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Résumé — The use of tomographic images of materials as an input for numerical simulations is beco-
ming more and more common. The main difficulty is the computational cost, mesh generations of finite
element simulations and the large discontinuities of material properties. This work proposes a strategy to
use a MultiGrid method coupled with homogenization techniques, with the help of parallel computing,
to achieve a simulation of a tomographic image with more than 8 billion voxels at a low cost. Its effective
property is also calculated.
Mots clés — Heterogeneous materials, MultiGrid, Homogenization, Effective property, Parallel compu-
ting

1 Introduction

The use of composite materials in many industrial fields has become more and more wide spread
during the last decade. It is well known that many composite materials exhibit an excellent mechanical
behavior. However, due to the complex structures and variable components of composite materials, it is
not simple to understand their properties, which limits the application of these materials.

Fortunately, imaging techniques based on X-ray tomography show the inner structure of materials
[1], which permits one to better understand the material behavior. Motivated by the secret of the material
behavior, e.g. mechanical and thermal properties, using real tomographic images as an input to perform
numerical simulations is under development. Much work has been devoted to this subject. The work
of Lengsfeld et al. [2] and Bessho et al. [3] presented the numerical simulation of bone tomography.
They studied mechanical problems e.g. hip fractures of the human femur, using Finite Element Methods
(FEM). Ferrant et al. [4], Michailidis et al. [5] and Proudhon et al. [6] also applied FEM simulations
to tomographic images of industrial materials to analyze their properties. As we saw previously, FEM
is widely used for this kind of simulations. Nevertheless, the mesh generation of FEM needs human
intervention, which is time consuming. The work of Gu et al. [7] introduced a 3D simulation of the
elastic behavior of a laminated composite material. They proposed to use a Finite Difference Method
(FDM), to take one voxel per grid point to avoid heavy human work in the meshing step, and to use the
MultiGrid (MG) method to accelerate the convergence speed. However, the work of Gu et al. [7] can only
deal with small size problems, due to the limitation of the serial programming. The fast fourier transform
(FFT) is also a well known method, Nevertheless, it can not deal with problems with heterogeneity.

Motivated by these practical considerations, the development of a standard process to carry out nume-
rical simulations on heterogeneous materials and to obtain its effective property, received considerable
attention. The aim of this work is to take the tomographic image as an input to a thermal conduction
simulation to study the material thermal behavior and to obtain its effective conductivity.
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2 Problem statement

2.1 Governing Equations and iterative solver

Thermal conduction can be treated by a heat equation according to the first law of thermodynamics
(i.e. conservation of energy) :

ρcp
∂T
∂t
−∇ · (α∇T ) = q̇v (1)

Since the focus of this work is thermal conductivity, it is considered that there is no extra source and
the thermal field does not depend on time. The heat equation 1 becomes a typical Poisson equation :

∇ · (α∇T ) = div(α
#               »

grad(T )) = 0 (2)

The finite element discretization is chosen to disretize the domain Ω. The idea is to take one ele-
mentary node per voxel, to avoid the human intervention during the mesh generation step. A system of
equations can finally be obtained :

L
#»
Th =

#»
f (3)

where L is a matrix which is often referred to as the stiffness matrix,
#»
Th is a vector containing all unk-

nowns (temperature at each node) and
#»
f is the right hand side vector.

The largest image that will be computed in this application is an image containing 20493 voxels,
which means that the number of elements is 20483 (i.e. more than eight billion elements). Supposing one
uses cubic elements, the size of global sparse matrix is 20493×27×8bytes≈ 1.69 TB. It is impossible to
have such a huge memory space available on a normal computer. The size of the stiffness matrix does not
allow one to assemble the whole matrix. It forces one to use an iterative solver without assembling the
stiffness matrix, which is often called the Matrix Free Finite Element Method (MF-FEM) [8]. A Jacobi
type MF-FEM iterative solver is therefore developed.

2.2 MultiGrid method and homogenization techniques

The single level Jacobi solver can only eliminate high frequency error for a large scale problem, it
does not have a good convergence performance. As a consequence, the MultiGrid (MG) method is used
to increase the convergence rate. Nevertheless, a standard MG method is not adapted for problems with
high heterogeneity. It has a very poor convergence performance, when large variations of the material
properties are to be considered. These variations make the linear interpolation and restriction operators
almost ineffective. The coarse grid operator is also inefficient by this discontinuity.

Several researches have investigated this problem ([9], [10], [11] and [12]). These researchers pro-
posed several methods to alleviate the poor convergence of the standard MG method. But the problem
is that the implementation of these ideas is not simple. The computational time and memory cost are
the two other limitations. In this work, the interpolation and restriction operator are developed based on
the work of Alcouffe et al. [9]. For the coarse grid operator, Sviercoski et al. [13] proposed a Cardwell
and Parsons (CP) bounds type homogenization to get the analytical coarse grid operator. The idea is to
compute the upper and lower CP bounds of the material property on each coarse grid always from the
finest grid, the average of the arithmetic and geometric averages of the CP bounds, is supposed to be the
effective property on each coarse grid.

The weak point of the work of Sviercoski et al. [13] is the time consuming. Instead of the CP bounds
type homogenization, one proposes to use a typical Voigt-Reuss (VR) bounds, which can be computed
recursively. The material property αH on each coarse grid can be obtained by :

αH =
1
2
(αa+αg) (4)

where αa and αg are the arithmetic and geometric averages of the VR bounds. The coarse grid operator
on each level can be easily obtained by the equation below :

LH =
∫

Ω

∇φ
H
i ᾱ

H
∇φ

H
j dΩ (5)

where, φH
i and φH

j are test functions on each coarse grid.
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3 Results

3.1 MG scheme efficiency

The performance of the MG scheme is studied by a simulation of a spherical thermal inclusion with
a material property contrast of 10. The domain Ω is a cube with 1283 elements. The relation between
the radius r of the sphere and the size L of cubes is r = L

4 . The simulation is run on an office computer
equipped with one processor "Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz".

Single level V-cycle MG scheme
Time used 2 days (48h) 84 minutes

Residual achieved 3.76×10−2 3.99×10−6

Number of cycles 1168 iterations 10 V-cycles

TABLE 1 – Comparison between single level relaxation and a MG scheme
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FIGURE 1 – Convergence of the Jacobi solver (a) and MG scheme (b) on a 1293 nodes problem

Table 1 and figure 1 illustrate the performance of the MG scheme compared to a single level Jacobi
solver. The convergence rate of the single level Jacobi solver decreased rapidly. On the other hand, the
convergence rate of the MG scheme remains constant. The MG scheme can obtain a residual 10 000
times smaller than that of the single level Jacobi solver, with a cost that is 34 times lower.

3.2 Parallel computing performance

As mentioned above, the goal of this work is the simulation of a domain discretized by more than
eight billion elements, with a single processor, the computational time and memory are a big challenge.
Suppose one uses the desk computer mentioned above, besides the memory limitations, a problem of
eight billion elements (i.e. 4096 times larger than the previous one), will theoretically take about 239
days (i.e. 84×4096 minutes). The parallel computing is therefore necessary. MPI and OpenMP are the
two mainly used parallel programming, to study their performance, a composite thermal conduction
problem with more than 109 elements is applied.

The available supercomputer is a computer with 12 cores per processor and two processors per node,
the number of cores can be used for one job is limited at 1 000 by the owner of this supercomputer.
It is clear that the OpenMP code suffers from poor data access patterns when it uses two sockets, its
performance decreases tremendously. The number of MPI per node is therefore defined at 2, and the
number of OpenMP that can be used per MPI is 12.

The performance of number of OpenMP per MPI is firstly studied. Since the problem is too large,
the number of MPI is fixed to 32 to reduce to computational time. As Figure 2a illustrates, 12 OpenMP
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per MPI gives a full access at the available resource.
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FIGURE 2 – Parallel computing performance on a 109 elements problem

The performance of hybrid program is also tested. Figure 2b presents the speedup in function of the
number cores used. As presented from 1 core to 384 cores, a good speedup is obtained. However, with
768 cores, the speedup is just a little larger than that with 384 cores. For a fixed problem, the percentage
of the parallel parts is fixed, when increasing the number of cores, it can have a limitation. So a problem
of 109 element, 384 cores is enough to have a best speed up considering the computational cost.

3.3 Effective conductivity of a layered composite material

Layered composite materials, which are widely used in the industrial domain due to its good perfor-
mance, can be an anisotropic material. Employing numerical simulations directly on tomographic images
can be good alternative to know the composite properties. The homogenization RVE is used to obtain the
effective material property at the macroscopic scale.

The image used in this work is the image of a laminate composite material consisting of unidirectio-
nal E-glass fibers and a M9 epoxy matrix. It is a Glass Fiber Reinforced Polymer (GFRP) manufactured
by the Hexcel Company. Its mechanical properties have been studied [14]. In this work, the heat transfer
in this GFRP is studied to obtain its effective conductivity.

FIGURE 3 – ROI of the GFRP

The original image of this GFRP is an image consisting of 700×1300×1700 voxels, As mentioned
in the work of [14], this material is designed with four layers, the orientation of fibers is +15◦,−15◦,−15◦

and +15◦, respectively, for each layer. The idea is to take a cubic domain from the part which has the
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same fiber orientation. One takes 1293 voxels from the part with a fiber orientation of −15◦, as the ROI
(see Figure 3). As presented in Figure 3, the interface between the E-glass fiber and M9 epoxy matrix is
not extraordinarily sharp. It is difficult to distinguish between these two phases (matrix and fiber). Instead
of applying two discontinuous phases, one proposes to apply a continuous conductivity between 0.150
W·m−1· K−1 (epoxy) and 1.30 W·m−1· K−1 (E-glass fiber). One chooses to smooth the image gray level
before it is used to compute the local material property at each voxel. It can be described as :

α = 0.575
((

1− e−
|GL−160.5|

20

)
sign(GL−160.5)+1

)
+0.15 (6)

where GL is the original value of each voxel obtain by X–Ray tomography, which is an integer between 0
and 255. Except for the problem of the allocation of the conductivity, another problem is that the diameter
of fiber is too small to have enough voxels in it. Sub-sampling i.e. linear interpolation, is therefore
applied to this ROI to have more voxels in each fiber. The FEM discretization error therefore needs to be
analyzed, to obtain the number of voxels needed for each section. A simulation with ∇θx = 1 W·m−1·
K−1 and T = ∇θxx on ∂Ω is performed. The one time sub-sampling is applied to the ROI, the size of Ω

is therefore 2563 elements. Figure 4 illustrates the conductivity of each node in this ROI after one time
sub-sampling.

FIGURE 4 – GFRP conductivity

The temperature gradient is computed, as presented in Figure 5. The effective conductivity of the

FIGURE 5 – Temperature gradient of E–glass fibers in composite

ROI of the GFRP is :

Ac =


0.625 0.002 −0.002
0.002 0.629 0.025
−0.002 0.025 0.745

W/(mK)
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which confirms that GFRP is an orthotropic material. This effective property tensor is for the fibers with
an orientation of −15◦, for that of the +15◦ orientation, one can derive it directly.

3.4 Large simulation from a X-Ray tomographic image

The applications introduced above reveal that, the effective conductivity can be obtained by numeri-
cal simulation directly from an X-Ray tomographic image, without any human intervention. The current
tomographic images have 2048×2048×2048 voxels or more than 8 billion elements. The final applica-
tion for this work it to carry out the numerical simulation with such a large image.

The image used in this case is the GFRP image of the previous application. One takes a part from the
original image, the ROI consists of 5133 voxels. As presented in Figure 6, it consists of four layers with
different E–glass fiber orientations. One employs a two times sub-sampling to obtain an image consisting
of 20483 elements. The smoothing process on gray level is also applied and the material property has
been assigned to each node as presented in Figure 6.

FIGURE 6 – E–glass fiber orientation in each layer and conductivity at each elementary node

768 cores (64 MPI, 12 OpenMP/MPI) are used simultaneously. The calculation time is four hours.
Figure 7 illustrates the residual evolution with the number of MG V-Cycles. Regardless of the size of the
problem, the convergence remains very good. To achieve a residual of 10−6, only 9 MG V-Cycles are
needed. It means that the number of relaxations on the finest level is only 27. It confirms the efficiency of
the strategy used in this work. The temperature gradient is presented in Figure 8. Figure 8 and 9 illustrate
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FIGURE 7 – Convergence

the correspondence between conductivity and temperature gradient.
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FIGURE 8 – Temperature gradient

FIGURE 9 – Conductivity (Left) and temperature gradient (Right)

4 Discussion and Conclusions

The aim of this paper is to present that one can employ numerical simulations directly on large
tomographic images. To perform the simulations with such a large number of elements and such large
variations of materials properties requires dedicated algorithms and hardware. The strategy to use the MG
method coupled with a homogenization technique, permits one to deal with this kind of problems. The
applications and numerical comparison presented above demonstrate the efficiency of the MG method.
The homogenization technique shows its capacity to increase the stability of the MG scheme, when
large variations of materials properties exits. The Matrix Free FEM demonstrate its good performance
for large problems up to 8 billion of elements. The strategy to apply one voxel per elementary node
avoids human intervention. The effective material property can be automatically obtained by using the
large X-Ray tomographic image, as an input, without complex experimental measurement. The Hybrid
MPI/OpenMP programming shows its good feasibility and performance for the MG method.

The thermal conductivity is analyzed in this work. In future work, the mechanical property of ma-
terials will be analyzed. The property at each node is supposed to be isotropic, additional research is
needed for the anisotropic case.
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