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Discontinuous codimension-two bifurcation in a Vlasov equation
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In a Vlasov equation, the destabilization of a homogeneous stationary state is typically described
by a continuous bifurcation characterized by strong resonances between the unstable mode and the
continuous spectrum. However, when the reference stationary state has a flat top, it is known that
resonances drastically weaken, and the bifurcation becomes discontinuous. In this article, we use a
combination of analytical tools and precise numerical simulations to demonstrate that this behavior
is related to a codimension-two bifurcation, which we study in details.

I. INTRODUCTION

Vlasov and other similar equations are infinite dimen-
sional Hamiltonian systems (see for instance [1]) which
are fundamental in many domains governed by long-
range interactions: plasma physics, astrophysics, fluid
dynamics for instance. Getting a qualitative understand-
ing of Vlasov dynamics is thus an old problem, which
started with Vlasov and Landau [2, 3]. We shall approach
this question with dynamical systems tools, in particu-
lar bifurcation theory: the rationale is that bifurcations
have a universal character, and tend to provide informa-
tions on the structure of the phase space, in a sometimes
rather wide neighborhood of the critical point.

The bifurcation theory of Vlasov and Vlasov-like equa-
tions is very different from that of dissipative nonlinear
partial differential equations (PDEs). The paradigmatic
case for a bifurcation of Vlasov equation is a homoge-
neous stationary solution with a certain velocity profile
F (p) which becomes unstable as a parameter (a coupling
constant for instance) is varied. This situation is now well
understood: the unstable eigenvalue appears embedded
in the marginally stable (purely imaginary) continuous
spectrum, and a reduced description involving a finite di-
mensional central manifold is not possible. Instead, the
development and saturation of the instability is generi-
cally described by the Single Wave Model, which is itself
a nonlinear PDE [4–7]. In particular, the bifurcation
is continuous, and if λ is a real eigenvalue and indicates
the instability rate, the nonlinear saturation amplitude of
the instability is the peculiar O(λ2) ”trapping scaling”,
rather than the much larger O(λ1/2) typical for standard
pitchfork bifurcations [8, 9] in dissipative systems.

Beyond this generic scenario, it is also well known that
modifying the velocity profile of the stationary state may
have a strong influence on the type of bifurcation: indeed,
for ”flat-top” velocity profiles, or waterbags, resonance
effects between the unstable mode and the continuous
spectrum are suppressed, and the validity of the stan-
dard central manifold approach is recovered; a finite di-
mensional reduction is then achievable, and, in all cases
in which the computation has been attempted, it predicts

a discontinuous bifurcation [7, 10].

At the critical point, a purely imaginary eigenvalue λI
appears; this requires that the first derivative of the ve-
locity profile vanishes at λI : F

′(λI) = 0. The generic
scenario then corresponds to F ′′(λI) 6= 0, and the ”flat-
top” case to the vanishing of all derivatives: F (n)(λI) = 0
for any n ∈ N. In the review [7], section VIII-C, the au-
thors numerically analyze, in the simple setting of the
Heisenberg Mean Field (HMF) model, how is the stan-
dard Single Wave Model bifurcation modified when the
critical velocity profile interpolates between a gaussian
and a waterbag. We undertake in this article a system-
atic study of this situation and show it can be understood
as the influence of a special point in the family of Single
Wave Model bifurcations, i.e. a kind of codimension-two
bifurcation, which rules the dynamics in its neighbor-
hood.

A typical example of codimention-two bifurcation is
the Bogdanov-Takens bifurcation in a dissipative ordi-
nary differential equation [11]. Another physically im-
portant example is a tricritical point in thermodynam-
ics; such a tricritical point has also been observed in a
Vlasov system [12] in relation with Lynden-Bell statis-
tical mechanics. At variance with [12], which uses non
stationary waterbags initial states, we consider in the
present work small perturbations of smooth stationary
reference states. Beyond the case homogeneous states,
bifurcations of Vlasov equations have also been studied
for families of nonhomogeneous (position depending) dis-
tributions, in the context of self gravitating systems [13],
and more recently in [14, 15]; these studies are restricted
however to codimension-one bifurcations.

To be more precise, we restrict for simplicity to one-
dimensional Vlasov equations with periodic boundary
condition, and to even velocity profiles. We consider
a family Fα of stationary states parameterized by α,
which are unimodal for α ≤ 0 and bimodal for α > 0.
A coupling constant provides one more tunable parame-
ter, which induces instability of the reference state, and
a codimension-two bifurcation lies on the line α = 0.
The existence of a critical unimodal velocity profile re-
quires the interaction to be attractive, which we assume
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in the following. A typical example is provided by self-
gravitating systems, and another remarkable example is
a system consisting of trapped ions, whose interaction
range can be experimentally controlled from short to long
[16–20].

Our results are schematically illustrated on Fig.1. We
first analyze the codimension-two bifurcation at the lin-
ear level, showing that it is characterized by a collision
of two complex conjugate eigenvalues (or Landau poles)
λ and λ∗ on the real axis. We call this in the following
eigenvalue collision; it should not be confused with the
points where one or two eigenvalues cross the imaginary
axis: at these points the reference state becomes unsta-
ble, and we call them critical points. For simplicity, when
Landau poles (and not bona fide eigenvalues) collide on
the real axis, we also call it an eigenvalue collision. At
the codimension-two point, which we shall also call bi-
furcation point, the eigenvalue collision happens exactly
for λ = 0, at the same time as the critical point.

In a neighborhood of the bifurcation point, Landau
poles are close to the imaginary axis, and not always real:
Landau damping is then weak and may be oscillating.
As standard central manifold expansion is in general not
valid in this case, we use a combination of complementary
methods to study the bifurcation at the nonlinear level:

i) The self-consistent equation [21–25], which focuses
on computing approximately the asymptotic stationary
state after the nonlinear evolution of the instability. It
predicts a discontinuous transition at the codimension-
two bifurcation point; in the unimodal region α < 0, it
predicts a continuous bifurcation, followed, deeper in the
unstable region, by a discontinuous jump of the asymp-
totic state. However, the self-consistent equation is not
applicable for the bimodal region α > 0 close to the tri-
critical point α = 0.

ii) Direct numerical simulations, which confirm the an-
alytical results where they are available, and allow to
explore the regimes where they are not. Numerical sim-
ulations reveal in particular that the bifurcation is al-
ways continuous except at the codimension-two bifurca-
tion point, but that this continuous bifurcation is fol-
lowed by a jump of the asymptotic state in the bimodal
side α > 0 as well as the unimodal side α < 0. The
region where the bifurcation is continuous, and which is
described by trapping scaling and the Single WaveModel,
drastically shrinks when we approach the codimension-
two bifurcation point from either side, vanishing at the
bifurcation point. We also complement our analysis by
studying the case of more vanishing derivatives of the
critical profile F0.

The rest of the paper is organized to explain Fig. 1
as follows. We present the model and the corresponding
Vlasov equation in more details in Sec. II. We develop
the linear theory of the bifurcation in Sec. III. The lin-
ear theory in particular derives the eigenvalue bifurcation
point, which plays an essential role to understand the
jump in the bimodal case (α > 0). A nonlinear theory is
developed in Sec. IV and used to analyze in details the
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FIG. 1. (a) Sketch of the two-dimensional parameter space
(α,Reλ), where α parameterizes a family of reference station-
ary states Fα: Fα is unimodal for α ≤ 0 and bimodal for
α > 0. λ is the eigenvalue or Landau pole which has the
largest real part. The codimension-two bifurcation point is
the origin (α,Reλ) = (0, 0). The three types of lines are the
critical line (red solid), the eigenvalue collision line (green
dotted), and the jump line (blue dashed). Trapping scaling
Asat = O((Reλ)2) appears between the critical line and the
jump line, where Asat is the asymptotically saturated ampli-
tude of the unstable mode. (b) Sketch of a curve representing
Asat as a function of Reλ, along the left magenta vertical line
on panel (a). (c) Same as (b) but along the right magenta
vertical line. In both cases (b) and (c), the bifurcation is con-
tinuous with trapping scaling, but the asymptotic amplitude
then shows a jump. On panel (b) [(c)], Landau damping (in-
stability) is oscillatory to the left of the green diamond point,
and nonoscillatory to the right.

unimodal case (α ≤ 0), including the jump line following
the continuous bifurcation. Direct numerical simulations
of the Vlasov equation in Sec. V provide comparisons and
complements for these theoretical predictions.

II. MODEL

We consider a spatially one-dimensional system with
periodic boundary condition. The N -body Hamiltonian
is

HN =

N∑

i=1

p2i
2

+
1

2N

N∑

i=1

N∑

j=1

φ(qi − qj), (1)

where φ(q) is a 2π-periodic and even coupling function.
The coupling function is then expanded in Fourier series



3

as

φ(q) = −
∞∑

k=1

Kk cos kq, (2)

where the constant term (k = 0) was omitted. A positive
coefficient Kk > 0 means that the kth Fourier mode gen-
erates an attractive interaction, which may destabilize
the homogeneous state. If K1 = 1 and Kk = 0 (k > 1),
the N -body system is called the Hamiltonian mean-field
(HMF) model [26, 27], which is a paradigmatic mean-
field model. We assume that

K1 > |Kk| (k > 1) (3)

so that the instability occurs in the first Fourier mode.
We shall use K1 as the first bifurcation parameter corre-
sponding to λ on Fig. 1, and rename it K for simplicity:
the homogeneous state is stable for small K and unstable
for large K.
The mean-field like interaction in (1) allows to describe

dynamics of the N -body system in the limit N → ∞ by
the Vlasov equation [28–30]

∂f

∂t
+
∂H [f ]

∂p

∂f

∂q
− ∂H [f ]

∂q

∂f

∂p
= 0. (4)

Here, f(q, p, t) is the one-particle distribution function
with the normalization condition

∫∫

µ

f(q, p, t)dqdp = 1, (5)

and H [f ](q, p, t) is the one-particle Hamiltonian func-
tional defined by

H [f ](q, p, t) =
p2

2
+

∫∫

µ

φ(q − q′)f(q′, p′, t)dq′dp′, (6)

where µ is the one-particle phase space spanned by the
position variable q ∈ (−π, π] and the conjugate momen-
tum variable p ∈ R.
We recall three important facts on the Vlasov equation.

First, any homogeneous distribution, which depends on p
only, is a stationary solution to the Vlasov equation (4).
Second, the Vlasov equation has an infinite number of
conserved quantities, called Casimir invariants, irrespec-
tive of the Hamiltonian. A Casimir invariant is of the
form

C[f ] =
∫∫

µ

c(f(q, p))dqdp, (7)

where c is an arbitrary smooth function. Third, from the
condition (3), the stability of a homogeneous stationary
state F (p) is obtained from the spectral function for the
first Fourier mode, Λ1(λ), where the spectral function for
the kth Fourier mode is

Λk(λ) = 1 +Kkπ

∫

R

F (1)(p)

p− iλ/k
dp. (8)

The superscript with the parentheses represents the order
of the derivative:

F (l)(p) =
dlF

dpl
(p). (9)

Roots of Λk(λ) are eigenvalues of the linearized Vlasov
equation around the reference stationary state F .
Clearly, if there exists an eigenvalue whose real part is
positive, then F is unstable. Thanks to (3), the destabi-
lization of the profile F occurs through the first Fourier
mode. Hence we shall use the magnetization M to quan-
tify the instability, where

Mx + iMy =Meiϕ =

∫∫

µ

eiqf(q, p)dq dp. (10)

The second bifurcation parameter α is introduced as
follows. We consider a family of homogeneous station-
ary states {Fα(p)}α, which are even in p and such that

F
(2)
α (0) changes sign at α = 0. For simplicity we take α

so that

α = F (2)
α (0). (11)

We assume that Fα(p) is unimodal for α ≤ 0 and bi-
modal for α > 0. The unimodality at α = 0 implies that

F
(4)
0 (0) < 0 in general. Higher-order flatness, i.e. vanish-

ing of higher order derivatives at p = 0, will be discussed
separately. There is a critical strength of the coupling
constant K at which the reference state Fα changes sta-
bility. This critical point depends on α, and is denoted
by Kc

α (> 0). We introduce the relative distance from
the critical point as

κα =
K −Kc

α

Kc
α

. (12)

In the explicit computations of Secs. III and V, we use
the family of stationary states

Fα(p) = A exp
[
−β2p2/2−

(
β4p

2/2
)2]

, β4 = 3, (13)

where A is the normalization factor, so that Fα satisfies
the normalization condition (5). The bifurcation param-
eter α is defined by

α = F (2)
α (0) = −Aβ2. (14)

Some examples of Fα(p) are shown in Fig. 2.

III. LINEAR THEORY : EIGENVALUE

COLLISION

The eigenvalue collision is derived from the linear the-
ory of the Vlasov equation. The linearized Vlasov opera-
tor has a continuous spectrum spanning the whole imag-
inary axis. It may also have eigenvalues, given by the
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FIG. 2. Examples of the reference states Fα(p) (13) with
β4 = 3.

roots of the spectral functions (8). Since the instabil-
ity occurs on the first Fourier mode [thanks to condition
(3)], the Λk functions for k 6= ±1 have no roots in the
neighborhood of the bifurcation: indeed, the existence
of an eigenvalue λ would imply by Hamiltonian symme-
try the existence of an eigenvalue −λ, and the reference
state would be unstable. The spectral function Λ−1 is
the complex conjugate of Λ1, hence we concentrate on

Λ1(λ, κα, α) = 1 + (1 + κα)K
c
απ

∫

R

F
(1)
α (p)

p− iλ
dp. (15)

We see from this expression that Λ1 is holomorphic
on the domains Reλ > 0 and Reλ < 0, but not on
the whole complex plane. On the stable side of the bi-
furcation (κα < 0), there are no eigenvalues; there are
however Landau poles, which are roots of the analytically
continued spectral function (15) from the right-half plane
Reλ > 0 to the left-half plane Reλ ≤ 0. The continuation
is performed by continuously deforming the integration
contour from R to a new contour L so as to avoid the
singular point p = iλ, which is in the upper-half of the
complex p plane for Reλ > 0, goes down on the real axis
for Reλ = 0 and moves to the lower-half for Reλ < 0.
The continued integral is expressed for an analytic func-
tion g(p) as

∫

L

g(p)

p− iλ
dp =






∫

R

g(p)

p− iλ
dp (Reλ > 0)

P

∫

R

g(p)

p− iλ
dp+ iπg(iλ) (Reλ = 0)

∫

R

g(p)

p− iλ
dp+ i2πg(iλ) (Reλ < 0)

(16)
where the notation P

∫
· · · stands for the Cauchy princi-

pal value. The second term in the second and the third
lines is the residue at p = iλ.

We approximately obtain an eigenvalue or a Landau
pole λ by expanding the spectral function Λ1 in a Taylor

series of λ:

Λ1(λ, κα, α) = −(1+κα)
[
aα + bαλ− cαλ

2 + dαλ
3 + · · ·

]
,

(17)
where

aα =
κα

1 + κα
− Λ1(0, 0, α), bα = Kc

απ
2α,

cα = −1

2
Kc

απ

∫

R

F
(3)
α (p)

p
dp, dα = − 1

3!
Kc

απ
2F (4)

α (0).

(18)

Details of the above expansion are reported in Appendix
A1. We assume that cα > 0: This assumption implies

{
Λ1(0, 0, α) = 0 (α ≤ 0)
Λ1(0, 0, α) > 0 (0 < α < α1)

(19)

where α1 > 0 is a certain small value (see Appendix
A2). Since κα = 0 corresponds to the critical line, we see
from the first equation of (19) that for α ≤ 0 the critical
eigenvalue crosses the imaginary axis at λ = 0, and the
instability is non oscillatory; from the second equation of
(19), we see that for α > 0 the critical eigenvalues cross
the imaginary axis away from λ = 0, and the instability
is oscillatory. The assumption cα > 0 is indeed true for
the family (13) around α = 0 (see Appendix A3).
It is worth commenting that, from (17), (19), and the

coefficient aα, we have the relation

Λ1(0, κα, α) = −κα (α ≤ 0). (20)

For α > 0, it is reasonable to assume:

Λ1(0, 0, α) = O(α) (α > 0). (21)

We may also assume dα > 0 for sufficiently small α > 0,

since, from the unimodality hypothesis, F
(4)
α (0) < 0 when

α = 0, and this inequality can be continued to small
|α| > 0.
Eigenvalues (or Landau poles) satisfy the equation:

aα + bαλ− cαλ
2 + dαλ

3 + · · · = 0. (22)

We will use a truncated version of (22) to describe a
sketch of the eigenvalue bifurcation diagram by comput-
ing eigenvalues or Landau poles at the eigenvalue colli-
sion point κcolα and the critical point κcα = 0; the order of
truncation we use depends on the purpose.
The eigenvalue collision corresponds to the existence

of a double root of Λ1, and it can be captured by the
quadratic equation

aα + bαλ− cαλ
2 = 0. (23)

The degenerate real eigenvalue λcolα is computed as

λcolα =
bα
2cα






< 0 (α < 0)
= 0 (α = 0)
> 0 (α > 0)

(24)



5

which is of order O(α) due to bα = O(α). Substituting
λcolα into (23), we have

κcolα

1 + κcolα

= Λ1(0, 0, α)−
b2α
4cα

. (25)

Recalling (19) and the assumption Λ1(0, 0, α) = O(α) for
α > 0, we have the following signs and scalings for the
eigenvalue collision point κcolα :






κcolα < 0 and κcolα = O(α2) (α < 0),
κcolα = 0 (α = 0),
κcolα > 0 and κcolα = O(α) (α > 0).

(26)

In order to estimate the purely imaginary critical
eigenvalue λcα ∈ iR, which is embedded in the continuous
spectrum, we truncate (22) at cubic order. Substituting
λcα = iy (y ∈ R) into

aα + bαλ− cαλ
2 + dαλ

3 = 0, (27)

the imaginary part of (27) gives

λcα =





0 (α ≤ 0),

±i
√
bα
dα

(α > 0).
(28)

For the family (13), the eigenvalue collisions numer-
ically computed from the continued spectrum function
are shown in Fig. 3 with the α dependence of the critical
point Kc

α. The sign of λcolα (24) and the critical Landau
pole (28) are confirmed. The scalings (26) will be con-
firmed after discussions on the trapping scaling and the
jump in the nonlinearly saturated amplitude in Sec.IV.
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FIG. 3. Collisions of eigenvalues and Landau poles for the
family (13) close to the codimension-two bifurcation point.
β2 = 0.3 (unimodal α < 0, blue diamonds), β2 = 0 (flat α = 0,
orange circles), and β2 = −0.3 (bimodal α > 0, magenta
squares) from left to right. The arrows indicate the movement
of eigenvalues and Landau poles as K increases. The inset
shows the critical point Kc

α as a function of α; we note an
apparent singular maximum of this function at α = 0.

IV. NONLINEAR THEORY : TRAPPING

SCALING AND JUMP

After the reference state becomes unstable, the sys-
tem reaches an asymptotic state which is close to the
reference state: the bifurcation is continuous, except for
α = 0. This is the region where the trapping scaling
Asat = O((Reλ)2) is valid. When the parameter control-
ling the instability is further increased, a jump in Asat

follows the continuous bifurcation. To understand these
features, we apply a nonlinear theory, the self-consistent
equation, which is a powerful tool for Vlasov and Vlasov-
like equations. We sketch the derivation of the self-
consistent equation in Sec. IVA, and discuss the continu-
ity of the bifurcation in Sec. IVB. For α < 0 (unimodal),
we show in Sec. IVC that the well-known trapping scaling
O((Reλ)2) is reproduced by the self-consistent equation,
and that the scaling of the jump point κJα = O(|α|3/2)
is also predicted. The self-consistent equation has a lim-
itation: the asymptotic state must be stationary; this
condition is not satisfied for small α > 0 (bimodal). We
therefore propose another theory to predict the scaling:
κJα = O(α) for α > 0 in Sec. IVD. The investigation
of the trapping scaling for α > 0 is left for numerical
examinations.

A. Self-consistent equation

The idea of the self-consistent equation is to assume
that there exists an asymptotic stationary state F asym

α ,
and make the approximation that the temporal evolu-
tion is governed by the Hamiltonian corresponding to
this asymptotic state Hasym

α = H [F asym
α ]. Introducing

the kth Fourier components of the density in the asymp-
totic state

Mk,x + iMk,y =

∫∫

µ

eikqF asym
α (q, p)dqdp, (29)

the asymptotic Hamiltonian is:

Hasym
α =

p2

2
−

∞∑

k=1

Kk

(
Mk,x cos(kq)+Mk,y sin(kq)

)
. (30)

The asymptotic Hamiltonian system is integrable, so
that we can introduce angle-action variables (θ, J). The
temporal dynamics driven by Hasym

α conserves the action
and evolves linearly the angle. The asymptotic state is
then obtained by taking the average of the initial refer-
ence state Fα(p) over the θ variable, at fixed J :

F asym
α (J) =

1

2π

∫ 2π

0

Fα(p(θ, J))dθ =: 〈Fα〉J , (31)

where the symbol 〈·〉J represents the average. The right-
hand side 〈Fα〉J actually depends on the asymptotic
state through the definition of angle-action variables,
hence equation (31) must be solved self-consistently. The
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asymptotic state (31) conserves all Casimir invariants up
to linear order in F asym

α − F , that is

C[F asym
α ]− C[Fα] = O(|F asym

α − Fα|2). (32)

We start with four remarks. First, we have to assume
the existence of an asymptotic stationary state. The
bimodal case with small α > 0 is then out of scope,
since the two peaks in the velocity profile induce two
resonances, and the two resonances create two traveling
clusters at opposite velocities. This two-cluster state is
not stationary. Second, the self-consistent equation is a
priori applicable for any choice of coupling function φ.
However, we need to construct the angle-action variables
(θ, J). They have explicit expressions in terms of Leg-
endre elliptic integrals for the HMF model (see [31] for
instance), whose one-particle dynamics is essentially a
pendulum, but we need more complicated functions for a
generic φ, and computations become impractical. Third,
and notwithstanding the previous remark, one expects
that the self-consistent equation captures qualitative fea-
tures of a system with a generic φ: indeed the higher-
order order parameters Mk = (M2

k,x +M2
k,y)

1/2 (k ≥ 2)
are expected to be sufficiently small compared to M1

around the critical point. Finally, although the self-
consistent equation is only approximate, it has already
proved powerful to analyze the critical phenomenon,
when |F asym

α −Fα| is sufficiently small around the critical
point [32].
We are interested in the order parameter of the unsta-

ble mode, (M1,x,M1,y), which is denoted by (Mx,My)
for simplicity. Without loss of generality, we may assume
My = 0, thanks to rotational symmetry of the system.
We also assume Mx > 0 and denote M = |Mx|. The
asymptotic state F asym

α induces the self-consistent equa-
tion for M :

M =

∫∫

µ

cos q F asym
α

(
J(q, p)

)
dqdp, (33)

where F asym
α depends on M through the asymptotic

Hamiltonian Hasym
α . A nonzero order parameter M > 0

induces a separatrix on the µ space, and the width of the
separatrix is of order O(

√
M) in the p-direction.

We expand the self-consistent equation (33) in a power
series of M , which contains half-integer powers com-
ing from the scaling p = O(

√
M). The expanded self-

consistent equation is [23]

Λ1(0, κα, α)M = ϕ(M)M, (34)

where

ϕ(M) := L3/2M
1/2 + L5/2M

3/2 + L3M
2 + · · · . (35)

The coefficients L3/2 and L5/2 are proportional to deriva-
tives of Fα:

L3/2 = L̃3/2F
(2)
α (0) = L̃3/2α,

L5/2 = L̃5/2F
(4)
α (0).

(36)

In the HMF model the coefficients L̃3/2 and L̃5/2 can be
computed:

L̃3/2 ≃ 5.168, L̃5/2 ≃ −0.089. (37)

The exact values above are specific of the HMF model,
but the signs hold around the critical point for a generic
system, i.e. a generic coupling function φ (see the third
remark in Sec. IVA).

B. Continuity of the bifurcation

Solutions to the self-consistent equation (34) are ob-
tained as intersection points of the graph of ϕ(M) with
the horizontal level Λ1(0, κα, α), which is a decreasing
function of κα around α = 0. To graphically understand
the intersection, we consider a scaled and truncated func-
tion ϕscale(M) defined by

ϕscale(M) = rM1/2 +M3/2 − γM2, (38)

which is obtained by scaling (35) as

√
M → −γL5/2

L3

√
M, ϕ→

−γ3L4
5/2

L3
3

ϕ, r =
L2
3L3/2

γ2L3
5/2

.

(39)

Here we used the sign L5/2 > 0 from F
(4)
0 (0) < 0 and

continuation around α = 0. Moreover, we assumed that
L3 < 0 and γ > 0 because it is the case for F0(p) in the
HMF model (see Appendix A4). The sign of r coincides
with the sign of α. Graphs of ϕscale(M) are shown in
Fig. 4 for γ = 1.2. An increasing interval of ϕscale(M)
corresponds to an unstable branch, because M at the
intersection point decreases when κα increases.
For α < 0, a stable branch exists around M = 0 and

the bifurcation is continuous. Further increasing κα, the
stable branch vanishes and a jump emerges, when the
level Λ1(0, κα, α) is lower than ϕmin, which is the local
minimum of ϕ(M) located around M = 0 [see Fig. 4(b)].
For α ≥ 0, there is no stable branch around M = 0: The
self-consistent equation predicts that the bifurcation is
discontinuous. The discontinuity for α = 0 is also pre-
dicted by the unstable manifold expansion, reported in
Appendix B. The discontinuity disagrees for α > 0 with
Fig. 1, and with the numerical simulations. There is no
contradiction however: as already commented above, and
as we shall see in the simulations, the asymptotic state
for α > 0 and very close to criticality is not stationary,
and is then out of scope of the self-consistent equation.
We note that smallness of α is crucial to have the local

minimum ϕmin for α < 0. Indeed, as shown in Fig. 5,
the local minimum disappears if |r| is sufficiently large.
Recalling r = O(α), we conclude that the jump following
a continuous bifurcation is produced by flatness of Fα(p)
around p = 0 in α < 0 (unimodal), and disappears for
large |α|. This dependency on α is consistent with Fig. 15
of Ref. [7].
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(α > 0 magenta upper) with γ = 1.2. A solid line represents
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goes down as the coupling constant K increases from the
critical value Kc
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and κα = 0+ (orange circle), and α > 0 and κα = 0+ (ma-
genta square). Actually, this jump of M does not happen for
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at KJ

α, determined from ϕmin by (44), and M jumps to the
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α.
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FIG. 5. Graphs of ϕscale(M) (38) with γ = 1.2. A solid part is
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unstable branch and a jump disappear when |r| is sufficiently
large.

We further remark that the discontinuity for α = 0
actually carries over for higher order flatness of F0(p):
any F0(p) with a nonconstant leading term of order
O(p2n) (n ≥ 3) makes the bifurcation discontinuous, as
discussed in Appendix C. An extreme case is the wa-
terbag distribution, which is perfectly flat around p = 0
and which is known to induce a discontinuous bifurcation
[12]. The above result implies that n = 2 is sufficiently
flat to make the bifurcation discontinuous.

C. Trapping scaling and jump location for α < 0

The trapping scaling M = O
(
(Reλ)2

)
is well-known,

and is reproduced by the self-consistent equation. First,
we observe the linear relation

κα = O(Reλ) (40)

from the eigenvalue problem up to the linear term:

aα + bαλ = 0, (41)

where aα = κα/(1 + κα) for α < 0. Second, the self-
consistent equation up to the leading term of ϕ(M) is

Λ1(0, κα, α) = L3/2M
1/2 (42)

for M > 0. The trapping scaling then results from rela-
tion (20):

M =

(
κα

−L3/2

)2

= O
(
(Reλ)2

)
. (43)

We compute now the α dependence of the jump point
κJα. The self-consistent equation has a nonzero stable
solution around M = 0 if Λ1(0, κα, α) ≥ ϕmin and loses
this stable solution if Λ1(0, κα, α) < ϕmin. The jump
point κJα is hence computed by the equation

Λ1(0, κ
J
α, α) = ϕmin, (44)

where, using the expansion of ϕ up to order O(M3/2):

ϕmin = −2

3

(−L3/2)
3/2

(3L5/2)1/2
. (45)

Relation (20) then provides the scaling

κJα =
2

3

(−L3/2)
3/2

(3L5/2)1/2
= O(|α|3/2). (46)

The prefactor of |α|3/2 is given in Appendix D.

D. Scaling of the jump location for α > 0

Since the self-consistent equation is a priori not valid
in this case, we propose a heuristic mechanism to ex-
plain the continuous bifurcation and the jump in the
bimodal case (drawing ideas from [33]). Let λ be an
eigenvalue. The two peaks of Fα(p) create two traveling
clusters around momentum p = ±Imλ; and the system
may be trapped in such a non stationary bicluster asymp-
totic state. The width of the clusters is of order O(

√
M),

which is expected to be of order O(Reλ) from the trap-
ping scaling M = O

(
(Reλ)2

)
(this will be checked in

Sec. V). This non stationary asymptotic state is expected
to disappear when the two clusters start to overlap, be-
cause this will trigger their merging; this happens when
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Imλ ≃ O(Reλ). After merging, a single cluster forms,
and the system goes to a stationary state which is pre-
dicted by the self-consistent equation: this is the jump.
The critical eigenvalue λcα and the eigenvalue at the

eigenvalue collision point λcolα , corresponding by defini-
tion respectively at κcα = 0 and κcolα > 0, satisfy:

Reλcα = 0, Imλcα = O(
√
α)

Reλcolα = O(α), Imλcolα = 0.
(47)

We also know that Imλ (resp. Reλ) is a decreasing
(resp. increasing) function of κα [see Fig. 3(c)], and
κcolα = O(α).
Clearly, the cluster merging condition Imλ ≃ Reλ is

reached for κJα somewhere in the interval 0 = κcα < κJα <
κcolα = O(α). Hence κJα is at most of order α. Further-
more, if κα ≪ α, then

Reλα = O(α) and Imλα = O(
√
α),

so that the merging condition Imλ ≃ Reλ can never be
met. We conclude that κJα is of order α, consistently with
Fig. 1.

V. NUMERICS

We now illustrate and complement with detailed nu-
merical simulations the results of previous sections.

A. The simulations setup

We use the coupling function:

φ(q) = − [K cos(q) +K2 cos(2q)] ,

whereK2 = 0.5 is fixed andK is used as a bifurcation pa-
rameter. We remark that K2 is smaller than the critical
point Kc

α reported in the inset of Fig. 3. The reference
family is (13), and

α = F (2)
α (0) = −Aβ2 (48)

is the second bifurcation parameter. The initial condition
is prepared as

F (q, p, t = 0) = Fα(p)(1 + ǫ cos q), (49)

and the strength of perturbation is fixed as ǫ = 10−6.
We perform numerical simulations of the Vlasov equa-

tion by the semi-Lagrangian method described in [34]
with the timestep ∆t = 0.05. The phase space (q, p) is
truncated as (−π, π]× [−4, 4], where the maximum value
|p| = 4 is large enough (see Fig. 2). We divide the phase
space into an L × L mesh, and we fix L = 512 in the
following computations. We have checked that L = 1024
does not significantly modify the results for β2 = 0.03
and 0.05.

B. On the scaling relation between Reλ and K −Kc
α

The instability rate Reλ is commonly used as a bi-
furcation parameter; for instance, the universal trapping
scaling is usually expressed as M = O((Reλ)2) on the
unstable side around the critical point. However, we will
typically show curves of the magnetization as a function
of the coupling constant K, or κα.
In principle the choice between Reλ and κα is arbitrary,

as there is a linear relation between them (40); however,
for α close to 0, this linear relation is restricted to a
narrow interval of κα around 0. For α > 0 (β2 < 0), the
narrowness of the region is clear, since the linear relation
between Reλ and κα does not hold after the eigenvalue
collision κα > κcolα , and the eigenvalue collision point
κcolα approaches the critical point κcα = 0 as α goes to
0. For α < 0 (β2 > 0), the narrowness of the linear
region is illustrated on Fig. 6. Figure 6(a) reports the
bifurcation diagram of Landau poles for β2 = 0.05, which
corresponds to α = −0.0054. The unstable branch of Reλ
is approximated by

Reλ = 0.48

[√
K −Kcol

α −
√
Kc

α −Kcol
α

]
, (50)

where

Kc
α ≃ 0.96879, Kcol

α ≃ 0.96865. (51)

Due to the smallness of Kc
α − Kcol

α = 1.5 × 10−4, the
linear region is restricted to K − Kc

α < 10−4 as shown
in Fig. 6(b). Working in this region is very demanding
numerically. Therefore, we will test the trapping scaling
and the jump scaling by observing M as a function of
K −Kc

α or κα rather than of Reλ.

C. Scaling region and jump

We use three estimators for the amplitude of the mag-
netization in the saturated state: the average

Mave =
1

T

∫ T

T/2

M(t)dt, (52)

the maximum

Mmax = max
t∈[0,T ]

M(t), (53)

and the first peak height Mfp of M(t). The upper limit
of time is set as T = 3000. These estimators are shown
in Fig. 7 as functions of K. As the theory predicted, we
find a jump in each panel. The order of magnitude of
the collision point Kcol

α , the critical point Kc
α, and the

jump point KJ
α perfectly agree with Fig. 1. The trapping

scaling M = O(κ2α) is also confirmed in the insets of
Figs. 7(a) and (c).
The existence of a jump is directly confirmed from the

temporal evolution of M(t), which is reported in Fig. 8
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FIG. 6. (a) Bifurcation of Landau poles. α = −0.0054
(β2 = 0.05). Reλ (plum circles) and Imλ (brown triangles)
as functions of K. The blue solid curve represents the curve
(50). The green dotted and red solid vertical lines mark the
eigenvalue collision point Kcol

α and the critical point Kc
α re-

spectively. (b) The instability Reλ as a function of K−Kc
α in

logarithmic scale. The blue solid curve represents the curve
(50).

around the jump point KJ
α. Note that in Fig. 8(b) M(t)

is very small for K = 0.9863 > KJ
α, but this is caused

by the slow dynamics around the critical point. Indeed,
M(t) tends to slowly increase. We remark that the slow
dynamics induces a small gap between the critical point
Kc

α and the jump point KJ
α in Fig. 7(b).

A numerically obtained phase diagram is reported in
Fig. 9(a), which is quantitatively in good agreement with
Fig. 1(a). For α > 0, Fig. 9(a) verifies the linear scaling of
the eigenvalue collision κcolα = O(α) (26) and of the jump
κJα = O(α) (sec. IVD). For α < 0, Figs. 9(b) and (c)
confirm respectively the collision scaling κcolα = 5.34α2

(26) and the jump point scaling κJα = 6.29|α|3/2 (46), al-
though the theoretical prefactor 6.29 is somewhat larger
than the numerically obtained value 4.71 (a similar effect
is seen in [23]). See Appendix D for the computation of
theoretical prefactors for α < 0.
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α,

whereas the three lines coincide in the panel (b). In the panels
(a) and (c), the insets show the three estimators against κα

in logarithmic scale. The orange straight lines have slope 2
(consistent wit trapping scaling) and are guides for the eyes.

D. Existence of two traveling clusters

Finally, we examine the existence of two traveling clus-
ters for α > 0 in the interval between Kc

α and KJ
α. These

clusters are very small and cannot be observed directly on
the phase space density. Instead we observe the angular
frequency ω ofM(t), which is extracted as the peak posi-
tion of the power spectrum density. A complex eigenvalue
λ induces an oscillation with angular frequency Imλ, but
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s = 3 for K = 0.9863, and s = 0 for K = 0.9864.

the existence of the two traveling clusters at p = ±Imλ
induces the double angular frequency ω = 2 Imλ. Indeed,
this relation is confirmed in Fig. 10, which supports the
existence of the two traveling clusters.

VI. CONCLUSIONS

We have investigated in details the bifurcation oc-
curring in a Vlasov equation when a family of station-
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FIG. 9. (a) Numerically obtained phase diagram on the plane
(α, κα), which corresponds to Fig. 1(a). The red solid line is
the critical line. The eigenvalue collision point κcol

α (green
diamonds) and the jump point κJ

α (blue squares). (b) Scaling
of the eigenvalue collision for α < 0 with the theoretical line
−κcol

α = 5.34α2 (green dotted). (c) Scaling of the jump for

α < 0 with the theoretical line κJ
α = 6.29|α|3/2 (light-blue

solid), while the estimated line has the prefactor 4.71 (blue
dashed).

ary states with a small curvature at the critical velocity
(taken to be 0 in this article) becomes unstable. Our
main result is that the bifurcation of order parameter is
discontinuous for the codimension-two bifurcation point
where the curvature is zero, and that away from this
point and on both sides, the bifurcation is continuous
and followed by a jump. Due to this jump, the re-
gion where trapping scaling can be observed shrinks on
both sides of the codimension-two bifurcation point. Our
theoretical analyses based on the self-consistent equa-
tion qualitatively predict this phenomenology around the
codimension-two bifurcation point, and the predictions
are fully confirmed by direct numerical simulations.
These results are a further step towards a classification

of bifurcations in Vlasov systems [15]. Several questions
remain open however. The self-consistent equation ap-
proach is restricted to the unimodal side of the bifurca-
tion, hence our description of the bimodal side is mainly
numerical. Even on the unimodal side, a better theory
would be welcome; it would entail a real description of
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the phase space, and possibly a generalization of the Sin-
gle Wave Model. This is probably challenging.
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Appendix A: Linear analysis

1. The expansion of the spectrum function

The Taylor expansion of Λ1(λ, κα, α) is

Λ1(λ, κα, α) =

∞∑

k=0

λk

k!

∂kΛ1

∂λk
(0, κα, α), (A1)

where

∂kΛ1

∂λk
(λ, κα, α) = ik(1 + κα)K

c
απ

∫

R

F
(k+1)
α (p)

p− iλ
dp. (A2)

Performing the analytic continuation, we have

∂Λ1

∂λ
(0, κα, α) = −(1 + κα)K

c
απ

2F (2)
α (0),

∂2Λ1

∂λ2
(0, κα, α) = −(1 + κα)K

c
απ

∫

R

F
(3)
α (p)

p
dp,

∂3Λ1

∂λ3
(0, κα, α) = (1 + κα)K

c
απ

2F (4)
α (0).

(A3)

The first derivative with the definition α = F
(2)
α (0) pro-

vides the coefficient bα, and the second and third deriva-
tives directly give the coefficients cα and dα respectively.

The constant term aα satisfies

Λ1(0, κα, α) = −(1 + κα)aα. (A4)

Using the definition

Λ1(0, 0, α) = 1 +Kc
απ

∫

R

F
(1)
α (p)

p
dp, (A5)

we can modify Λ1(0, κα, α) as

Λ1(0, κα, α) = 1 + (1 + κα)[Λ1(0, 0, α)− 1]. (A6)

This modification gives the coefficient aα of (18).

2. Spectrum function at the origin

We consider the spectrum function at λ = 0:

Λ1(0, κα, α) = 1 + (1 + κα)K
c
απ

∫

R

F
(1)
α (p)

p
dp. (A7)

We show (19) under the assumption cα > 0.

We start from the case α ≤ 0. At the critical point
κα = 0, a purely imaginary critical eigenvalue iλI (em-
bedded into the continuous spectrum) satisfies

1 +Kc
απ

[
P

∫

R

F
(1)
α (p)

p+ λI
+ iπF (1)

α (−λI)
]
= 0. (A8)

Considering the imaginary part of the above equation,
we see that the unimodality of Fα implies that λI = 0.
Considering the real part, we then conclude Λ1(0, 0, α) =
0.

We now turn to the case α > 0. We may assume that
|λI| is small for small α > 0. We then have the expansion

P

∫

R

F
(1)
α (p)

p+ λI
dp = P

∫

R

F
(1)
α (p− λI)

p
dp

=

∫

R

F
(1)
α (p)

p
dp+

λ2I
2

∫

R

F
(3)
α (p)

p
dp+O(|λI|4).

(A9)

The above relation induces for α > 0 small

Λ1(0, 0, α) = 1 +Kc
απ

∫

R

F
(1)
α (p)

p
dp

> 1 +Kc
απ P

∫

R

F
(1)
α (p)

p+ λI
dp = 0

(A10)

under the assumption cα > 0.
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3. Positiveness of the coefficient cα

We show that the coefficient is positive at α = 0,
namely c0 > 0 for the family (13). Then, continuity with
respect to α implies that cα is positive around α = 0.
The reference function at α = 0 is

F0(p) = Ae−(β4p
2/2)2 , (A11)

where the normalization factor A is

A =
1

4π

1∫
∞

0

e−(β4p
2/2)2dp

=

(
β4
2

)1/2
1

πΓ(1/4)
(A12)

and Γ(z) is the gamma function

Γ(z) =

∫
∞

0

tz−1e−tdt. (A13)

The third-order derivative of F0(p) is

F
(3)
0 (p) = −Aβ2

4p
(
β4
4p

8 − 9β2
4p

4 + 6
)
e−(β4p

2/2)2 ,
(A14)

and the coefficient c0 is

c0 = Kc
απAβ

2
4

∫
∞

0

(
β4
4p

8 − 9β2
4p

4 + 6
)
e−(β4p

2/2)2dp

=
Kc

αβ
2
4

2

8Γ(9/4)− 18Γ(5/4) + 6Γ(1/4)

Γ(1/4)

=
Kc

αβ
2
4

2
> 0,

(A15)

where we used the relation

Γ(z + 1) = zΓ(z). (A16)

4. Negativeness of the coefficient L3

We show that L3 < 0 for F0(p) in the HMF model.
The explicit form of L3 in the HMF model is

L3 = − 5π

192

∫

R

F
(5)
α (p)

p
dp, (A17)

where the integral is well-defined since F (5)(p) is of order
O(p). The fifth-order derivative of F0(p) is

F
(5)
0 (p) = −Aβ4

4p
(
β6
4p

14 − 30β4
4p

10 + 195β2
4p

6 − 210p2
)

× e−(β4p
2/2)2 .

(A18)

Straightforward computations give

L3 = −5β3
4

8

Γ(3/4)

Γ(1/4)
< 0. (A19)

Appendix B: Unstable manifold expansion

The idea is to set up a series expansion in powers of the
amplitude of the perturbation, and to solve it order by
order by projecting the full dynamics onto the unstable
manifold, instead of projecting onto the central mani-
fold as usually done; one obtains in the end a reduced
equation for the amplitude, which is singular at the bi-
furcation point. However, it is well defined away from
the bifurcation point, at variance with standard central
manifold computations. By construction, it is restricted
to the unstable side of the bifurcation. According to
the study of the linearized Vlasov operator in Sec. III,
in the unimodal α ≤ 0 case, the unstable manifold is
two-dimensional, whereas it is four-dimensional in the
bimodal α > 0 case. We restrict here to the unimodal
case, in which the Landau pole moves on the real axis
around the critical point [see Fig. 3(c)].
The tangent space to the unstable manifold at the ref-

erence stationary state is spanned by the two eigenfunc-
tions Φ and Φ∗; we expand f into

f(q, p, t) = Fα(p) + g(q, p, t),

where

g(q, p, t) = A(t)Φ(q, p) +A∗(t)Φ∗(q, p) + S(q, p, A,A∗, t),
(B1)

and S is of orderO(|A|2). The equation for the amplitude
A is

dA

dt
= ψ(A) (B2)

where

ψ(A) = λA + c3(λ)A|A|2 +O(|A|5) (B3)

on the unstable side of the critical point, namely for 0 <
λ≪ 1. The coefficient c3 is

c3(λ) = −
(
πK

2

)2

c̃3(λ) (B4)

and

c̃3(λ) =
1

λ3
− 1

λ2
Λ
(2)
1 (λ)

Λ
(1)
1 (λ)

+
2

3λ

Λ
(3)
1 (λ)

Λ
(1)
1 (λ)

− 1

4

Λ
(4)
1 (λ)

Λ
(1)
1 (λ)

+
K2

K
Λ
(2)
1 (λ)

[
− 1

λ

(
1 +

K2

K

1

Λ2(2λ)

)
+

1

2

1

Λ2(2λ)

Λ
(2)
1 (λ)

Λ
(1)
1 (λ)

]
.

(B5)

Here we omitted the arguments κα and α in Λ1 and
derivatives are performed with respect to λ. We find a
small real solution |A| to the equation ψ(A) = 0 if c3 < 0,
while there is no small real solution if c3 > 0. The bifur-
cation is hence continuous if c̃3(0) > 0, and discontinuous
if c̃3(0) < 0.
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The leading term of c̃3 is positive 1/λ3 when α < 0,
hence the bifurcation is continuous [8, 9]. However,
the leading singularity of c̃3 changes when α = 0 since
Λ(1)(λ) = O(λ) from

Λ
(1)
1 (0, κα, 0) = −(1 + κα)K

c
απ

2α = 0. (B6)

With the aid of the Taylor expansions of Λ
(1)
1 (λ, κα, α)

and Λ
(2)
1 (λ, κα, α) around λ = 0, the leading singularity

at α = 0 is

c̃3 ≃ 1

6λ2
Λ
(3)
1 (0)

Λ
(2)
1 (0)

= − 1

12λ2
πF

(4)
0 (0)

∫

R

F
(1)
0 (p)

p3
dp

. (B7)

Since the function F
(1)
0 (p) is of order O(p3) around p = 0,

the integral in the denominator is well defined. In (B7),
unimodality for α ≤ 0 implies that the numerator and
the denominator are negative, hence the bifurcation is
discontinuous from c̃3 < 0. We also see from (B5) and

(B7) that if F
(2)
α (0) is negative but small, the sign of c̃3

will change from positive to negative as λ is increased
from 0 (the critical point) to some small positive value.
We then expect a continuous bifurcation with trapping
scaling, followed by a jump in the saturated amplitude as
the distance from the instability threshold is increased:
this provides a qualitative understanding to Fig. 1 (when
α < 0). We also remark that the second Fourier coeffi-
cient of the coupling function φ [see (2)] does not affect
the c̃3 factor at order O(1/λ2).

Appendix C: Discontinuity of bifurcation for higher

order flatness

At the point α = 0, the reference state is further clas-
sified by its leading order at p = 0. We defined that
the reference state F (p) is of order n when the Taylor
expansion is

F (p)− F (0) = −bp2n +O(p2(n+1)). (C1)

We shall show now that for F of order 3 or higher, the
self-consistent equation predicts that the bifurcation is
discontinuous.
If the order of F is 3 or higher, we have F (2)(0) =

F (4)(0) = 0, and hence L3/2 = L5/2 = 0, since

L3/2 = F (2)(0)
M−3/2

2!

∫∫

µ

(
p2〈cos q〉J +

M

2

)
dqdp

L5/2 = F (4)(0)
M−5/2

4!∫∫

µ

(
p4〈cos q〉J +

M1

2
p2 +M2 cos q

)
dqdp.

(C2)
The leading term of ϕ(M), (35), is therefore L3 which is

L3 = − 5π

192

∫

R

F (5)(p)

p
dp. (C3)

The integration is well-defined since F (5) is of order O(p)
around p = 0. Under the conditions F (2)(0) = F (4)(0) =
0, we can derive another expression of L3 as

L3 = − 5π

192
4!

∫

R

F (1)(p)

p5
dp (C4)

by repeating integration by parts, where the integral is
well-defined since F (1) is of order O(p5) around p = 0.
Therefore, we have L3 > 0 for a unimodal F , and the
self-consistent equation Λ1(0) = L3M

2 concludes that
the bifurcation is discontinuous. We must not confuse
L3 < 0 shown in Appendix A4, since the negative sign
is obtained for F (2)(0) = 0 but F (4)(0) < 0, while the
positive sign is for F (2)(0) = F (4)(0) = 0. In general L3

is not zero however high the order of F is, hence the self-
consistent equation predicts a discontinuous bifurcation
for any F of order 3 or higher.

Appendix D: Prefactors of scaling relations for α < 0

We compute here the eigenvalue collision point κcolα and
the jump point κJα for the family (13). The theoretically
obtained prefactors are used in Fig. 9.
The eigenvalue collision point κcolα satisfies

κcolα

1 + κcolα

= − b2α
4cα

. (D1)

Recalling bα = Kc
απ

2α, we have at leading order in α

κcolα = − (Kc
0π

2)2

4c0
α2. (D2)

Substituting the factor c0 (A15), the eigenvalue collision
point is estimated as

κcolα = −K
c
0π

4

2β2
4

α2. (D3)

The values β4 = 3 and Kc
0 ≃ 0.986225 give

κcolα ≃ −5.34α2. (D4)

The jump point κJα is

κJα ≃ 2(L̃3/2)
3/2

3[3L̃5/2F
(4)
0 (0)]1/2

|α|3/2 (D5)

at leading order. We have

F
(4)
0 (0) = −6Aβ2

4 = − 6β
5/2
4√

2πΓ(1/4)
≃ −5.80642. (D6)

Therefore, using (37), we have

κJα ≃ 6.29|α|3/2. (D7)
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