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Résumé — In this work we investigate a variational data assimilation method to rapidly estimate urban
pollutant concentration around an area of interest using measurement data and CFD based models in a
non-intrusive and computationally efficient manner. In case studies presented here, we used a sample
of solutions from a dispersion model with varying meteorological conditions and pollution emissions to
build a Reduced Basis approximation space and combine it with concentration observations. The method
allows to correct for unmodeled physics, while significantly reducing online computational time.
Mots clés — Reduced Basis Methods, Variational Data Assimilation Methods, CFD.

1 Introduction

As the population increases, cities must constantly reassess their urban planning. However, this must
be done in such a way to preserve the quality of life of its inhabitants. Energy saving, sustainable wa-
ter and air quality are some of the important challenges associated with growing cities. In this context,
the monitoring of the different urban flows (pollution, heat) is very important. For instance data assi-
milation approaches can be used in monitoring. These methods incorporate available measurement data
and mathematical model to provide improved approximations of the physical state. The effectiveness of
modeling and simulation tools is essential. Advanced physically based models could provide spatially
rich small-scale solution, however the use of such models is challenging due to explosive computational
times in real-world applications. Beyond computational costs, physical models are often constrained by
available knowledge on the physical system. To overcome these difficulties, we resort to a new technique
combining Model Order Reduction (MOR) and variational data assimilation known as PBDW state es-
timation and introduced in [10]. The PBDW formulation combines a Reduced Basis (RB) [4, 8, 11, 12]
from the physically based model and the experimental observations, in order to provide a real-time state
estimate in a non-intrusive manner. The RB is used to diminish the cost of using a high-resolution
model by exploiting the parametric structure of the governing equations. In addition, variational data-
assimilation techniques are used to correct the model error. In this work we extend the PBDW method
previously applied to small-scale experimental problems to the monitoring of urban pollution as an im-
portant test case for practical applications, but also as an example of the very generic approach that
proves well suited to online monitoring of urban flows over large scales. Our focus here is a problem of
pollutant dispersion at the urban scale which can provide insight on how to treat the practical problems
associated to MOR and data assimilation of complex flows involved in many sophisticated methods of
urban air quality modelling.

2 The PBDW : a variational reduced order data assimilation method

We consider data assimilation methods that provide an estimate of the true physical state ctrue(S)
in a configuration S of the physical system by combining the information of a physical model and ex-
perimental data. We want to find the best possible approximation of the physical system being studied
while expending minimal resources, which translates in practice to using the best model possible and
available data without requiring excessive computational investment to solve the problem, focusing here
on methods combining reduction and data assimilation in a non-intrusive procedure.
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Given a(n unknown) parameter configuration p ∈D representing the physical system S (where D ∈RNp

is the parameter domain and Np is the number of parameters), we consider models in the form of a
problem P

P : Ω×D→ R
associated to a parameterized PDE : find c(p) ∈ X such that

L(p)c(p) = 0 in Ω + Boundary conditions on ∂Ω,

where Ω ⊂ Rd is a bounded domain, d = 2 or 3 and X some suitable Banach space. And given M
observations, we assume our data yobs

m , 1≤ m≤M, are of the form

yobs
m = `m(ctrue(S)). (1)

where `m ∈ X ′ are linear functionals representing the sensors.
The PBDW method is a non-intrusive reduced order method of data assimilation for parameterized

PDEs that belongs to the family of Reduced Basis (RB) methods. Standard reduced basis methods are
projection-based model reduction methods relying on the relatively small dimension of the solution ma-
nifold M associated to the problem P for parameter configurations p ∈D (we note that not all problems
have a low-dimensional solution manifold). If the manifold of solutions is of relatively small dimension,
it can be approximated by a finite set of well-chosen solutions of P , (c(p1), · · · ,c(pN)), generating an
N-dimensional space, called the RB space. This space is then used as approximation space in the discrete
method of solving P , for example replacing the large number of simple basis functions generating a finite
element space with N solutions c(pi) 1≤ i≤ N, to P , each providing information on the solution mani-
fold M . The idea of reduced basis methods is to compute an inexpensive and accurate approximation,
cN(p), of the solution c(p) to problem P for any p ∈D by seeking a linear combination of the particular
solutions :

cN(p) =
N

∑
i=1

αi(p)c(pi). (2)

Efficient implementation of traditional RBMs requires construction of all parameter-independent quan-
tities during a prior offline stage, which implies modifying the calculation code, an intrusive procedure.
The methods explored in this work take advantage of the reduction capacity of RBMs, but utilize the
RB space in a non-intrusive manner. The PBDW method considers our mathematical model to be the
"best-knowledge" model P bk (i.e. the best adapted model available for the problem P ), and the set of ad-
missible parameters Dbk. The PDE model P bk is used to build an N-dimensional RB background space,
ZN , representing solutions to the known problem, designed to handle parametric uncertainty. Informa-
tion on physical location and form of the M sensors providing the data is used to build an M-dimensional
update space, UM, representing the information gathered by the sensors. The PBDW solution, noted
cM,N(p) is built from the two approximation spaces, ZN and UM. We thus aim to approximate the true
physical state ctrue(S) by

cM,N(p) = cbk
N (p)+ηM (3)

where ηM ∈UM is an update correction term associated to the experimental observations, and cbk
N (p) ∈

ZN is a reduced basis approximation of the solution to the model P bk. The PBDW problem, as with
many data assimilation methods, is posed as a minimization problem, in which we minimize the update
contribution, keeping our approximation close to the solution manifold M bk associated to P bk for Dbk,
and imposing experimental observation values at the sensor points.∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Find (uN,M,zN ,ηM) such that

(uN,M,zN ,ηM) = arginf
c̃N,M∈X
z̃N∈ZN

η̃M∈UM

{
‖η̃M‖2

X

∣∣∣∣ 〈c̃N,M− z̃N ,v〉X = 〈η̃M,v〉X ,∀ v ∈ X
〈c̃N,M,φ〉X = 〈ctrue,φ〉X ,∀φ ∈UM

}
. (4)

We rely on the Euler-Lagrange equations, derived from the minimization problem (4), to find a linear
system of size (M+N)× (M+N) for non-iterative solution of the problem. The procedure is decompo-
sed into offline and online stages, where the approximation space and linear system construction is done
offline, allowing a very efficient online stage.
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3 Applications to the monitoring of urban flows

We want to apply these methods to estimate urban pollution using concentration data and a disper-
sion model. Our dispersion model P bk relies on computational fluid dynamic modeling. The wind field
carrying the pollution is the solution of an incompressible Navier-Stokes equation with k− ε turbulent
closure, and simplifying for unknown physics, the pollutant concentration is the solution to an advection-
diffusion equation given by

transport︷ ︸︸ ︷
ρ~v ·∇c−

diffusion︷ ︸︸ ︷
div((εmol + εturb︸ ︷︷ ︸

εtot

)∇c) =

source︷︸︸︷
ρFsrc, (5)

along with appropriate boundary conditions for an exterior calculation domain. We chose a particulate
pollutant PM2.5 (particulate matter of diameter d ≤ 2.5µm) in this study, which on the short term can be
considered to have negligible reaction. We set inflow velocities pv (in a fixed direction (1,1)T ) within the
calm and light air categories of the Beaufort scale (from 0.1 m

s to 1.3 m
s ) and set source intensity ps (from

of 1×10−3 to 1×10−2 mg
m3·s ) representing varying traffic based on reports made available to the public

by the U.S. EPA and on municipality websites [6, 13, 3].
The velocity field~v and turbulent diffusion field εturb can be seen as parameters of the advection-diffusion
equation (5) which allow us to decouple the computation of the wind field. Additionally, given the large
scale of air quality modeling problems, and the numerical problems caused by different orders of terms in
the PDE (5), we also want to consider a dimensionless approach. A dimensionless approach generalizes
the problem ; it can give insight into which parameters may be of lesser importance and may be approxi-
mated or ignored, and can help scale the problem if the values of certain terms vary significantly from
others. In advection-diffusion problems the important physical quantities are the velocity, diffusion, and
concentration. We thus a-dimensionalize with respect to these variables, and the spatial variable by a cha-
racteristic length, and consider a dimensionless problem Padim over a dilation Ω0 of the domain Ω by the
characteristic length. Then in order to compromise between accuracy, numerical stability, and computa-
tional time we use pseudo-steady-state CFD wind fields, solutions to Reynolds-Averaged Navier-Stokes
with k− ε turbulence by Code_Saturne [1] (a general purpose finite-volume CFD software), and solved
the dimensionless problem Padim by finite elements with a Streamline Upwind Petrov-Galerkin (SUPG)
stabilization scheme [2, 7] using FreeFem++ [5] for ease of implementation.

We begin by computing a set of training solutions to the model P bk over the parameter set Dbk

and selecting the generators of a reduced basis. We compute two different Update spaces, from sensors
placed randomly and sensors selected by a GEIM-based Greedy algorithm[9]. Next, in order to evaluate
the capacity of our data assimilation method to treat imperfect models, specifically models which may not
account for all physical processes, we used a shifted model P trial to compute synthetic data representing
a "true" solution used in our case studies. In the shifted model P trial pollution’s concentration are solution
to the following advection-diffusion-reaction :

ρ~v ·∇c−div((εmol + εturb)∇c)+ρRc = ρFsrc, (6)

where ρRc represents a linear reaction term with coefficient R for approximate total change from pro-
duction and loss during reaction processes. We next provide PBDW state estimation results comparing
to sets of trial solutions of the advection-diffusion-reaction shifted model P trial . We take parameters
p ∈ Dbk (but different from the solutions generating ZN) and each trial set corresponds to a different
model shift with R ∈ (0, 10−3, 10−4).

3.1 Case study in exterior air quality

We first set a case study for a relatively simple (with respect to the complexity of a real-world case
at urban scale with precise geometry and varying conditions) domain of dimensions 75m×120m, repre-
senting a small residential neighborhood polluted by traffic on a street and by combustion sources (not
shown here) in residential yards (see FIGURE 1). Examples for various p = (pv,ps) of solution cbk(p) to
P bk, can be seen in FIGURE 2.
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Methods PDE Modeling

2D Case Study: Traffic pollution over turbulent wind field

Figure: Left: 2D calculation domain, street pollution source and urban obstacles. Right: CFD
wind field computed in Code_Saturne. Navier-Stokes with k � ✏ turbulence, inlet velocity
vin = 0.6m

s
.

14 / 45 ,

Road

Building

FIGURE 1 – Calculation domain (with urban obstacles) and street pollution source ps

21#

Le#:#calcula)on#domain,#
street#pollu)on#source#and#
urban#obstacles.##
#
Right:#CFD#wind#field#
computed#in#Code_Saturne.#
Navier>Stokes#with#k>ε#
turbulence#with#inlet#velocity#
vin#=#0.6m/s#

Concentra)on#solu)ons#(log#scale)#of#
our#simplified#dispersion#model##
)
Le#):#with#inlet#velocity#vin#=#0.1#m/s#
and#source#intensity##ps#=#10#>#3#kg/m3#

#
Right##with#inlet#velocity#vin#=#1.3m/s#
and#source#intensity#ps#=#10#>2#kg/m3#

FIGURE 2 – Concentration solution (logarithmic scale) over velocity field. Left : with pv = 0.1 m
s and

ps = 1×10−3 mg
m3 . Right : with pv = 1.3 m

s and ps = 1×10−2 mg
m3 .

In FIGURE 3 we consider the case of significant model error (by an added reaction term of R= 0.001).
We see significant improvement between N = 2 and N = 6 (the lowest contour line shows 1% error). We
see that with N = 6 and M = 15 the error is under 7% everywhere, and often under 1%.

FIGURE 3 – Relative mean pointwise PBDW approximation error maps for N = 2 (left), N = 6 (right),
and for M = 8 (top) and M = 13 (bottom), over p ∈Dtrial with model error.
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3.2 A Real-World Application

We extend our study to a real-world application over Fresno, California, city affected by particu-
larly high pollutant concentrations. This application is in view of epidemiology exposure assessments
employed by a research team at UC Berkeley (UCB). The long-term goal is to improve the methods
for estimating individual exposures and expand the ability of current UCB epidemiological studies to
evaluate the association of these exposures to various health conditions. We aim to extend reduced order
data assimilation methods for deterministic PDE-based models to a real-world inspired case study in the
hopes of showing the feasibility of these methods in real applications. In FIGURE 4 we can see a 3D
geometric representation of a neighborhood in Fresno, used as calculation domain in our study.

!Domain!1!=!2km!x!!2!km!!!!(!1.5!mi!x!1.5!mi)!

3D!representa7on!of!Domain!1!2D!and!3D!Google!Maps!screenshot!

Wind!computa7onal!domain!!

N"
"
"
"
"
S"

W""""""""""""""""""""E"

Wind%
calcula*on%
domain%

Pollu*on’s%
calcula*on%
%domain%%

FIGURE 4 – Neighborhood in Fresno over which a wind field was computed using Code_Saturne and
domain used to study pollutant concentrations (in red).

In FIGURE 5 we see a wind field with ~vin = 1.3 ∗ z0.4 in SE direction (308deg) corresponding to real
meteorological conditions on April 1, 2001, and an associated dimensionless trial solution to P trial with
R = 0 and R = 0.001, where pollution sources are taken to be two streets.

when we found a 12-hour period during which wind direction fluctuated less than 30¶.4680

We averaged the hourly wind directions and velocities to set our aggregated inflow4681

conditions. We then consider that the measurement was taken at approximately4682

10m, to determine the appropriate coe�cient c = 1.3 from equation (4.36).4683

Figure 7.8 – Wind field over a neighborhood of Fresno for v̨in = 1.3ú z0.4 in SE dircetion
(308 deg), corresponding to conditions over Fresno on 1/4/2001. Left : a horizontal cut at
z = 1m. Right : illustration of the vertical flow profile with an added vertical cut.
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various health conditions. We aim to extend reduced order data assimilation methods406

for deterministic PDE-based models to a real-world inspired case study in the hopes of407

showing the feasibility of these methods in real applications. Below we can see a geometric408

representation of a neighborhood in Fresno, used as calculation domain in our study.409

Figure 0.7 – Left: Neighborhood in Fresno over which a wind field was computed using
Code Saturne. Right: Fluid domain used to study pollutant concentrations.

In figure 0.8 we see a wind field with v̨in = 1.3 ú z0.4 in SE direction (308 deg) corre-410

sponding to real meteorological conditions on April 1, 2001, and an associated dimension-411

less trial solution to Ptrial with R = 0.001, where pollution sources are taken to be two412

streets.413

Figure 0.8 – Wind field corresponding to conditions over Fresno on April 1, 2001 (left).
Dimensionaless concentration solution to Pbk with two pollution sources (right).

In figure 0.9 we show relative mean PBDW approximation errors for R = 0.001 plotted414

over the calculation domain over a set of 8 trial solutions to Ptrial. We can see for this415

simple first test on our real-world case study, with non-negligible model error by an added416

15

Figure 7.10 – A concentration solution to Pbk with two street pollution sources.

In order to study the dimension of the solution manifold, which we expect to4713

be N = 3 given the linearity of the problem Pbk, we perform a POD analysis. We4714

computed an ensemble solutions with these three parameters p = (p0, p1, p2) œ �bk
train4715

such that the background concentration p0 œ [1 ◊ 10≠12; 1 ◊ 10≠8], and the street4716

source intensities p1, p2 œ [0; 1 ◊ 10≠7].4717

In figure 7.11 we see the eigenvalues of the H1 norm correlation matrix (2.19)4718

associated to solutions to Pbk for p œ �bk
train, along with theH1 POD projection errors4719

as a function of N , as described by (2.20) and (2.21). These images demonstrate4720

the relatively small dimension of the solution manifold for the parameter space we4721

considered, however we can see that the dimension is larger than 3. In fact, the4722

rank of the sti↵ness matrix is 13. We attribute this to numerical instabilities in4723

the computational code for our model Pbk. We could choose to neglect this aspect,4724

however if we want to account for cases of imperfect best-knowledge models, the4725

imperfection could very well include numerical instabilities which we can’t always4726

remove by hand (not to mention that in automatic processes we do not make by-4727

hand modifications). We thus chose to accept this imperfection in our model and4728

treat the solution as higher dimension than 3.4729
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Figure 7.14 – FEM solution (left), PBDW approximation for M = 8 and N = 3 (right)
with pmax œ Dbk

trial (5.6) and synthetic data with reaction term of R = 0.0001 (model
Ptrial).
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Figure 7.15 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approxi-
mation error as a function of N for fixed M values. Using synthetic trial data from Pbk,
p œ �trial, no model error. Sensor locations chosen by a greedy procedure.

In figure 7.15 we can see Relative mean (5.10) and maximal (5.11) PBDW ap-4727

proximation errors as a function of N for fixed M values. We see peaks in the ap-4728

proximation error correlated the stability and conditioning plots and with N -values.4729

We determine that the improved span of the solution manifold with numerical in-4730

stabilities after N = 5 no longer compensates for the instability of adding solutions4731

which, aside from numerical instabilities, are already included in the span of the4732

207

Application to a real world problem Dispersion simulation and PBDW state estimate

PBDW state estimation

Perfect Model Imperfect Model

Figure: Relative mean PBDW approximation error over trial solutions to Ptrial for p 2 ⌅trial .
Left: M = 8, N = 3, perfect model. Right: M = 10 and N = 5, imperfect model R = 0.0001.
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Figure 7.11 – Left : Eigenvalues ofH1-norm correlation matrix associated to the ensemble
of solutions to Pbk for p œ Dbk. Right : Mean and max relative POD projection errors of
these solutions.

7.2.4 PBDW state estimation4702

We want to test a first implementation of the PBDW method with this significantly4703

more complex domain.4704

In order to compute our Update space we need to select sensor locations in the4705

domain. We defined a set of 2254 possible locations over the domain and performed4706

a greedy procedure of selection. In figure 7.12 we see a selection of potential sensor4707

locations among the relatively dense grid, and we see the set of 25 sensors selected4708

by a greedy procedure. We can see that many of these sensors are on the very edge4709

of the domain.4710

Figure 7.12 – Potential sensor locations, from a set of 2250 at varying heights (left), and
25 Greedy-selected sensors (right).

205

Poten)al!sensors!
loca)ons!(le6)!from!a!
set!of!2250!at!varying!
height!and!25!selected!

sensors!(right)!by!a!
greedy!procedure.!

PBDW!Error!

Concentra)on**

Without*model*error*With*model*error*Without'error'model'(R=0)' With'error'model'(R=0.001)'

FIGURE 5 – Wind field corresponding to conditions over Fresno on April 1, 2001 (left). Dimensionaless
concentration with two pollution sources solution (right).

In FIGURE 6 we show relative average PBDW approximation errors without and with model error (for
R = 0.001) plotted over the calculation domain using a set of 8 trial solutions to P trial . We can see for this
simple first test on our real-world case study, with non-negligible model error by an added reaction term,
we can reconstruct the concentration field with under 1% error nearly everywhere, a promising result for
future application of these methods.
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Figure 7.14 – FEM solution (left), PBDW approximation for M = 8 and N = 3 (right)
with pmax œ Dbk

trial (5.6) and synthetic data with reaction term of R = 0.0001 (model
Ptrial).
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In order to compute our Update space we need to select sensor locations in the4705

domain. We defined a set of 2254 possible locations over the domain and performed4706

a greedy procedure of selection. In figure 7.12 we see a selection of potential sensor4707

locations among the relatively dense grid, and we see the set of 25 sensors selected4708

by a greedy procedure. We can see that many of these sensors are on the very edge4709

of the domain.4710

Figure 7.12 – Potential sensor locations, from a set of 2250 at varying heights (left), and
25 Greedy-selected sensors (right).
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FIGURE 6 – Relative mean PBDW approximation error over a set of 8 trial solutions to P trial with no
model error (left) and with R = 0.0001 (right). Here M = 8 and N = 3.

In TABLE 2 we give computational times required for this first study of our data assimilation method over
our real-world computational domain. We give offline computational time in TABLE 1 for the calculation
of a concentration solution only given the CFD wind field, as the CFD field cost depends highly on
computational power of the machine.

FEM CPU Times
FEM P1 - SUPG 31min

TABLE 1 – Computational times of the FEM approximation of P bk. Average over the set of training
solutions considered here.

PBDW CPU Times Online Stage (average CPU times)
Reconstruction of the full solution cM,N

M = 8, N = 3 7.1s
M = 15, N = 3 12.2s
M = 15, N = 5 13.3s

TABLE 2 – Computational times of the PBDW state estimation for various M and N values. Average over
the set of trial solutions considered here.

4 Conclusion

In this paper we studied the implementation of the PBDW using a simplified dispersion model with
source terms and boundary conditions informed by literature. We examined the results of the PBDW
method using synthetic data from a shifted model P trial and a shifted parameter set Ξtrial to study the
stability of and validate the method in our case studies. These results show promise in the expansion of
the PBDW reduced basis data assimilation method from relatively small domains with simple geometry,
as has been studied in previous works, toward a large domain with highly complex geometry, and over
complex physical phenomena depending on turbulent velocity fields. While the extension to application

6



over the full city of Fresno and use with real observational data will require more study, we believe
this first step demonstrates the feasibility of non-intrusive reduced order variational data assimilation
methods as the PBDW in urban-scale real-world scenarios.
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