheless, it provides
a proper framework to derive reliable, high key rates in the finite setting. In particular, it enables us
to reduce the value of the coefficients ϵ, ϵcPE and ϵtom without affecting noticeably the results of our
method.
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