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ABSTRACT

Planetesimal formation models often invoke the gravitational collapse of pebble clouds to overcome various barriers to grain growth
and propose processes to concentrate particles sufficiently to trigger this collapse. On the other hand, the geochemical approach for
planet formation constrains the conditions for planetesimal formation and evolution by providing temperatures that should be reached
to explain the final composition of planetesimals, the building blocks of planets. To elucidate the thermal evolution during gravitational
collapse, we used numerical simulations of a self-gravitating cloud of particles and gas coupled with gas drag. Our goal is to determine
how the gravitational energy relaxed during the contraction is distributed among the different energy components of the system, and
how this constrains a thermal and dynamical planetesimal’s history. We identify the conditions necessary to achieve a temperature
increase of several hundred kelvins, and as much as 1600 K. Our results emphasise the key role of the gas during the collapse.
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1. Introduction

The formation of planetesimals is one of the key open questions
in planet formation. It necessary to identify the properties of the
building blocks of planets, but determining the physical condi-
tions experienced during the formation of parent bodies could
also improve our understanding of the chemical and isotopic
composition of meteorites and small Solar System bodies (Boyet
et al. 2018; Zhu et al. 2023). These gravitationally bound objects
have a size of 1–1000 km, and a common view is that their
destructive collision cascade led to the formation of the aster-
oid and Kuiper belts, as well as the Oort cloud (Morbidelli &
Nesvorný 2020), whereas protoplanets are the result of their con-
structive collisions and growth (Johansen & Lambrechts 2017).
Both the isotopic chronology of meteorites, which are fragments
of asteroids, and the detection of protoplanets within gaseous
protoplanetary discs (Keppler et al. 2018; Gratton et al. 2019)
suggest that planetesimals formed during the first million years
of the stellar system, in the gaseous protoplanetary disc era
(Kruijer et al. 2014).

However, the pebble-sized bodies from which planetesimals
form drift radially through the disc towards the star on very
short timescales of hundreds to thousands of years due to the
gas drag (Weidenschilling 1977), and the bouncing, erosion, and
fragmentation barriers could severely limit their growth (Blum
2018). Recent simulations of dust aggregates of sub-micrometre
monomers show that their growth via collisions could allow
them to overcome the fragmentation barrier (see e.g. Hasegawa
et al. 2021, 2023). With this model, Kobayashi & Tanaka (2021,
2023) show that pebbles could form planetesimals and then
gas giant planets in a relatively short time. Another path to

⋆ Corresponding author; paul.segretain@oca.eu

overcome these barriers and form planetesimals involves a strong
concentration of grains followed by a gravitational collapse on
a short timescale. The physical processes responsible for the
strong clustering of solids are currently under debate and notably
include the streaming instability (e.g. Youdin & Goodman 2005;
Carrera & Simon 2022), the concentration in magneto-rotational
instability zonal flows (e.g. Fromang & Nelson 2006; Johansen
et al. 2011; Dittrich et al. 2013), instabilities that form vortices
such as the Rossby wave instability (e.g. Lovelace et al. 1999;
Meheut et al. 2012), the vertical shear instability (e.g. Urpin &
Brandenburg 1998; Nelson et al. 2013; Manger & Klahr 2018),
and the convective over-stability (e.g. Klahr & Hubbard 2014;
Lyra 2014; Raettig et al. 2021), and turbulent clustering (e.g.
Cuzzi et al. 2001; Pan et al. 2011; Gerosa et al. 2023). In most of
the works cited above, only one or a small number of sizes were
considered for the solids. The efficiency of these different mech-
anisms when considering a realistic size distribution is a point of
debate. For example, in the case of streaming instability, Krapp
et al. (2019) claim that including a particle size distribution could
greatly reduce the instability growth time, while Schaffer et al.
(2021) find that a dust-size distribution changes the dynamics
but does not suppress strong clustering. All of these clustering
processes rely on a balanced coupling between the gas and the
solid phase: the solid has to follow (but only partially) the gas
dynamics and possibly modifies these gas dynamics, as in the
streaming instability. This means that the solid Stokes number
(St), which quantifies the ratio between the stopping time, the
typical timescale required for the solid velocity to reach the gas
velocity, and the typical timescale of the gas dynamics, which is
generally the orbital period (see e.g. Lesur et al. 2023a), gener-
ally lies in the range [10−2; 1].

The following step, the gravitational collapse, is key to
characterising the properties of planetesimals and has been
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investigated in several ways. The results of collisions on
the final grain sizes in a planetesimal were investigated by
Wahlberg Jansson et al. (2017), and how the initial angular
momentum of the particle cloud is responsible for the binary
nature of planetesimals by Nesvorný et al. (2021). More recently,
Lorek & Johansen (2024) evaluated how the initial rotation of a
pebble cloud modifies the final shape of the formed planetesi-
mal. All of these studies focused on the dynamics of the solids
without considering the gas. This can be justified by the high
dust-to-gas ratio and the location considered, the outer Solar
System, where the gas density is lower than in the inner Solar
System, and the stopping time is therefore longer than the colli-
sion time. In fact, as the particles that tend to cluster have Stokes
numbers in the range [10−2; 1], the coupling with the gas may
also have non-negligible effects during the collapse. Polak &
Klahr (2023) built on the work of Nesvorný et al. (2021) and
studied the impact of the initial location of the collapsing clump
on the number and size distribution of the formed planetesimals.
Wahlberg Jansson & Johansen (2017) added the gas drag in the
dynamics of solids and show how it modifies the structure of
the formed object, with medium-sized pebbles at the centre sur-
rounded by a mixture of large and small pebbles. Shariff & Cuzzi
(2015) examined the two-way coupling between gas and solids
during the contraction and observed an oscillatory behaviour
of the pebble clump. As they point out, for the minimum-mass
solar nebula given by Hayashi (1981), this oscillatory behaviour
requires very large and dense clumps, for which no formation
process is known. Moreover, these studies focused on the isother-
mal case, where no gas heating process is included. To pave the
way towards an understanding of planetesimal formation that is
consistent with both the disc gas-dust dynamics and the cos-
mochemical constraints for the Solar System, we took the gas’s
dynamic and thermal evolution during the collapse into account.
As we show below, this approach is particularly important for
AU-scale planetesimal formation.

In this study we examined a gravitational collapse of pebbles
with varying dynamics and temperatures. We built on the work
of Shariff & Cuzzi (2015) by studying a spherically symmetric
collapse and taking gas thermodynamics and the frictional heat-
ing of the dust on the gas into account. The paper is structured as
follows. In Sect. 2 we discuss paths to modelling the collapse of
a dust clump coupled with a gaseous environment and introduce
some necessary physical concepts. Our numerical methods are
presented in Sect. 3, and we discuss their limits and our results
in Sect. 5.

2. Model for pebble collapse in a fluid

In this study we assumed a spherical pebble cloud collapsing
under self-gravity in a gaseous environment. Given the length
scales involved in this work, small compared to disc pressure
length scales, the gas Keplerian shear and disc rotation were
neglected. The exact background gas velocity profile varies with
the particle clustering process (in a vortex, in a pressure bump,
etc.), and we examined a simple case with no initial velocity in
the referential centred on the pebble cloud centre. In this section
we present some characteristic times, and the governing equa-
tions for gas and solid evolution, before giving a first simple
analytical estimate of the gas temperature increase during the
collapse.

2.1. Characteristic times

The gravitational collapse of a coupled pebble and gas cloud
involves several timescales. The disc dynamical timescale is the
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Fig. 1. Time evolution of the pebble cloud size in the non-linear numer-
ical simulation, a static gas solution (Eq. (1)), and the analytical solution
(solution 2) in the terminal velocity approximation (shown with solid,
dashed, and dotted lines, respectively). The black line corresponds to
the standard freefall, without friction (see Appendix A.1).

Keplerian orbital time, torb = 2π
√

a3/GM⊙, where G is the grav-
itational constant, a the semi-major axis of the orbit, and M⊙
the central star mass. We considered in this work gravitational
collapses occurring in the inner disc typically at 1 AU (or less)
from the central star. At such a distance, around a solar-type star,
torb ∼ 1 yr.

We studied a spherical clump with a mass M and initial
radius R0 composed of gas and particles. The position of a parti-
cle located at the cloud surface evolves under the clump gravity
and the gas drag, which is expected to be linear in the inner part
of discs and follows the equation

d2r
dt2 = −

GM
r2 −

1
τs

dr
dt
, (1)

with τs the particle friction time or stopping time, and where
the gas is assumed static. To obtain a first rough estimation, we
considered the terminal velocity approximation. In this approxi-
mation (d2

t r ∼ 0), Eq. (1) becomes

r(t) = 3
√

R3
0 − 3τsGMt, (2)

and the collapse time (when r = 0) is

tcol =
R3

0

3GMτs
=

8t2
ff

3π2τs
=

8tff
3π2Stff

, (3)

with the freefall time defined as

tff =
π

2

√
R3

0

2GM
.

We have introduced the Stokes number for this dynamical evolu-
tion: Stff = τs/tff . This differs from the standard Stokes number
used for protoplanetary discs StΩ = τsΩ = 2πτs/torb. Equa-
tion (3) shows in particular that the pebble collapse time is
inversely proportional to the Stokes number Stff .

In Fig. 1 the time evolution of the clump size estimated in the
terminal velocity approximation (Eq. (2)) is compared with the
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numerical solution of Eq. (1) with a static gas, and with a hydro-
dynamical simulation (fiducial case; see Sect. 3.1). The cloud
size is characterised by its mean radius, defined as in Shariff &
Cuzzi (2015):

rm =

∫ +∞
0 rρp(r)dr∫ +∞
0 ρp(r)dr

.

For a filled sphere of uniform density and radius R0, the value of
rm is 0.5R0. Figure 1 shows that the terminal velocity approx-
imation (Eq. (3)) underestimates by about 10% the collapse
time when compared with hydrodynamical simulations. tcol (here
about 6.106 s) is, therefore, a good proxy for the collapse time.
Moreover, the static gas solution matches very well with the
numerical simulation. It thus provides an upper limit for the
simulation integration time.

2.2. Governing equations

The gas dynamics is described by the inviscid Euler equations:

∂tρg + ∇ · (ρgu) = 0 (4)
∂tρgu + ∇ · (ρgu ⊗ u + P) = − ρg∇(ϕg+p + ϕc) − ρpadrag (5)
∂tE + ∇ · (u(E + P)) = − ρgu ·∇(ϕg+p + ϕc) + Pdrag, (6)

where ρg, u, P, and E are respectively the mass density, the veloc-
ity, the pressure, and the total energy (kinetic and internal) of the
gas. We studied the self-gravity of the gas and dust, and the drag
force between them. In the momentum equation, ρp is the local
pebble mass density. The equation system is closed with an ideal
equation of states written as

P = ρg
R
M

T, U =
P
γ − 1

, (7)

where R, M, T , U, and γ are the ideal gas constant, the molar
mass, the temperature, the internal energy and the adiabatic
index of the gas.

Pebbles are modelled as a pressure-less fluid whose dynamic
is described as

∂tρd + ∇ · (ρdud) = 0 (8)
∂tρdud + ∇ · (ρdud ⊗ ud) = − ρd∇(ϕg+p + ϕc) + ρdadrag, (9)

where ρd and ud are the mass density and the velocity of the fluid.
ϕg+p is the gravitational potential of both gas and pebbles, which
solves the Poisson equation

∆ϕg+p = 4πGρg+p, (10)

where ρg+p is the total mass density of gas and pebbles. ϕc is
addressed in Sect. 3 where its introduction is justified by the
limited simulation domain.

In these equations, adrag is the drag acceleration exerted by
the gas on pebbles (and −adrag the feedback onto the gas). The
drag acceleration is computed with the prescription

adrag = −
ud − u
τs
, (11)

where τs is the dust stopping time given by

τs =


ρma
ρgc

if a < 9λ/4 (Epstein regime, Epstein 1924)

4ρma2

9ρgcλ
else (Stokes regime)

, (12)

depending on the material density ρm and size a of the pebbles,
the density ρg of the gas and the mean thermal speed of the gas
molecules c =

√
8/πcs, with cs the sound speed in the gas. λ is

the mean-free path of the gas molecules. In the energy equation,
Pdrag is the power given by the particles to the gas, defined as

Pdrag = ρp
up − u
τs

· u + ρp
(up − u)2

τs
. (13)

This includes the power imparted by the drag force and the fric-
tional heating, which can be considered as irreversible power
generating entropy.

Finally, in the collapsing area, the pebbles are highly concen-
trated compared to the disc mean solid density. We treated this
area as being composed of regions with a large concentration of
dust of many sizes (not included in the simulations) and there-
fore optically thick. We then considered an adiabatic evolution
for the system of gas and pebbles.

2.3. Static gas

An estimation of the heating by gravitational collapse could
be provided assuming here a static gas and using an energetic
approach where the initial gravitational energy of the pebbles
would be fully converted into gas internal energy. This would
mean that the pebbles fully transfer their kinetic energy to gas
through friction. This simple approach mimics some estima-
tions made to obtain an upper limit on the temperature of a
geophysical body (see e.g. Lichtenberg et al. 2023, Sect. 2.1.1).

The initial condition is a spherical pebble cloud with a uni-
form mass density1. The gravitational energy of the ball of mass
M and initial radius R0 is EG = −3GM2/5R0. An infinitesimal
contraction of the pebble ball releases the gravitational energy,

dEG =
3
5
GM2

R2 dR. (14)

Assuming this released gravitational energy spread uniformly in
the ball of the same radius R, the gas temperature would increase
by this infinitesimal contraction by

dT =
(

cv
Vm

4
3
πR3

)−1

dEp =
9GM2

20πcv/Vm

dR
R5 , (15)

with cv the molar heat capacity at constant volume and Vm the
molar volume. The gas shell of radius R̃ receive energy from the
solids through drag only when the pebble cloud is larger than R̃.
The temperature at a radius R̃ would have increased by the end
of the collapse of

∆T (R̃) =
∫ R0

R̃

d∆T
dr

dr =
9GM2

20πcv/Vm

1
4

 1
R̃4
−

1
R4

0

 . (16)

For a pebble cloud of mass 3 × 1016 kg contracting from
R0 = 1500 km to R̃ = 50 km, the gravitational energy released
is ∆EG = 3GM2/5× (1/R̃− 1/R0) ∼ 7 × 1017 J . If this energy is
deposited through the process described above in a gas initially at
320 K and 8.34 Pa composed fully of H2, (which corresponds to
a total mass of about 9 × 1013 kg, and cv = 20.8 J · mol−1 · K−1)
the temperature would reach more than 5000 K according to
Eq. (16).

1 We define here a ball as a filled sphere or a solid sphere, and a sphere
as the surface of a ball.
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Table 1. Range of values used for our runs.

Parameter Value

Mtot {1; 1.7; 2.3; 3.3; 5} Mfid
ρg {0.5; 0.7; 1; 1.4; 2.1; 3} ρfid
a {5; 10; 15; 20} cm
ρm {1; 3; 5; 7} g · cm−3

This simple approach gives an upper limit to gas heating. The
very high temperature obtained here shows that the hypothesis of
a full conversion of gravitational energy into gas internal energy
is not correct. Therefore, a more complete approach, including
the gas and dust thermal as well as dynamical evolution with
fully non-linear numerical simulations is necessary.

3. Numerical methods

We performed 1D spherically symmetric simulations using
the IDEFIX code (Lesur et al. 2023b), solving the hydro-
dynamical equations with finite-volume methods through a
Godunov scheme. IDEFIX also includes a self-gravity module
(see Appendix A of Mauxion et al. 2024) to solve the Poisson
equation with linear algebra methods. The solids can be mod-
elled in two ways. In this study we chose to model them as a
pressure-less fluid. We provide a comparison with a Lagrangian
particle model in Appendix C, showing that for our problem
the two approaches are similar. The runs have been performed
using a second-order Runge–Kutta scheme, second-order spatial
reconstruction and the Lax–Friedrichs Riemann solver.

3.1. Initial conditions

Initially, the pebbles were static, forming a clump with a uniform
density profile in the core and a Gaussian tail at the edge:

ρp(r) =


ρc if r ≤ rc

ρc exp
(
−

(r − rc)2

σ2

)
elsewhere.

(17)

Here rc is the initial core radius of the clump, and we defined the
initial radius of the pebble sphere as R0 = rc + σ with σ = rc/5.
The gas had no initial velocity, a uniform density ρ0 and tem-
perature Tg with an ideal equation of state. The adiabatic index
of the gas was 1.4. The initial stopping time τp was 8.4 × 104 s
corresponding (for the chosen gas density and sound speed) to
pebbles with a = 15 cm and ρm = 3 g · cm−3, and to Stff = 0.06.
For these pebbles, the stopping time was computed in the Stokes
regime.

Our fiducial simulation had a pebble mass Mfid of 3× 1016 kg
and gas density ρfid of 7× 10−6 kg · m−3. This fiducial mass cor-
responded to a core density ρc of 2.1 × 10−3 kg · m−3 in Eq. (17),
and thus to an initial dust-to-gas ratio of 300. We explored how
changes in the total pebble mass, Mtot, and initial gas density, ρg,
affect the final temperature. The values employed for the var-
ious runs are presented in Table 1. Assuming a planetesimal
density of 2000 kg · m−3 (which would correspond to planetes-
imals made of silicates with some porosity), these initial masses
correspond to spherical planetesimals with radii between 10.6
and 26.1 km. The initial size and mass of our pebble cloud are
therefore small compared to the characteristic size of the parent

bodies of the current main belt asteroids. The initial gas tem-
perature (320 K) corresponds to the inner region of a solar-type
star protoplanetary disc. The initial pebble clump radius R0 is
1500 km (that is rc = 1250 km and σ = 250 km).

3.2. Grid and resolution

We performed 1D spherically symmetric simulations with a grid
extending from Rin = 0.0013R0 to Rout = 4R0 or equivalently
[2, 6000] km. The grid was uniform from 2 to 30 km and log-
arithmic from 30 to 6000 km giving a good balance between
precision and numerical time. A grid comprising 2048 cells was
considered, of which 306 are located in the uniform part from
2 to 30 km resulting in cells of 90 m. In the logarithmic part,
the ratio between the grid spacing and position ∆x/x is approx-
imately 0.003. This distribution of cells was designed such that
the cell size in the uniform zone is comparable to the size of the
first cell in the logarithmic zone. To circumvent the singularity
at the centre and the considerable computational expense, the
central zone between 0 and 2 km was not included in the sim-
ulation. Nevertheless, the mass of the gas and particles situated
within this zone was represented by a central point mass, with
the gravitational potential (ϕc) incorporated into the self-gravity
potential in Eqs. (5), (6), and (9).

3.3. Boundary conditions

At the outer edge, the outflow boundary condition is used with
extrapolated primitive quantities. We performed tests with dif-
ferent boundary conditions and no apparent difference has been
seen with zero gradient boundary conditions, showing that the
size of the grid was chosen large enough to avoid such numerical
artefacts.

At the inner edge, we used a no-inflow boundary condition.
The density and pressure (for the gas) were copied from the
innermost cell to the ghost zone (no gradient), the radial veloc-
ity was capped at 0 in ghost cells, and the mass flux was set
to 0 if a positive flux is entering the simulation grid. The mass
lost at the inner edge was appended to the central point mass,
thereby contributing to the overall dynamics of the system via
the potential ϕc.

3.4. Test

To test the code and verify the compatibility of the differ-
ent modules, we reproduced the results obtained by Shariff
& Cuzzi (2015). The main difference in the approach is the
numerical methods used to solve the hydrodynamic equations,
and the boundary condition at the inner edge of the grid. Our
approach shows good agreement with their results (as presented
in Appendix B.1), proving that we have correctly captured the
physics.

4. Numerical results of gravitational collapses

4.1. Fiducial run

Figure 2 shows radial profiles of the particle density and the evo-
lution of the central gas density and temperature of our fiducial
run. This reference run done with the Eulerian approach for the
pebbles has a freefall time of tff = 1.44 × 106 s. The mean radius
evolves from 0.5R0 at the beginning of the simulation to 0.02R0.
This final mean radius corresponds to a core radius of 100 km.
The collision time starts to be smaller than the friction time
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Fig. 2. Evolution of the cloud during the collapse. Left: time evolution of the radial profile of the particle cloud density. Centre: gas temperature
profiles (dashed red) and gas density profiles (dotted green), plotted at the beginning and the end of the fiducial run. Right: time evolution of the
central density (dotted green) and temperature (dashed red, right axis) of the gas.

(see Appendix A.2 for estimation of these times). The collisions
not being included here, we did not follow the collapse further.
The temperature plotted here (dashed red curves) is computed
from the primitive variables, density (dotted green curves) and
pressure, using the perfect gas law.

The radial density profile of the pebble cloud is shown on the
left of Fig. 2. The core of the cloud has a radially uniform den-
sity for most of the collapse but the concavity of the tail changes
and the edge of the cloud becomes steep. Its value increases
with time during the collapse, to reach 30 kg · m−3. However,
this increase is not regular in time. The initial density is mul-
tiplied by 100 before 4.7tff , and then multiplied by another factor
of 300 at the end of the run, only 0.1tff later. We find the same
behaviour for the gas density and temperature (shown on the
right). They are almost constant during the collapse up to 4.7tff
(i.e. (tcol − t)/tff ∼ 10−1) and change only at the end of the col-
lapse, with a final increase in the central density by a factor of
3 and of the gas central temperature by about 170 K. It can be
seen that the temperature evolution occurs only within the peb-
ble cloud. In particular, the edge of the temperature rise zone and
the edge of the pebble cloud overlap quite well. The increase in
gas temperature of 170 K, small compared to the value estimated
in Sect. 2.3, also shows that the simple approach used there is
not correct, as it assumes the pebble kinetic energy to be fully
converted into gas heating. In fact, the kinetic energy represents
indeed more than half of the released gravitational energy.

4.2. Heating processes

This section examines the heating that occurs during the fiducial
run. Initially, the gas is a reservoir of gravitational energy with no
kinetic energy, with two external sources of energy: the frictional
heating of particles depositing their gravitational energy in the
gas, and an energy transfer at the domain outer boundary. The
latter would result in a temperature increase also at the outer edge
of the computational domain, which we do not see. The central
heating is not an outer boundary effect. Therefore, to identify the
origin of the gas heating in the fiducial run, we followed Huang
& Bai (2022) and introduced a gas frictional heating parameter,
ω, to Eq. (13):

Pdrag = ρp
up − u
τs

· u + ωρp
(up − u)2

τs
. (18)

Fig. 3. Gas central temperature as a function of the cloud mean radius
for two extreme values of ω. The dotted curve corresponds to the theo-
retical temperature for an adiabatic evolution.

The ω parameter ranges from 0 for no frictional heating of the
gas (in other words this energy would heat the particles) to
ω = 1 corresponding to a full transfer of the energy dissipated
through friction to gas thermal energy. We compare in Fig. 3 the
evolution of the central gas temperature during the contraction
for two extreme cases ω = 1 and ω = 10−3. The weak differ-
ence indicates that frictional heating is negligible compared to
compressional heating, with a contribution of 1 K to the total
temperature increase of about 170 K, as shown by the inset in
Fig. 3. As it will be discussed subsequently, this variation is of
a similar magnitude to that introduced by modifying the reso-
lution of our grid. Therefore, this is not a physically significant
phenomenon. This shows that the heating of the gas is not due
to the irreversible term of Eq. (13). We also note that the density
minimum seen in Fig. 2 is not present for weak frictional heating.

We next considered particle drag as a precursory process
initiating the gas compression responsible for the temperature
increase. We compared the gas temperature with the adiabatic
evolution given by the Laplace law for perfect gas (dashed
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Fig. 4. Radial profiles of the pebble density, gas temperature, pebble
velocity, and gas velocity (top) and the frictional heating, drag force, and
gas pressure gradient (bottom) at t/t f f = 4.756 for ω = 1 (the fiducial
case) and ω = 0.001.

curve in Fig. 3). The two curves perfectly overlap, showing that
adiabatic heating is the main process responsible for the gas tem-
perature increase at the centre of the cloud. To identify how the
adiabatic compression occurs, we show in Fig. 4 the radial pro-
files computed for the two extreme values of ω at the same run
time. One can see that the density radial profiles (blue), and the
central and outer temperature (red) perfectly match in the two
runs. This is consistent with the irreversible term being negligi-
ble in the collapse dynamics. A temperature mismatch is seen
only at the cloud rim that coincides with the region of non-
negligible frictional heating (ω = 1). The irreversible term of
Eq. (13) has a non-negligible contribution only at the edge of the
pebbles cloud. In this region, the temperature increase is higher
for ω = 1 than ω = 0.001. Finally, the amplitude of the (nega-
tive) drag force that does not vary with ω, is maximum also at
the cloud rim. Indeed, most of the pebbles’ momentum is at the
cloud edge, so this layer dominates the work of the drag force
transferred to the gas. Furthermore, one can see that the gas
pressure gradient and the drag force are nearly opposite. Conse-
quently, the pebble drag action on the gas can be conceptualised
as a piston compressing and heating the inner gas in an adiabatic
process.

4.3. Thermal exchanges between gas and pebbles

In this section we consider the thermal exchanges between the
gas and the pebbles that were previously neglected. To include
these thermal exchanges, we now also consider the time evo-
lution of the specific internal energy of the pebbles ud. It
is advected with the flow of pebbles with velocity vd and is
calculated as:

∂t(ρdud) + ∇ · (vdρdud) = S d. (19)

Here S d is the source term modelling representing the ther-
mal energy transfer from the gas to the pebbles. It is therefore
subtracted from the gas energy equation to ensure the energy
conservation of the whole system.

A rigorous estimation of these thermal exchanges is complex
and would require a precise understanding of the structure of

the pebbles (size, shape, composition, porosity, etc.). With S d
representing heat transfer at the surface of spherical pebbles, we
can write (see e.g. Bird et al. 2006, Eq. (14.1.1))

S d = hs(Tg − Td). (20)

In this equation, h is the heat transfer coefficient associated with
the fluid and s is the exchange surface between gas and pebbles
per fluid volume. h is computed from the gas thermal conductiv-
ity k (given by the kinetic theory of gases) and the size of pebbles

a through the Nusselt number Nu =
ha
k

. We used the expression
of the Nusselt number given by Bird et al. (2006, Eq. (14.4.5))
Nu = 2 + 0.6Re1/2Pr1/3. For the flow considered in our simula-
tion of a perfect gas around pebbles, we have Re ≪ 1 and Pr ∼ 1,

so we considered Nu ≈ 2 and therefore h =
2k
a

. Moreover, s

is given by s =
ρd

4πρma3/3
× 4πa2, where the first term is the

number density of pebbles and the second the surface of a peb-
ble. Finally, Tg is the gas temperature and Td is the temperature
of the pebbles. The pebble temperature is related to the inter-
nal energy through the specific heat capacity of pebbles Cd. We
considered the initial pebble temperature to be at the equilibrium
with the gas and defined the internal energy as the variation from
the initial one. We therefore have

Cd(Td − Td(t = 0)︸    ︷︷    ︸
320 K

) = ud − ud(t = 0)︸    ︷︷    ︸
0

. (21)

Three values of Cd (the efficiency of heat transfer through a
pebble) were considered:

– Cd is the specific heat capacity of silicates CSi
(∼900 J · kg−1 · K−1). This means that the thermal dif-
fusion inside a pebble is very efficient, and the temperature
is uniform throughout the solid.

– Cd = 0.01CSi: thermal diffusion is weakly efficient on
timescales involved here and only 1% of pebbles heat.

– Cd = 0.001CSi: thermal diffusion is poorly efficient and only
the very surface of pebbles heats.

We also note that Cd = 0 corresponds to our previous sim-
ulations (no heating of the pebbles). With this approach, the
resulting surface temperature of the pebbles is very similar to
the gas one. The increase in gas temperature at the inner edge of
the simulation varies strongly with the specific heat capacity, as
shown in Table 2. This is an expected result as the energy con-
verted from the pebble velocity to internal energy is distributed
into the gas and a mass of solids, and this mass varies signif-
icantly. At the end of the simulation, way before the end of the
collapse, the pebble-to-gas ratio is already very high (of the order
of 105–106, as can be seen in Fig. 2), and the internal energy lies
mostly in the pebbles.

This result raises questions regarding how the total amount
of internal energy that will be distributed between gas and solids
varies with the properties of the initial cloud. The thermal diffu-
sion properties of the pebbles being unknown, we consider in the
following this global internal energy of the system as represented
by the gas temperature when the pebbles do not heat (Cd = 0).

4.4. Parameter exploration

4.4.1. Initial mass and density

We studied how the final central gas temperature evolves with
two parameters: the total mass of the pebble cloud, Mtot, and
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Table 2. Gas temperature increase as a function of the strength of
thermal exchanges between gas and pebbles.

Case ∆Tg
Cd = 0 175 K
Cd = 0.001CSi 10.7 K
Cd = 0.01CSi 1.6 K
Cd = CSi 0.02 K

Fig. 5. Increase in the gas central temperature as a function of the initial
gas density for different values of the initial mass of pebbles.

the initial gas density, ρg, characterised as Mfid = 3 × 1016 kg
and ρfid = 7 × 10−6 kg · m−3. As shown in Fig. 5, the final central
temperature is approximately inversely proportional to the square
root of the initial gas density. However, the slope of the curve
varies slightly with the initial cloud mass. To better characterise
this behaviour, the final temperature is plotted as a function of the
initial mass in Fig. 6. The final temperature is nearly proportional
to the initial mass, but again, with a slight dependence on the gas
density.

These behaviours are consistent with what we might expect:
the more massive the pebble clump, the more energy is released,
and the higher the temperature of the gas surrounding the form-
ing planetesimal. Similarly, if there is less gas surrounding the
clump, the gas will be hotter, for the same amount of energy
released. These results show that, to dissolve gas from the disc
into the forming planetesimal (i.e. to reach a temperature of
about 1200 K), a massive clump (mass of about 1017 kg, cor-
responding to a planetesimal of about 20 km in size) with a low
surrounding gas density (initial dust-to-gas ratio of about 1000
or more) is required, as well as a nearly zero thermal diffusion in
the pebbles.

4.4.2. Size and intrinsic density of pebbles

We also studied the influence of the coupling between gas and
particle by varying the initial stopping time of the pebbles. This
was done by modifying either the size or the internal density of
the pebbles. Sizes between 5 and 20 cm and densities between
1 and 7 g · cm−3 were chosen (pebbles made of different mate-
rials from ice to iron depending on porosity). Because of the
transition in the formulation of the stopping time between the
Epstein and Stokes drag law for s = 6.9 cm in our fiducial setup
where the mean free path of the gas is λ = 2.9 cm, there is a

Fig. 6. Increase in the gas central temperature as a function of the initial
mass of pebbles for different values of initial gas density.

Fig. 7. Gas central temperature increase as a function of the initial stop-
ping time of pebbles.

dichotomy in behaviour between the 5 cm pebbles and the oth-
ers. For solids larger than 10 cm, one can see in Fig. 7 that the
smaller the initial stopping time, the hotter the gas at the end
of the run. The drag term in Eqs. (5) and (6) is inversely pro-
portional to the stopping time. Thus, for smaller and less dense
pebbles, more coupled to the gas, the piston effect is more effi-
cient and the gas temperature is higher. This correlation between
the stopping time and adiabatic heating is also responsible for
the dichotomy seen in Fig. 7 between the 5cm size pebbles and
the other, for the same initial stopping time. Indeed in a perfect
gas, the mean free path λ is proportional to ρ−1

g . Therefore, with
Eq. (12), we have τs ∝ (ρgc)−1 for Epstein law and τs ∝ c−1 for
Stokes law. It implies that for a fixed-size solid the modification
of its stopping time with the gas density and temperature is larger
in the Epstein regime. Thus, for two pebbles with the same initial
stopping time, the one in the Epstein regime will become more
coupled to the gas as the collapse progresses than the one in the
Stokes regime. So, at the end of the simulation, the piston effect
will be more efficient for small pebbles than for big ones.

Figures 5, 6, and 7 demonstrate that the maximum tempera-
ture increase in the gas is achieved when the initial gas density
is the lowest, the total mass of the cloud is the largest or the
pebbles are the smallest. In the parameter range under consider-
ation (see Table 1), the greatest temperature increase is therefore
observed for Mtot = 5Mfid, ρg = 0.5ρfid and a = 5 cm. We ran the
corresponding simulations and show the results as the black dots
in Fig. 7. In this case, we obtain an increase of about 1300 K
resulting in a final temperature of approximately 1600 K.
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5. Discussion and conclusion

To ascertain the impact of numerical resolution on our results,
additional simulations were conducted using the same initial
conditions as the fiducial case but with an increasing number
of cells. The findings are presented in Appendix B.2. We veri-
fied that increasing the resolution does not change the physical
results, whereas decreasing it could occasionally result in minor
numerical instabilities.

Our initial exploration of the parameter space highlights the
importance of the gas heating process during planetesimal for-
mation via gravitational collapse. However, due to the simplicity
of our approach, there are several limitations.

First, the collapse is assumed to be spherically symmet-
ric. This implies that convection in the gas and rotation
are neglected. In our fiducial simulation, we estimated the
Brunt–Väisälä frequency (N), finding the value of N2 to be pos-
itive in the edge zone at a radius r ≈ 105 km. However, the value
of N is ≈10−4 Hz, resulting in a characteristic time of 104 s. This
timescale is of the order of the temperature evolution timescale,
casting doubts on the viability of genuine convection. So, the
temperature profiles shown in Fig. 2 reached at the end of the
simulation might be prone to convection. However, this estima-
tion was made without taking cooling into account. Including
cooling would lead to a redistribution of energy within the gas,
which would reduce the final central temperature.

Finally, we did not consider particle collisions, despite their
potentially key role in planetesimal formation (Nesvorný et al.
2010, 2021; Wahlberg Jansson et al. 2017; Wahlberg Jansson
& Johansen 2017; Polak & Klahr 2023), for two reasons. First,
we ran 1D simulations with no initial velocity dispersion, mak-
ing collisions meaningless here. Second, unlike Nesvorný et al.
(2010, 2021), who focused on Kuiper Belt objects, we considered
planetesimal formation closer to 1 AU with denser and hotter
gas, which leads to stronger friction that can dominate the effect
of collisions in the first phase of the collapse (see a comparison
between stopping time and collision time in Appendix A.2). It is
a reasonable assumption that collisions will play a crucial role in
the subsequent evolution. This is due to the fact that collisions
will facilitate a conversion of the kinetic energy of the pebbles
into internal energy, which will in turn influence the temperature
of the pebbles.

To conclude, in this study we have extended the Shariff &
Cuzzi (2015) modelling of the gravitational collapse of a gas
and pebble cloud by considering the gas thermodynamics. We
first see an increase in the collapse time of the pebble cloud
due to the gas friction. This increase is inversely proportional
to the Stokes number, Stff = 2πτs/tff . Secondly, we have pro-
vided evidence that the heating of the gas at the centre of the
domain is caused by gas adiabatic compression driven by the
pebbles dragging the gas with them as they collapse. We iden-
tify three regions that are associated with different heating. In
the outermost region without particles, there is no temperature
increase. Frictional heating, when present, heats only the parti-
cle cloud rim. The temperature rise in the core of the cloud is
dominated by adiabatic compression driven by the deposition of
momentum in the rim. We also show how this heating varies with
the clump mass, the gas density, and the characteristics of the
pebbles. In the most massive clumps, more gravitational energy
will be released during the collapse, and thus the pebbles will
reach a higher velocity. Moreover, if these clumps are made of
small pebbles, the coupling between pebbles and gas is stronger,
which implies that the piston effect is more efficient. Therefore,

in these clumps, the gas might reach the temperature needed for
dissolution into the forming planetesimal.

The final stages of the collapse were not modelled in this
study. If these stages were simulated, a higher temperature would
likely be reached. The temperature might be high enough (up
to about 1500 K) for the pebbles to experience thermal meta-
morphism and perhaps even melt, allowing gas to dissolve into
them or leading to a release of trapped gases. However, this
would strongly depend on the extent of the thermal exchanges
between gas and pebbles and on their compositions. At such
pebble scales, geochemical experiments of gas dissolution into
silicates show that this process could be highly effective in a
few hours (see e.g. Jambon et al. 1986). Our work demonstrates
that the pebble surface could melt during the gravitational col-
lapse over a timescale of 10−2 freefall times (5 hours here) in
favourable conditions (a massive clump, small pebbles, and low
to near-zero thermal diffusion). Therefore, even for planetesi-
mals that are small compared to the characteristic size of the
parent bodies of the current main belt asteroids, the tempera-
ture increase might be consistent with gas dissolution in the
planetesimal-forming pebbles. However, one should note that the
cooling process after the planetesimal formation was not taken
into consideration in this study.

These results emphasise the key role of gas in the forma-
tion of planetesimals via gravitational collapse, especially at
distances of a few AUs from the central star. This implies a new
step in the thermal history of planetesimals that depends strongly
on their formation region. The identified heating process may
lead to local heating not only in space but also in time, which
could provide new approaches for cosmochemical studies. This
work also suggests future avenues for studying the gravitational
collapse of a pebble clump in a gaseous environment: first, by
extending the simulations to 2D or 3D, opening up the possibil-
ity of including initial particle velocity dispersion and collisions,
and second, by better modelling the thermal exchange between
pebbles and gas.
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Appendix A: Derivation of analytic formulas

A.1. Freefall time

The freefall time of a particle clump can be calculated using
the same reasoning as in Sect. 2.1. The position of a freefalling
particle at the cloud edge is calculated as

d2r
dt2 = −

GM
r2 (A.1)

This equation can be integrated for a static initial condition and
an initial radius, R0, becoming

dr
dt
= −

√
2GM

(
1
r
−

1
R0

)
, and (A.2)

t =

√
R3

0

2GM

( √
x(1 − x) + arcsin(

√
1 − x)

)
, (A.3)

where x = r/R0. The freefall time corresponds to the time when
r (or x) reaches 0:

tff =
π

2

√
R3

0

2GM
. (A.4)

A.2. Collision time versus stopping time

Building on Nesvorný et al. (2010), we compared the stopping
time and the time between pebble collisions. The stopping time
was estimated in the Epstein regime as τs = ρma/ρc. The col-
lision time is given by τc ∼ (nσv)−1, with the pebbles number
density n ∼ Mtot/(ρma3R3), the cross-section σ ∼ a2, and the
virial velocity v ∼

√
GMtot/R. Bringing all together leads to

τs

τc
∼

√
GM3

tot

ρ2c2R7
. (A.5)

With the values for Mtot, ρ, c, and R used in our fiducial simula-
tion, we have τs/τc ∼ 1. Thus, the stopping time and the collapse
time are approximately the same in this situation and thus the
friction due to the gas cannot be neglected. However, we have
here v ∼ 1 m · s−1, which is an order of magnitude higher than the
typical velocity observed in our simulation (a so high velocity is
obtained only at the end of the collapse). We can then consider
that for our simulations, τs ≪ τc, and so the friction is dominant
for most of the collapse period.

Appendix B: Test of the numerical setup

B.1. Comparison with previous work

To test our numerical setup, we compared it with the work of
Shariff & Cuzzi (2015), who used a similar approach for the
modellisation of the system but with different numerical meth-
ods for solving hydrodynamics and Poisson equations. Moreover,
we tested the Lagrangian particle module of IDEFIX, which
solves the dynamics of the pebbles very differently

The notations used here are the same as in Sect. 4.1 of Shariff
& Cuzzi (2015). The Jt corresponds to a two-phase Jeans number
and compares the propagation time of a sound wave across the
clump with the dynamical time tdyn = (ρp0G)−1/2 =

√
32/3πtff .
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Fig. B.1: Size evolution of the particle cloud for various Jt (Stff = 0.02,
ϕ0 = 100) with our Eulerian approach for pebbles.
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Fig. B.2: Evolution of the gas central temperature with the cloud mean
radius for different numerical refinements.

Figure B.1 compares the size evolution of the clump for various
Jt and should be compared with Fig. 3 of Shariff & Cuzzi (2015).
We obtain results similar to those of the original study, which
validates our methodological approach.

B.2. Convergence test

We ran our fiducial run for different resolutions, from 512 to
4096 cells. The results are shown in Figs. B.2 and B.3. We see
that increasing the resolution does not change the physical results
(small variation of about 2 K, which is 1% of the temperature
increase at the end of the collapse). However, we see that at low
resolution there are some numerical instabilities at the edge of
the cloud. We therefore decided to use a resolution of 2048 cells
as a compromise between these instabilities and the simulation
time.
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Fig. B.3: Radial profiles of pebble density (blue), gas density (green), gas temperature (red), and gas velocity (indigo) at the end of the fiducial
simulation (t/t f f = 4.756) for different numerical refinements.

Appendix C: Lagrangian particle approach

Two principal methods are typically employed to model the
dynamical evolution of solids in gaseous proto-planetary discs.
The first is the pressure-less fluid model, which is the focus
of this paper. The second method is the Lagrangian particle
approach, which involves the modelling of solids through a rel-
atively small number of particles, referred to as super-particles
(SPs). Each SP represents a large number of pebbles sharing the
same properties, including size, internal density, velocity. The
IDEFIX code enables the utilisation of these two approaches, and
thus a comparison was undertaken. The principal characteristics
of the Lagrangian particles module of the IDEFIX code are pre-
sented here, with a more comprehensive account to follow in a
dedicated publication.

The SPs follow the Newton equation:

d2xp

dt2 = −∇(ϕg+p) −
up − u
τs
, (C.1)

where xp and up are the position and the velocity of a SP. In order
to compute the self-gravity and friction forces, the deposition
of SPs on the grid is carried out using a triangular shape cloud
scheme, as described by Mignone et al. (2018).

The simulation of the collapse employs the identical initial
conditions and grid as the pressure-less fluid approach, with
a single minor alteration. To reduce the computational time,
an evolving mesh refinement is implemented. The simulation
is conducted in three stages, corresponding to the intervals
[0.5, 0.15]R0, [0.15, 0.05]R0, and [0.05, 0.02]R0. At each restart,
the resolution is increased from 1024 to 2048 and 4096 cells.
This results in a reduction in the requirement for computational

Fig. C.1: Size evolution of the particle cloud for various Jt (Stff = 0.02,
ϕ0 = 100) with a Lagrangian approach for pebbles.

resources during the initial phase of the evolution process, while
simultaneously enabling high precision during the accelerated
evolution phase at the late stages of the collapse. In order to
ensure continuity in cell size between the uniform zone and the
logarithmic zone of the grid, the cells are distributed between
the two zones in the same way as the simulations conducted with
the pressure-less fluid approach. To achieve a smooth transition
between two different steps, the final profiles from one step were
used as the initial conditions for the subsequent step. These pro-
files, which relate to position, velocity, and pressure (for the gas),
are linearly interpolated on the new grid. To obtain sufficient res-
olution to correctly map the particle density onto the grid, each
step was initialised with ten particles per cell. We verified that
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Fig. C.2: Evolution of the cloud during the collapse. Left: time evolution of the radial profile of the particle cloud density. Centre: gas temperature
profiles (dashed) and gas density profiles (dotted), plotted at the beginning and the end of the fiducial run. Right: time evolution of the central
density (dotted) and temperature (dashed, right axis) of the gas.

there were no physical differences if we did only one step with
2048 or 4096 cells. We used open boundary conditions, allow-
ing SPs to escape the grid, thereby precluding any possibility of
re-entry. In a manner analogous to the pressure-less approach,
the mass lost at the inner boundary is added to the central mass
thereby contributing to ϕc.

Figure C.1 is the same as Fig. B.1, and Fig. C.2 is the
same as Fig. 2 but for the Lagrangian particle approach. The
results obtained are highly comparable, indicating that both
methodological approaches are viable for modelling the col-
lapse. The methodological choice will therefore be contingent
upon the additional physical effects one wishes to consider, such
as collisions or size distributions.
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