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Learning properties of quantum states
without the IID assumption

Omar Fawzi1, Richard Kueng2, Damian Markham 3 & Aadil Oufkir 1,4

Wedevelop a framework for learning properties of quantum states beyond the
assumption of independent and identically distributed (i.i.d.) input states. We
prove that, given any learning problem (under reasonable assumptions), an
algorithm designed for i.i.d. input states can be adapted to handle input states
of any nature, albeit at the expense of a polynomial increase in training data
size (aka sample complexity). Importantly, this polynomial increase in sample
complexity can be substantially improved to polylogarithmic if the learning
algorithm in question only requires non-adaptive, single-copy measurements.
Among other applications, this allows us to generalize the classical shadow
framework to the non-i.i.d. setting while only incurring a comparatively small
loss in sample efficiency.We leverage permutation invariance and randomized
single-copy measurements to derive a new quantum de Finetti theorem that
mainly addresses measurement outcome statistics and, in turn, scales much
more favorably in Hilbert space dimension.

The advent of quantum technologies has led to a notable amount of
tools for quantum state and process learning. These are employed as
tools within use cases, but also to test applications and devices them-
selves. However, almost all existing methods require the assumption
that the devices or states being tested are prepared in the same way
over time – following an identical and independent distribution
(i.i.d.)1–10. In various situations, this assumption should not be taken for
granted. For instance, in time correlated noise, states and devices
change in time in a non-trivial way11–13. Moreover, in settings where we
cannot trust the devices or states – for example, originating from an
untrusted, possibly malicious manufacturer, or states that are dis-
tributed over untrusted channels – the assumption of i.i.d. state pre-
parations can be exploited bymalicious parties tomimic good behavior
whilst corrupting the intended application. Avoiding this assumption is
crucial for various applications such as verified quantum computation14

or tasks using entangled states in networks15, such as authentication of
quantum communication16, anonymous communication17, or dis-
tributed quantum sensing18. At the core of the security for these appli-
cations is some verification procedure which does not assume i.i.d.
resources, however they are all catering for particular states or pro-
cesses, with independent proofs and with differing efficiencies.

The main contribution of this paper is to develop a framework to
extend existing i.i.d. learning algorithms into a fully general (non-i.i.d.)
setting while preserving rigorous performance guarantees. See Theo-
rem 1 and Theorem 3 for the type of results we provide. The main
technical ingredient is a variant of the quantum de Finetti theorem for
randomized permutation invariantmeasurements (See Theorem 2). As
a concrete example, we apply our findings to the task of feature pre-
diction with randomized measurements (classical shadows)7,19,20 (See
Proposition 1). We then apply these results to the problem of state
verification, allowing us to find the first explicit protocol for verifying
an arbitrarymultipartite state, showing the power of these techniques.

Results
In the following, we start by showing how to evaluate an algorithm in
the non-i.i.d. setting. Then, we show that, in principle, general algo-
rithms can be adapted to encompass non-i.i.d. input states at the
expense of an overhead in the copy complexity. Next, we reduce sig-
nificantly this overhead for incoherent non-adaptive algorithms using
our quantumde Finetti theorem. Finally, we apply this extension to the
problems of classical shadows and verification of pure states in the
non-i.i.d. setting.
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Evaluating a learning algorithm
The first difficulty we face is to define what it means for a learning
algorithm to achieve some learning task on a non-i.i.d. state. In the
i.i.d. setting, a learning algorithm requests N copies of an unknown
quantum state and is provided with the quantum state

ρ= σ�N 2 ðCd × dÞ�N . Subsequently, the learning algorithm makes
predictions about a property of the quantum state σ. This algorithm
is evaluated by contrasting its predictionswith the actual property of
the quantum state σ. To motivate our general definition, we imagine
a black box fromwhich we can request copies. On the first query, we
receive a system that we call A1 and on the kth query, we receive the
system Ak. Learning means making a statement about some of the
outputs of the black box (e.g., the state is close to ∣0i). With the i.i.d.
assumption, the black box always outputs the same state. Removing
the i.i.d. assumption, the learning algorithm is presented with a

general quantum state ρ 2 ðCd ×dÞ�N where N is the number of
requested copies. In this case, we have to specify the system about
which we make the statement (this is the system that would be used
for a later application for example). The most natural choice is to
take a system at random among the ones that were requested. In
other words, we use the common idea in machine learning of
separating the data set (here the N systems that we denote A1,…, AN)
into a training set used for estimation and a test set used for eva-
luation. We refer to Fig. 1 for a visual illustration. This idea was
previously used in the context of quantum tomography2,
verification21, and generalization bounds22.

The choice of which systems are used for training and which are
used for testing is random. More specifically, we apply a random
permutation (that the learner does not have access to) to the systems
A1…AN and we fix the training set to be the first N−1 systems and the
test set is composed of the last system. Thus, starting with the general
state ρA1 ...AN , we obtain after the random permutation a state that we
denote ρA1 ���AN . Written explicitly

ρA1 ���AN =
1
N!

X
π2SN

ρπ ,

where SN denotes the set of permutations and ρπ is obtained by
permuting the systems A1…AN of ρ according to π. The learning
algorithm B is applied to the training set A1…AN−1 and makes a
prediction that we denote p and we test this prediction against
the system AN. The learning task will be described by a family of
sets SUCCESSε where ε should be seen as a precision parameter.
The pair (p, σ) ∈ SUCCESSε if prediction p is correct for the state σ
with precision ε. As an example, for the task of predicting M
observables O1, …, OM (shadow tomography), we would have

p = (p1, …, pM) ∈ [0, 1]M and

SUCCESSε = fððp1, . . . ,pM Þ,σÞ : 8i 2 ½M�, jpi � Tr Oiσ
� �j≤ εg:

Note that this is precisely the learning task which has motivated (i.i.d.)
classical shadows7,20.

We evaluate a learning algorithm B for the task described by
SUCCESSε on the input state ρA1 ...AN as follows. The algorithm B takes as
input the systems A1…AN−1 and outputs a prediction p 2 P and a cali-
bration information c 2 C. The role of the calibration information is to
determine the reduced state of AN and can range from trivial ; to all
measurement outcomes. In other words, (c, p) follows the distribution
BðρA1 ���AN�1 Þ, which we denote by: ðc,pÞ � BðρA1 ���AN�1 Þ. For an outcome
(c, p), we write ρAN

c,p for the reduced state of AN of the state ðB �
idÞðρA1 ���AN Þ conditioned on the outcome of B being (c, p). Finally, we
define

δBðN,ρA1 ���AN , εÞ=Pðc,pÞ�BðρÞ p,ρAN
c,p

� �
=2 SUCCESSε

h i
: ð1Þ

We make a few remarks about this definition assuming c= ; for sim-

plicity. First, in the i.i.d. setting we have that ρAN
p = σ for any p 2 P and

we recover the usual definition of error probability. Second, note that it
is essential to consider the state of AN conditioned on the outcome p.

One might be tempted to replace ρAN
p with the marginal ρAN but this

would be both unachievable and undesirable. In fact, consider the

simple example ρ= 1
2 ð∣0i 0h ∣�N + ∣1i 1h ∣�NÞ and we would like to esti-

mate the value of the observable O= ∣1i 1h ∣. Note that Pp�BðρÞ �½ �=
1
2Pp�Bð∣0i 0h ∣�N Þ �½ �+ 1

2Pp�Bð∣1i 1h ∣�N Þ �½ �. As such, with the naive definition

using the marginal ρAN which is I=2 in this case, the error probability
would be given by 1

2Pp�Bð∣0i 0h ∣�N Þ j 12� pj>ε� �
+ 1

2Pp�Bð∣1i 1h ∣�N Þ j 12� pj>ε� �
.

Clearly any good learning algorithm should work for the i.i.d. states

∣0i 0h ∣�N , ∣1i 1h ∣�N and this implies that the error probability δBðN,ρ, εÞ
is close to 1 for this choice of ρ. For this example, it is desirable that the

learning algorithm first detects which of the two states ∣0i 0h ∣�N or

∣1i 1h ∣�N has been prepared and then learns the state consistently. This
is captured by the definition (1).

A third remark about the definition we use is that the error
probability is evaluated for the averaged state ρ, or in other words the
learner does not have access to the randomly chosen permutation π.
Another possibility would be to define the error probability as an
average over permutations π of the error probability evaluated for the
permuted state ρπ, i.e.,

δ0BðN,ρA1 ���AN , εÞ=Eπ Pðc,pÞ�Bðρπ Þ p, ðρπÞAN
c,p

� �
=2 SUCCESSε

h ih i
: ð2Þ

It turns out that this definition renders learning impossible in many
cases. In fact, we show in Supplementary Note 1 that for the simplest
possible classical task of estimating the expectation of a binary random
variable, it is not possible to achieve δ0B<1=4 for all states. This shows that
requiring δ0B to be small cannot be achieved in general and it justifies our
choice in Eq. (1).We also remark that for verificationproblems,where the
prediction is of the form Accept/Reject and we only want to express the
soundness condition for all states in expectation, then the expression for
the error probability is linear in the state (see Supplementary Note 4). As
such, in this case, whether the permutation is available to the learner or
not does not make a difference. With our definition, we have
δBðN,ρ, εÞ= δBðN,ρ, εÞ, so tomake thenotation lighter, we assume in the
rest of the paper that ρ is permutation invariant, i.e., ρ =ρ.

Adapting a learning algorithm designed for i.i.d. inputs
Our first result transforms any learning algorithm A for the task
SUCCESSε designed for i.i.d. input states to a learning algorithm B for

Fig. 1 | Illustration of a general state learning algorithm. A learning algorithm
consumes (N−1) copies of ρ to construct a prediction p. Success occurs if p is
(approximately) compatible with the remaining post-measurement test copy ρAN

p .
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the same task without requiring the i.i.d. assumption at the cost of an
increased number of queries.

Theorem 1. (General algorithms in the non-i.i.d. setting). Let ε > 0, 1 ≤
k <N/2 and d be the dimension of the Hilbert spaces A1,…, AN. LetA be
a learning algorithm designed for i.i.d. input states. There exists a
learning algorithm B taking arbitrary inputs on N systems and having
an error probability (1) satisfying

δB N,ρA1 ���AN , 2ε
� �

≤ sup
σ : state

δA k,σ�k , ε
� �

+O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3d2 logðdÞ

Nε2

s0
@

1
A:

Note that the evaluation of a learning algorithm is defined by first
randomly permuting the systems A1…AN so wemay assume that ρA1 ���AN

is invariant under permutations and the systems are identically dis-
tributed. The first term in the bound of Theorem 1 is the worst case
error probability in the i.i.d. setting. So, we can regard the parameter k
as the copy complexitywithin the i.i.d. setting.Hence, inorder to attain
a low total error probability in the non-i.i.d. setting, it is sufficient to
take a total number of copies N =Ωðk3d2 logðdÞÞ. This result shows in
principle that any learning algorithm designed for i.i.d. states can be
transformed into one for general states at an additional cost that is
polynomial in the dimension d.

A possible algorithm B achieving the performance of Theorem 1,
illustrated in Fig. 2 (Left) and formally described in Algorithm 2 (dis-
played in Box 2), partitions the training data into 3 parts. For that we
choose a random number (l � Uniffk + 1, . . . , k + N

2g). The first part has
size l−k and each system is measured using some fixed measurement
Mdist leading to an output string w. The second part is of size k and we
apply the learning algorithmA and return this prediction. The third part
consists of N−l−1 systems that are not used by the learning algorithm.

To control the error probability of Algorithm B, we use the de
Finetti theorem of ref. 23 (proof of Theorem 2.4) to obtain the
approximation for all 1 ≤ k < N/2:

El�Uniffk + 1, ..., k + N
2g,w�M�ðl�kÞ

dist
ρAk + 1 ���Alð Þ ρA1 ���Ak

w � ρA1
w

� ��k				
				

				
				
1


 �
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s
,

ðgFÞ

whereρA1 ���Ak
w is the state conditionedonobserving theoutcomew after

measuring the quantum state ρAk + 1 ���Al with a fixedmeasurement device

M�ðl�kÞ
dist

(which should be an informationally-complete measurement

satisfying a low-distortion property) and ρA1
w denotes the reduced

quantum state derived by tracing out the systems At for t > 1 from the

quantum state ρA1 ���Ak
w . This theorem shows that when measuring a

sufficiently large number of systems of a permutation invariant state,
the remaining systems become approximately independent. Crucially,

in (gF) the approximation of the state ρA1 ���Ak
w by the i.i.d. state ðρA1

w Þ
�k

is
conducted using the trace-norm. This implies that any algorithm
utilizing arbitrary measurement strategies that necessitate i.i.d. input
states can be generalized to the non-i.i.d. setting at the cost of a new
error probability bounded as in Theorem 1. Unfortunately, for some
tasks, the additional cost in Theorem 1 is prohibitive. For example, for
classical shadows, we expect that the dependence on the dimension d
be at most logarithmic.

An example of ref. 24 shows that the dependency in the dimen-
sion can not be lifted for a general de Finetti theorem with the trace-
normapproximation.On the other hand, the authors of ref. 25 reduced
the dependency in the dimension for the LOCC norm. Specifically, it is
shown25 that for a permutation invariant state ρA1 ���AN and 1 ≤ k <N,
thereexists a probabilitymeasure denoted as ν, such that the following
inequality holds:

supΛ2, ...,Λk
id� Λ2 � � � � � Λk ρA1 ���Ak �

Z
dνðσÞσ�k

� 				
				

				
				
1
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 logðdÞ
N � k

s
, ðIFÞ

where the maximization is over measurements channels (a measure-
ment channel corresponding to ameasurement deviceM= fMxgx2X is
the quantum channel ΛðρÞ=Px2XTr Mxρ

� �
∣xi xh ∣ where f∣xigx2X is an

orthonormal basis). Initially, this might appear adequate for relaxing
the assumption of i.i.d. state preparations with a low overhead. How-
ever, the process of extending algorithms from i.i.d. inputs to a mix-
ture of i.i.d. states (not to mention permutation-invariant states) is far
from straightforward, particularly when dealing with statements that
require a correctness with high probability. To address this difficulty,
we use the same techniques from ref. 25 and show a randomized local
quantum de Finetti theorem.

Theorem2. (Randomized local de Finetti). Let ρA1 ���AN be a permutation
invariant quantum state, fΛrgr2R be a set ofmeasurement channels and
q be a probability measure on R. For all 1 ≤ k < N/2, the following
inequality holds:

Eðr1, ..., rN Þ�q�N , l�Uniffk + 1, ..., k + N
2gEw id� Λr2

� � � � � Λrk
ρA1���Ak
w � ρA1

w

� ��k� 				
				

				
				
1


 �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
,

Fig. 2 | Caricature of main results: how to lift an i.i.d. learning algorithm A

beyond the i.i.d. setting. Left: the performance of general learning algorithms is
covered by our first main result (Theorem 1). Right: the performance of non-
adaptive and incoherent learning algorithms is covered by our second main result
(Theorem3). Restricting to non-adaptive and incoherentmeasurementMr leads to

much better theoretical performance guarantees. Mdist is a measurement device
with low distortion,w is calibration, p is prediction,A is the data processing of the
i.i.d. algorithm andMA

r is a measurement device uniformly chosen fromA's set of
measurements. Success occurs if p is (approximately) compatible with the
remaining post-measurement test copies ρAN

l,w,p or ρAN
l, r,w,p.
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where w is obtained by applying the channel Λrk + 1
� � � � � Λrl

to the
systems Ak+1 ⋯ Al of ρ.

The result we establish in Theorem 4 is actually slightly stronger:
we do not need ρA1 ...AN to be permutation invariant, it suffices to
choose a permutation of the systems (A1, …, AN) at random, and the
result above holds in expectation over this choice. Moreover, it
suffices to sample (r1, …, rN) ~ qN from a permutation-invariant mea-
sure on RN .

Observe that our de Finetti theorem requires stronger assump-
tions than the local de Finetti theorem (1F)25: the distribution of the
measurement channels should be permutation invariant (as opposed
to arbitrary). However, the implications of our de Finetti theorem are
also stronger than the local de Finetti theorem (1F) in that it approx-
imates the projection of the permutation invariant state to exactly i.i.d.
states (instead of mixture of i.i.d. states).

It is worth noting that the approximation error in Theorem 2 is
significantly smaller than the previous approximation error (gF).
Notably, the dependence on the local dimension d is logarithmic,
which implies that the total number of copies N only needs to scale as

Ωðk2 logðdÞÞ, as opposed to the more demanding Ωðk3d2 logðdÞÞ.
However, the approximation of the state ρA1 ���Ak

w by the i.i.d. state

ðρA1
w Þ
�k

in the general trace-norm is no longer guaranteed. This asser-
tion now holds only when applying independent local measurement
channels drawn from fΛrgr2R according to the distribution q on the

quantum state ρA1 ���Ak
w . For learning algorithms that are non-adaptive

and incoherent (performing single copy measurements using a set of
measurement devices chosen before starting the learning procedure),
this is enough to bound their error probability and leads to the fol-
lowing theorem.

Theorem 3. (Non-adaptive algorithms in the non-i.i.d. setting). Let
ε >0 and 1 ≤ k <N/2. Let A be a learning algorithm designed for i.i.d.
input states and performing non-adaptive incoherent measurements.
There is an algorithm B that takes as input an arbitrary state on N
systems and possessing an error probability:

δB N,ρA1 ���AN , 2ε
� �

≤ supσ : stateδA k,σ�k , ε
� �

+O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2log2ðNÞ logðdÞ

Nε2

s0
@

1
A:

In terms of copy complexity, to ensure an error probability δ, the
number of copies in the non-i.i.d. setting should be

Nnon�iid =Ω
logðdÞ
δ2ε2

� kiidðε,δÞ2log2ðkiid=δÞ
� 

,

where k iid(ε, δ) is a sufficient number of copies needed to achieve δ/2
correctness in the i.i.d. setting with a precision parameter ε/2.

To prove Theorem 3, we provide an algorithm B, illustrated in
Fig. 2 (Right) and formally described in Algorithm 1 (displayed in
Box 1). Note that asA is assumed to be incoherent and non-adaptive, it
is described by some measurements fMrgr2R. The algorithm B parti-
tions the training data into 3 parts. We choose a random number
(l � Uniffk + 1, . . . , k + N

2g). Thefirst part has size l−k and each system is
measured using somemeasurementMr , where r is chosen at random.
This step gives anoutput string thatwedenotew. The secondpart is of
size k andweapply the learning algorithmA and return thisprediction.
The third part consists of N−l−1 systems that are not used by the
learning algorithm. Besides this, Algorithm B returns also the out-
comes w as calibration data.

BOX 1

Algorithm 1 - Predicting properties of quantum states in the non-i.i.d.
setting - Non-adaptive algorithms

Require: The measurements fMA
t g1�t�kA of algorithm A. A permutation invariant state ρA1 ���AN .

Ensure: Adapt the algorithm A to non-i.i.d. inputs ρA1 ���AN .

1. For k = kA logðkA=δAÞ, sample l � Uniffk + 1, . . . , k + N
2g and r= ðr1, . . . , rlÞ�

iid
Uniff1, . . . , kAg.

2. For t = k + 1, …, l, apply MA
rt
to system At and obtain outcome w �l

t= k + 1MA
rt
ðρÞ.

3. For t = 1, …, k, apply MA
rt
to system At and obtain outcome v �k

t= 1MA
rt
ðρwÞ.

4. For t= 1, . . . , kA, let sðtÞ 2 ½kA logðkA=δAÞ� be the first integer such that rs(t) = t.
5. Run the prediction of algorithm A to the measurement outcomes vsð1Þ, . . . , vsðkAÞ and obtain p.

6. Return: l, r,w,pð Þ.

BOX 2

Algorithm 2 - Predicting properties of quantum states in the non-i.i.d.
setting - General algorithms

Require: Measurement A : LðA1 . . .AkÞ ! CP . A permutation invariant state ρA1���AN .
Ensure: Adapt the algorithm A to non-i.i.d. inputs ρA1 ���AN .

1. Sample l � Unif fk + 1, . . . , k + N
2g.

2. Apply Mdist to each system Ak+1 to Al and obtain the outcome w M�ðl�kÞ
dist
ðρÞ.

3. Run algorithm A on systems A1…Ak and obtain the outcome p AðρÞ.
4. Return: (l, w, p).
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Many problems of learning properties of quantum states can be
solved using algorithms that perform non-adaptive incoherent mea-
surements - that is, measurements which are local on copies and
chosen non-adaptively (see Definition 5 for a formal definition). This
includes state tomography26, shadow tomography using classical
shadows7, testing mixedness27, fidelity estimation1, verification of pure
states5 among others. For all these problems, we can apply Theorem 3
to extend these algorithms so that they can operate even for non-i.i.d.
input states (see Methods’ subsection “Applications”). Here, we pre-
sent this extension for observable predictionvia classical shadows. The
learning task is to ε-approximate M target observables trðOiρÞ in an
unknown d-dimensional state ρ.

Proposition 1. (Classical shadows in the non i.i.d. setting). Fix a col-
lection of M observables Oi on an n-qubit system that are also k-local.
Then, we can use (global or local) Clifford measurements to success-
fully ε-approximate all target observables in the reduced test statewith
probability at least 2/3. The number of copies required depends on the
measurement process (global/local Clifford) and scales as

N = ~O n3maxi2½M� k Oik42log2ðMÞ
ε6

 !
(global Clifford) ,

N = ~O nk216kmaxi2½M� k Oik41log2ðMÞ
ε6

 !
(local Clifford) ,

where ~O hides log logðMÞ and logð1=εÞ factors.
Notably, taking classical shadows techniques allows us to perform

verification in the non-i.i.d. setting21 without even revealing or making
assumptions on the verified target state.

Application: verification of pure states
The verification of pure states plays an important role in quantum
information, notably in the cryptographic setting, where devices, chan-
nels or parties are not trusted8. This stems from the view of quantum
states as resources for certain tasks, which is the case for many appli-
cations in quantum information, where the most challenging part is the
preparation (and/or distribution) of large entangled states, with which
various applications can be carried out by easier, usually local, opera-
tions. In measurement-based quantum computing, computation is car-
ried out by single qubit measurements on a large entangled graph
state28. In networks, many applications rely on the sharing of particular
entangled resource states, such as anonymous communication29, secret
sharing30, and distributed sensing31. In these cases, what this means is
that, once we can be sure we have the good resource state, we can
confirm the application itself. The ability to verify the resource state is
then veryuseful, especially, for example, if the resource state is issuedby
anuntrusted server, or sharedover anuntrustednetwork. In these cases,
wewould clearly not like tomake the assumptionof an i.i.d. source since
this would correspond to assuming i.i.d. attacks by the malicious party.
In the simplest case themalicious partywould behavewell on some runs
(in order to convince the user the state is a good resource), and badly on
the others (potentially corrupting the application). We then require
verification of pure resources states, without the i.i.d. assumption. Once
armed with this, for example, verified quantum computation, can be
achieved by verifying the underlying resource graph state32. Similarly,
verifying the underlying resource states provides security over untrus-
ted networks for anonymous communication33, secret sharing34 and
distributed sensing18.

As an application of Theorem 3 and Proposition 1, we can show
that any n-qubit pure state can be verified with either ~O n

ε6

� �
Clifford

measurements (see Proposition 4) or ~Oðn316n

ε6 Þ Pauli measurements (see
Proposition 5). In words, a verification algorithm should accept only
when the test set (post-measurement state) is ε-close to the ideal state
in fidelity. Our proposed algorithm offers two significant advantages:

(a) it does not rely on the assumption of i.i.d. state preparations, and
(b) it does not demand prior knowledge of the target pure state during
the data acquisition phase (that is, the measurements in the algorithm
are independent of the state we wish to verify).

Notably, existing verification protocols in the non-i.i.d. setting are
state-dependent, such as stabilizer states15,32,35, weighted graph states,
hypergraph states36, and Dicke states37. In contrast, our protocol is
independent of the state to be verified. This not only adds to its sim-
plicity but also offers potential advantages in concealing information
from themeasurement devices regarding the purpose of the test. This
blindness is a crucial aspect of many protocols for the verification of
computation14, making this feature valuable in such contexts. More-
over, in both network and computational settings, having a universal
protocol simplifies the management of verification steps in broader
scenarios where different states may be used for various applications.

Discussion
Wewill now give an overview of the relationship between these results
and previous works.

The foundational de Finetti theorem, initially introduced by de
Finetti38, states that exchangeable Bernoulli random variables behaves
as a mixture of i.i.d. Bernoulli random variables. Subsequently, this
statement was quantified and generalized to finite sample sizes and
arbitrary alphabets by refs. 39,40. This theorem was further extended
to quantum states. Initially in refs. 41,42, the authors established
asymptotic generalizations, while in refs. 24,43, the authors presented
finite approximations in terms of trace-norm. Later works25,44

improved these approximations for weaker norms: exponential
improvements in the dimension dependence are achieved using the
one-way LOCC norm, initially for k = 2 by ref. 44, and subsequently for
general k by ref. 25. In thementionedworks, the permutation-invariant
state was approximated by a mixture of i.i.d. states. In ref. 23, the
authors introduced an approximation to i.i.d. states in terms of the
trace-norm. In this work, we improve the dimension dependence of
this approximation, employing a randomized LOCC norm instead of
the trace-norm. Lastly, it is worth noting that information-theoretic
proofs for classical finite de Finetti theorems were provided
by refs. 45–47.

For the problem of state tomography, the copy complexity in the
i.i.d. setting is well-established:Θ(d2/ε2) with coherentmeasurements3,48,
and Θ(d3/ε2) with incoherent measurements4,26,49, where ε denotes the
approximation accuracy. In the non-i.i.d. setting, the authors of ref. 2
introduced a formulation for the state tomography problem and pre-
sented a result using confidence regions. This result pertains to the
asymptotic regime, specifically when the state can be represented as a
mixture of i.i.d. states. In this article, we build upon the formulation of
ref. 2, and we discern between algorithms that return calibration infor-
mation and those that do not. Furthermore, we introduce a state
tomography algorithm with a finite copy complexity (in the non
asymptotic regime). Finally, the authors of ref. 50 have also proposed
non-i.i.d. tomography algorithms tailored for matrix product states.

The problem of shadow tomography is known to be solvable
with a complexity that grows poly-logarithmically with respect to
both the dimension and the number of observables, provided
(almost) all i.i.d. copies can be coherently measured6,9,51. However, if
we seek to extend this result to the non-i.i.d. setting using our fra-
mework, the copy complexity would be polynomial in the dimen-
sion. In the case of incoherent measurements, classical
shadows7,19,52–57 offer efficient algorithms for estimating properties of
certain observable classes. Leveraging our findings, these algorithms
can be adapted to the non-i.i.d. setting while maintaining compar-
able performance guarantees. Importantly, this extension retains
efficiency for the same class of observables. Finally, refs. 55,58,59
derived shadow tomography results assuming receipt of indepen-
dent (though not necessarily identical) copies of states. However, it
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is worth noting that the assumption of independence, which we
overcome in this article, is necessary for their analysis.

Regarding the verification of pure states, optimal and efficient
protocols have been proposed in scenarios where the verifier receives
independent or product states5,37,60. Recently, considerable attention
has been given to the verification of pure quantum states in the
adversarial scenario, where the received states can be arbitrarily cor-
related and entangled21,35,36,61–63. For instance, in ref. 61, the
authors proposed efficient protocols for verifying the ground states of
Hamiltonians (subject to certain conditions) and polynomial-time-
generated hypergraph states. Meanwhile, in ref. 21, the authors intro-
duced protocols to efficiently verify bipartite pure states, stabilizer
states, and Dicke states. Noteworthy attention has also been directed
towards the verification of graph states21,36,62,63. Furthermore, the
authors of ref. 64 studied device-independent verification of quantum
states beyond the i.i.d. assumption. Lastly, the verification of
continuous-variable quantum states in the adversarial scenario is stu-
died in refs. 65–67. Note that in all these cases the protocols depend
explicitly on the state in question.

In summary, we have developed a framework for learning prop-
erties of quantum states in the non-i.i.d. setting. The only requirement
we impose on the property we aim to learn is the robustness
assumption (Definition 3). It would be interesting to analyze the sig-
nificance of this assumption in the context of the beyond i.i.d. gen-
eralizations we prove in the paper (Theorems 5 and 8). Furthermore,
while only non-adaptive algorithms that employ incoherent measure-
ments are shown to be extended to encompass non-i.i.d. input states
without a loss of efficiency, an open research direction is to investigate
whether general algorithms can achieve a similar extension or if there
exists an information-theoretic limit.

One of the applications of our results provides the first explicit
protocol for verifying any multiparty quantum state, accompanied by
clear efficiency statements. However, our results have certain limitations.
As discussed in Results’ subsection “Evaluating a learning algorithm”, the
choice of the random permutation should be hidden from the learner in
general. In addition, for local Pauli measurements, the scaling is expo-
nential in the number of qubits, and while the scaling for Clifford mea-
surements is close to optimal, they are non-local across each copy. In
addition, the scaling in the error parameters is not optimal. Nevertheless,
we see our results as a first proof-of-principle showing that beyond i.i.d.
learning is feasible inmanysettingswithperformanceguarantees that are
comparable to the i.i.d. guarantees. We expect that further work will
improve the boundswe obtain both for the general statements as well as
using specificities of classes of learning tasks. In addition, we believe that
this work will contribute to the transfer of techniques between the areas
of learning theory and quantum verification.

Methods
We first present the necessary notation and preliminaries in the next
section. This section is essential for a complete understanding of the
evaluation of an algorithm in the non-i.i.d. setting and the distinction
we make between general and non-adaptive algorithms.

Notation and preliminaries
Let [d] denote the set of integers from 1 to d and [t, s] denote the set of
integers from t to s. Hilbert spaces are denoted A, B,… and we will use
these symbols for both the label of a quantum system and the system
itself.We letdAbe thedimensionof theHilbert spaceA. Let L(A) denote
the set of linear maps from A to itself. A quantum state on A is defined
as

ρ 2 LðAÞ : ρk0 and Tr ρ½ �= 1,

where ρ ≽ 0 means that ρ is positive semidefinite. The set of quantum
states on A is denoted by D(A). For an integer N ≥ 2, we denote the N-

partite composite system by A1A2⋯ AN = A1⊗ A2⊗⋯⊗ AN. A classical-
quantum state is a bipartite states that can be written in the form

ρXB =
X
x2X

px ∣xi xh ∣X � ρB
x ,

for some orthonormal basis f∣xigx2X of the classical outcome space X,
where p= ðpxÞx2X is a probability distribution and for x 2 X , ρB

x is a
quantum state. It will also be useful to interpret a classical quantum state
as ρXB 2 CX � LðBÞ, i.e., as a vector ðpxρ

B
x Þx2X of operators acting on B.

This interpretation is more appropriate when the classical system takes
continuous values. In this case, technicallyCX should be interpreted as
the space L1ðX ,μÞ with some measure μ on X . Quantum channels are
linear maps N : LðAÞ ! LðBÞ that can be written in the form

N ðρÞ=
X
x2X

KxρK
y
x for allρ 2 LðAÞ:

Here, the Kraus operators fKxgx2X are linear maps from A to B and
satisfy

P
x2XK

y
xKx = IdA

, where IdA
is the identity matrix in dA dimen-

sions (½IdA
�
i, j
= δi, j). Equivalently,N is trace preserving and completely

positive. The partial trace TrB :½ � is a quantum channel from AB to A
defined as

TrB ρ½ �=
XdB

i = 1

IAdA
� ih ∣B

� �
ρ IAdA

� ∣iiB
� �

for allρ 2 LðAÞ � LðBÞ:

For bipartite state ρAB, we denote the reduced state on A by
ρA =TrB ρAB

� �
. In general, for an N-partite state ρA1 ���AN and for two

integers t ≤ s∈ [N], we denote by ρAt ���As the quantum state obtained by
tracing out the systems Ai for i < t, as well as i > s. In formulas:

ρAt ���As =TrA1 ���At�1As + 1 ���AN
ρA1 ���AN
� �

:

In the situation where all systems except one (At for t∈ [N]) are traced
out, we use the notation

Tr�At
ρ½ �=TrA1 ���At�1At + 1 ���AN

ρA1 ���AN
� �

:

A quantum channel Λ with classical output system is called a mea-
surement channel, and is described by a POVM (positive operator-
valuedmeasure) fMxgx2X 2 LðAÞð ÞX where the measurement operators
satisfy Mx ≽ 0 and

P
x2XMx = IdA

. After performing the measurement
on a quantum state ρ ∈ D(A) we observe the outcome x 2 X with
probability Tr Mxρ

� �
. Themeasurement channel Λ should be viewed as

a linear map Λ : LðAÞ ! CX (preserving positivity and normalization)
defined by:

8ρ 2 LðAÞ : ΛðρÞ= ðTr Mxρ
� �Þx2X :

For a measurement operator 0≼Mx ≼ I acting on A, we write ρ con-
ditioned on observing the outcome x by:

ρB
x =

1
Tr MxρA
� � TrA Mx � IB

� �
� ρAB

h i
:

Note that this display is only well-defined if Tr Mxρ
� �

>0. We extend it
consistently to Tr Mxρ

� �
=0 by identifying ρB

x with a single fixed density
matrix, e.g. the maximally mixed state. The state ρ and the
measurement Λ define a probability measure PΛðρÞ :½ � on X by
PΛðρÞ x½ �=Tr Mxρ

A
� �

and we will usually write x to be a random variable
associated with this measure PΛðρÞ :½ �.

I.i.d. setting - input state. A common assumption in the field of
quantum learning is that the learning algorithm is provided with N

Article https://doi.org/10.1038/s41467-024-53765-6

Nature Communications |         (2024) 15:9677 6

www.nature.com/naturecommunications


independent and identically distributed (i.i.d.) copies of the unknown
quantum state.

Definition 1. (I.i.d. states). Let N ≥ 1 be a positive integer and
A1≅ A2≅⋯≅AN beN isomorphic quantum systems of dimension d. An
i.i.d. state refers to an N-partite quantum state ρ∈ D(A1 ⋯ AN) that can
be expressed as ρ = σ⊗N where σ ∈ D(A1) is a quantum state.

An i.i.d. state possesses the characteristic of permutation invar-
iance: if we permute the arrangement of the constituent states σ, the
overall state ρ = σ⊗N remains unchanged. For a formal definition of
permutation invariance, letSN be the permutation groupofN elements.

Definition 2. (Permutation invariant states). For π 2 SN , let Cπ be the
permutation operator corresponding to the permutation π, that is:

Cπ ∣i1
�� � � � � ∣iN

�
= ∣iπ�1ð1Þ

E
� � � � � ∣iπ�1ðNÞ

E
, 8i1, . . . , iN 2 ½d�:

A state ρ∈D(A1⋯AN) is permutation invariant if for allπ 2 SN wehave

ρA1 ���AN =Cπ ρ
A1 ���AN Cyπ :

Note that every i.i.d. state ρ = σ⊗N is permutation-invariant. The
converse is not necessarily true, however. Take, for example anN-qubit
GHZ state: ρ= ∣GHZN

�
GHZN

�
∣ with ∣GHZN

�
= ∣0 � � �0i + ∣1 � � � 1ið Þ=

ffiffiffi
2
p

.
This state is unaffected under permutation operators, but it is very far
from an i.i.d. tensor product. It is worthwhile to point out that per-
mutation invariance plays nicely with partial measurements. If ρ is
permutation invariant then for an operator 0≼Mx ≼ I acting on
A1 ⋯ At, the post-measurement state ρAt + 1 ���AN

x is also permutation
invariant. Sowe candefine the reduced state conditionedonobserving
x as:

ρAN
x =Tr�AN

ρAt + 1 ���AN
x

h i
=Tr�Aj

ρAt + 1 ���AN
x

h i
=ρ

Aj
x , 8j 2 ½t + 1,N�:

Problems/tasks. In this article, we consider problems of learning
quantum states’ properties. These problems can be formulated using a
SUCCESS event:

Definition 3. (Success formulation of learning properties of quantum
states). Aquantum learningproblemfor stateson the systemA is defined
by: a set P of possible predictions together with a set of successful
predictions SUCCESS � P ×DðAÞ. If (p, σ) ∈ SUCCESS, then p is con-
sidered a correct prediction for σ. Otherwise, it is considered incorrect.

Many problems have a precision parameter ε, wewrite in this case
SUCCESSε for the pairs (p, σ) for which p is a correct prediction for σ
within precision ε.

We say that the property SUCCESSε satisfies the robustness
assumption whenever

8ðσ, ξÞ 2 DðAÞ2, if k σ � ξk1 ≤ ε0, then ðp, σÞ 2 SUCCESSε ) ðp, ξÞ 2 SUCCESSε + ε0 :

Example 1. We illustrate the SUCCESS set for the shadow tomography,
full state tomography, verification of a pure state, and testing mixed-
ness problems:

• Shadow tomography: for some family ofM observablesO1,…,OM

satisfying 0≼Oi ≼ I, the objective is to estimate all their expec-
tation values within an additive error ε. In this case, a prediction is
an M-tuple of numbers in [0, 1], i.e., P = ½0, 1�M and the correct
pairs are given by

SUCCESSε = fðfμ1, . . . ,μMg, σÞ j 81≤ i≤M : jμi � Tr Oiσ
� �j1 ≤ εg 	 ½0, 1�M ×DðAÞ:

• State tomography: the objective is to obtain a description of the
full state. In this case, a prediction is a description of a density

operator, i.e., P =DðAÞ and we have

SUCCESSε = fðρ, σÞ j k ρ� σk1 ≤ εg 	 DðAÞ×DðAÞ:

• (Tolerant) verification of pure states: in this problem, the objec-
tive is to output 0 if the statewehave is ε-close to ∣Ψi and output 1
if it is 2ε-far from ∣Ψi. In this case, the prediction is a bit, i.e.,
P = f0, 1g and notice that this is a promise problem in the sense
that there are inputs for which any output is valid. For this reason,
it is simpler to define the incorrect prediction pairs:

ðSUCCESSεÞc = 1, σð Þj Ψh ∣σ∣Ψi≥ 1� ε
� �

∪

0,σð Þ j Ψh ∣σ∣Ψi≤ 1� 2ε
� � 	 f0, 1g×DðAÞ:

• (Tolerant) testing mixedness of quantum states: this problem is
similar to theprevious one, except thatweare testing if the state is
maximally mixed or not. In this case, we have

ðSUCCESSεÞc = 1, σð Þ
				 σ � I

d

				
				

				
				
1
≤ ε

� �
∪ 0, σð Þ

				 σ � I
d

				
				

				
				
1
≥ 2ε

� �
	 f0, 1g×DðAÞ:

Observe that all these problems, by the triangle inequality, satisfy the
robustness assumption.

Before specifying the algorithms we consider, let us first recall
how one could formulate a problem when the input state is non-i.i.d.

Non-i.i.d. setting - input state. Given a learning problem defined by
SUCCESSε, in the usual setting, an algorithm takes as an input an i.i.d.
state ρA1 ���AN = σ�N and outputs a prediction p. Then, we say that this
algorithm succeeds if (p, σ) belongs to the SUCCESS set. In the setting
where the input state ρA1 ���AN is no longer an i.i.d. state, it is not clear
when the algorithm succeeds. Inwhat follows, we follow2,21 andpresent
a way to evaluate algorithms with possibly non-i.i.d. input states.

Consider a collection of N finite dimensional quantum systems
A1≅⋯≅AN. We denote the dimension of A1 by d (for ann-qubit system
A1, we have d = 2n). This collection is shuffled uniformly at random so
that the state ρA1 ���AN 2 DðA1 � � �ANÞ is permutation invariant. We need
to form two sets:

• The train set which consists of the first N−1 copies of the state.
Some of these copies are measured in order to construct the
estimations necessary for the learning task, and

• The test set which consists of the last copy (the state onAN) that is
used to test the accuracy of the estimations deduced from the
train set. This copy should not be measured.

Since the state ρA1 ���AN can now be entangled, it is possible that the train
and test sets cannot be separated from each other. In particular, the
measurements we perform on the train set may affect the test set. In
addition, the choice ofmeasuring a copy or not can also affect the test
set. At the end, we compare the estimations from the train set with the
single copy of the test set (see Fig. 3 for an illustration).

Note that in the i.i.d. setting, i.e., ρ = σ⊗N, the train set will be of the
form σ⊗N−1 and the test set of the form σ where we compare the esti-
mations deduced frommeasuring the state σwith the test state σ. Thus
we recover the usual setting. The following example illustrates the
importance of choosing the test state as the post-measurement state.

Example 2. Consider the following permutation invariant state

ρA1 ���AN = 1
d

Pd
i= 1∣ii ih ∣�N :
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If we measure the first system A1 with the canonical basis
M= f∣ii ih ∣gi2½d�, we observe m ∈ [d] with probability 1/d and the state
collapses to:

ρA2 ���AN
m = ∣mi mh ∣�N�1:

After this initial measurement, the state of the last system AN is always
equal to ∣mi mh ∣. Therefore, it is more appropriate to compare the
prediction to ρAN

m = ∣mi mh ∣ rather than the reduced measurement
state ρAN = 1

d

Pd
i = 1∣ii ih ∣= I

d :

Algorithms. In a general algorithm, the prediction can be an arbitrary
quantum channel from the train set to a prediction.

Definition 4. (General algorithm). Let N ≥ 1 be a positive integer and
A1≅ A2≅⋯≅AN beN isomorphic quantum systems. An algorithm for a
learning problem with prediction set P is simply a measurement
channel B : LðA1 � � �AN�1Þ ! CP .

We will also be interested in a special class of learning algorithms:
non-adaptive incoherent algorithms that can only measure each sys-
tem separately and then apply an arbitrary classical post-processing
function.

Definition 5. (Non-adaptive algorithm). Let N ≥ 1 be a positive integer
and A1 ≅ A2 ≅ ⋯ ≅ AN be N isomorphic quantum systems. For a non-
adaptive algorithm, the prediction channel B should be of the form
B =D ° ðM1 � � � � �MN�1Þ where Mi : LðAiÞ ! CX i are measurement
channels, and D : CX 1 � � � � �CXN�1 ! CP is an arbitrary post-
processing channel (aka a classical data processing algorithm).

Error probability. We can assess an algorithm based on its probability
of error, which represents the likelihood that its outcomes do not
satisfy the desired property for a given test set or state. Note that if a
learning algorithm outputs more information than simply the predic-
tion p, this may influence the post-measurement state that we are
comparing against and influence the error probability. This leads us to
the following definition which allows the learning algorithm to output
auxiliary information, which we refer to as calibration. See Fig. 3 for an
illustration of algorithms with calibration information.

Definition 6. (Error probability in the non-i.i.d. setting with calibra-
tion). Let N ≥ 1 be a positive integer and A1 ≅ A2 ≅ ⋯ ≅ AN be N
isomorphic quantum systems. Let ρA1 ���AN 2 DðA1 � � �ANÞ be permuta-
tion invariant. A learning algorithm with calibration is given by a

quantum channel B : LðA1 . . .AN�1Þ ! CC �CP . The error probability
of the algorithm on input ρ is:

δBðN,ρA1 ���AN , εÞ=Pðc,pÞ�BðρÞ p,ρAN
c,p

� �
=2 SUCCESSε

h i
,

where (c, p) is a random variable having distribution BðρA1 ...AN�1 Þ.
Note that, if ρ is i.i.d., the conditioning on c, p does not have any

effect on the post-measurement state and Definition 6 coincides with
the usual definition of the error probability.

We refer to Supplementary Note 3 for the distinction between
error probabilities with and without calibration. In particular, we are
able to extend algorithms to the non-i.i.d. setting without calibration
for a wide range of learning problems that can be formulated using a
function with reasonable assumptions.

In the following, we state and prove a randomized local de Finetti
theorem.We then concentrate on non-adaptive algorithms employing
incoherent measurements and illustrate how to extend their applic-
ability to handle non-i.i.d. input states. In Methods’ subsection
“Applications”, we apply the results we obtained for non-adaptive
algorithms (Theorem 5) to specific examples, including observable
prediction with classical shadows, verification of pure states, fidelity
estimation, quantum state tomography, and testing the mixedness of
states. Finally, in Methods' subsection “General algorithms in the non-
i.i.d. setting”, we detail the process of adapting any algorithm to
function within the non-i.i.d. framework.

Randomized local de Finetti Theorem
In this section, we state and prove a randomized local de Finetti the-
orem. Note that the statement does not need the state ρA1A2 ���AN to be
permutation invariant, but we show that for most choices of permu-
tations of the systems (A1, A2, …, AN), the conditional state of the first
few copies is close to product.

Theorem 4. (Randomized local de Finetti). Let N ≥ 1 be a positive
integer and A1 ≅ A2 ≅ ⋯ ≅ AN be N isomorphic quantum systems of
dimension d. Let 1≤ k<

ffiffiffiffiffiffiffiffiffiffi
N

logðdÞ
q

. Let ρA1 ���AN be a state and let qN be a
permutation-invariant measure on RN . Let fΛrgr2R be a set of mea-
surement channels with input system A and output system X. Let
j = (j1, …, jN) be a random permutation of {1, …, N},
l � Uniffk + 1, . . . , k + N

2g, r = (r1,…, rN) ~ qN andw = (wl+1,…,wk+N/2) be
the outcomes of measuring the systems Ajl + 1

, . . . ,Ajk +N=2
using the

measurements Λrl + 1
, . . . ,Λrk +N=2

. The following inequality holds:

Ej, l, r�qN
X
w

prðwÞ id�
Ok + 1

i= 2
Λri

� �
ρ
Aj1
���Ajk + 1

l, r,w �
Ok + 1

i=2
ρ
Aji
l, r,w

� �			 						 			
1

" #

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
,

where prðwÞ=Tr wh ∣ðΛrl + 1
� � � � � Λrk +N=2

ÞðρAj1
...AjN Þ∣wi

h i
and we defined

the conditional state ρl,r,w as

ρ
Aj1
���Ajk + 1

l, r,w =
1

prðwÞ
TrAjk +2

���AjN
wh ∣ðΛrl + 1

� � � � � Λrk +N=2
ÞðρAj1

...AjN Þ∣wi
h i

:

Note that if ρA1 ...AN is permutation invariant, the random permutation j

is not needed andwe can replace ji by i and�k + 1
i= 1 ρ

Aji
l, r,w by ðρAN

l, r,wÞ
�k + 1

in

the above expressions.

The proof is inspired by refs. 25,68 and 23.
Proof. The mutual information is defined as follows:

I ðA1 : A2 : � � � : ANÞρ = SðρA1 Þ+ � � � + SðρAN Þ � SðρA1 ���AN Þ

Fig. 3 | A general algorithm for learning properties of quantum states in the
non-i.i.d. setting. A learning algorithm B takes as input the N−1 copies of the train
set and returns a prediction p and a calibration c. Success occurs if p is (approxi-
mately) compatible with the remaining post-measurement test copy ρAN

c,p.
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where SðρÞ= � Tr ρ logðρÞ� �
is the Von Neumann entropy of ρ.

The mutual information of quantum-classical state ξAj1
���Ajk

C =P
mpmρ

Aj1
���Ajk

m � ∣mi mh ∣C is defined as follows:

I ðAj1
: � � � : Ajk

jCÞ
ξ
=
X
m

pmI ðAj1
: � � � : Ajk

Þ
ρm
:

The chain rule implies:

I ðAj1
: � � � : Ajk

jCÞ
ξ
= I ðAj1

: Aj2
jCÞ

ξ
+ I ðAj1

Aj2
: Aj3
jCÞ

ξ

+ � � � + I ðAj1
� � �Ajk�1

: Ajk
jCÞ

ξ
:

Moreover, we can apply the data-processing inequality locally, for all
quantum channels Γi : LðAji

Þ ! LðXji
Þ, let ζ = Γ1 � � � � � Γk �

idðξAj1
���Ajk

C Þ we have:

I ðXj1
: � � � : Xjk

jCÞ
ζ
≤ I ðAj1

: � � � : Ajk
jCÞ

ξ
:

For every r = (r1, …, rN) define the state:

π
Aj1

Xj2
...XjN

r = id� Λr2
� � � � � ΛrN

ρAj1
���AjN

� �
:

We have by the chain rule:

Er�qN I Aj1
Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

� �
πr


 �

=Er�qN
Xk +N=2

l = k + 1
I ðAj1

Xj2
� � �Xjk

: Xjl
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �
:

ð3Þ

By taking the average over the random permutation j and using the
fact that the distribution qN is invariant under the permutation of the
systems k + 1 and l we have for all k + 1 ≤ l ≤ k + N/2:

Ej, r�qN I ðAj1
Xj2
� � �Xjk

: Xjl
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

=Ej, r�qN I ðAj1
Xj2
� � �Xjk

: Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �
,

hence:

Ej, r�qN

Xk +N=2

l = k + 1
I ðAj1

Xj2
� � �Xjk

: Xjl
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

=Ej, r�qN
Xk +N=2

l = k + 1
I ðAj1

Xj2
� � �Xjk

: Xjk + 1
jXjl + 1

. . .Xjk +N=2
Þ
πr


 �
:

ð4Þ

Now using the data-processing inequality for the partial trace channel
and the fact that qN is permutation invariant and averaging over j, we
obtain for all 2 ≤ i ≤ k and k + 1 ≤ l ≤ k + N/2:

Ej, r�qN I ðAj1
Xj2
� � �Xjk

: Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

≥Ej, r�q I ðAj1
Xj2
� � �Xji

: Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

=Ej, r�qN I ðAj1
Xj2
� � �Xji

: Xji+ 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �
:

ð5Þ

Then we can apply the chain rule to get for all k + 1 ≤ l ≤ k + N/2:

Xk + 1
i = 2

Ej, r�qN I ðAj1
Xj2
� � �Xji�1

: Xji
jXjl + 1

. . .Xjk +N=2
Þ
πr


 �

=Ej, r�qN I ðAj1
: Xj2

: � � � : Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �
:

ð6Þ

Now, for each k + 1 ≤ l ≤ k +N/2, we introduce the notations πr,w for the
states conditioned on the systems ðXjl + 1

, . . . ,Xjk +N=2
Þ taking the valuew,

and pr(w) for the probability of obtaining outcome w. Hence using
Pinsker’s inequality then Cauchy Schwarz’s inequality, we obtain:

Ej, r�qN I ðAj1
: Xj2

: � � � : Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

=Ej, r�qN
X
w

prðwÞI ðAj1
: Xj2

: � � � : Xjk + 1
Þ
πr,w

" #

≥
1
2
Ej, r�qN

X
w

prðwÞ π
Aj1

Xj2
���Xjk + 1

r,w � π
Aj1
r,w � π

Xj2
r,w � � � � � π

Xjk + 1
r,w

			 						 			2
1

" #

=
1
2
Ej, r�qN

X
w

prðwÞ id�
Ok + 1

i =2
Λri

� �
ðρAj1

Aj2
���Ajk + 1

l, r,w Þ � ρ
Aj1
l, r,w �

Ok + 1

i = 2
Λri
ðρAji

l, r,wÞ
			 						 			2

1

" #

≥
1
2

Ej, r�qN
X
w

prðwÞ id�
Ok + 1

i = 2
Λri

� �
ρ
Aj1
���Ajk + 1

l, r,w � ρ
Aj1
l, r,w � � � � � ρ

Ajk + 1
l, r,w

� �			 						 			
1

" # !2

:

ð7Þ

Combining the (In)Eqs. (3)–(7) we obtain:

Ej, r�qN I Aj1
Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

� �
πr


 �

≥
1
k

Xk +N=2

l = k + 1

Xk + 1

i= 2
Ej, r�qN I ðAj1

Xj2
� � �Xji�1

: Xji
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

=
N
2k

Ej, l, r�qN I ðAj1
: Xj2

: � � � : Xjk + 1
jXjl + 1

� � �Xjk +N=2
Þ
πr


 �

≥
N
4k

Ej, l, r�qN
X
w

prðwÞ id�
Ok + 1

i= 2
Λri

� �
ρ
Aj1
���Ajk + 1

l, r,w � ρ
Aj1
l, r,w � � � � � ρ

Ajk + 1
l, r,w

� �			 						 			
1

" # !2

:

Since I ðAj1
Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

Þ
πr

≤ logðdkÞ= k logðdÞ for all

r 2 RN , we obtain finally the desired inequality:

Ej, l, r�qN
X
w

prðwÞ id�
Ok + 1

i= 2
Λri

� �
ρ
Aj1
���Ajk + 1

l, r,w � ρ
Aj1
l, r,w � � � � � ρ

Ajk + 1
l, r,w

� �			 						 			
1

" #

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k
N
�Ej, r�qN I Aj1

Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

� �
πr


 �s

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k
N
� supj2SN , r2RNI Aj1

Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

� �
πr

s

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
:

ð8Þ

We refer to SupplementaryNote 2 for an illustration of Theorem4
for a specific permutation invariant state and a specific distribution of
measurements.

Non-adaptive algorithms in the non-i.i.d. setting
In this section, our emphasis is on problems related to learning
properties of quantum states (as defined in Definition 3) and algo-
rithms that operate through non-adaptive incoherent measurements
(as defined in Definition 5). We present a method to extend the
applicability of these algorithms beyond the constraint of i.i.d. input
states.

Let SUCCESSε define a property of quantum states. We consider a
fixed non-adaptive algorithm A that performs non-adaptive measure-
ments on the systems which make up the train set. Our approach
introduces a strategyB outlined inAlgorithm 1 (displayed in Box 1) and
illustrated in Fig. 4, which extends the functionality of the algorithmA
to encompass non-i.i.d. states. The input state, denoted as
ρA1 ���AN 2 DðA1 � � �ANÞ, is now an N-partite state that can be entangled.

In words, given a non-adaptive incoherent algorithm A that uses a
set of measurement devices fMtgt , Algorithm 1 measures a large num-
ber of the state’s subsystems using measurement devices uniformly
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chosen from fMtgt (seeFig. 4, red andgreenparts). This ensures that the
(small) portion of measured subsystems intended for the learning
algorithm approximately behave like i.i.d. copies (see Fig. 4, green part).
Then, in order to predict the property, Algorithm 1 applies the data
processing of Algorithm A to the outcomes of these subsystems.

More precisely, since A is a non-adaptive algorithm, it performs
measurements using the measurements devices fMA

t g1≤ t ≤ kA
. We

sample at each time a POVM uniformly at random from the set
fMA

t g1≤ t ≤ kA
so we need slightly more copies kA logðkA=δAÞ to

span fMA
t g1 ≤ t ≤ kA

.
Let l � Unif kA logðkA=δAÞ+ 1, . . . , kA logðkA=δAÞ+ N

2

� �
. For each

i ∈ [l], we choose ri 2 Uniff1, . . . , kAg and we measure the system Ai

using the measurement MA
ri
.

To compute the prediction, Algorithm B considers the
kA logðkA=δAÞ outcomes v of measurements Mr1

, . . . ,MrkA logðkA=δA Þ
.

Provided r1, . . . , rkA logðkA=δAÞ span the set f1, . . . , kAg, the prediction
algorithm of A is applied to the relevant systems (as described in
Algorithm 1). The coupon collector’s problem ensures that
r1, . . . , rkA logðkA=δAÞ spans all elements in f1, . . . , kAg with high
probability.

We can support this algorithm with the following rigorous bound
on the failure probability that only depends on problem-specific
parameters, as well as the performance of an ideal i.i.d. learning
algorithm.

Theorem5. (Non-adaptive algorithms in thenon-i.i.d. setting). LetN≥ 1
be a positive integer and A1 ≅ A2 ≅ ⋯ ≅ AN be N isomorphic quantum
systems of dimension d. Let ε > 0 and kA ≤N= logðNÞ. Let A be a non-
adaptive algorithm suitable for i.i.d. input states and performing
measurements with fMA

t g1≤ t ≤ kA
. Algorithm 1 has an error probability

satisfying:

δB N,ρA1 ���AN , 2ε
� �

≤ 2supl, r,wδA kA, ρAN
l, r,w

� ��kA
, ε

� 
+6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
Alog

2ðkA=δAÞ logðdÞ
Nε2

s
:

Remark 1. The first component of this upper bound essentially
represents the error probability of algorithmAwhenapplied to an i.i.d.
input state σ�kA , where σ 2 fρAN

l, r,wgl, r,w. Note that here we are not
required to control this error probability over all states but only over
the post-measurement states fρAN

l, r,wgl, r,w. The second component

consists of an error term that accounts for the possibility of the input
state ρA1 ���AN being non i.i.d..

Remark 2. To achieve an error probability of atmost δ, one could start
by determining a value for kA = kðA, δ, εÞ such that for all l, r, w,

δAðkA, ðρAN
l, r,wÞ

�kA
, ε=2Þ≤ δ=6. Subsequently, the total number of copies

can be set to

Nnon�iid =
182 logðdÞ

δ2ε2
� k2

Alog
2ð6kA=δÞ:

This choice of training data size ensures that the overall probability of
failure obeys δBðNnon�iid,ρ

A1 ���AN , εÞ≤ δ, as desired.

Remark 3. The second error term of this upper bound can be

improved to 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksupj, r I jðπrÞ

Nε2

q
through the same proof outlined in Theo-

rem 4 (see Inequality (8)). When the state ρA1 ���AN = σ�N is i.i.d., the
mutual information I jðπrÞ= I ðAj1

Xj2
� � �Xjk

: Xjk + 1
� � �Xjk +N=2

Þ
πr

becomes

zero for all local quantum channels Λr = id� Λr2
� � � � � Λrk +N=2

. Con-

sequently, the second error term vanishes in the i.i.d. setting and we
recover the i.i.d. error probability, albeit with aminor loss: substituting
ε with 2ε and kA with kA logð2kA=δÞ.

Remark 4. In Algorithm 1, the initial stage of measuring systems
Ak+1 ⋯ Al (corresponding to outcomes w) can be thought as a projec-
tion phase, while the subsequent stage involving measuring the sys-
tems A1 ⋯ Ak (corresponding to outcomes v) can be regarded as a
learning phase. Note that we utilize only the outcomes v for the pre-
diction component p; however, the outcomes w hold significance in
enabling the application of the randomized de Finetti Theorem 4.

Remark 5. Algorithm 1 extends only non-adaptive incoherent algo-
rithms to the non-i.i.d. setting as it applies the measurements of the
i.i.d. algorithm chosen uniformly at random. Adaptive algorithms are
shown to outperform their non-adaptive counterparts for some
learning49,69 and testing70 problems. We leave the question of extend-
ing adaptive incoherent algorithms for future work.

The remaining of this section is dedicated to the proof of
Theorem 5.

Proof of Theorem 5. In this proof we differentiate between kA and
k. The former is the copy complexity of the non-adaptive algorithm A
while the latter is a parameterweuse for the proof to ensure that all the
measurement devices used by the non-adaptive algorithm A are
sampled. Let l ~ Unif{k + 1, …, k + N/2} and r= ðr1, . . . , rlÞ�

iid

Uniff1, . . . , kAg. AlgorithmB appliesmeasurementMA
ri
to systemAi for

all i ∈ [l].
Our proof strategy will be to approximate the reduced post-

measurement state ρAN
l, r,w,p by the reduced post-measurement state

ρAN
l, r,w. Then, we approximate the state ρA1 ���Ak

l, r,w by the i.i.d. state

ρAN
l, r,w

� ��k
using the de Finetti Theorem 4.

More precisely, we write the error probability:

δBðN,ρA1 ���AN , ε+ ε0Þ=Pl, r,w,p ðp,ρAN
l, r,w,pÞ =2 SUCCESSε+ ε0

h i
=Pl, r,w,p ðp,ρAN

l, r,w,pÞ =2 SUCCESSε+ ε0 , ρAN
l, r,w,p � ρAN

l, r,w

			 						 			
1
≤ ε0

h i
+Pl, r,w,p ðp,ρAN

l, r,w,pÞ =2 SUCCESSε+ ε0 , ρAN
l, r,w,p � ρAN

l, r,w

			 						 			
1
>ε0

h i
≤Pl, r,w,p ðp,ρAN

l, r,wÞ =2 SUCCESSε
h i

+Pl, r,w,p ρAN
l, r,w,p � ρAN

l, r,w

			 						 			
1
>ε0

h i
ð9Þ

Fig. 4 | Illustration of Algorithm 1. Algorithm 1 measures a large number of the
state’s subsystems using MA

r that represents measurement devices uniformly
chosen from the i.i.d. algorithm’s set ofmeasurements (red and green parts). Then,
Algorithm 1 applies the data processing of AlgorithmA to the outcomes of a part of
these subsystems (green part), leading to a prediction p. Algorithm 1 returns the
remaining outcomes as calibration w. Success occurs if p is (approximately) com-
patible with the remaining post-measurement test copy ρAN

l, r,w,p.
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where we used the robustness condition for the problem defined by
SUCCESSε.

Let us start with the second term by relating the reduced post-
measurement state ρAN

l, r,w,p with ρAN
l, r,w. Note that as p is a function of v,

it suffices to bound the distance between ρAN
l, r,w and ρAN

l, r,w,v, which is
done in the following lemma.

Lemma 1. We have for all ε0>0:

Pl, r,w,v ρAN
l, r,w,v � ρAN

l, r,w

			 						 			
1
>ε0

h i
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k2 logðdÞ

Nε02

s
:

Proof of Lemma 1. We use the notation Mw =�l
t = k + 1M

t
wt

and
Mv =�k

t = 1M
t
vt
where MA

rt
= fMt

xgx2X for t ∈ [N]. We have:

Mr1
� � � � �Mrk

� id ρA1 ���AkAN
l, r,w � ρAN

l, r,w

� ��k + 1� 				
				

				
				
1

=
X
v

TrA1 ���Ak
ðMv � IÞ ρA1 ���AkAN

l, r,w � ρAN
l, r,w

� ��k + 1� 
 �				
				

				
				
1

=
X
v

TrA1 ���Ak
ðMv � IÞρA1 ���AkAN

l, r,w

h i
� Tr Mv ρAN

l, r,w

� ��k
 �
ρAN
l, r,w

				
				

				
				
1

and similarly by the data processing inequality we have

Mr1
� � � � �Mrk

� id ρA1 ���AkAN
l, r,w � ρAN

l, r,w

� ��k + 1� 				
				

				
				
1

≥ Mr1
� � � � �Mrk

ρA1 ���Ak
l, r,w � ρAN

l, r,w

� ��k� 				
				

				
				
1

=
X
v

Tr Mv ρAN
l, r,w

� ��k
� ρA1 ���Ak

l, r,w

� 
 �				
				

=
X
v

Tr Mv ρAN
l, r,w

� ��k
 �
ρAN
l, r,w � Tr ðMv � IÞρl, r,w

� �
ρAN
l, r,w

				
				

				
				
1
:

So the triangle inequality implies:

El, r

X
v,w

Tr ðMv �Mw � IÞρ� �
ρAN
l, r,w,v � ρAN

l, r,w

			 						 			
1

" #

=El, r

X
v,w

Tr ðMw � IÞρ� �
Tr ðMv � IÞρl, r,w

� �
ρAN
l, r,w, v � ρAN

l, r,w

			 						 			
1

" #

=El, r

X
v,w

Tr ðMw � IÞρ� �
TrA1 ���Ak

ðMv � IÞρA1 ���AkAN
l, r,w

h i
� Tr ðMv � IÞρl, r,w

� �
ρAN
l, r,w

			 						 			
1

" #

≤El, r

X
v,w

Tr ðMw � IÞρ� �
TrA1 ���Ak

ðMv � IÞρA1 ���AkAN
l, r,w

h i
� Tr Mv ρAN

l, r,w

� ��k
 �
ρAN
l, r,w

				
				

				
				
1

" #

+El, r

X
v,w

Tr ðMw � IÞρ� �
Tr Mv ρAN

l, r,w

� ��k
 �
ρAN
l, r,w � Tr ðMv � IÞρl, r,w

� �
ρAN
l, r,w

				
				

				
				
1

" #

≤ 2El, r

X
w

Tr ðMw � IÞρ� � Mr1
� � � � �Mrk

� id ρA1 ���AkAN
l, r,w � ρAN

l, r,w

� ��k + 1� 				
				

				
				
1

" #
:

On the other hand, we have by the randomized local de Finetti Theo-
rem 4:

El, r

X
w

Tr ðMw � IÞρ� � Mr1
� � � � �Mrk

� id ρA1 ���AkAN
l, r,w � ρAN

l, r,w

� ��k + 1� 				
				

				
				
1

" #
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
:

Hence we can deduce the following inequality:

El, r,w,p ρAN
l, r,w, v � ρAN

l, r,w

			 						 			
1

h i
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
: ð10Þ

Finally, the Markov’s inequality implies:

Pl, r,w,v ρAN
l, r,w,v � ρAN

l, r,w

			 						 			
1
>ε0

h i
≤
El, r,w,v k ρAN

l, r,w, v � ρAN
l, r,wk1

h i
ε0

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k2 logðdÞ

Nε02

s
:

This completes the proof of Lemma 1.
We now go back to (9) and consider the first term. Let us denote

Mr =�l
i= 1Mri

and D for the channel mapping the outcomes v and
outputting a prediction p (as described in Algorithm 1). We have

Pl, r,w,p ðp,ρAN
l, r,wÞ =2 SUCCESSε

h i
=El, r,w P

p�DðMrðρ
A1 ...Ak
l, r,w

ÞÞ p,ρAN
l, r,w

� �
=2 SUCCESSε

h i
 �

≤El, r,w P
p�DðMrððρ

AN
l, r,w
Þ
� k
ÞÞ

p,ρAN
l, r,w

� �
=2 SUCCESSε

h i
 �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 logðdÞ

N

s
:

using the randomized local de Finetti Theorem 4. To relate

El, r,w P
p�DðMrððρ

AN
l, r,w
Þ
� k
ÞÞ

p,ρAN
l, r,w

� �
=2 SUCCESSε

h i
 �

to the behavior of algorithm A, we introduce the event that all the
measurement devices that algorithm A needs are sampled before k:

G = ½kA� 	 frtg1≤ t ≤ k
� �

:

The union bound implies:

P Gc� �
=P 91≤ s ≤ kA : s =2 frtg1≤ t ≤ k
� �

≤
XkA

s = 1

P 81≤ t ≤ k : rt≠s
� �

= kA 1� 1
kA

� k

≤ kAe
�k=kA :

Under G we let s(t) ∈ [k] be the smallest integer such that rs(t) = t for
t = 1, . . . , kA. Then

El, r,w P
p�DðMrððρ

AN
l, r,w
Þ
�k
ÞÞ

p,ρAN
l, r,w

� �
=2 SUCCESSε

h i
 �

≤El, r,w P
p�DðMrððρ

AN
l, r,w
Þ
�k
ÞÞ

p,ρAN
l, r,w

� �
=2 SUCCESSε

h i
1fGg


 �
+P Gc� �

≤El, r,w P
p�A ðρAN

l, r,w
Þ
�kA

� � p,ρAN
l, r,w

� �
=2 SUCCESSε

h i2
4

3
5+ kAe

�k=kA

≤ supl, r,wδA kA, ρAN
l, r,w

� ��kA
, ε

� 
+ kAe

�k=kA :

Choosing k = kA logðkA=δAÞ, ε0 = ε and bounding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 logðdÞ

N

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 logðdÞ

Nε2

q
we obtain the desired bound on the error probability.

Applications
In this section, we apply the non i.i.d. framework that we have devel-
oped inMethods’ subsection “Non-adaptive algorithms in the non-i.i.d.
setting” to address specific and concrete examples. These examples
include classical shadows for shadow tomography, the verification of
pure states, fidelity estimation, state tomography, and testing mixed-
ness of states.

Classical shadows for shadow tomography. In the shadow tomo-
graphy problem, we have M ≥ 1 known observables denoted as
O1,…,OM, with each observable satisfying 0≼Oi ≼ I, along with N i.i.d.
copies of an unknown quantum state σ. The task is now to ε-approx-
imate allM observable values tr Oσð Þ with success probability (at least)
1−δ. In ref. 7, the authors have introduced two specific protocols
known as classical shadows, which employ (global) Clifford and Pauli
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(or local Clifford) measurements to tackle this problem. In their ana-
lysis, the authors crucially rely on the assumption of input states being
i.i.d., which is essential for the successful application (concentration)
of the median of means technique (estimator). Given that both algo-
rithms proposed by ref. 7 are non-adaptive (as defined in Definition 5),
we can leverage Theorem 5 to extend the applicability of these algo-
rithms to encompass input states that are not i.i.d..

The initial algorithm employs measurements that follow either
theHaar or Clifford distributions. TheHaar probabilitymeasure stands
as the unique invariant probabilitymeasure over the unitary (compact)
group and is denoted LHaar. For the Clifford distribution, certain
definitions need to be introduced. We consider an n-qubit quantum
system denoted as Affi Cd where d = 2n. First define the set of Pauli
matrices as follows:

Pn = eiθπ=2σ1 � � � � � σn ∣θ=0, 1, 2, 3, σi 2 fI,X , Y ,Zg
n o

:

Subsequently, the Clifford group is defined as the centralizer of the
aforementioned set of Pauli matrices:

Clð2nÞ= fU 2 Ud : UPnU
y =Png:

It is known71,72 that the Clifford group is generated by the Hadamard
(H), phase (S) and CNOT gates:

H =
1ffiffiffi
2
p 1 1

1 �1

� 
, S=

1 0

0 i

� 
and CNOT=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA:

Moreover, the Clifford group is finite (of order at most exp O n2
� �� �

)72.
Sampling a Clifford unitary matrix is given by selecting an element
uniformly and randomly from theClifford groupCl(2n).We denote this
distribution by LClifford. Importantly, Clifford distribution is a
3-design73–75, that is for all s = 0, 1, 2, 3:

EU�LClifford
U�s � U

�sh i
=EU�LHaar

U�s � U
�sh i

:

This property of the Clifford distribution has a significant impli-
cation: unitaries distributed according to LClifford or LHaar distribu-
tions yield identical performance for the classical shadows7. Now we
can state the first result of ref. 7:

Theorem6. (Ref. 7, rephrased). Let fOigi2½M� beM observables. There is
an algorithm for predicting the expected values of the observables
fOigi2½M� under the state σ to within ε with an error probability δ. This
algorithm performs i.i.d. measurements following the distribution
LClifford (or LHaar), and it requires a total number of i.i.d. copies of the
state σ satisfying:

N =O
maxi2½M�Tr O2

i

h i
logðM=δÞ

ε2

0
@

1
A:

Hence by Theorem 5 there is an algorithm B in the non-i.i.d. set-
ting with an error probability:

δB N,ρA1 ���AN , 2ε
� �

≤ 2supσ : state δA kA, σ
�kA , ε

� �
+6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
Alog

2ðkA=δAÞ logðdÞ
Nε2

s
:

By taking kA =Oðmaxi2½M�Tr½O2
i � logðM=δÞ

ε2 Þ as the complexity of classical sha-
dows in the i.i.d. setting, we deduce that a total number of copies

sufficient to achieve δ-correctness in the non-i.i.d. setting is given by:

N =O k2
Alog

2ðkA=δÞ logðdÞ
δ2ε2

 !
=O k Ok2log2ðM=δÞlog2 k O k logðM=δÞ=εδ� �

logðdÞ
δ2ε6

 !

where k O k =maxi2½M�Tr O2
i

h i
.

Proposition 2. (Classical shadows in the non-i.i.d. setting - Clifford). Let
fOigi2½M� beMobservables. There is an algorithm in the non-i.i.d. setting
for predicting the expected values of the observables fOigi2½M� under
the post-measurement state to within ε with a copy complexity

N =O
maxi2½M�Tr O2

i

h i2
log2ðM=δÞlog2 maxi2½M�Tr O2

i

h i
logðM=δÞ=εδ

� �
logðdÞ

δ2ε6

0
B@

1
CA:

The algorithm is described in Algorithm 1, where the non-adaptive
algorithm/statisticA is the classical shadowsalgorithmof ref. 7 and the
distribution of measurements is LClifford (or LHaar).

The second protocol introduced by ref. 7 involves the use of Pauli
measurements. This is given by measuring using an orthonormal basis
that corresponds to a non-identity Pauli matrix. On the level of the
unitary matrix, we can generate this sample by taking U = u1 ⊗⋯⊗ uN
where u1, …, un �iid Unif (Cl(2)). We denote this distribution by LPauli.
The classical shadows with Pauli measurement have better perfor-
mance for estimating expectations of local observables.

Theorem 7. (Ref. 7, rephrased). Let fOigi2½M� be Mk-local observables.
There is an algorithm for predicting the expected values of the
observables fOigi2½M� under the state σ to within ε with an error prob-
ability δ. This algorithm performs i.i.d. measurements following the
distribution LPauli, and requires a total number of i.i.d. copies of the
state σ satisfying:

N =O 22kmaxi2½M� k Oik21 logðM=δÞ
ε2

 !
:

Now, combining this theorem and Theorem 5, we obtain the fol-
lowing generalization for estimating local properties in the non-i.i.d.
setting.

Proposition 3. (Classical shadows in the non-i.i.d. setting - Pauli). Let
fOigi2½M� beMk-local observables. There is an algorithm in the non-i.i.d.
setting for predicting the expected values of the observables fOigi2½M�
under the post-measurement state towithin εwith an error probability
δ and a copy complexity satisfying:

N =O 24kmaxi2½M� k Oik41log2ðM=δÞlog2ð22k logðMÞ=εδÞ logðdÞ
δ2ε6

 !
:

Recently, the authors of53 provide protocols with depth-
modulated randomized measurement that interpolates between Clif-
ford and Pauli measurements. Since their algorithms are also non-
adaptive, they can be generalized as well to the non-i.i.d. setting using
Theorem 5. Other classical shadows protocols54,56,57,76 could also be
extended to the non-i.i.d. setting.

Classical shadows can be used for learning quantum states and
unitaries of bounded gate complexity77. Our generalization of classical
shadows permits to immediately extend the state learning protocol
of ref. 77 beyond the i.i.d. assumption and a similar extension should
be possible for their unitary learning results.

Verification of pure states. The verification of pure states is the taskof
determining whether a received state preciselymatches the ideal pure
state or significantly deviates from it. In this context, we will extend
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this problem to scenarios where we have M potential pure states
represented as f∣Ψi

�
Ψi

�
∣g1≤ i ≤M , and our objective is to ascertain whe-

ther the received state corresponds to one of these pure states or is
substantially different from all of them. The traditional problem con-
stitutes a special casewithM = 1. To formalize, a verification protocolB
satisfies:
1. the completeness condition if it accepts, with high probability,

upon receiving one of the pure i.i.d. states f∣Ψi

�
Ψi

�
∣�Ng1 ≤ i≤M , i.e.,

for all i ∈ [M], we have P
p�B ∣Ψii Ψih ∣�N�1
� � p=0½ �≥ 1� δ. Here, the

symbol 0 represents the outcome ‘Accept’ or the null hypothesis.
2. the soundness condition if when the algorithm accepts, the

quantum state passing the verification protocol (post-measure-
ment state conditioned on a passing event) is close to one of the
pure states f∣Ψi

�
Ψi

�
∣g1≤ i≤M with high probability, i.e.,

Pðc,pÞ�B ρA1 ���ANð Þ p=0,8i 2 ½M� : Ψi

�
∣ρAN

c, 0∣Ψi

�
<1� ε

h i
≤ δ: ð11Þ

In this latter scenario, the protocol can receive a possibly highly
entangled state ρA1 ���AN .

Note that as the prediction for this problem is binary (Accept/
Reject), a verification protocol is modeled by an operator ΠAccept,
which is given by Byð∣0i 0h ∣Þ. The usual way (see e.g.,
refs. 21,35,36,61–63) of writing the completeness and soundness con-
ditions of a protocol for the caseM = 1 of verifying a single pure state is
as follows. The completeness condition is

Tr ΠAccept∣Ψi Ψh ∣�N�1
h i

≥ 1� δc,

where δc is the completeness parameter, which is the same as what we
expressed in terms of B. The soundness condition is

Tr ΠAccept � I� ∣Ψi Ψh ∣ð ÞρA1 ���AN

h i
≤ δs: ð12Þ

Note that this quantity evaluates the expected infidelity of the state
conditioned on acceptance, whereas Eq. (11) is slightly different: it
evaluates the probability (over p and c) of having a fidelity below 1−ε. It
is simple to see that Eq. (11) implies δs ≤ ε + δ. Conversely, using Mar-
kov’s inequality, Eq. (12) implies Eq. (11) with ε= δ =

ffiffiffiffiffi
δs

p
. We can, using

the same methods, express our findings directly in terms of expecta-
tions for the task of verifying onepure state, see SupplementaryNote 4
for more details. Here we prove the following verification result with
high probability.

Proposition 4. (Verification of pure states in the non-i.i.d. setting -
Clifford). Let ρA1 ���AN be a permutation invariant state. Let
f∣ΨiihΨi∣g1 ≤ i≤M be M pure states. There is an algorithm using Clifford

measurements for verifyingwhether the (post-measurement) state ρAN

is a member of f∣ΨiihΨi∣g1≤ i≤M or is at least ε-far from them in terms of
fidelity with a probability at least 1 − δ and a number of copies satis-
fying

N =O log2ðM=δÞlog2ðlogðMÞ=εδÞ logðdÞ
δ2ε6

 !
:

Proof. We can apply Proposition 2 to estimate the expectation of
the observables fOi = ∣Ψi

�
Ψi

�
∣g1≤ i ≤M under the post-measurement

state ρAN
l, r,w to within ε/4 and with a probability at least 1 − δ using a

number of copiesN =O log2ðM=δÞlog2ðlogðMÞ=εδÞ logðdÞ
δ2ε6

� �
.Moreconcretely,we

have a set of predictions μ= fμig1≤ i ≤M satisfying (Proposition 2 and

Lemma 1):

Pl, r,w,μ 8i 2 ½M� : μi � Tr Ψi

		 �
Ψi

� 		ρAN
l, r,w,μ

h i			 			≤ ε=4 , ρAN
l, r,w,μ � ρAN

l, r,w

			 						 			
1
≤ ε=8

h i
≥ 1� δ:

ð13Þ

Then, our proposed algorithm accepts if, and only if there is some
i ∈ [M] such that μi ≥ 1 − ε/2. We can verify the completeness and
soundness conditions for this algorithm.
1. Completeness. If the verifier receives one pure state of the form

ρA1 ���AN = ∣Ψi

�
Ψi

�
∣�N for some i ∈ [M] then every post-measurement

state is pure, i.e., ρAN
l, r,w,μ = ∣Ψi

�
Ψi

�
∣ and Inequality (13) implies

Pμ ∣μi � 1∣≤ ε=2
� �

=Pμ ∣μi � Tr ∣Ψi

�
Ψi

�
∣ρAN

� �
∣≤ ε=2

� �
≥ 1� δ.Hence

the algorithm accepts with a probability ≥Pμ μi ≥ 1� ε=2
� �

≥ 1� δ.
Observe that for this algorithm, we can even relax the assumption
that the input state is i.i.d.. For instance, we can only ask that the
input state is product ρA1 ���AN =�N

t = 1σt where for all
t ∈ [N], Ψi

�
∣σt ∣Ψi

�
≥ 1� ε=4.

2. Soundness. Here, we want to prove the following:

Pl, r,w,μ B ρA1 ���AN
� �

=0 , 8i 2 ½M� : Ψi

�
∣ρAN

l, r,w, 0∣Ψi

�
<1� ε

h i
≤ δ:

If BðρÞ=0 then for some j ∈ [M] we have μj ≥ 1 − ε/2. Hence

hΨj ∣ρ
AN
l, r,w, 0∣Ψji<1� ε implies hΨj ∣ρ

AN
l, r,w,μ∣Ψji≤ hΨj ∣ρ

AN
l, r,w∣Ψji+ ε=8≤

hΨj ∣ρ
AN
l, r,w, 0∣Ψji+ ε=4<μj � ε=4 therefore:

Pl, r,w,μ B ρA1 ���AN
� �

=0 , 8i 2 ½M� : Ψi

�
∣ρAN

l, r,w, 0∣Ψi

�
< 1� ε

h i
≤Pl, r,w,μ 9j 2 ½M� : μj ≥ 1� ε=2 , Ψj

D
∣ρAN

l, r,w, 0∣Ψj

E
< 1� ε

h i
≤Pl, r,w,μ 9j 2 ½M� : Ψj

D
∣ρAN

l, r,w,μ∣Ψj

E
<μj � ε=4

h i
≤Pl, r,w,μ 9j 2 ½M� : μj � Tr Ψj

			 E
Ψj

D 			ρAN
l, r,w,μ

h i			 			>ε=4h i
≤ δ

where we used Inequality Eq. (13).

The above result uses Clifford measurements, which are non-
local. If our primary concern lies in verification with local measure-
ments, an alternative approachwould be to apply the non-i.i.d. shadow
tomography result for local measurements (Proposition 3). Using the
same analysis of this section, we can prove the following proposition.

Proposition 5. (Verification of pure states in the non-i.i.d. setting -
Pauli). Let ρA1 ���AN be a permutation invariant state. Let f∣ΨiihΨi∣g1≤ i≤M
be M pure states. There is an algorithm using local (pauli) measure-
ments for verifying whether the (post-measurement) state ρAN is a
member of f∣ΨiihΨi∣g1≤ i ≤M or is at least ε-far from them in terms of
fidelity with a probability at least 1 − δ and a number of copies satis-
fying

N =O n324nlog2ðM=δÞlog2ðlogðMÞ=εδÞ
δ2ε6

 !
:

Discussion and comparison with previous works on verification of
pure states. Themain contribution here compared to previous results
is that we give the first explicit protocol which works for all multi-
partite states. This stands in contrast to previous protocols where the
desired statemust be a ground state of aHamiltonian satisfying certain
conditions61 or a graph state35,36,62,63, or Dicke states21. However, the
more efficient protocol uses Clifford measurements, which are non-
local. The Pauli measurement case is local, but comes at a cost in
scaling with number of systems.
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We now go into more detail regarding the different scalings. The
optimal copy complexity, or scaling for the number of copies required,
with thefidelity error ε, is 1/ε21,78. The scalingwith thenumberof systems
n depends on the protocol (e.g. for stabilizer states there are protocols
that do not scalewith n, but knownprotocols for theW state scales with
n21). Applying our results usingClifford (i.e. entangled over the systems)
gives scaling with ε and n as ~Oðn=ε6Þ, and for random local Pauli scaling
(local) the scaling is ~Oðn316n=ε6Þ. For the Clifford protocol, then, we
have similar scaling to optimal known for W states (though with ε
scaling as 1/ε6 instead of 1/ε), but our protocol works for all states. The
cost here is that measurements are in non-local across each copy.
However for certain applications this is not an issue. For example ver-
ifying output of computations, Clifford are reasonablywithin the sets of
easy gates, so we have a close to optimal verification for all states that
can be implemented. In the case of random Paulis, where measure-
ments are local on copies, we have the same scalingwith εbutwe get an
exponential penalty of n scaling in the error. Given the generality of our
protocol to all states though, it is perhaps not so surprising thatwehave
a high dimensional cost. Furthermore, depending on the situation, this
scaling may not be the major cost one cares about. Indeed, for small
networks dimension will not be the most relevant scaling. We can
imagine many applications in this regime. For example small networks
of sensors, such as satellites or gravimeters18,31, this scalingwould not be
prohibitive, but our results would allow for different resource states to
be used, for example spin squeezed states, or other symmetric states
which exhibit better robustness to noise79. Another example would be
small communication networks, where, for example GHZ states can be
used for anonymous communication29 orW states for leader election80.
On such small scale networks our results would allow for verified ver-
sions of these applications over untrusted networks, in a way that is
blind to which communication protocol is being applied.

We also point out that we have not optimized over these numbers
(rather we were concerned with showing something that works for all
states). It is highly likely that these complexities can be improved and
we expect that for particular families of states one can find variants
where the scaling in the number of systems is polynomial or better.
One perspective in this direction coming directly from our results, is
the observation that the protocols in the framework of ref. 5, which
assume i.i.d. states, use random i.i.d. measurements, therefore our
theorem allows them to be applied directly to the non-i.i.d. case. This
allows us to take any protocol assuming i.i.d. states, and it works for
general (non-i.i.d.) sources with a small cost.

Lastly, our formulation is naturally robust to noise. Such robust-
ness is an important issue for any practical implementation, and
indeed it has been addressed for several of the protocols mentioned,
see for example35,63,81,82. In termsof the completeness condition,we can
easily make out statements robust to noise. For instance, we can relax
the requirement to only ask that the input state is a product state
ρA1 ���AN =�N

t = 1σt where for all t ∈ [N], Ψi

�
∣σt ∣Ψi

�
≥ 1� ε=4.

Fidelity estimation. The problem of direct fidelity estimation1,83 con-
sists of estimating the fidelity Ψh ∣ρ∣Ψi between the target known pure
state ∣Ψi Ψh ∣ and the unknown quantum state ρ by measuring inde-
pendent copies of ρ. The algorithm of ref. 1 proceeds by sampling i.i.d.
random Pauli matrices

P1, . . . ,Pl �
Ψh ∣P∣Ψi2

d

( )
P2fI,X , Y , Zg�n

where l = ⌈1/(ε2δ)⌉. Then for each i = 1,…, l, the algorithmmeasures the
stateρwith thePOVMMPi

= I�Pi
2 , I+Pi

2

n o
mi timeswheremi is definedas

mi =
2 logð2=δÞδ
Ψh ∣Pi∣Ψi2

& ’
:

The algorithm observes Ai, j �
1�Tr Piρ½ �

2 ,
1 +Tr Piρ½ �

2

n o
where i ∈ {1, …, l}

and j ∈ {1,…,mi}. The estimator of the fidelity is then given as follows

S=
1
l

Xl
i= 1

1
mi Ψh ∣Pi∣Ψi

Xmi

j = 1
ð2Ai, j � 1Þ:

In general, in ref. 1, it is proven that the copy complexity satisfies:

E
Xl
i = 1

mi

" #
≤ 1 +

12
ε2

+
2d
ε2

logð24Þ
� 

to conclude that jS� Ψh ∣ρ∣Ψij≤ 2ε with probability at least 5/6. This
algorithm is non-adaptive and performs independent measurements
from the set:

MP1, ...,Pl

=
[d12=ε2e

i= 1
MPi

repeated
2 logð2=δÞδ
Ψh ∣Pi∣Ψi2

& ’
times

( )
where P1, . . . , Pl �

Ψh ∣P∣Ψi2
d

( )
P2fI,X , Y ,Zg�n

To extend this result to the non-i.i.d. setting, we apply Theorem 5 with
the set of measurements MP1 , ...,Pl

and a copy complexity given by

kA =
Pl

i = 1mi =
Pd12=ε2e

i= 1 d logð24Þ
6 Ψh ∣Pi ∣Ψi2

e. Theorem 5 ensures that we can

estimate the fidelity between the ideal state ∣Ψi Ψh ∣ and the post-

measurement state ρAN
w to within 3ε with probability at least 5/6 if the

total number of copies N satisfies:

N =
482 logðdÞ

ε2
� k2

Alog
2ð18kAÞ:

By Markov’s inequality we have with probability at least 5/6:

kA ≤6E
Xl
i = 1

mi

" #
≤6 1 +

12
ε2

+
2d
ε2

logð24Þ
� 

≤
122d
ε2

:

Therefore, by the union bound, our non-i.i.d. algorithm is 1/3-correct
and its complexity satisfies:

N ≤
482 � 122d2log2ð18 � 122d=ε2Þ logðdÞ

ε6
=O d2log3ðd=εÞ

ε6

 !
:

Proposition 6. (Fidelity estimation in the non-i.i.d. setting). There is an
algorithm in the non-i.i.d. setting for fidelity estimation with a preci-
sion parameter ε, a success probability at least 2/3 and a copy com-
plexity:

N =O d2log3ðd=εÞ
ε6

 !
:

Moreover, in ref. 1, it is showen that for well-conditioned states
∣Ψi Ψh ∣ satisfying for all P 2 fI,X , Y ,Zg�n, j Ψh ∣P∣Ψij≥α for some α > 0,
the copy complexity is bounded in expectation as follows:

E kA
� �

=E
Xl
i= 1

mi

" #
=O logð12Þ

α2ε2

� 
:

Similarly, by applying Theorem 5 andMarkov’s inequality we can show
the following proposition.

Proposition 7. (Fidelity estimation in the non-i.i.d. setting - Well-
conditioned states). Let ∣Ψi be awell-conditioned statewith parameter
α > 0. There is an algorithm in the non-i.i.d. setting for fidelity esti-
mation with a precision parameter ε, a success probability at least 2/3
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and a copy complexity:

N =O log3ðd=αεÞ
α4ε6

 !
:

State tomography. In the problem of state tomography, we are given
N copies of an unknown quantum state σ and the objective is to con-
struct a (classical description) of a quantum state σ̂ satisfying k
σ � σ̂k1 ≤ ε with a probability at least 1 − δ.

In the i.i.d. setting, a sufficient number of copies for state tomo-
graphy in the incoherent setting with a precision ε and an error
probability δ is4:

kA =O d2 logð1=δÞ
ε2

+
d3

ε2

 !
:

Hence by Theorem 5 there is an algorithm B in the non-i.i.d. setting
with an error probability:

δB N,ρA1 ���AN , 2ε
� �

≤ 2supσ : state δA kA, σ
�kA , ε

� �
+6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
Alog

2ðkA=δAÞ logðdÞ
Nε2

s
:

So a total number of copies sufficient to achieve δ-correctness in the
non-i.i.d. setting is:

N =
256k2

Alog
2ð6kA=δÞ logðdÞ
δ2ε2

=O d4log2ðd=δεÞlog2ð1=δÞ logðdÞ
δ2ε6

+
d6log2ðd=δεÞ logðdÞ

δ2ε6

 !
:

Proposition 8. (State tomography in the non-i.i.d. setting). There is an
algorithm in the non-i.i.d. setting for state tomographywith aprecision
parameter ε, a success probability at least 1 − δ and a copy complexity:

N =O d4log5ðd=δεÞ
δ2ε6

+
d6log3ðd=δεÞ

δ2ε6

 !
:

Observe that, unlike the statementof state tomography in the i.i.d.
setting4, herewe donot have an explicit dependency on the rank of the
approximated state. This can be explained by the fact that if the state

ρA1 ���AN is not i.i.d. then the post-measurement states fρAN
c,pgc,p can have a

full rank even if we start with a pure input state ρA1 ���AN . For instance, let
ρ= ∣Ψi Ψh ∣ where ∣Ψi= 1ffiffiffi

d
p
P

i2½d�∣ii � ∣ii is the maximally entangled

state, and let X =
P

i2½d�αi∣ii ih ∣ be an observable. In this case, we have

rank ðρA1A2 Þ= 1 and rank ðρA2
X Þ= rank ð

P
i2½d�

αi
kαk1 ∣ii ih ∣Þ=d if all the coef-

ficients fαigi2½d� are non-zero.

Testing mixedness of states. In the problem of testing mixedness of
states,we are given anunknownquantum state σ, which can either be I

d
(null hypothesis) or ε-far from it in the trace-norm (alternate hypoth-
esis). The objective is to determine the true hypothesis with a prob-
ability of at least 1 − δ. However, this problem does not satisfy the
robustness assumption required in Definition 3. Due to this reason, we
introduced the tolerant version of this problem in Example 1. To the
best of our knowledge, there is no algorithm for the tolerant testing
mixedness problem that outperforms the tomography algorithm
(naive testing by learning approach). Thus, in this section, we con-
centrate on the standard (non-tolerant) formulation of testing mix-
edness of states.

Under the null hypothesis, we assume that the learning algo-
rithm is given the i.i.d. state ρ= I

d

� ��N
and is expected to respondwith

0 with a probability of at least 1 − δ. On the other hand, under the
alternate hypothesis, the learning algorithm receives a (potentially
entangled) state ρA1 ���AN . In this scenario, the learning algorithm
should output 1 with a probability of at least 1–δ if the post-
measurement state ρAN

c,p is ε-far from I
d. In the i.i.d. case, a sufficient

number of copies for testing mixedness of states problem in the
incoherent setting with a precision parameter ε and an error prob-
ability δ is given by ref. 27:

kA =O
ffiffiffiffiffiffi
d3

p
logð1=δÞ
ε2

 !
:

Hence by Theorem 5

δB N,ρA1 ���AN , 2ε
� �

≤ 2supσ : state δA kA, σ
�kA , ε

� �
+6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
Alog

2ðkA=δAÞ logðdÞ
Nε2

s
:

ð14Þ

WecanapplyTheorem5onlyunder the alternate hypothesiswhere the
robustness assumption holds. Under the null hypothesis, the robust-
ness assumption no longer holds; however, since we are assuming that
the input state is i.i.d., i.e., ρ= I

d

� ��N
, we can directly apply the result

from ref. 27 in this case. So, from Eq. (14), we deduce that a total
number of copies sufficient to achieve δ-correctness in the non-i.i.d.
setting is:

N =
256k2

Alog
2ð6kA=δεÞ logðdÞ
δ2ε2

=O d3log2ð1=δÞlog2ðd=δεÞ logðdÞ
δ2ε6

 !
:

Proposition 9. (Testing mixedness of quantum states in the non-i.i.d.
setting). There is an algorithm in the non-i.i.d. setting for testing mix-
edness of quantum states with a precision parameter ε, a success
probability at least 1−δ and a copy complexity:

N =O d3log5ðd=δεÞ
δ2ε6

 !
:

General algorithms in the non-i.i.d. setting
In this section, we present a general framework for extending algo-
rithms designed to learn properties of a quantum state using i.i.d.
input states, to general possibly entangled input states. The dis-
tinction from Methods’ subsection “Non-adaptive algorithms in the
non-i.i.d. setting” lies in the relaxation of the requirement for algo-
rithms to be non-adaptive; meaning, they can now involve adaptive
measurements, potentially coherent or entangled (see Definition 4).
Coherent measurements are proved to be more powerful than
incoherent ones (let alone non-adaptive ones) for tasks such as state
tomography3,49, shadow tomography6,9,84 and testing mixedness of
states10,85.

Aswe now consider general algorithms that encompass (possibly)
coherent measurements, a suitable candidate for the measurement
device in the projection phase (thew part in Algorithm 1) becomes less
clear. Furthermore, we require an approximation that excels under the
more stringent trace-norm condition, particularly when addressing
non-local (non product) observables. To address this challenge, we
adopt the approach outlined in ref. 23, utilizing any informationally
complete measurement device. We will use the measurement device
Mdist, having a low distortion with side information, of ref. 86. It
satisfies the following important property: the application of the cor-
responding measurement channel Mdist to the system A2 does not
diminish the distinguishability between two bipartite states on A1A2 by
a factor greater than 2dA2

, wherein dA2
represents the dimension of A2.

To be precise, the measurement channel Mdist satisfies the following
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inequality for all bipartite states ρA1A2 and σA1A2 :

ρA1A2 � σA1A2
		 				 		

1 ≤ 2dA2
idA1 �MA2

dist ρA1A2 � σA1A2
� �			 						 			

1
:

Themeasurement deviceMdist will play a crucial role in our algorithm.
By applying this channel to a large fraction of the subsystems of a
quantum state, we can show that the post-measurement state behaves
as an i.i.d. state. Thus, we will be able to use the same algorithm on a
small number of the remaining systems.

For a learning algorithmA designed for i.i.d. inputs, we construct
the algorithmB explicitly described in Algorithm2 (displayed inBox 2)
and illustrated in Fig. 5.

In the following theorem, we relate the error probability of
Algorithm 2 with the error probability of the algorithm A.

Theorem 8. (General algorithms in the non-i.i.d. setting) Let N ≥ 1 be a
positive integer and A1 ≅ A2 ≅ ⋯ ≅ AN be N isomorphic quantum sys-
tems of dimension d. Let ε, ε0>0 and 1 ≤ k < N/2. Let A be a general
algorithm. Algorithm 2 has an error probability satisfying:

δB N,ρA1 ���AN , ε+ ε0
� �

≤ supl,wδA k, ρAN
l,w

� ��k
, ε

� 
+ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

Nε02

s
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s
:

Remark 6. To achieve an error probability of atmost δ, one could start
by determining a value for kðA,δ, εÞ such that for all w,
δAðk, ðρAN

w Þ
�k

, ε=2Þ≤ δ=2. Subsequently, the total number of copies can
be set to

N =
32 � 142d2 logðdÞ

δ2ε2
� kðA, δ, εÞ3:

This choice of sample complexity ensures that δBðN,ρA1 ���AN , εÞ≤ δ, as
desired.

In what follows we proceed to prove Theorem 8.
Proof of Theorem 8. First, since we are using the informationally

complete measurement device Mdist, we can relate the difference
between post-measurement states and the actual states. This along
with an information theoretical analysis using the mutual information
show that measuring usingMdist a sufficiently large number of times,
transforms the state approximately to an i.i.d. one. Infact, the proof of

Theorem 2.4. of ref. 23 together with the distortion with side infor-
mation measurement deviceMdist of ref. 86 imply that for k < N/2:

Lemma 2. (Ref. 23, rephrased) Let ρA1 ���AN be a permutation invariant
state. For k < N/2, we have

2
N

Xk +N=2
l = k + 1

Ew�M�l�k
dist ðρÞ

ρA1 ���Ak
w � ρAN

w

� ��k				
				

				
				
1


 �
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s
:

where w = (wk+1, …, wl) is the outcome of measuring each of the sys-
tems Ak+1…Al with the measurement Mdist.

We write the error probability as

δBðN,ρA1 ���AN , ε + ε0Þ=Pl,w,p ðp,ρAN
l,w,pÞ =2 SUCCESSε + ε0

h i
=Pl,w,p ðp,ρAN

l,w,pÞ =2 SUCCESSε+ ε0 , ρAN
l,w,p � ρAN

l,w

			 						 			
1
≤ ε0

h i
+Pl,w,p ðp,ρAN

l,w,pÞ =2 SUCCESSε+ ε0 , ρAN
l,w,p � ρAN

l,w

			 						 			
1
>ε0

h i
≤Pl,w,p ðp,ρAN

l,wÞ =2SUCCESSε
h i

+Pl,w,p ρAN
l,w,p � ρAN

l,w

			 						 			
1
>ε0

h i
,

ð15Þ

where we use the robustness condition. Using Lemma 2 and the tri-
angle inequality, the first term can be bounded as follows:

Pl, ðp,wÞ�ðA�M�ðl�kÞ
dist

ÞðρA1 ...Al Þ ðp,ρ
AN
l,wÞ =2 SUCCESSε

h i
=El,w P

p�AðρA1 ...Ak
l,w

Þ ðp,ρ
AN
l,wÞ =2 SUCCESSε

h i
 �

≤El,w P
p�A ðρAN

l,w
Þ
�k

� � ðp,ρAN
l,wÞ =2SUCCESSε

h i2
4

3
5 +2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s

≤ supl,wδA k, ρAN
l,w

� ��k
, ε

� 
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s

For the second term of Eq. (15), we apply the following lemma:

Lemma 3. Let ε0>0, 1 ≤ k < N/2 and l ~ Unif {k + 1, …, k + N/2}. Let w =
(wk+1, …, wl) and p be the outcomes of measuring the state ρ with the

measurement M�ðl�kÞ
dist on systems Ak+1…Al and A on A1…Ak. The fol-

lowing inequality holds:

Pl,w,p ρAN
l,w,p � ρAN

l,w

			 						 			
1
>ε0

h i
≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

Nε02

s
:

Proof. Denote by fMpgp the elements of the POVM corresponding
to A. Lemma 2 together with the triangle inequality imply:

El,w,p k ρAN
l,w,p � ρAN

l,wk1
h i

=El,w

X
p

Tr Mpρ
A1 ���Ak
l,w

h i
ρAN
l,w,p � ρAN

l,w

			 						 			
1

" #

=El,w

X
p

Tr Mpρ
A1 ���Ak
l,w

h i
ρAN
l,w,p � Tr Mpρ

A1 ���Ak
l,w

h i
ρAN
l,w

			 						 			
1

" #

≤El,w

X
p

Tr Mpρ
A1 ���Ak
l,w

h i
ρAN
l,w,p � Tr MpðρAN

l,wÞ
�k


 �
ρAN
l,w

				
				

				
				
1

" #

+El,w

X
p

Tr MpðρAN
l,wÞ
�k


 �
ρAN
l,w � Tr Mpρ

A1 ���Ak
l,w

h i
ρAN
l,w

				
				

				
				
1

" #

=El,w

X
p

TrA1 ���Ak
Mp � I ρA1 ���Ak + 1

l,w � ρAN
l,w

� ��k + 1� 
 �				
				

				
				
1

" #

+El,w

X
p

∣Tr MpðρAN
l,wÞ
�k


 �
� Tr Mpρ

A1 ���Ak
l,w

h i
∣

" #

≤2El,w ρA1 ���Ak + 1
l,w � ρAN

l,w

� ��k + 1				
				

				
				
1


 �

≤4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk + 1Þ3d2 logðdÞ

N

s
≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

N

s
,

Fig. 5 | Illustration of Algorithm 2. Algorithm 2 measures a large number of the
state’s subsystems using the measurement device with low distortion Ml�k

dist (red
and green parts). Then, in order to predict the property, Algorithm 2 applies the
data processing of AlgorithmA to the outcomes of a part these subsystems (green
part) leading to a prediction p. Algorithm 2 returns the remaining outcomes as
calibrationw. Success occurs if p is (approximately) compatible with the remaining
post-measurement test copy ρAN

l,w,p.
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where we used the equality between states TrA1 ���Ak
½ðMp � IÞρA1 ���Ak + 1

w �=
Tr½Mpρ

A1 ���Ak
w �ρAN

w,p and the inequality
P

p k MpXk1 ≤
P

pTr MpjX j
h i

= k
Xk1 as

P
pMp = I. Therefore, by Markov’s inequality we deduce:

Pl,w,p k ρAN
l,w,p � ρAN

l,wk1>ε0
h i

≤
El,w,p k ρAN

l,w,p � ρAN
l,wk1

h i
ε0

≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3d2 logðdÞ

Nε02

s
:

Data availability
Data sharing not applicable to this article as no datasets were gener-
ated or analysed during the current study.

Code availability
Code availability is not applicable to this article as no code was gen-
erated or analysed during the current study.

References
1. Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few pauli

measurements. Phys. Rev. Lett. 106, 230501 (2011).
2. Christandl, M. & Renner, R. Reliable quantum state tomography.

Phys. Rev. Lett. 109, 120403 (2012).
3. O’Donnell, R. & Wright, J. Efficient quantum tomography. In Pro-

ceedings of the forty-eighth annual ACM symposium on Theory of
Computing, p. 899–912 (Association for Computing Machin-
ery, 2016).

4. Kueng, R., Rauhut, H. & Terstiege, U. Low rankmatrix recovery from
rank one measurements. Appl. Comput. Harmon. Anal. 42,
88–116 (2017).

5. Pallister, S., Linden, N. & Montanaro, A. Optimal verification of
entangled states with local measurements. Phys. Rev. Lett. 120,
170502 (2018).

6. Aaronson, S. Shadow tomography of quantum states. SIAM J.
Comput. 49, STOC18–368 (2019).

7. Huang,H.-Y., Kueng, R. & Preskill, J. Predictingmany properties of a
quantum system from very few measurements. Nat. Phys. 16,
1050–1057 (2020).

8. Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev.
Phys. 2, 382–390 (2020).

9. Bădescu, C. & O’Donnell, R. Improved quantum data analysis. In
Proceedings of the 53rd Annual ACMSIGACT Symposiumon Theory
of Computing, p. 1398–1411 (Association for Computing Machin-
ery, 2021).

10. Chen, S., Li, J., Huang, B. & Liu, A. Tight bounds for quantum state
certification with incoherent measurements. In 2022 IEEE 63rd
Annual Symposiumon Foundations of Computer Science (FOCS), p.
1205–1213 (IEEE, 2022).

11. Bylander, J. et al. Noise spectroscopy through dynamical decou-
pling with a superconducting flux qubit. Nat. Phys. 7,
565–570 (2011).

12. Yan, F. et al. Rotating-frame relaxation as a noise spectrum analyser
of a superconducting qubit undergoing driven evolution. Nat.
Commun. 4, 2337 (2013).

13. Burnett, J. et al. Evidence for interacting two-level systems from the
1/f noise of a superconducting resonator. Nat. Commun. 5,
4119 (2014).

14. Gheorghiu, A., Kapourniotis, T. & Kashefi, E. Verification of quantum
computation: An overview of existing approaches. Theory Comput.
Syst. 63, 715–808 (2019).

15. Markham, D. & Krause, A. A simple protocol for certifying graph
states and applications in quantum networks. Cryptography 4,
3 (2020).

16. Barnum, H., Crépeau, C., Gottesman, D., Smith, A. & Tapp, A.
Authentication of quantum messages. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proceed-
ings., 449–458 (IEEE, 2002).

17. Brassard, G., Broadbent, A., Fitzsimons, J., Gambs, S. & Tapp, A.
Anonymous quantum communication. In Advances in
Cryptology–ASIACRYPT 2007: 13th International Conference on the
Theory and Application of Cryptology and Information Security,
Kuching,Malaysia, December 2-6, 2007. Proceedings 13, p. 460–473
(Springer, 2007).

18. Shettell, N., Kashefi, E. & Markham, D. Cryptographic approach to
quantum metrology. Phys. Rev. A 105, L010401 (2022).

19. Paini, M. & Kalev, A. An approximate description of quantum states.
arXiv preprint arXiv:1910.10543 (2019).

20. Elben, A. et al. The randomized measurement toolbox. Nat. Rev.
Phys. 5, 9–24 (2023).

21. Zhu, H. & Hayashi, M. General framework for verifying pure quan-
tum states in the adversarial scenario. Phys. Rev. A 100,
062335 (2019).

22. Caro, M. C., Gur, T., Rouzé, C., França, D. S. & Subramanian, S.
Information-theoretic generalization bounds for learning from
quantumdata. In The Thirty Seventh Annual Conference on Learning
Theory,p. 775–839 (PMLR, 2024).

23. Berta, M., Borderi, F., Fawzi, O. & Scholz, V. B. Semidefinite pro-
gramming hierarchies for constrained bilinear optimization. Math.
Program. 194, 781–829 (2022).

24. Christandl, M., König, R., Mitchison, G. & Renner, R. One-and-a-half
quantum de finetti theorems. Commun. Math. Phys. 273,
473–498 (2007).

25. Brandao, F. G. & Harrow, A. W. Quantum de finetti theorems under
local measurements with applications. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing, p.
861–870 (2013).

26. Guţă, M., Kahn, J., Kueng, R. & Tropp, J. A. Fast state tomography
with optimal error bounds. J. Phys. A: Math. Theor. 53,
204001 (2020).

27. Bubeck, S., Chen, S. & Li, J. Entanglement is necessary for optimal
quantum property testing. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), 692–703 (IEEE, 2020).

28. Raussendorf, R. &Briegel, H. J. A one-way quantumcomputer. Phys.
Rev. Lett. 86, 5188 (2001).

29. Christandl, M. & Wehner, S. Quantum anonymous transmis-
sions. In International Conference On The Theory And Appli-
cation Of Cryptology And Information Security, p. 217–235
(Springer, 2005).

30. Markham, D. & Sanders, B. C. Graph states for quantum secret
sharing. Phys. Rev. A: At. Mol. Opt. Phys. 78, 042309 (2008).

31. Komar, P. et al. A quantum network of clocks. Nat. Phys. 10,
582–587 (2014).

32. Hayashi, M. & Morimae, T. Verifiable measurement-only blind
quantum computing with stabilizer testing. Phys. Rev. Lett. 115,
220502 (2015).

33. Unnikrishnan, A. et al. Anonymity for practical quantum networks.
Phys. Rev. Lett. 122, 240501 (2019).

34. Bell, B. et al. Experimental demonstration of graph-state quantum
secret sharing. Nat. Commun. 5, 1–12 (2014).

35. Takeuchi, Y., Mantri, A., Morimae, T., Mizutani, A. & Fitzsimons, J. F.
Resource-efficient verification of quantum computing using ser-
fling’s bound. npj Quant. Inf. 5, 27 (2019).

36. Morimae, T., Takeuchi, Y. & Hayashi, M. Verification of hypergraph
states. Phys. Rev. A 96, 062321 (2017).

37. Liu, Y.-C., Yu, X.-D., Shang, J., Zhu, H. & Zhang, X. Efficient ver-
ification of dicke states. Phys. Rev. Appl. 12, 044020 (2019).

38. De Finetti, B. Breakthroughs in Statistics: Foundations and Basic
Theory, p. 134–174 (Springer, 1937).

39. Diaconis, P. & Freedman, D. Finite exchangeable sequences. Ann.
Probab. 8, 745–764 (1980).

40. Diaconis, P. & Freedman, D. A dozen de finetti-style results in search
of a theory. Ann. l’IHP Probab. et Stat. 23, 397–423 (1987).

Article https://doi.org/10.1038/s41467-024-53765-6

Nature Communications |         (2024) 15:9677 17

www.nature.com/naturecommunications


41. Hudson, R. L. & Moody, G. R. Locally normal symmetric states and
an analogue of de finetti’s theorem. Z. Wahrscheinlichkeitstheorie
Verwandte-. Geb. 33, 343–351 (1976).

42. Caves, C. M., Fuchs, C. A. & Schack, R. Unknown quantum states:
the quantum de finetti representation. J. Math. Phys. 43,
4537–4559 (2002).

43. König, R. & Renner, R. A de finetti representation for finite sym-
metric quantum states. J. Math. Phys. 46, 122108 (2005).

44. Brandao, F. G., Christandl, M. & Yard, J. Faithful squashed entan-
glement. Commun. Math. Phys. 306, 805–830 (2011).

45. Gavalakis, L. & Kontoyiannis, I. An information-theoretic proof of a
finite de finetti theorem. Electron. Commun. Probab. 26, 1–5 (2021).

46. Gavalakis, L. & Kontoyiannis, I. Mathematics Going Forward: Col-
lected Mathematical Brushstrokes, p. 367–385 (Springer, 2022).

47. Berta, M., Gavalakis, L. & Kontoyiannis, I. A third information-
theoretic approach to finite de finetti theorems. In 2024 IEEE
International Symposium on Information Theory (ISIT), 07–12
(IEEE, 2024).

48. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal
tomography of quantum states. In STOC’16—Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing,
p. 913–925 (ACM, 2016).

49. Chen, S., Huang, B., Li, J., Liu, A. & Sellke, M. When does adaptivity
help for quantum state learning? In 2023 IEEE 64th Annual Sym-
posium on Foundations of Computer Science (FOCS), p. 391–404
(IEEE, 2023).

50. Cramer, M. et al. Efficient quantum state tomography. Nat. Com-
mun. 1, 149 (2010).

51. Aaronson, S., Chen, X., Hazan, E., Kale, S. & Nayak, A. Online
learning of quantum states. Adv. Neural Inf. Process. Syst.31 (2018).

52. Morris, J. & Dakić, B. Selective quantum state tomography. arXiv
preprint arXiv:1909.05880 (2019).

53. Bertoni, C. et al. Shallow Shadows: Expectation Estimation Using
Low-depth Random Clifford Circuits. Phys. Rev. Lett. 133,
020602 (2024).

54. Akhtar, A. A., Hu, H.-Y. & You, Y.-Z. Scalable and flexible classical
shadow tomography with tensor networks. Quantum 7,
1026 (2023).

55. Helsen, J. & Walter, M. Thrifty shadow estimation: reusing quantum
circuits and bounding tails. Phys. Rev. Lett. 131, 240602 (2023).

56. Wan, K., Huggins, W. J., Lee, J. & Babbush, R. Matchgate shadows
for fermionic quantum simulation. Commun. Math. Phys. 404,
629–700 (2023).

57. Low, G. H. Classical shadows of fermions with particle number
symmetry. arXiv preprint arXiv:2208.08964 (2022).

58. Neven, A. et al. Symmetry-resolved entanglement detection using
partial transpose moments. npj Quant. Inf. 7, 152 (2021).

59. Fanizza, M., Quek, Y. & Rosati, M. Learning quantum processes
without input control. PRX Quant. 5, 020367 (2024).

60. Li, Z., Han, Y.-G. & Zhu, H. Optimal verification of greenberger-
horne-zeilinger states. Phys. Rev. Appl. 13, 054002 (2020).

61. Takeuchi, Y. & Morimae, T. Verification of many-qubit states. Phys.
Rev. X 8, 021060 (2018).

62. Unnikrishnan, A. & Markham, D. Verification of graph states in an
untrusted network. Phys. Rev. A 105, 052420 (2022).

63. Li, Z., Zhu,H.&Hayashi,M. Robust andefficient verificationof graph
states in blind measurement-based quantum computation. npj
Quantum Inf. 9, 1–12 (2023).

64. Gočanin, A., Šupić, I. & Dakić, B. Sample-efficient device-indepen-
dent quantum state verification and certification. PRX Quant. 3,
010317 (2022).

65. Chabaud, U., Douce, T., Grosshans, F., Kashefi, E. & Markham, D.
Building trust for continuous variable quantum states. 15th Con-
ference on the Theory of Quantum Computation, Communication

and Cryptography (TQC 2020) (ed. Flammia, S. T.) 158,
3:1–3:15 (2020).

66. Chabaud, U., Grosshans, F., Kashefi, E. & Markham, D. Efficient
verification of boson sampling. Quantum 5, 578 (2021).

67. Wu, Y.-D., Bai, G., Chiribella, G. & Liu, N. Efficient verification of
continuous-variable quantum states and devices without assuming
identical and independent operations. Phys. Rev. Lett. 126,
240503 (2021).

68. Brandão, F. G. S. L. &Harrow, A.W. Product-state approximations to
quantum states. Commun. Math. Phys. 342, 47–80 (2016).

69. Flammia, S. T. & O’Donnell, R. Quantum chi-squared tomography
and mutual information testing. Quantum 8, 1381 (2024).

70. Fawzi, O., Flammarion, N., Garivier, A. & Oufkir, A. On adaptivity in
quantum testing. Trans. Mach. Learn. Res. (2023).

71. Gottesman, D. Theory of fault-tolerant quantumcomputation. Phys.
Rev. A 57, 127 (1998).

72. Ozols, M. Clifford group. Essays at University of Waterloo
(Spring, 2008).

73. Webb, Z. The clifford group forms a unitary 3-design.Quantum Inf.
Comput. 16, 1379–1400 (2016).

74. Kueng, R., Zhu,H. &Gross, D. Low rankmatrix recovery fromclifford
orbits. arXiv preprint arXiv:1610.08070 (2016).

75. Zhu, H.Multiqubit cliffordgroups are unitary 3-designs.Phys. Rev. A
96, 062336 (2017).

76. Grier, D., Pashayan, H. & Schaeffer, L. Sample-optimal classical
shadows for pure states. Quantum 8, 1373 (2024).

77. Zhao, H. et al. Learning quantum states and unitaries of bounded
gate complexity. PRX Quantum 5, 040306 (2024).

78. Zhu, H. &Hayashi, M. Efficient verification of pure quantumstates in
the adversarial scenario. Phys. Rev. Lett. 123, 260504 (2019).

79. Ouyang, Y., Shettell, N. & Markham, D. Robust quantummetrology
with explicit symmetric states. IEEE Trans. Inf. Theory 68,
1809–1821 (2021).

80. D’Hondt, E. & Panangaden, P. The computational power of the w
and ghz states. Quant. Info Comput. 6, 173–183 (2006).

81. McCutcheon, W. et al. Experimental verification of multipartite
entanglement in quantum networks.Nat. Commun. 7, 13251 (2016).

82. Unnikrishnan, A. & Markham, D. Authenticated teleportation and
verification in a noisy network. Phys. Rev. A 102, 042401 (2020).

83. da Silva, M. P., Landon-Cardinal, O. & Poulin, D. Practical char-
acterization of quantum devices without tomography. Phys. Rev.
Lett. 107, 210404 (2011).

84. Chen, S., Cotler, J., Huang, H.-Y. & Li, J. Exponential separations
between learning with and without quantummemory. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science
(FOCS), 574–585 (IEEE, 2022).

85. Bădescu, C., O’Donnell, R. & Wright, J. Quantum state certification.
In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, 503–514 (Association for Computing
Machinery, 2019).

86. Jee, H. H., Sparaciari, C., Fawzi, O. & Berta, M. Quasi-polynomial
time algorithms for free quantum games in bounded dimension. In
48th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2021), vol. 198 of Leibniz International Proceed-
ings in Informatics (LIPIcs), 82:1–82:20 (Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021).

Acknowledgements
We would like to thank Mario Berta and Philippe Faist for helpful dis-
cussions. We acknowledge support from the European Research
Council (ERC Grant AlgoQIP, Agreement No. 851716) (O.F. and A.O.),
(ERC Grant Agreement No. 948139) (A.O.), (ERC Grant Agreement No.
101117138) (R.K.), from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No 101017733 within the

Article https://doi.org/10.1038/s41467-024-53765-6

Nature Communications |         (2024) 15:9677 18

www.nature.com/naturecommunications


QuantERA II Programme (O.F.) and from the PEPR integrated project
EPiQANR-22-PETQ-0007 part of Plan France 2030 (O.F., D.M., and A.O.),
as well as the QuantumReady and HPQC projects of the Austrian
Research Promotion Agency (FFG) (R.K.).

Author contributions
O.F., R.K., D.M., and A.O. contributed extensively to this work.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53765-6.

Correspondence and requests for materials should be addressed to
Aadil Oufkir.

Peer review information Nature Communications thanks Daniel
Hothem, TimothyProctor and theother, anonymous, reviewer(s) for their

contribution to the peer review of this work. A peer review file is avail-
able.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-53765-6

Nature Communications |         (2024) 15:9677 19

https://doi.org/10.1038/s41467-024-53765-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Learning properties of quantum states without the IID assumption
	Results
	Evaluating a learning algorithm
	Adapting a learning algorithm designed for i.i.d. inputs
	Application: verification of pure states

	Discussion
	Methods
	Notation and preliminaries
	I.i.d. setting - input state
	Problems/tasks
	Non-i.i.d. setting - input state
	Algorithms
	Error probability

	Randomized local de Finetti Theorem
	Non-adaptive algorithms in the non-i.i.d. setting
	Applications
	Classical shadows for shadow tomography
	Verification of pure states
	Discussion and comparison with previous works on verification of pure states
	Fidelity estimation
	State tomography
	Testing mixedness of states

	General algorithms in the non-i.i.d. setting

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




