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Γ-CONVERGENCE AND STOCHASTIC HOMOGENIZATION OF INTEGRAL

FUNCTIONALS DEFINED ON MEASURES

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GÉRARD MICHAILLE

Abstract. We study the Γ-convergence of nonconvex integral functionals on vector measures,
investigating both Γ-convergence and stochastic homogenization. By setting abstract condi-
tions on the behavior of adapted minimization problems associated with these functionals, we
establish an integral representation of the Γ-limit. This representation is then used to prove
stochastic homogenization theorems, resulting in new homogenization formulas.

1. Introduction

Let N, l ∈ N∗ be two positive integers. Let Ω ⊂ RN be a bounded open set. Let M
(
Ω;Rl

)
be

the space of Rl-valued Radon measures and B (Ω) the set of all Borel subsets of Ω. In this paper,
we study the Γ-convergence with respect to the weak∗ convergence in M

(
Ω;Rl

)
of integrals

{Iε}ε>0 with Iε : M
(
Ω;Rl

)
× B (Ω) → [0,∞] defined by

Iε (ν,A) :=


ˆ
A
fε

(
x,

dν

dµε
(x)

)
dµε (x) if ν ≪ µε

∞ otherwise,

where {µε}ε>0 is a family of positive Radon measures on Ω satisfying µε
∗
⇀ µ0 in M+ (Ω) for

some positive Radon measure µ0, and the integrands fε : Ω×Rl → [0,∞] are Borel measurable
and not necessarily convex.

The Γ-convergence of the family {Iε}ε>0 has been previously studied using convex du-
ality methods in [Bou87, AB98, BF91], for relaxation and integral representation problems
see [BV88, But89, DGAB87, BB93, BB90, BB92, AB88]. While these convexity duality tech-
niques are powerful, providing very general integral representation theorems for abstract func-
tionals defined on measures over a locally compact and separable metric space Ω (see [BB92]),
they do not readily yield tractable formulas for the limit integrands.

In this work, with the stochastic homogenization of such functionals in mind, the Γ-convergence
analysis is conducted using the behavior of the family of local minimization problems {mε}ε>0,
where each mε : M

(
Ω;Rl

)
× B (Ω) → [0,∞] is defined by

mε (ν,B) := inf

{
Iε (λ,B) : M

(
Ω;Rl

)
∋ λ≪ µε, and λ (B) = ν (B)

}
. (1)

We first present the following Γ-convergence result by assuming linear growth on the integrands;
we also state and prove a version of this result without linear growth (see Theorem 2.1).

Theorem 1.1. Assume that

(C1) there exist c, C > 0 such that for every ε>0 and every (x, v) ∈ Ω× Rl

c|v| ≤ fε (x, v) ≤ C (1 + |v|) ;
(C2) fε (x, 0) = 0 for all ε > 0 and all x ∈ Ω;

Université de N̂ımes, Laboratoire MIPA, Site des Carmes, Place Gabriel Péri, 30021 N̂ımes,
France

E-mail addresses: <omar.anza-hafsa@unimes.fr>, <jean-philippe.mandallena@unimes.fr>,

<gerard.michaille@gmail.com>.

1



(Hreg) for every (u,O) ∈ L1
µ0

(
Ω;Rl

)
×O (Ω), it holds

lim
ρ→0

lim
ε→0

mε (u (x)µ0, Bρ (x))

µ0 (Bρ (x))
≥ lim

ρ→0
lim
ε→0

mε (u (x)µ0, Bρ (x))

µ0 (Bρ (x))
µ0-a.e. in O;

(Hsing) for every (ν,O) ∈ M
(
Ω;Rl

)
×O (Ω), and every v ∈ L1

|νs0 |
(
Ω;Sl−1

)
, it holds

lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x))
|νs0| (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x))
|νs0| (Bρ (x))

|νs0|-a.e. in O,

where νs0 = ν− dν
dµ0

µ0 is the singular part in the Lebesgue decomposition of ν with respect

to the measure µ0.

(M0) the limit measure µ0 ∈ M+ (Ω) satisfies

lim
t→1−

lim
r→0

µ0 (Btr (x))

µ0 (Br (x))
= 1 for all x ∈ Ω. (2)

Then for every O ∈ O (Ω) with µ0 (∂O) = 0, the family of integral functionals {Iε (·, O)}ε
Γ (w∗)-converges to I0 (·, O) with

I0 (ν,O) =

ˆ
O
f0

(
x,

dν

dµ0
(x)

)
dµ0 (x) +

ˆ
O
fs

(
x,

dν

d|νs0|
(x)

)
d|νs0| (x)

for all ν ∈ M
(
Ω;Rl

)
, where f0 : Ω × Rl → [0,∞] and fs : Ω × Sl−1 → [0,∞] are respectively

defined by :

f0 (x, v) := lim
ρ→0

lim
ε→0

mε (vµ0, Bρ (x))

µ0 (Bρ (x))
,

and

fs (x,w) := lim
ρ→0

lim
ε→0

mε (w|νs0|, Bρ (x))
|νs0| (Bρ (x))

.

To derive homogenization theorems, it suffices to verify (Hreg) and (Hsing) along with addi-
tional assumptions on the integrands. Thus, we are able to study the stochastic homogenization
of integrals {Iε}ε>0 where each Iε : M

(
Ω;Rl

)
× B (Ω)× Σ → [0,∞] is defined by

Iε (ν,A, ω) :=


ˆ
A
f

(
x

ε
,
dν

dµε
(x) , ω

)
dµε (x) if ν ≪ µε

∞ otherwise,

where
(
Σ, T ,P, (τz)z∈ZN

)
is a measurable dynamical system with {τz : Σ → Σ}z∈ZN a group of

P-preserving transformations on the measurable space (Σ, T ). The family of measures {µε}ε>0

is defined by

µε (·) := εNµ

(
1

ε
·
)

with µ ∈ M+

(
RN
)
a 1-periodic measure, i.e. satisfying µ (ei +A) = µ (A) for all i ∈ {1, . . . , N}

and all A ∈ B
(
RN
)
, where {ei}Ni=1 is the canonical basis of RN . Observe that µε

∗
⇀ µ0 = p0LN

in M+

(
RN
)
as ε → 0, where p0 = µ (Y) and LN denotes the Lebesgue measure on RN . By

using a subadditive theorem (see Section 4) we obtain explicit formulas for the homogenized
integrands. A version of this result without assuming linear growth on the integrand is also
provided, as stated in Theorem 4.2.

Theorem 1.2. Let f : RN × Rl × Σ → [0,∞] be a
(
B
(
RN
)
⊗ B

(
Rl
)
⊗ T , B

(
R+

))
-measurable

integrand satisfying the following four assumptions

(Cω1 ) there exist c, C > 0 such that for every ω ∈ Σ and for every (x, v) ∈ RN × Rl

c|v| ≤ f (x, v, ω) ≤ C (1 + |v|) ;
(Cω2 ) f (x, 0, ω) = 0 for all x ∈ RN and all ω ∈ Σ;
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(Cω3 ) for all ω ∈ Σ and for every (z, x, v) ∈ ZN × RN × Rl

f (x+ z, v, ω) = f (x, v, τzω) ;

(Cω4 ) there exist T > 0, β > 0 and r ∈]0, 1[ such that for every ω ∈ Σ, for every t > T , every
v ∈ Sl−1 and every x ∈ RN we have∣∣∣∣f (x, tv, ω)t

− f∞ (x, v, ω)

∣∣∣∣ ≤ β

tr
where f∞ (x, v, ω) := lim

t→∞

f (x, tv, ω)

t
.

Then for every O ∈ O (Ω) with µ0 (∂O) = 0, and for P-a.e. ω ∈ Σ the family {Iε (·, O, ω)}ε
Γ (w∗)-converges to I0 (·, O, ω) with

I0 (ν,O, ω) =

ˆ
O
fhom

(
dν

dµ0
(x) , ω

)
dµ0 (x) +

ˆ
O
fhoms

(
dν

d|νs0|
(x) , ω

)
d|νs0| (x)

for all ν ∈ M
(
Ω;Rl

)
, where fhom : Rl×Σ → [0,∞] and fhoms : Sl−1×Σ → [0,∞] are respectively

given by:

fhom (v, ω) := inf
k∈N∗

EI inf

{
1

p0kN

ˆ
kY
f (z, v + ψ (z) , ·) dµ (z) : ψ ∈ A0 (kY)

}
(ω) ,

and

fhoms (v, ω) := inf
k∈N∗

EI inf

{
1

p0kN

ˆ
kY
f∞ (z, v + ψ (z) , ·) dµ (z) : ψ ∈ A0 (kY)

}
(ω) ,

where A0 (kY) :=
{
ψ ∈ L1

(
kY;Rl

)
: −́kY ψdLN = 0

}
.

When (Σ, T ,P, {τz}z∈ZN ) is ergodic then the homogenized integrands are deterministic, i.e.

fhom (v, ω) = fhom (v) :=

inf
k∈N∗

ˆ
Σ
inf

{
1

p0kN

ˆ
kY
f (z, v + ψ (z) , ω) dµ (z) : ψ ∈ A0 (kY)

}
dP (ω) ,

fhoms (v, ω) = fhoms (v) :=

inf
k∈N∗

ˆ
Σ
inf

{
1

p0kN

ˆ
kY
f∞ (z, v + ψ (z) , ω) dµ (z) : ψ ∈ A0 (kY)

}
dP (ω) .

The paper is structured as follows. In Section 2, we provide the proof of the abstract Γ-
convergence result, Theorem 1.1. We begin by proving the result in the case where the initial
integrands have linear growth. Subsequently, through a standard approximation procedure,
we establish and prove an abstract Γ-convergence theorem without assuming growth on the
integrands. Section 3 focuses on some examples. Subsection 3.1 highlights an example where
fε is convex and independent of both x and ε. In Subsection 3.2, we apply our result to the
relaxation problem for x-dependent integrands, complementing the general result of [DGAB87,
Theorem 2.4.] by obtaining additional insights on the limiting integrands. Section 4 deals
with the proof of the stochastic homogenization result, Theorem 1.2. Section 5 is dedicated
to proving Propositions 2.1 and 2.2. These propositions provide bounds under integral form
for the Γ- limε→0 Iε (·, O), Γ- limε→0 Iε (·, O), and local bounds of the average of limε→0mε over
small balls. The proof of Theorem 1.1 is then an easy and direct application of these previous
propositions. Finally, Section 6 concludes with the proofs of some auxiliary results that are
necessary for the overall arguments.

Notation. We denote by M+ (Ω) the set of all positive Radon measures on Ω and by M
(
Ω;Rl

)
the space of all Rl-valued Radon measures on Ω with l ∈ N∗.

For µ ∈ M+ (Ω), if w ∈ L1
µ

(
Ω;Rl

)
then wµ ∈ M

(
Ω;Rl

)
where

wµ (B) :=

ˆ
B
wdµ for all Borel set B ⊂ Ω.
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In particular, for a Borel set A ⊂ Ω, 1A µ is the measure defined by

1A µ (B) =

ˆ
B
1A dµ = µ (A ∩B) for all Borel set B ⊂ Ω.

When we write ν ≪ µ for µ ∈ M+ (Ω) and ν ∈ M
(
Ω;Rl

)
, we mean that the total variation |ν|

of ν is absolutely continuous with respect to µ, i.e. |ν| ≪ µ.
The Lebesgue decomposition of λ ∈ M

(
Ω;Rl

)
with respect to µ is given by

λ =
dλ

dµ
(·)µ+ λs

where dλ
dµ (·) ∈ L1

µ

(
Ω;Rl

)
is given by dλ

dµ (x) = limρ→0
λ(Bρ(x))
µ(Bρ(x))

µ-a.e. in Ω, and where λs and µ

are mutually singular, denoted by λs ⊥ µ, this means that there exists a Borel set X ⊂ Ω such
that µ (Ω \X) = 0 and |λs| (X) = 0.

We also introduce the following notation:

• O0 (Ω) := {O ∈ O (Ω) : µ0 (∂O) = 0}.

• Rxµ :=
{
ρ ∈]0,∞[: µ (∂Bρ (x))>0

}
.

• Y :=]0, 1[N and Y :=
]
−1

2 ,
1
2

[N
.

• Sl−1 denotes the unit sphere of Rl centered at 0, i.e. Sl−1 := {v ∈ Rl : |v| = 1}.

2. Proof of Γ-convergence theorems 1.1 and 2.1

For every (ν,O) ∈ M
(
Ω;Rl

)
×O (Ω) we set:(

Γ (w∗) - lim
ε→0

Iε

)
(ν,O) := inf

{
lim
ε→0

Iε (νε, O) : M
(
Ω;Rl

)
∋ νε

∗
⇀ ν in M

(
O;Rl

)}
;(

Γ (w∗) - lim
ε→0

Iε

)
(ν,O) := inf

{
lim
ε→0

Iε (νε, O) : M
(
Ω;Rl

)
∋ νε

∗
⇀ ν in M

(
O;Rl

)}
.

For each O ∈ O (Ω), if (
Γ (w∗) - lim

ε→0
Iε

)
(·, O) =

(
Γ (w∗) - lim

ε→0
Iε

)
(·, O)

then we say that {Iε (·, O)}ε>0 Γ-converges to

I0 (·, O) :=

(
Γ (w∗) - lim

ε→0
Iε

)
(·, O) =

(
Γ (w∗) - lim

ε→0
Iε

)
(·, O) .

For more details on the theory of Γ-convergence we refer to [DM93] (see also [BD98]).

2.1. Bounds for Γ (w∗) - lim
ε→0

Iε (·, O) , Γ (w∗) - lim
ε→0

Iε (·, O) and mε. The proof of Theo-

rem 1.1 is based on the following two propositions below. Proposition 2.1 provides lower (resp.
upper) bound for the Γ-liminf (resp. Γ-limsup) under integral form.

Proposition 2.1. Let O ∈ O (Ω).

(i) For every ν ∈ M
(
Ω;Rl

)
, there exists a sequence {νε}ε>0 ⊂ M

(
Ω;Rl

)
such that

sup
ε>0

Iε (νε, O)<∞, νε
∗
⇀ ν in M

(
O;Rl

)
and Γ (w∗) - lim

ε→0
Iε (ν,O) ≥

∑
σ∈{µ0,|νs0 |}

ˆ
O

lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
dσ (x) . (3)

(ii) Assume that (C1) holds. If µ0 (∂O) = 0 then for every ν ∈ M
(
Ω;Rl

)
Γ (w∗) - lim

ε→0
Iε (ν,O) ≤

∑
σ∈{µ0,|νs0 |}

ˆ
O
lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

σ (Bρ (x))
dσ (x) . (4)
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The proof of Proposition 2.1 (i) is standard and involves weak convergence and Lebesgue
decomposition of measures, using the blow-up method outlined in [FM92, FM93]. The main
challenge lies in the proof of Proposition 2.1 (ii), which is divided into two steps. Firstly, we show
that the Γ-limsup is lower than the lower Vitali envelope of the set function limε→0mε (·, O).
Then, we establish (see Lemma 6.3) that the lower Vitali envelope admits an integral represen-
tation with density the derivative of the set function limε→0mε (·, O).

Proposition 2.2. Let O ∈ O (Ω). Assume that (C1) holds. Then:

(i) for every ν ∈ M
(
Ω;Rl

)
, every sequence {νε}ε>0 ⊂ M

(
Ω;Rl

)
and every θ ∈ M+ (O)

satisfying

νε
∗
⇀ ν in M

(
O;Rl

)
and |νε|

∗
⇀ θ in M+ (O)

we have:

lim
ρ→0

lim
ε→0

mε

(
dν

dµ0
(x)µ0, Bρ (x)

)
µ0 (Bρ (x))

≤ lim
τ→1−

lim
ρ→0

lim
ε→0

Iε (νε, Bτρ (x))

µ0 (Bρ (x))
µ0-a.e. in O; (5)

lim
ρ→0

lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

≤ lim
τ→1−

lim
ρ→0

lim
ε→0

Iε (νε, Bτρ (x))

|νs0| (Bρ (x))
|νs0|-a.e. in O; (6)

(ii) for every ν ∈ M
(
Ω;Rl

)
and every σ ∈ {µ0, |νs0|},

lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

σ (Bρ (x))
≤ lim

ρ→0
lim
ε→0

mε

(
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

σ-a.e. in O. (7)

The proof of Theorem 1.1 consists in using the inequalities of Propositions 2.1, 2.2 and the
conditions (Hreg) and (Hsing) to bridge the gap between the Γ-liminf and Γ-limsup.

2.2. Proof of Theorem 1.1. Let ν ∈ M
(
Ω;Rl

)
and O ∈ O0 (Ω). Combining Proposition 2.1,

Proposition 2.2 and condition (Hreg), we can write, for µ0-a.e. x ∈ O, that

lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

µ0 (Br (x))

(3)

≥ lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

µ0 (Bρ (x))

(5)

≥ lim
ρ→0

lim
ε→0

mε

(
dν

dµ0
(x)µ0, Bρ (x)

)
µ0 (Bρ (x))

(Hreg)

≥ lim
ρ→0

lim
ε→0

mε

(
dν

dµ0
(x)µ0, Bρ (x)

)
µ0 (Bρ (x))

(7)

≥ lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

µ0 (Bρ (x))

(4)

≥ lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

µ0 (Br (x))
.
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It follows, since

(
Γ (w∗) - lim

ε→0
Iε

)
(ν, ·) ≤

(
Γ (w∗) - lim

ε→0
Iε

)
(ν, ·), that for µ0-a.e. x ∈ O we have

lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

µ0 (Br (x))
= lim

r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

µ0 (Br (x))

= lim
ρ→0

lim
ε→0

mε

(
dν

dµ0
(x)µ0, Bρ (x)

)
µ0 (Bρ (x))

= lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

µ0 (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
dν

dµ0
(x)µ0, Bρ (x)

)
µ0 (Bρ (x))

,

which shows that all these functions are Borel measurable, as ensured by Lemma 6.3, which
guarantees the measurability of the following function:

Ω ∋ x 7−→ lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

µ0 (Bρ (x))
.

Similarly by using (Hsing), we have for |νs0|-a.e. x ∈ O

lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

|νs0| (Br (x))
(3)

≥ lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

|νs0| (Bρ (x))

(6)

≥ lim
ρ→0

lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

(Hsing)
≥ lim

ρ→0
lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

(7)

≥ lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

|νs0| (Bρ (x))
(4)

≥ lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

|νs0| (Br (x))
.

It follows that for |νs0|-a.e. x ∈ O

lim
r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

|νs0| (Br (x))
= lim

r→0

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,Br (x))

|νs0| (Br (x))

= lim
ρ→0

lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

= lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

|νs0| (Bρ (x))
= lim
ρ→0

lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

.

From the above, we see that for all σ ∈ {µ0, |νs0|} and σ-a.e. x ∈ O,

lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ν,Bρ (x))

σ (Bρ (x))
= lim

ρ→0
lim
ε→0

mε

(
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

.
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Using Proposition 2.1 we conclude that(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) ≥

∑
σ∈{µ0,|νs0 |}

ˆ
O
lim
ρ→0

lim
ε→0

mε

(
dν
dσ (x)σ,Bρ (x)

)
σ (Bρ (x))

dσ (x)

≥
(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) ,

which completes the proof. ■

2.3. Γ-convergence without linear growth. In the case where the integrands fε do not have

linear growth, set f jε the Moreau-Yosida envelope of fε of index 1 defined by

Ω× Rl ∋ (x, v) 7−→ f jε (x, v) := inf
{
fε (x,w) + j|v − w| : w ∈ Rl

}
,

and for every ν ∈ M
(
Ω;Rl

)
and every B ∈ B (Ω), the associated integrals

Ijε (ν,B) :=


ˆ
B
f jε

(
x,

dλ

dµε
(x)

)
dµε (x) if λ≪ µε

∞ otherwise,

with the corresponding local minimisation problems

mj
ε (ν,B) := inf

{
Ijε (λ,B) : M

(
Ω;Rl

)
∋ λ≪ µε, and λ (B) = ν (B)

}
for all (j, ε) ∈ N× R∗

+.
The conditions (Hreg) and (Hsing) become, for each j ∈ N:

(Hjreg) for every (u,O) ∈ L1
µ0

(
Ω;Rl

)
×O (Ω), it holds

lim
ρ→0

lim
ε→0

mj
ε (u (x)µ0, Bρ (x))

µ0 (Bρ (x))
≥ lim

ρ→0
lim
ε→0

mj
ε (u (x)µ0, Bρ (x))

µ0 (Bρ (x))
µ0-a.e. in O;

(Hjsing) for every (ν,O) ∈ M
(
Ω;Rl

)
×O (Ω), and every v ∈ L1

|νs0 |
(
Ω;Sl−1

)
, it holds

lim
ρ→0

lim
ε→0

mj
ε (v (x) |νs0|, Bρ (x))

|νs0| (Bρ (x))
≥ lim

ρ→0
lim
ε→0

mj
ε (v (x) |νs0|, Bρ (x))

|νs0| (Bρ (x))
|νs0|-a.e. in O.

Theorem 2.1. Suppose (M0) and

(C′
1) there exists c > 0 such that for every ε>0 and every (x, v) ∈ Ω× Rl

c|v| ≤ fε (x, v) .

Assume that (Hjreg) and (Hjsing) hold for all j ∈ N. Then for every O ∈ O0 (Ω), the family of

integral functionals {Iε (·, O)}ε Γ (w∗)-converges to I0 (·, O) with

I0 (ν,O) =

ˆ
O
f0

(
x,

dν

dµ0
(x)

)
dµ0 (x) +

ˆ
O
fs

(
x,

dν

d|νs0|
(x)

)
d|νs0| (x)

for all ν ∈ M
(
Ω;Rl

)
, where f0 : Ω × Rl → [0,∞] and fs : Ω × Sl−1 → [0,∞] are respectively

defined by:

f0 (x, v) := sup
j∈N

lim
ρ→0

lim
ε→0

mj
ε (vµ0, Bρ (x))

µ0 (Bρ (x))
,

and

fs (x,w) := sup
j∈N

lim
ρ→0

lim
ε→0

mj
ε (w|νs0|, Bρ (x))
|νs0| (Bρ (x))

.
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Proof of Theorem 2.1. Let ε > 0. First, observe, by using (C2), that for every x ∈ Ω and every
j ∈ N

f jε (x, v) ≤ j (1 + |v|) ,
moreover, we also see that f jε (x, v) ≥ min (c, j) |v| for all j ∈ N∗, where c is the constant

appearing in (C1). Thus (C1) holds for each of {f jε }ε>0. Fix O ∈ O0 (Ω). Applying Theorem 1.1

to each of {f jε }ε>0, the family of integral functionals {Ijε (·, O)}ε Γ (w∗)-converges to Ij0 (·, O)
with

Ij0 (ν,O) =

ˆ
O
f j0

(
x,

dν

dµ0
(x)

)
dµ0 (x) +

ˆ
O
f js

(
x,

dν

d|νs0|
(x)

)
d|νs0| (x)

for all ν ∈ M
(
Ω;Rl

)
, where f j0 : Ω × Rl → [0,∞] and f js : Ω × Sl−1 → [0,∞] are respectively

given by:

f j0 (x, v) := lim
ρ→0

lim
ε→0

mj
ε (vµ0, Bρ (x))

µ0 (Bρ (x))
,

and

f js (x,w) := lim
ρ→0

lim
ε→0

mj
ε (w|νs0|, Bρ (x))
|νs0| (Bρ (x))

.

Let (ν,O) ∈ M
(
Ω;Rl

)
×O (Ω). On one hand, since fε ≥ f jε , we have(

Γ (w∗) - lim
ε→0

Iε

)
(ν,O) ≥ Γ (w∗) - lim

ε→0
Ijε (ν,O) = Ij0 (ν,O) for all j ∈ N.

On the other hand, applying Lemma 6.1

sup
j∈N

Ij0 (ν,O) =
(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) .

It follows that

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) ≥ supj∈N I

j
0 (ν,O) =

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O), which mea-

ns that {Iε (·, O)}ε Γ (w∗)-converges to I0 (·, O) = supj∈N I
j
0 (·, O). We conclude the proof by

applying the monotone convergence theorem to derive the formulas for the limit integrands. ■

3. Examples

3.1. Γ-convergence with convex integrands not depending on (x, ε). Let Φ : Rl → R be a
convex and lower semicontinuous function satisfying for some c > 0

c|v| ≤ Φ (v) for all v ∈ Rl and Φ (0) = 0. (8)

For each ε > 0 define Iε : M
(
Ω;Rl

)
× B (Ω) → [0,∞] by

Iε (ν,A) :=


ˆ
A
Φ

(
dν

dµε

)
dµε if ν ≪ µε

∞ otherwise,

where {µε}ε>0 ⊂ M+ (Ω) is a family of positive Radon measures. ‘
As a consequence of Theorem 2.1, we retrieve the following result (see [Bou87, AB98]). It

is worth noting that we make the additional assumption (M0), which can be explained by the
“nonconvex” approach used to prove Theorem 2.1 (see Subsection 6.4 for the proof).

Theorem 3.1. Let µ0 ∈ M+ (Ω) satisfy (M0). Let O ∈ O0 (Ω). If µε
∗
⇀ µ0 in M+ (Ω) then

{Iε (·, O)}ε Γ (w∗)-converges to I0 (·, O) with

I0 (ν,O) =

ˆ
O
Φ

(
dν

dµ0

)
dµ0 +

ˆ
O
Φ∞

(
dν

d|νs0|

)
d|νs0|

for all ν ∈ M
(
Ω;Rl

)
, where Φ∞ (·) := supt>0

1
tΦ (t·) is the recession function of Φ, and νs0 =

ν − dν
dµ0

µ0.
8



As an illustration of Theorem 3.1 we consider the example of [Bou87, Exemple 4.1, pp. 138].
Let µ ∈ M+ (Ω) be a positive Radon measure. Let {aε}ε>0 ⊂ L1

µ (Ω) be such that for some
c, C > 0 we have for every ε > 0,

c ≤ aε ≤ C.

Let p > 1 and q =
(
1− 1

p

)−1
. Define the integrals Jε : M

(
Ω;Rl

)
× B (Ω) → [0,∞] by

Jε (ν,A) :=


ˆ
A
aε

∣∣∣∣dνdµ
∣∣∣∣p dµ if ν ≪ µ

∞ otherwise.

Setting µε :=
1

aq−1
ε

µ, we can rewrite Jε as

Jε (ν,A) :=


ˆ
A

∣∣∣∣ dνdµε
∣∣∣∣p dµε if ν ≪ µε

∞ otherwise.

Now, under the assumptions of Theorem 3.1 the family {Jε (·, O)}ε Γ-converges at each ν ∈
M
(
Ω;Rl

)
to J0 (·, O) given by

J0 (ν,O) =

ˆ
O

∣∣∣∣ dνdµ0
∣∣∣∣p dµ0 + ˆ

O
χ{0}

(
dν

d|νs0|

)
d|νs0|,

where χ{0} is the indicator function of {0}, i.e.

χ{0} (v) :=

 0 if v = 0

∞ otherwise. ■

3.2. Relaxation with integrand dependent on x. Let Φ : Ω × Rl → [0,∞] be a Borel function
satisfying for some c > 0

Φ (x, 0) = 0 and c|v| ≤ Φ (x, v) for all (x, v) ∈ Ω× Rl. (9)

Define I : M
(
Ω;Rl

)
× B (Ω) → [0,∞] by

I (ν,A) :=


ˆ
A
Φ

(
x,

dν

dµ0

)
dµ0 if ν ≪ µ0

∞ otherwise,

where µ0 ∈ M+ (Ω) is a positive Radon measure. The relaxed functional with respect to the
weak star convergence of measures is given by

I (ν,A) = inf

{
lim
ε→0

I (νε, A) : νε
∗
⇀ ν in M

(
Ω;Rl

)}
for all ν ∈ M

(
Ω;Rl

)
. The following result was proved in [DGAB87, Theorem 2.4] (see

also [AB88, Theorem 2.4] and [But89, Theorem 3.3.1, pp. 99])

Theorem 3.2. There exists a Borel function φ : Ω× Rl → [0,∞] such that for µ0-a.e. in x ∈ Ω
the function φ (x, ·) is convex and lower semicontinuous and

I (ν,A) =

ˆ
A
φ

(
x,

dν

dµ0

)
dµ0 +

ˆ
A
φ∞

(
x,

dν

d|νs0|

)
d|νs0|.

for all (ν,A) ∈ M
(
Ω;Rl

)
× B (Ω). Moreover, the recession function φ∞ defined by

φ∞ (x, v) := lim
t→∞

φ (x, tv)

t

is lower semicontinuous in (x, v).
9



The following result provides, in the case where the measure µ0 satisfies (M0), a representa-
tion for the relaxed integrands. This complements the result of [DGAB87, Theorem 2.4]. By
combining Theorem 3.2 and Theorem 2.1 we have:

Theorem 3.3. Assume that µ0 satisfies (M0). Let O ∈ O0 (Ω). Then for every ν ∈ M
(
O;Rl

)
I (ν,O) =

ˆ
O
Φ0

(
x,

dν

dµ0

)
dµ0 +

ˆ
O
Φs

(
x,

dν

d|νs0|

)
d|νs0|

where Φ0 : Ω× Rl → [0,∞] and Φs : Ω× Sl−1 → [0,∞] are respectively given by:

Φ0 (x, u) := sup
j∈N

lim
ρ→0

inf
w∈L1

µ0
(Bρ(x);Rl)´

Bρ(x)
wdµ0=0

−
ˆ
Bρ(x)

Φj (z, u+ w (z)) dµ0 (z) ;

and

Φs (x, v) := sup
j∈N

lim
ρ→0

inf
w∈L1

µ0
(Bρ(x);Rl)´

Bρ(x)
wdµ0=0

1

|νs0| (Bρ (x))

ˆ
Bρ(x)

Φj
(
z,

|νs0| (Bρ (x))
µ0 (Bρ (x))

v + w (z)

)
dµ0 (z) .

Moreover, for µ0-a.e. in x ∈ Ω the function Φ0 (x, ·) is convex and lower semicontinuous, and
Φs is lower semicontinuous in (x, v) and Φs (x, ·) = Φ∞

0 (x, ·) |νs0|-a.e. x ∈ Ω.

Proof of Theorem 3.3. We see, by setting fε (x, v) := Φ (x, v) for all (x, v) ∈ Ω× Rl, that (C1)
and (C2) are fulfilled since (9).

Let x ∈ Ω. Let ν ∈ M
(
Ω;Rl

)
. For each j ∈ N we denote by Φj the Moreau-Yosida envelope

of Φ of index 1 defined by

Φj (x,w) := inf
v∈Rl

Φ (x,w + v) + j|v|.

Combining Lemma 6.3 and Corollary 6.1, we see that for every j ∈ N, every (ν,O) ∈ M
(
Ω;Rl

)
×

O (Ω), and every v ∈ L1
|νs0 |
(
Ω; Sl−1

)
, the following limit exists

lim
ρ→0

mj (v (x) |νs0|, Bρ (x))
|νs0| (Bρ (x))

|νs0|-a.e. in O,

where νs0 = ν − dν
dµ0

µ0 is the singular part in the Lebesgue decomposition of ν with respect to

the measure µ0, which means that (Hjsing) hold. We apply Theorem 2.1 and the properties of
convexity and lower semicontinuity of the relaxed formulas are given by Theorem 3.2. ■

4. Stochastic homogenization of integrals defined on measures

4.1. Subadditive theorem. Let (Σ, T ,P) be a probability space. Let {τz : Σ → Σ}z∈ZN be a
group of P-preserving transformations on (Σ, T ), i.e.

(T1) τz is T -measurable for all z ∈ ZN (measurability);
(T2) τz ◦ τz′ = τz+z′ and τ−z = τ−1

z for all z, z′ ∈ ZN (group property);
(T3) P (τz (E)) = P (E) for all E ∈ T and all z ∈ ZN (mass invariance).

The quadruplet (Σ, T ,P, {τz}z∈ZN ) is called a measurable dynamical system. We denote by
I :=

{
E ∈ T : ∀z ∈ ZN P (τz (E)∆E) = 0

}
the σ-algebra of invariant sets with respect to

(Σ, T ,P, {τz}z∈ZN ). When P (E) ∈ {0, 1} for all E ∈ I, the measurable dynamical system
(Σ, T ,P, {τz}z∈ZN ) is said to be ergodic. Denote by Bb

(
RN
)
the set of all bounded Borel sets

of RN .

Definition 4.1. We say that S : Bb
(
RN
)
→ L1 (Σ, T ,P) is a subadditive process if

(S1) S (A ∪B) ≤ S (A) + S (B) for all A,B ∈ Bb
(
RN
)
such that A∩B = ∅ (subadditivity);

(S2) S (A+ z) = S (A) ◦ τz for all A ∈ Bb
(
RN
)
and all z ∈ ZN (stationarity).

If in addition the measurable dynamical system (Σ, T ,P, {τz}z∈ZN ) is ergodic, we say that S is
an ergodic subadditive process.
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For a bounded Borel set A ∈ Bb
(
RN
)
we set

R (A) := sup
{
ρ ∈ R+ : ∃x ∈ A Bρ (x) ⊂ A

}
.

A sequence of bounded Borel sets {An}n∈N is called regular if there exist an increasing sequence
of intervals {Jn}n∈N whose the bounds belongs to ZN and C > 0 such that LN (Jn) ≤ CLN (An)
for all n ∈ N. We denote by Y the unit cell [0, 1[N .

Theorem 4.1 ([LM02, Theorem 4.1, p. 33]). Let S : Bb
(
RN
)
→ L1 (Σ, T ,P) be a subadditive

process such that

(S1) S is a nonnegative subadditive process, i.e. S (A) (ω) ≥ 0 for all A ∈ Bb
(
RN
)
and all

ω ∈ Σ;
(S2) there exists h ∈ L1 (Σ, T ,P) such that S (A) ≤ h for all Borel set A ⊂ Y.

Then there exists Σ′ ∈ T with P (Σ′) = 1 such that for every ω ∈ Σ′ and every regular sequence
of Borel convex sets {Cn}n∈N ⊂ Bb

(
RN
)
satisfying limn→∞R (Cn) = ∞ we have

lim
n→∞

S (Cn) (ω)

LN (Cn)
= inf

k∈N∗
EI
[
S (kY)
kN

]
(ω) .

If (Σ, T ,P, {τz}z∈ZN ) is ergodic then for P-a.e. ω ∈ Σ

lim
n→∞

S (Cn) (ω)

LN (Cn)
= inf

k∈N∗

ˆ
Σ

S (kY) (ω)
kN

dP (ω) .

4.2. Properties of subadditive processes associated with f and f∞. For the proof of Theo-
rem 1.2 we will need the following lemma which is proved in Subsections 6.5 and 6.6.

Lemma 4.1. For each u ∈ Rl, each A ∈ Bb
(
RN
)
and each ω ∈ Σ we set

Su (A) (ω) := inf
M(Ω;Rl)∋λ≪µ

λ(A)=uµ0(A)

ˆ
A
f

(
x,
dλ

dµ
(x) , ω

)
dµ (x) .

(i) For each u ∈ Rl the map Su : Bb
(
RN
)
→ L1 (Σ, T ,P) is a nonnegative subadditive process

satisfying for some C > 0, for P-a.e. ω ∈ Σ and for every Borel set A ⊂ [0, 1[N

Su (A) (ω) ≤ C (1 + |u|) .
(ii) There exists Σ′ ∈ T with P (Σ′) = 1 such that for every ω ∈ Σ′, every u ∈ Rl and every

cube B ⊂ RN

lim
ε→0

Su
(
1
εB
)
(ω)

LN
(
1
εB
) = inf

k∈N∗
EI

[
Su
(
[0, k[N

)
kN

]
(ω) .

We will also need the following lemma, the proof of which is similar to that of Lemma 4.1,
which is stated just above.

Lemma 4.2. For each w ∈ Sl−1, each A ∈ Bb
(
RN
)
and each ω ∈ Σ we set

S∞
w (A) (ω) := inf

M(Ω;Rl)∋λ≪µ

λ(A)=wµ0(A)

ˆ
A
f∞

(
x,
dλ

dµ
(x) , ω

)
dµ.

(i) For each w ∈ Sl−1 the map S∞
w : Bb

(
RN
)
→ L1 (Σ, T ,P) is a nonnegative subadditive

process satisfying for some C > 0, for P-a.e. ω ∈ Σ and for every Borel set A ⊂ [0, 1[N

S∞
w (A) (ω) ≤ C |w| .

(ii) There exists Σ′ ∈ T with P (Σ′) = 1 such that for every ω ∈ Σ′, every w ∈ Sl−1 and every
cube B ⊂ RN

lim
ε→0

S∞
w

(
1
εB
)
(ω)

LN
(
1
εB
) = inf

k∈N∗
EI

[
S∞
w

(
[0, k[N

)
kN

]
(ω) .
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4.3. Proof of Theorem 1.2. We recall that the measure µ ∈ M+

(
RN
)
is a 1-periodic measure

which satisfies

µε
∗
⇀ µ0 = p0LN in M+

(
RN
)
as ε→ 0,

where p0 = µ (Y) with Y :=]0, 1[N . The proof consists in verifying the assumptions of Theo-
rem 1.1. Since (Cω1 ), we note that for P-a.e. ω ∈ Σ the family of integrands{

fε (·, ·) := f
( ·
ε
, ·, ω

)
⌊Ω
}
ε

satisfies (C1). It remains to show that (Hreg) and (Hsing) hold, i.e. for every O ∈ O (Ω), for

P-a.e. ω ∈ Σ, for every u ∈ L1
µ0

(
Ω;Rl

)
and every v ∈ L1

|νs0 |
(
Ω; Sl−1

)
, it holds

lim
ρ→0

lim
ε→0

mε (u (x)µ0, Bρ (x) , ω)

µ0 (Bρ (x))
≥ lim

ρ→0
lim
ε→0

mε (u (x)µ0, Bρ (x) , ω)

µ0 (Bρ (x))
µ0-a.e. in O; (10)

lim
ρ→0

lim
ε→0

mε (u (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε (u (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

|νs0|-a.e. in O, (11)

where νs0 = ν − dν
dµ0

µ0, and where for every r > 0, every ε > 0, every x ∈ Ω and every ω ∈ Σ

mε (u (x)µ0, Br (x) , ω) := inf
M(Ω;Rl)∋λ≪µε

λ(Br(x))=u(x)µ0(Br(x))

ˆ
Br(x)

f

(
y

ε
,
dλ

dµε
(y) , ω

)
dµε (y) ;

mε (v (x) |νs0|, Br (x) , ω) := inf
M(Ω;Rl)∋λ≪µε

λ(Br(x))=v(x)|νs0 |(Br(x))

ˆ
Br(x)

f

(
y

ε
,
dλ

dµε
(y) , ω

)
dµε (y) .

Proof of (10). Note that for a measure λ ∈ M
(
Ω;Rl

)
with λ≪ µ

dλ

dµε
(εx) =

1

εN
lim
ρ→0

λ
(
εBρ/ε (x)

)
µ
(
Bρ/ε (x)

) =
dλ1/ε

dµ
(x) µ-a.e. in Ω,

where λ1/ε (·) := ε−Nλ (ε·) for all ε > 0. Fix ω ∈ Σ. For every ρ > 0 and every u ∈ L1
(
Ω;Rl

)
we can write for µ0-a.e. x ∈ Ω

mε (u (x)µ0, Bρ (x) , ω)

µ0 (Bρ (x))
= inf

M(Ω;Rl)∋λ≪µε
λ(Bρ(x))=u(x)µ0(Bρ(x))

1

µ0 (Bρ (x))

ˆ
Bρ(x)

f

(
y

ε
,
dλ

dµε
(y) , ω

)
dµε (y)

= inf
M(Ω;Rl)∋λ≪µε

λ(Bρ(x))=u(x)µ0(Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

f

(
s,
dλ

dµε
(εs) , ω

)
dµ (s)

= inf
M(Ω;Rl)∋λ≪µε

λ(Bρ(x))=u(x)µ0(Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

f

(
s,
dλ1/ε

dµ
(s) , ω

)
dµ (s)

= inf
M(Ω;Rl)∋λ≪µ

λ( 1
ε
Bρ(x))=u(x)µ0( 1

ε
Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

f

(
s,
dλ

dµ
(s) , ω

)
dµ (s)

=
Su(x)

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) =
1

p0

Su(x)
(
1
εBρ (x)

)
(ω)

LN
(
1
εBρ (x)

) .

Applying Lemma 4.1 (ii), we obtain for P-a.e. ω ∈ Σ

lim
ε→0

mε (u (x)µ0, Bρ (x) , ω)

µ0 (Bρ (x))
= lim

ε→0

Su(x)
(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) =
1

p0
inf
k∈N∗

EI

[
Su(x)

(
[0, k[N

)
kN

]
(ω) ,
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and so by letting ρ→ 0

lim
ρ→0

lim
ε→0

mε (u (x)µ0, Bρ (x) , ω)

µ0 (Bρ (x))
= inf

k∈N∗
EI

[
Su(x)

(
[0, k[N

)
p0kN

]
(ω) ,

which means that (10) holds.

Proof of (11). Fix ω ∈ Σ. Let x ∈ O be such that

lim
ρ→0

txρ = ∞ where txρ :=
|νs0| (Bρ (x))
µ0 (Bρ (x))

.

For every ρ > 0, every ε > 0 and every v ∈ L1
|νs0 |
(
Ω; Sl−1

)
we can write

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

= inf
M(Ω;Rl)∋λ≪µε

λ(Bρ(x))=v(x)|νs0 |(Bρ(x))

1

|νs0| (Bρ (x))

ˆ
Bρ(x)

f

(
y

ε
,
dλ

dµε
(y) , ω

)
dµε (y)

= inf
M(Ω;Rl)∋λ≪µε

1
txρ
λ(Bρ(x))=v(x)|νs0 |(Bρ(x))

εN

|νs0| (Bρ (x))

ˆ
1
ε
Bρ(x)

f

(
s,
dλ

dµε
(εs) , ω

)
dµ (s)

= inf
M(Ω;Rl)∋λ≪µε

1
txρ
λ(Bρ(x))=v(x)µ0(Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

1

txρ
f

(
s,
dλ1/ε

dµ
(s) , ω

)
dµ (s)

= inf
M(Ω;Rl)∋λ≪µ

1
txρ
λ( 1

ε
Bρ(x))=v(x)µ0( 1

ε
Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

1

txρ
f

(
s,
dλ

dµ
(s) , ω

)
dµ (s)

= inf
M(Ω;Rl)∋λ≪µ

λ( 1
ε
Bρ(x))=v(x)µ0( 1

ε
Bρ(x))

1

µ0
(
1
εBρ (x)

) ˆ
1
ε
Bρ(x)

1

txρ
f

(
s, txρ

dλ

dµ
(s) , ω

)
dµ (s) .

Fix ω ∈ Σ′ with Σ′ ∈ T given by Lemma 4.2 (ii). Using (Cω4 ) and taking txρ :=
|νs0 |(Bρ(x))
µ0(Bρ(x))

> T ,

we have

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≤ β(
txρ
)r µ (1εBρ (x))
µ0
(
1
εBρ (x)

) + S∞
v(x)

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) ,

letting ε→ 0, we obtain

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≤ βp0(
txρ
)r + lim

ε→0

S∞
v(x)

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) .

Applying Lemma 4.2 (ii) and passing to the limit ρ→ 0, we have

lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≤ 1

p0
inf
k∈N∗

EI

[
S∞
v(x)

(
[0, k[N

)
kN

]
(ω) .

On the other hand

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≥ − β(
txρ
)r µ (1εBρ (x))
µ0
(
1
εBρ (x)

) + S∞
v(x)

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) ,

letting ε→ 0, we obtain

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≥ lim
ε→0

S∞
v(x)

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) − βp0(
txρ
)r

13



which gives by letting ρ→ 0

lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

≥ 1

p0
inf
k∈N∗

EI

[
S∞
v(x)

(
[0, k[N

)
kN

]
(ω) .

We finally obtain

lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

= lim
ρ→0

lim
ε→0

mε (v (x) |νs0|, Bρ (x) , ω)
|νs0| (Bρ (x))

= inf
k∈N∗

EI

[
S∞
v(x)

(
[0, k[N

)
p0kN

]
(ω) . ■

The following result is a stochastic homogenization theorem without assuming linear growth on
f . The proof follows the same strategy as that in Theorem 2.1.

Theorem 4.2 (Stochastic homogenization without linear growth). Let f : RN×Rl×Σ → [0,∞] a(
B
(
RN
)
⊗B

(
Rl
)
⊗T , B

(
R+

))
-measurable integrand satisfy. Assume that (Cω2 ), (C

ω
3 ) and (Cω4 )

hold. Assume that

(Cω1 )
′ there exists c > 0 such that for every ω ∈ Σ and every (x, v) ∈ RN × Rl

c|v| ≤ f (x, v, ω) .

For every O ∈ O0 (Ω) and for P-a.e. ω ∈ Σ the family of integral functionals {Iε (·, O, ω)}ε
Γ (w∗)-converges to I0 (·, O, ω) with

I0 (ν,O, ω) =

ˆ
O
fhom

(
dν

dµ0
(x) , ω

)
dµ0 (x) +

ˆ
O
fhoms

(
dν

d|νs0|
(x) , ω

)
d|νs0| (x)

for all ν ∈ M
(
Ω;Rl

)
, where fhom : Rl×Σ → [0,∞] and fhoms : Sl−1×Σ → [0,∞] are respectively

given by:

fhom (v, ω) := sup
j∈N

inf
k∈N∗

EI
[
inf

{
1

p0kN

ˆ
kY
f j (z, v + ψ (z) , ·) dµ (z) : ψ ∈ A0 (kY)

}]
(ω) ,

and

fhoms (v, ω) := sup
j∈N

inf
k∈N∗

EI
[
inf

{
1

p0kN

ˆ
kY

(
f j
)∞

(z, v + ψ (z) , ·) dµ (z) : ψ ∈ A0 (kY)
}]

(ω) ,

where A0 (kY) :=
{
ψ ∈ L1

(
kY;Rl

)
: −́kY ψdLN = 0

}
.

When (Σ, T ,P, {τz}z∈ZN ) is ergodic then:

fhom (v, ω) = fhom (v) :=

sup
j∈N

inf
k∈N∗

ˆ
Σ
inf

{
1

p0kN

ˆ
kY
f j (z, v + ψ (z) , ω) dµ (z) : ψ ∈ A0 (kY)

}
dP (ω) ,

fhoms (v, ω) = fhoms (v) :=

sup
j∈N

inf
k∈N∗

ˆ
Σ
inf

{
1

p0kN

ˆ
kY

(
f j
)∞

(z, v + ψ (z) , ω) dµ (z) : ψ ∈ A0 (kY)
}
dP (ω) .

5. Proof of Propositions 2.2 and 2.1

For a measure λ ∈ M
(
Ω;Rl

)
or λ ∈ M+ (Ω) we set for every x ∈ Ω, every ρ > 0 and every

σ ∈ M+ (Ω) [
dλ

dσ
(x)

]
ρ

:=
λ (Bρ (x))

σ (Bρ (x))
.

The following lemma is used in the proof of Proposition 2.2 (i).
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Lemma 5.1. Let σ ∈ M+ (Ω), ν ∈ M
(
Ω;Rl

)
, u ∈ W 1,p (Ω;Rm) and O ∈ O (Ω). Let {νε}ε ⊂

M
(
Ω;Rl

)
be such that νε

∗
⇀ ν in M

(
O;Rl

)
and |νε|

∗
⇀ θ in M+ (O) as ε→ 0. Let x ∈ O and

ρ > 0 with Bρ (x) ⊂ O. Let t ∈]0, 1[ and r ∈ [t2ρ, tρ[. Let φr ∈ Cc (Bρ (x) ; [0, 1]) be such that

φr ≡ 1 in Br (x) and φr ≡ 0 in Bρ (x)\Btρ (x). For each ε>0 we set νrε := (φrνε,1, · · · , φrνε,l) ∈
M
(
O;Rl

)
where νε = (νε,1, . . . , νε,i, . . . , νε,l). Then

lim
ε→0

∣∣∣∣∣∣∣∣
mε

(
dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

− mε (ν
r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ ≤2C

([
d|ν|
dσ

(x)

]
ρ

−
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

[
d|ν|
dσ

(x)

]
t2ρ

)

+ C

∣∣∣∣∣dνdσ (x)−
[
dν

dσ
(x)

]
ρ

∣∣∣∣∣ ,
where C>0 is the constant growth appearing in (C1) and[

d|ν|
dσ

(x)

]
sρ

:=
|ν| (Bsρ (x))
σ (Bsρ (x))

for all s ∈]0, 1].

Proof. We see that νrε
∗
⇀ νr in M

(
O;Rl

)
and |νrε |

∗
⇀ θr in M+ (O) as ε→ 0, where θr := φrµ

verifies θr (∂Bρ (x)) = 0 since the support of φr is include in Btρ (x). So, by [FL07, Corollary
1.204, pp. 131] we have limε→0 ν

r
ε (Bρ (x)) = νr (Bρ (x)). Using Lemma 6.2, we have for every

ε > 0 ∣∣∣∣mε (ν,Bρ (x))

σ (Bρ (x))
− mε (ν

r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣ ≤C ∣∣∣∣ν (Bρ (x))σ (Bρ (x))
− νrε (Bρ (x))

σ (Bρ (x))

∣∣∣∣
≤C

∣∣∣∣ν (Bρ (x))σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣
+ C

∣∣∣∣νr (Bρ (x))σ (Bρ (x))
− νrε (Bρ (x))

σ (Bρ (x))

∣∣∣∣ .
Passing to the limit ε→ 0 we obtain

lim
ε→0

∣∣∣∣mε (ν,Bρ (x))

σ (Bρ (x))
− mε (ν

r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣ ≤ C

∣∣∣∣ν (Bρ (x))σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣ . (12)

Since ν (Br) = νr (Br), |νr| ≤ |ν| and Br (x) ⊃ Bt2ρ (x) it follows that∣∣∣∣ν (Bρ (x))σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣ = ∣∣∣∣ν (Bρ (x) \Br)σ (Bρ (x))
− νr (Bρ (x) \Br)

σ (Bρ (x))

∣∣∣∣ ≤ 2
|ν| (Bρ (x) \Br)

σ (Bρ (x))

≤ 2
|ν|
(
Bρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

.

(13)

Moreover, we can write

|ν|
(
Bρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

=
|ν| (Bρ (x))
σ (Bρ (x))

−
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

|ν|
(
Bt2ρ (x)

)
σ
(
Bt2ρ (x)

) .
The assertion of the lemma follows by combining (12) and (13). ■

5.1. Proof of Proposition 2.2 (i). Let O ∈ O (Ω). Let ν ∈ M
(
Ω;Rl

)
, and let {νε}ε>0 ⊂

M
(
Ω;Rl

)
be a sequence satisfying

νε
∗
⇀ ν in M

(
O;Rl

)
and |νε|

∗
⇀ θ in M+ (O) .
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Fix σ ∈ {µ0, |νs0|}. Fix x ∈ O satisfying

0 = lim
r→0

∣∣∣∣dνdσ (x)− ν (Br (x))

σ (Br (x))

∣∣∣∣ (14)

0 = lim
r→0

∣∣∣∣d (µ0 + θ + |ν|)
dσ

(x)− (µ0 + θ + |ν|) (Br (x))
σ (Br (x))

∣∣∣∣ . (15)

Let t ∈]0, 1[ and ρ ∈]0, 1[ with Bρ (x) ⊂ O. Let K ∈ N∗. For each i ∈ {0, 1, . . . ,K}, we set

Bi := Bt2ρ+(1−t)tρ i
K
(x)

(
note that B0 = Bt2ρ (x) ⊂ · · · ⊂ Bi ⊂ · · · ⊂ BK = Btρ (x)

)
.

For every i ∈ {1, . . . ,K}, let φi ∈ Cc (Bi; [0, 1]) be a cut-off function between the following two
closed sets Bi−1 and O \ Bi, which means that φi ≡ 1 on Bi−1 and φi ≡ 0 on O \ Bi. Set
νiε := φiνε ∈ M

(
Ω;Rl

)
. We have

mε

(
νiε, Bρ (x)

)
σ (Bρ (x))

≤
Iε
(
νiε, Bρ (x)

)
σ (Bρ (x))

=
1

σ (Bρ (x))

(
Iε (νε, Bi−1) + Iε

(
νiε, Bi \Bi−1

)
+ Iε (0, Bρ (x) \Bi)

)
≤ Iε (νε, Btρ (x))

σ (Bρ (x))
+
Iε
(
νiε, Bi \Bi−1

)
σ (Bρ (x))

≤ Iε (νε, Btρ (x))

σ (Bρ (x))
+ C

µε (Bi \Bi−1) + |νε| (Bi \Bi−1)

σ (Bρ (x))
.

By averaging over every layer, i.e. summing over all i ∈ {1, . . . ,K} and dividing by K, there
exists iK ∈ {1, . . . ,K} such that

mε

(
νiKε , Bρ (x)

)
σ (Bρ (x))

≤ 1

K

K∑
i=1

mε

(
νiε, Bρ (x)

)
σ (Bρ (x))

≤ Iε (νε, Btρ (x))

σ (Bρ (x))
+
C

K

µε
(
Btρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

+
C

K

|νε|
(
Btρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

.

Passing to the limit ε→ 0

lim
ε→0

mε

(
νiKε , Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))

+
C

K
lim
ε→0

µε
(
Btρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

+
C

K
lim
ε→0

|νε|
(
Btρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
+
C

K

([
dµ0
dσ

(x)

]
ρ

+

[
dθ

dσ
(x)

]
ρ

)
. (16)

By using Lemma 5.1 with r = t2ρ+ t (1− t) ρ iKK , we have

lim
ε→0

mε

(
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

mε

(
νiKε , Bρ (x)

)
σ (Bρ (x))

+ 2C

(
−
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

[
d|ν|
dσ

(x)

]
t2ρ

+

[
d|ν|
dσ

(x)

]
ρ

)

+ C

∣∣∣∣∣dνdσ (x)−
[
dν

dσ
(x)

]
ρ

∣∣∣∣∣ (17)
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where C>0 is given by (C1). Therefore combining (16) and (17)

lim
ε→0

mε

(
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
+
C

K

([
dµ0
dσ

(x)

]
ρ

+

[
dθ

dσ
(x)

]
ρ

)
+ C

∣∣∣∣∣dνdσ (x)−
[
dν

dσ
(x)

]
ρ

∣∣∣∣∣
+ 2C

(
−
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

[
d|ν|
dσ

(x)

]
t2ρ

+

[
d|ν|
dσ

(x)

]
ρ

)

≤− 2C
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

d|ν|
dσ

(x) + lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
+
C

K

([
dµ0
dσ

(x)

]
ρ

+

[
dθ

dσ
(x)

]
ρ

)

+ 2C

[
d|ν|
dσ

(x)

]
ρ

+ C

∣∣∣∣∣dνdσ (x)−
[
dν

dσ
(x)

]
ρ

∣∣∣∣∣+ 2C

∣∣∣∣∣d|ν|dσ
(x)−

[
d|ν|
dσ

(x)

]
t2ρ

∣∣∣∣∣ .
We show only the case σ = |νs0|; the case with σ = µ0 is similar and follows the same lines. So,
in case σ = |νs0|, letting ρ→ 0 and using Lemma 5.2

lim
ρ→0

lim
ε→0

mε

(
dν

d|νs0|
(x) |νs0|, Bρ (x)

)
|νs0| (Bρ (x))

≤ lim
ρ→0

−2C
σ
(
Bt2ρ (x)

)
σ (Bρ (x))

d|ν|
dσ

(x) + lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
+
C

K

(
dµ0
dσ

(x) +
dθ

dσ
(x)

)
+2C

d|ν|
dσ

(x)

≤2C
(
1− t2N

) d|ν|
dσ

(x) +
C

K

(
dµ0
dσ

(x) +
dθ

dσ
(x)

)
+ lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
,

and letting t→ 1 and K → ∞ one obtains (6). ■

5.2. Proof of Proposition 2.2 (ii). Fix ν ∈ M
(
Ω;Rl

)
and σ ∈ {µ0, |νs0|}. Let x ∈ O be such

that

lim
r→0

ν (Br (x))

σ (Br (x))
=
dν

dσ
(x) <∞.

Let ρ > 0. It is easy to deduce (7) from the following inequality

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

− mε (ν,Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ ≤ C

∣∣∣∣dνdσ (x)− ν (Bρ (x))

σ (Bρ (x))

∣∣∣∣ ,
which is a consequence of Lemma 6.2. ■

5.3. Proof of Proposition 2.1 (i). Let O ∈ O (Ω). Let ν ∈ M
(
Ω;Rl

)
be such that I− (ν,O)<∞.

There exists a sequence {νε}ε>0 ⊂ M
(
Ω;Rl

)
such that νε

∗
⇀ ν in M

(
O;Rl

)
as ε→ 0, and

I− (ν,O) = lim
ε→0

Iε (νε, O)<∞ and sup
ε>0

Iε (νε, O)<∞. (18)

For each ε > 0 we set Θε := fε

(
·, dνεdµε

(·)
)
µε⌊O ∈ M+ (O). Using (18) there exists a subsequence

{Θεn}n∈N ⊂ M+ (O) and Θ ∈ M+ (O) such that Θεn
∗
⇀ Θ in M+ (O) as n → ∞. The

Lebesgue decomposition theorem gives that

Θ =
dΘ

dµ0
µ0 +

dΘ

d|νs0|
|νs0|+Θs

17



where νs0 is the singular part of the Lebesgue decomposition of ν with respect to µ0, i.e. ν =
dν
dµ0

(·)µ0 + νs0, and Θs the singular part of the Lebesgue decomposition of Θ with respect to

µ0 + |νs0|. Therefore we have

I− (ν,O) = lim
ε→0

Iε (νε, O) = lim
n→∞

Iεn (νεn , O)

= lim
n→∞

Θεn (O) ≥ Θ(O) ≥
∑

σ∈{µ0,|νs0 |}

ˆ
O

dΘ

dσ
(x) dσ (x) . (19)

Moreover, for every t ∈]0, 1[,

dΘ

dµ0
(x) = lim

ρ→0

Θ(Bρ (x))

µ0 (Bρ (x))
≥ lim

ρ→0

Θ
(
Btρ (x)

)
µ0 (Bρ (x))

≥ lim
ρ→0

lim
n→∞

Θεn (Btρ (x))

µ0 (Bρ (x))
µ0-a.e. in O,

hence for µ0-a.e. x ∈ O
dΘ

dµ0
(x) ≥ lim

t→1−
lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

µ0 (Bρ (x))
.

Similarly, we have

dΘ

d|νs0|
(x) = lim

ρ→0

Θ(Bρ (x))

|νs0| (Bρ (x))
≥ lim

ρ→0

Θ
(
Btρ (x)

)
|νs0| (Bρ (x))

≥ lim
ρ→0

lim
n→∞

Θεn (Btρ (x))

|νs0| (Bρ (x))
|νs0|-a.e. in O,

and then
dΘ

d|νs|
(x) ≥ lim

t→1−
lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

|νs0| (Bρ (x))
|νs0|-a.e. in O.

To finish the proof, it suffices to verify that for σ = µ0 or σ = |νs0| the function

O ∋ x 7−→ hσ (x) := lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))

is Borel measurable. For this, we need the following result (for a proof, see [FM93, Lemma 2.13,
pp. 46] and [Alb93, Theorem 5.8, pp. 33], see also [ADM92]).

Lemma 5.2. Let σ be a positive locally finite measure on Ω. For σ-a.e. x ∈ Ω and for every
t ∈]0, 1[, we have

lim
ρ→0

σ (Btρ (x))

σ (Bρ (x))
≥ tN .

We have by using Lemma 5.2 for σ-a.e. x ∈ O and every t ∈]0, 1[
dΘ

dσ
(x) ≥ lim

ρ→0
lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
≥ lim

ρ→0

Θ(Btρ (x))

σ (Bρ (x))
= lim

ρ→0

Θ(Btρ (x))

σ (Btρ (x))

σ (Btρ (x))

σ (Bρ (x))
≥ tN

dΘ

dσ
(x)

letting t→ 1 we obtain hσ (x) =
dΘ
dσ (x) σ-a.e. in O. Thus hσ is Borel measurable. ■

Remark 5.1. Since (19) we can write

I− (ν,O) ≥
∑

σ∈{µ0,|νs0 |}

ˆ
O

dΘ

dσ
(x) dσ (x) =

∑
σ∈{µ0,|νs0 |}

ˆ
O

lim
t→1−

lim
ρ→0

lim
ε→0

Iε (νε, Btρ (x))

σ (Bρ (x))
dσ (x) .

5.4. Proof of Proposition 2.1 (ii). Taking Lemma 6.3 into account, which gives an integral
representation of the lower Vitali envelope with density the derivative of the set function

m (ν, ·) := lim
ε→0

mε (ν, ·) ,

we see that it is sufficient to show that for every (ν,O) ∈ M
(
Ω;Rl

)
×O0 (Ω)(

Γ (w∗) - lim
ε→0

Iε

)
(ν,O) ≤ m∗

− (ν,O) .
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Let (ν,O) ∈ M
(
Ω;Rl

)
×O0 (Ω) be such that m∗

− (ν,O)<∞ with

m∗
− (ν,O) = lim

δ→0
inf

{∑
i∈I

m (ν,Bi) : {Bi}i∈I ∈ Vδ(O)

}
,

where, for every δ>0,

Vδ (O) :=

{
{Bi}i∈I : Bi is an open ball, π0 (∂Bi) = 0, Bi ⊂ O, diam (Bi) ∈]0, δ[

I is countable, π0

(
O \

⋃
i∈I

Bi

)
= 0, and Bi ∩Bj = ∅ for all i ̸= j

}
with π0 := µ0 + |νs0|.

Fix δ ∈]0, 1[. There exists
{
Bδ
i

}
i∈Iδ

∈ Vδ (O) such that

m∗
− (ν,O) + δ ≥

∑
i∈Iδ

m
(
ν,Bδ

i

)
. (20)

Using (C1), we have for every ε > 0, every ν ∈ M
(
Ω;Rl

)
and every A ∈ B (Ω)

0 ≤ mε (ν,A) ≤ µ̂ε (A) + C|ν| (A) ,

where µ̂ε := Cµε with C > 0 given by (C1).

Step 1: we prove that limε→0
∑

i∈Iδ
mε

(
ν,Bδ

i

)
≤
∑

i∈Iδ
m
(
ν,Bδ

i

)
. Set µ̂0 := Cµ0. We

apply the Fatou lemma to the nonnegative function

Iδ ∋ i 7−→ (µ̂ε + C|ν|)
(
Bδ
i

)
−mε

(
ν,Bδ

i

)
,

so, we have

lim
ε→0

∑
i∈Iδ

(µ̂ε + C|ν|)
(
Bδ
i

)
−mε

(
ν,Bδ

i

)
≥
∑
i∈Iδ

lim
ε→0

(
(µ̂ε + C|ν|)

(
Bδ
i

)
−mε

(
ν,Bδ

i

))
≥
∑
i∈Iδ

(µ̂0 + C|ν|)
(
Bδ
i

)
− lim
ε→0

mε

(
ν,Bδ

i

)
≥(µ̂0 + C|ν|)

(
Oδ
)
−
∑
i∈Iδ

lim
ε→0

mε

(
ν,Bδ

i

)
where Oδ :=

⋃
i∈Iδ

Bδ
i . On the other hand, we have

lim
ε→0

∑
i∈Iδ

(µ̂ε + C|ν|)
(
Bδ
i

)
−mε

(
ν,Bδ

i

)
≤ µ̂0

(
Oδ
)
+ C|ν|

(
Oδ
)
− lim
ε→0

∑
i∈Iδ

mε

(
ν,Bδ

i

)
.

Hence

lim
ε→0

∑
i∈Iδ

mε

(
ν,Bδ

i

)
≤
∑
i∈Iδ

m
(
ν,Bδ

i

)
+ Cµ0 (∂O) =

∑
i∈Iδ

m
(
ν,Bδ

i

)
since µ0 (∂O) = 0.

Step 2: we prove that there exists
{
νδ
ε

}
ε>0,δ>0

⊂ M
(
O;Rl

)
such that

lim
δ→0

lim
ε→0

Iε

(
νδ
ε , O

)
≤

∑
i∈Iδ

m
(
ν,Bδ

i

)
. Fix ε ∈]0, 1[. For each i ∈ Iδ there exists νδi,ε ∈

M
(
Ω;Rl

)
such that νδi,ε

(
Bδ
i

)
= ν

(
Bδ
i

)
, νδi,ε ≪ µε and

mε

(
ν,Bδ

i

)
+ ε

π0
(
Bδ
i

)
π0 (O)

≥ Iε

(
νδi,ε, B

δ
i

)
. (21)
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Set νδε :=
∑

i∈Iδ ν
δ
i,ε 1Bδ

i
. Using (C1) we have νδε ∈ M

(
O;Rl

)
, indeed∣∣∣νδε ∣∣∣ (O) ≤

∑
i∈Iδ

(∣∣∣νδi,ε 1Bδ
i

∣∣∣ (O)
)
=
∑
i∈Iδ

ˆ
Bδ

i

∣∣∣∣∣dνδi,εdµε

∣∣∣∣∣ dµε ≤ 1

c

∑
i∈Iδ

mε

(
ν,Bδ

i

)
+ ε

π0
(
Bδ
i

)
π0 (O)

≤ 1

c

(
sup
ε>0

µ̂ε (O) + C|ν| (O) + 1

)
. (22)

By using Step 1 and (20) we have

lim
δ→0

lim
ε→0

Iε

(
νδε , O

)
= lim

δ→0
lim
ε→0

∑
i∈Iδ

Iε

(
νδi,ε, B

δ
i

)
≤ lim

δ→0
lim
ε→0

∑
i∈Iδ

mε

(
ν,Bδ

i

)
≤ lim

δ→0

∑
i∈Iδ

m
(
ν,Bδ

i

)
≤ m∗

− (ν, ·) (O) ,

moreover

sup
δ>0

lim
ε→0

(µ̂ε + |ν|+ π0)

(
O \

⋃
i∈Iδ

Bδ
i

)
= 0.

Using a diagonalization argument, there exists {δ (ε)}ε>0 increasing with limε→0 δ (ε) = 0 such
that

lim
ε→0

Iε (νε, O) ≤ m∗
− (ν, ·) (O) and lim

ε→0
(µ̂ε + |ν|+ π0)

(
O \

⋃
i∈Iδ(ε)

B
δ(ε)
i

)
= 0. (23)

where νε := ν
δ(ε)
ε . To finish the proof we need to show that νε

∗
⇀ ν in M

(
O;Rl

)
.

Step 3: we prove that νδ(ε)
ε

∗
⇀ ν in M

(
Ω;Rl

)
. Let U ⊂ O be an open set. We consider the

sets

U δ :=
⋃

i∈{i∈Iδ:Bδ
i ∩U ̸=∅}

Bδ
i and Uδ :=

⋃
i∈{i∈Iδ:Bδ

i ⊂U}
Bδ
i . (24)

Setting Kδ :=
{
i ∈ Iδ : B

δ
i ∩ U ̸= ∅ and Bδ

i ∩O \ U ̸= ∅
}
, we have

|νδε |
(
U δ \ Uδ

)
≤
∑
i∈Kδ

|νδi,ε|
(
Bδ
i

)
≤ 1

c

∑
i∈Kδ

Iε

(
νδi,ε, B

δ
i

)
≤ 1

c

∑
i∈Kδ

mε

(
ν,Bδ

i

)
+ ε

π0
(
Bδ
i

)
π0 (O)


≤ C ′ (µ̂ε + |ν|+ π0)

(
U δ \ Uδ

)
(25)

where C ′ := max
(
1
c ,

1
cπ0(O) , C

)
.

Let {εn}n∈N ⊂]0, 1[ be a sequence satisfying limn→∞ εn = 0. We have to prove that νn
∗
⇀ ν

in M
(
Ω;Rl

)
where νn := ν

δ(εn)
εn . Since (22), consider f ∈ Cc

(
O;Rl

)
, we need to show that

lim
n→∞

ˆ
O
fdνn =

ˆ
O
fdν where

ˆ
O
fdνn =

l∑
s=1

ˆ
O
fsdν

n
s for all n ∈ N,

where f = (f1, . . . , fs, . . . , fl), ν
n = (νn1 , . . . , ν

n
s , . . . , ν

n
l ), fs ∈ Cc (O) and νns ∈ M (O;R) is

a signed measure. Reasoning component by component, we can assume that νn is a signed
measure for all n ∈ N and f ∈ Cc (O). We have for every n ∈ Nˆ

O
fdνn =

ˆ
O
f+dνn −

ˆ
O
f−dνn

where f+ = max{f, 0} and f− = max{−f, 0}. Set M := max (supO f
+, supO f

−) <∞. We can
express this by ˆ

O
fdνn =

ˆ M

0
νn
(
[f+ > t]

)
dt−

ˆ M

0
νn
(
[f− > t]

)
dt. (26)
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Set Ut := [g > t] = {x ∈ O : g (x) > t} for all t ≥ 0 and all g ∈ {f+, f−}. Our task is to prove
that

lim
n→∞

ˆ M

0
νn (Ut) dt =

ˆ M

0
ν (Ut) dt. (27)

To establish this, we need the following lemma:

Lemma 5.3. Let {εn}n∈N ⊂]0, 1[ be a sequence satisfying limn→∞ εn = 0. Then for every n ∈ N
and every open subset U ⊂ O

νn (U)− ν (U) = ν (Un \ U)− νn (Un \ U) . (28)

where Un :=
⋃
j∈Jn

Bn
j with Jn :=

{
i ∈ In : B

δ(εn)
i ∩ U ̸= ∅

}
, Bn

j := B
δ(εn)
j , In := Iδ(εn) and where

νn = νδ(εn)εn =
∑

i∈Iδ(εn)

νni 1Bn
i

with νni := ν
δ(εn)
i,εn

.

Proof of Lemma 5.3. Fix n ∈ N. Let U ⊂ O be an open set. We have νn (U \ Un) = 0 since
νn (U ∩ Un) = νn (U). Indeed, we have

νn (Un ∩ U) =
∑
i∈In

νni

(
Bn
i ∩

( ⋃
j∈Jn

Bn
j

)
∩ U

)
=
∑
j∈Jn

νnj
(
Bn
j ∩ U

)
= νn (U) .

Moreover, we have

νn (Un) =
∑
j∈Jn

νnj
(
Bn
j

)
=
∑
j∈Jn

ν
(
Bn
j

)
= ν (Un) .

Thus, we can write, since Un ∪ (U \ Un) = U ∪ (Un \ U), that

νn (U) = ν (U)− ν (U \ Un) + ν (Un \ U)− νn (Un \ U) . (29)

But ν (U \ Un) = 0. Indeed, we have U \ Un = U \
⋃
j∈In

Bn
j since Bn

j ∩ U = ∅ when j /∈ Jn, and

by using the fact that |ν| ≪ µ0 + |νs0|, we obtain

|ν (U \ Un) | ≤ |ν|

(
U \

⋃
j∈In

Bn
j

)
≤ |ν|

(
O \

⋃
j∈In

Bn
j

)
= 0.

Thus, (29) becomes (28). ■

By (28) we see that∣∣∣∣ˆ M

0
νn (Ut)− ν (Ut) dt

∣∣∣∣ = ∣∣∣∣ˆ M

0
ν (Unt \ Ut) dt−

ˆ M

0
νn (Unt \ Ut) dt

∣∣∣∣ ,
thus to prove (27), it is sufficient to show that

lim
n→∞

(∣∣∣∣ˆ M

0
ν (Unt \ Ut) dt

∣∣∣∣+ ∣∣∣∣ˆ M

0
νn (Unt \ Ut) dt

∣∣∣∣) = 0.

But, by (25) we have for every n ∈ N∣∣∣∣ˆ M

0
νn (Unt \ Ut) dt

∣∣∣∣ ≤ ˆ M

0
|νn| (Unt \ Ut,n) dt ≤ C ′

ˆ M

0
αn (U

n
t \ Ut,n) dt,

with αn := µ̂εn + |ν|+ π0,

Unt = [Ut]
δ(εn) =

⋃
j∈{i∈In:Bn

i ∩Ut ̸=∅}
Bn
j and Ut,n := [Ut]δ(εn) =

⋃
j∈{i∈In:Bn

i ⊂Ut}
Bn
j .

Therefore, we are reduced to prove that limn→∞
´M
0 αn (U

n
t \ Ut,n) dt = 0, which is the goal

of the following lemma.
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Lemma 5.4. Let g ∈ Cc
(
O;Rl

)
and set Ut := [g > t] for all t ∈ R+. Set M := supO g. For every

sequence {εn}n∈N ⊂]0, 1[ satisfying limn→∞ εn = 0 we have

lim
n→∞

ˆ M

0
αn (U

n
t \ Ut,n) dt = 0.

Proof of Lemma 5.4. Fix n ∈ N. Since diam (Bn
i )<δ (n), we have

Unt ⊂ Nδ(n)[Ut] := {x ∈ O : dist (x, Ut)<δ (εn)} ,

thus αn (U
n
t \ Ut,n) ≤ αn

(
Nδ(n)[Ut] \ Ut,n

)
. Now, we give an estimate of αn

(
Nδ(n)[Ut] \ Ut,n

)
from above as n→ ∞. Since (23) we can write

0 ≥ lim
n→∞

αn

(
Ut \

( ⋃
i∈Jn

Bn
i ∪

⋃
i∈In\Jn

Bn
i

))
= lim

n→∞
αn

(
Ut \

(( ⋃
i∈Jn\Kn

Bn
i

)
∪ Ut,n

))
= lim

n→∞
αn ((Ut \ Ut,n) \ Fn)

where Fn :=
⋃

i∈Jn\Kn

Bn
i and Kn := Kδ(εn). Observe that

Fn ⊂ {x ∈ O : dist (x, ∂Ut) ≤ 2δ (εn)} =: N 2δ(n)[∂Ut],

it follows that

lim
n→∞

αn (Ut \ Ut,n) ≤ lim
n→∞

αn ((Ut \ Ut,n) \ Fn) + lim
n→∞

αn ((Ut \ Ut,n) ∩ Fn) ≤ lim
n→∞

αn (Fn) .

Now, for every k ∈ N there exists Nk ∈ N such that for every n ≥ Nk we have δ (εn) ≤ δ (εk),
which implies that N 2δ(n)[∂Ut] ⊂ N 2δ(k)[∂Ut]. Therefore for every k ∈ N

lim
n→∞

αn (Ut \ Ut,n) ≤ lim
n→∞

αn
(
N 2δ(k)[∂Ut]

)
≤ α0

(
N 2δ(k)[∂Ut]

)
,

where α0 := µ0 + |ν|+ π0. Letting k → ∞ we obtain

lim
n→∞

αn (Ut \ Ut,n) ≤ α0 (∂Ut) .

In the same way, for every k ∈ N

lim
n→∞

αn
(
Nδ(n)[Ut] \ Ut

)
≤ lim

n→∞
αn
(
Nδ(k)[Ut] \ Ut

)
and letting k → ∞

lim
n→∞

αn
(
Nδ(n)[Ut] \ Ut

)
≤ α0 (∂Ut) .

Now, we can write

lim
n→∞

αn (U
n
t \ Ut,n) ≤ lim

n→∞
αn
(
Nδ(n)[Ut] \ Ut,n

)
= lim

n→∞

(
αn
((
Nδ(n)[Ut] \ Ut

)
\ Ut,n

)
+ αn (Ut \ Ut,n)

)
≤ lim

n→∞
αn
(
Nδ(n)[Ut] \ Ut

)
+ lim
n→∞

αn (Ut \ Ut,n) ≤ 2α0 (∂Ut)

Now, by noticing that ∂Ut ⊂ [g = t] and
´M
0 α0 ([g = t]) dt = 0 (by Fubini-Tonelli theorem), we

apply the Lebesgue dominated convergence theorem to find

lim
n→∞

ˆ M

0
αn (U

n
t \ Ut,n) dt = 0. ■

22



6. Auxiliary results

6.1. Reduction to integrands with linear growth. For each j ∈ N∗ and each ε > 0, we set

Ijε (ν,O) :=


ˆ
O
f jε

(
x,

dν

dµε
(x)

)
dµε (x) if ν ≪ µε

∞ otherwise,

where f jε (x, v) := inf
{
fε (x,w) + j|v − w| : w ∈ Rl

}
. Observe that f jε ≤ fε, and then Ijε ≤ Iε

for all j ∈ N∗ and all ε > 0.

Lemma 6.1. Assume that (C1) and (C2) hold. For every ν ∈ M
(
Ω;Rl

)
and every O ∈ O (Ω)(

Γ (w∗) - lim
ε→0

Iε

)
(ν,O) = sup

j∈N∗

(
Γ (w∗) - lim

ε→0
Ijε

)
(ν,O) .

Proof. Let ν ∈ M
(
Ω;Rl

)
and let O ∈ O (Ω). It is sufficient to show that

∞ > Aν := sup
j∈N∗

(
Γ (w∗) - lim

ε→0
Ijε

)
(ν,O) ≥

(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) .

Let j ∈ N. There exists {νjε}ε>0 ⊂ M
(
Ω;Rl

)
such that νjε ≪ µε for all ε > 0, νjε

∗
⇀ ν as

ε → 0, and Aν = supj∈NA
j
ν where Ajν := limε→0 I

j
ε

(
νjε , O

)
. For each ε > 0 and j ∈ N∗, set

Φjε (w,O) :=
´
O fε

(
x, dν

j
ε

dµε
(x) + w (x)

)
+ j|w (x) |dµε (x) for all w ∈ L1

µε

(
O;Rl

)
, which satisfies

Φjε

(
−dν

j
ε

dµε
, O

)
= j|νjε | (O) <∞.

Applying Rockafellar interchange of infimum and integral theorem [Roc76, Theorem 3A], we
obtain, for every ε > 0 and every j ∈ N∗,

Ijε
(
νjε , O

)
= inf

w∈L1
µε(O;Rl)

Φjε (w,O) .

There exists Cν > 0 (depending on Aν) such that for every ε ∈]0, 1[ and every j ∈ N∗ there

exists wjε ∈ L1
µε

(
O;Rl

)
satisfying

1 + Cν ≥ ε+ Ijε
(
νjε , O

)
≥ Iε

(
νjε + wjεµε, O

)
+ j

∣∣wjε∣∣L1
µε(O;Rl) .

It follows, on one hand, that supε>0

∣∣∣wjε∣∣∣
L1
µε(O;Rl)

≤ 1+Cν
j , and, on the other hand by the

coercivity condition (C1), that

|νjε | (O) ≤ rν

for all ε > 0 and all j ∈ N∗, where rν :=
(
1 + c−1

)
(1 + Cν). By the lower semicontinuity of the

total variation, we infer |ν| (O) ≤ rν . Since C0
(
O;Rl

)
is a separable Banach space when endowed

with the sup norm, the weak∗ topology on the ball Brν (0) ⊂ M
(
O;Rl

)
of radius rν and center

0 is metrizable, thus there exists a metric dν on Brν (0) such that limε→0 dν

(
νjε , ν

)
= 0 for all

j ∈ N∗. By a simultaneous diagonalization, there exists an increasing sequence {j (ε)}ε ⊂ N∗

such that

lim
ε→0

Iε

(
νj(ε)ε + wj(ε)ε µε, O

)
≤ lim

j→∞
lim
ε→0

Iε
(
νjε + wjεµε, O

)
≤ Aν and lim

ε→0
dν

(
νj(ε)ε , ν

)
= 0.

Now, we see that for every φ ∈ C0
(
O;Rl

)
and every ε > 0∣∣∣〈νj(ε)ε + wj(ε)ε µε − ν, φ

〉∣∣∣ ≤ ∣∣∣〈νj(ε)ε − ν, φ
〉∣∣∣+ ∣∣∣〈wj(ε)ε µε, φ

〉∣∣∣
≤
∣∣∣〈νj(ε)ε − ν, φ

〉∣∣∣+ |φ|∞
1 + Cν
j (ε)

,
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which shows that ν
j(ε)
ε + w

j(ε)
ε µε

∗
⇀ ν in M

(
O;Rl

)
as ε→ 0, and consequently

Aν ≥
(
Γ (w∗) - lim

ε→0
Iε

)
(ν,O) . ■

6.2. Properties of mε. In this part, we assume that (C1) holds. We begin with the following
lemma.

Lemma 6.2. Let B ∈ O (Ω). For every ε>0 and every (λ, ν) ∈ M
(
Ω;Rl

)
×M

(
Ω;Rl

)
we have

|mε (λ,B)−mε (ν,B)| ≤ C |λ (B)− ν (B)| (30)

with C > 0 is given by (C1). In particular, we also have

mε

(
ν (B)

µε (B)
µε, B

)
= mε (ν,B) .

Proof. Fix B ∈ O (Ω), ε > 0 and λ, ν ∈ M
(
Ω;Rl

)
. Let δ > 0. There exists νδ ∈ M

(
Ω;Rl

)
with νδ ≪ µ and νδ (B) = ν (B) such that mε (ν,B) + δ ≥ Iε (νδ, B) . Let k ∈ N∗ and Bk :={
x ∈ B : dist (x, ∂B)> 1

k

}
. We set

λδ := νδ 1Bk
+

(
1

µε (B \Bk)
(λ (B)− νδ (Bk))

)
µε 1B\Bk

.

We observe that λδ ≪ µ and λδ (B) = λ (B), so we can write

mε (λ,B) ≤ Iε (λδ, B) = Iε (νδ, Bk) + Iε (λδ, B \Bk) ≤ mε (ν,B) + δ + Iε (λδ, B \Bk) . (31)

Using the growth condition (C1), we have

Iε (λδ, B \Bk) ≤ C

ˆ
B\Bk

1 +

∣∣∣∣ 1

µε (B \Bk)
(λ (B)− νδ (Bk))

∣∣∣∣ dµε.
Since limk→∞ νδ (Bk) = νδ (B) = ν (B) and limk→∞ µε (B \Bk) = 0, we have

lim
k→∞

Iε (λδ, B \Bk) ≤ C |λ (B)− ν (B)| .

So, inequality (31) becomes

mε (λ,B) ≤ mε (ν,B) + δ + C |λ (B)− ν (B)|

and the proof of (30) is complete by letting δ → 0. ■

Using Lemma 6.2 we obtain the following consequence which is used in the proof of Propo-
sition 2.2.

Corollary 6.1. Let σ ∈ M+ (Ω) and ν ∈ M
(
Ω;Rl

)
. Let x ∈ Ω be such that

lim
ρ→0

∣∣∣∣dνdσ (x)− ν (Bρ (x))

σ (Bρ (x))

∣∣∣∣ = 0 and lim
ρ→0

∣∣∣∣d|ν|dσ
(x)− |ν| (Bρ (x))

σ (Bρ (x))

∣∣∣∣ = 0. (32)

Then for every ϕ ∈ C
(
Ω
)

lim
ρ→0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
ϕ
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

− mε (ϕν,Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ = 0. (33)

Proof. Fix x ∈ Ω satisfying (32). Let ϕ ∈ C
(
Ω
)
, and let ω : [0,∞[→ [0,∞] its modulus of

continuity, i.e.

ω (ρ) := sup
({∣∣ϕ (z)− ϕ

(
z′
)∣∣ : Ω× Ω ∋

(
z, z′

)
, |z − z′| ≤ ρ

})
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satisfies limρ→0 ω (ρ) = 0. Using Lemma 6.2 we have for every ρ>0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
ϕ
dν

dσ
(x)σ,Bρ (x)

)
σ (Bρ (x))

− mε (ϕν,Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣
≤C

∣∣∣∣∣−
ˆ
Bρ(x)

dν

dσ
(x)ϕ (z) dσ (z)− 1

σ (Bρ (x))

ˆ
Bρ(x)

ϕ (z) dν (z)

∣∣∣∣∣
≤C

∣∣∣∣∣−
ˆ
Bρ(x)

dν

dσ
(x) (ϕ (z)− ϕ (x)) dσ (z) +

dν

dσ
(x)ϕ (x)

− 1

σ (Bρ (x))

ˆ
Bρ(x)

ϕ (z)− ϕ (x) dν (z)− ν (Bρ (x))

σ (Bρ (x))
ϕ (x)

∣∣∣∣∣
≤C

∣∣∣∣dνdσ (x)ϕ (x)− ν (Bρ (x))

σ (Bρ (x))
ϕ (x)

∣∣∣∣+ Cω (ρ)

(∣∣∣∣dνdσ (x)

∣∣∣∣+ |ν| (Bρ (x))
σ (Bρ (x))

)
.

Passing to the limit ρ→ 0, the proof of (33) is complete. ■

6.3. Integral representation of the Vitali envelope of a set function. This section is dedicated to
establishing the integral representation of the Vitali envelope of a set function defined on open
subsets of Ω. The inspiration for this approach partly stems from [BB00, DMM86, BFM98].
We then apply this representation to the set function m (ν, ·) := limε→0mε (ν, ·).

Let µ ∈ M+ (Ω). For each open set O ⊂ Ω, let B0 (O) ⊂ O (O) be the set of all open balls
B in O whose boundaries have zero measure, i.e. µ (∂B) = 0.

Let G : B0 (Ω) → R be a set function. We define the lower Vitali envelope of G with respect
to µ

O (Ω) ∋ O 7−→ G∗
− (O) := sup

ε>0
inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(O)

}
and the upper Vitali envelope with respect to µ

O (Ω) ∋ O 7−→ G∗
+ (O) := inf

ε>0
sup

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(O)

}
,

where for every ε>0

Vε(O) :=

{
{Bi}i∈I ⊂ B0 (Ω) : I is countable, µ

(
O \

⋃
i∈I

Bi

)
= 0, Bi ⊂ O,

diam (Bi) ∈]0, ε[ and Bi ∩Bj = ∅ for all i ̸= j

}
.

We consider the following two conditions on a set function G : O (Ω) → R:
(V1) the set function G is dominated by a positive measure absolutely continuous with respect

to µ, i.e. there exists α ∈ M+ (Ω) with α≪ µ satisfying

|G (O)| ≤ α (O) for all O ∈ O (Ω) .

(V2) the set function G is subadditive, i.e. for every U, V,O ∈ O (Ω) with U ∩ V = ∅, U ⊂ O,
V ⊂ O and µ (O \ (U ∪ V )) = 0 it holds

G (O) ≤ G (U) +G (V ) .

In [AHM18, Theorem 3.17, p. 65], we established the integral representation result for the
Vitali envelopes of G under (V1) and (V2). It is worth noting that the theorem is proved
in the particular case where the measure of the boundaries of balls is zero. However, this
result naturally extends to the more general case where the measure of the boundaries of balls
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is non-zero, as shown in [AHMZ19]. Consequently, we introduce the set Rxµ :=
{
ρ ∈]0,∞[:

µ (∂Bρ (x))>0
}
.

Theorem 6.1. Let µ ∈ M+ (Ω). If G : O (Ω) → R satisfies (V1) and (V2) then

Ω ∋ x 7−→ lim
Rx

µ ̸∋ρ→0

G (Bρ (x))

µ (Bρ (x))
∈ L1

µ (Ω)

and

G∗
+ (O) = G∗

− (O) =

ˆ
O

lim
Rx

µ ̸∋ρ→0

G (Bρ (x))

µ (Bρ (x))
dµ (x) for all O ∈ O (Ω). (34)

For each ν ∈ M
(
Ω;Rl

)
we consider m∗

− (ν, ·) the lower Vitali envelope of

m (ν, ·) := lim
ε→0

mε (ν, ·)

with respect to the measure π0 = µ0+ |νs0|. The following result is deduced from Theorem (6.1):

Lemma 6.3. Assume that (C1) holds. Then, for every ν ∈ M
(
Ω;Rl

)
, and every σ ∈ {µ0, |νs0|}

the function

Ω ∋ x 7−→ lim
ρ→0

m (ν,Bρ (x))

σ (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ν,Bρ (x))

σ (Bρ (x))
∈ L1

µ (Ω)

and for every O ∈ O0 (Ω)

m∗
− (ν,O) =

∑
σ∈{µ0,|νs0 |}

ˆ
O
lim
ρ→0

m (ν,Bρ (x))

σ (Bρ (x))
dσ (x)

=

ˆ
O
lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

µ0 (Bρ (x))
dµ0 (x) +

ˆ
O
lim
ρ→0

lim
ε→0

mε (ν,Bρ (x))

|νs0| (Bρ (x))
d|νs0| (x) .

Proof. The proof is divided into two steps.
Step 1: We begin by verifying the assumptions (V1) and (V2) to apply Theorem 6.1 with

G (·) = m (ν, ·) and π0 = µ0 + |νs0|.
Let ν ∈ M

(
Ω;Rl

)
. We start by showing that the set function m (ν, ·) : O (Ω) → R+ is

subadditive. Let U1, U2,W ∈ O (Ω) be such that U1 ⊂W , U2 ⊂W with π0 (W \ (U1 ∪ U2)) = 0
and U1 ∩ U2 = ∅. We can assume that m (ν, U1)<∞ and m (ν, U2)<∞. Thus, there exists
ε0> 0 such that mε (ν, Ui)<∞ for all ε ∈]0, ε0[ and all i ∈ {1, 2}. Let ε ∈]0, ε0[. There exists
λi ∈ M

(
Ω;Rl

)
such that λi ≪ µε, λi (Ui) = ν (Ui) and

ε+
2∑
i=1

mε (ν, Ui) ≥
2∑
i=1

Iε (λi, Ui) .

Set λ0 :=
∑2

i=1 λi 1Ui . We see that λ0 ≪ µ and λ0 (W ) = λ0 (U1 ∪ U2) = λ1 (U1) + λ2 (U2) =
ν (U1 ∪ U2) = ν (W ) since ν ≪ π0. Therefore, we obtain

ε+

2∑
i=1

mε (ν, Ui) ≥ Iε (λ0,W ) ≥ mε (ν,W ) .

Passing to the limit ε→ 0, we obtain (V2).
By (C1), we have for every O ∈ O0 (Ω)

m (ν,O) ≤ lim
ε>0

Iε (ν,O) ≤ C
(
lim
ε→0

µε (O) + |ν| (O)
)
≤ αν (O)

where αν := Cµ0 +C|ν| ≪ π0 and, with C > 0 given by (C1). Thus (V1) is satisfied. It follows
that m (ν, ·) is π0-differentiable, and for every O ∈ O (Ω)

m∗
− (ν,O) =

ˆ
O

lim
Rx

π0
̸∋ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
dπ0 (x) .
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Step 2: In this second step, we show that the limit in ρ appearing in the density of the
integral representation does not depend on Rxπ0 . So, let us show that for every x ∈ Ω

lim
Rx

π0
̸∋ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
= lim

ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
. (35)

Fix x ∈ Ω. The proof is divided into two substeps.

Substep 2.1: Let {ρn}n∈N ⊂]0, 1[ satisfies limn→∞ ρn = 0 and

sup
n∈N

m (ν,Bρn (x))

π0 (Bρn (x))
<∞ and lim

n→∞

m (ν,Bρn (x))

π0 (Bρn (x))
= lim

ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
.

Fix n ∈ N and δ > 0. There exists εδn > 0 such that for every ε ∈]0, εδn[
mε (ν,Bρn (x))

π0 (Bρn (x))
<∞.

Fix ε ∈]0, εδn[. There exists λ ∈ M
(
Ω;Rl

)
such that λ≪ µε, λ (Bρn (x)) = ν (Bρn (x)) and

δ

2
π0 (Bρn (x)) +mε (ν,Bρn (x)) ≥ Iε (λ,Bρn (x)) .

We claim that there exists τn,δ ∈]1, 2] such that

]1, τn,δ] ⊂
{
t ∈]1, 2[: αν (Btρn (x) \Bρn (x)) ≤

δ

2
π0 (Bρn (x))

}
.

Indeed, otherwise there exists a sequence {tk}k∈N ⊂]1, 2[ satisfying tk ∈]1, 1 + 1
k+1 ] and

αν (Btkρn (x) \Bρn (x)) >
δ

2
π0 (Bρn (x)) ,

which implies

αν

(
B(1+ 1

k+1)ρn
(x) \Bρn (x)

)
>
δ

2
π0 (Bρn (x))

for all k ∈ N. By letting k → ∞ we obtain δ
2π0 (Bρn (x)) = 0 a contradiction. Now, since

π0 (Ω) <∞, the set {t ∈]1, 2[: π0 (∂Btρn (x)) > 0} is countable, thus

]1, τn,δ] \ {t ∈]1, 2[: π0 (∂Btρn (x)) > 0} ≠ ∅.
So, there is a sequence {tδn}n∈N ⊂]1, 2[ which satisfies for every n ∈ N

αν

(
Btδnρn (x) \Bρn (x)

)
≤ δ

2
π0 (Bρn (x)) and π0

(
∂Btδnρn (x)

)
= 0.

Set

λδn := λ1Bρn (x)
+
ν
(
Btδnρn (x) \Bρn (x)

)
µε

(
Btδnρn (x) \Bρn (x)

)µε 1B
tδnρn

(x)\Bρn (x)
.

It is direct to see that λδn ≪ µε and λ
δ
n

(
Btδnρn (x)

)
= ν

(
Btδnρn (x)

)
. We can write using growth

conditions

mε

(
ν,Btδnρn (x)

)
≤ Iε

(
λδn, Bρn (x)

)
+ Iε

(
λδn, Btδnρn (x) \Bρn (x)

)
= Iε (λ,Bρn (x)) + Iε

(
λδn, Btδnρn (x) \Bρn (x)

)
≤ δ

2
π0 (Bρn (x)) +mε (ν,Bρn (x)) + αεν

(
Btδnρn (x) \Bρn (x)

)
where αεν := Cµε + C|ν|. Dividing by π0

(
Btδnρn (x)

)
mε

(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) ≤ δ

2
+
mε (ν,Bρn (x))

π0 (Bρn (x))
+
αεν

(
Btδnρn (x) \Bρn (x)

)
π0 (Bρn (x))
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letting ε→ 0, since αν

(
∂Btδnρn (x)

)
= 0 because αν ≪ π0, we obtain

m
(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) ≤ δ

2
+
m (ν,Bρn (x))

π0 (Bρn (x))
+
αν

(
Btδnρn (x) \Bρn (x)

)
π0 (Bρn (x))

≤ δ +
m (ν,Bρn (x))

π0 (Bρn (x))
.

Now, letting n→ ∞, one has limn→∞ tδnρn = 0 and

lim
Rx

π0
̸∋ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
= lim

n→∞

m
(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

)
≤ δ + lim

n→∞

m (ν,Bρn (x))

π0 (Bρn (x))
= δ + lim

ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
. (36)

Substep 2.2: Let {ρn}n∈N ⊂]0, 1[ satisfies limn→∞ ρn = 0 and

sup
n∈N

m (ν,Bρn (x))

π0 (Bρn (x))
<∞ and lim

n→∞

m (ν,Bρn (x))

π0 (Bρn (x))
= lim

ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
.

Fix n ∈ N and δ > 0. There exists εδn > 0 such that for every ε ∈]0, εδn[
mε (ν,Bρn (x))

π0 (Bρn (x))
<∞.

Fix ε ∈]0, εδn[. There exists τn,δ ∈]0, 1[ such that

[τn,δ, 1[⊂
{
t ∈]0, 1[: αν

(
Bρn (x) \Btρn (x)

)
≤ δ

2
π0 (Bρn (x))

}
,

and

[τn,δ, 1[\ {t ∈]0, 1[: π0 (∂Btρn (x)) > 0} ≠ ∅.
So, there exists a sequence {tδn}n∈N ⊂]0, 1[ which satisfies for every n ∈ N

αν

(
Bρn (x) \Btδnρn

(x)
)
≤ δ

2
π0 (Bρn (x)) and π0

(
∂Btδnρn (x)

)
= 0.

There exists λ ∈ M
(
Ω;Rl

)
such that λ≪ µε, λ

(
Btδnρn (x)

)
= ν

(
Btδnρn (x)

)
and

δ

2
π0

(
Btδnρn (x)

)
+mε

(
ν,Btδnρn (x)

)
≥ Iε

(
λ,Btδnρn (x)

)
.

Set

λδn := λ1B
tδnρn

(x)+
ν
(
Bρn (x) \Btδnρn (x)

)
µε

(
Bρn (x) \Btδnρn (x)

)µε 1Bρn (x)\Btδnρn
(x) .

It is direct to see that λδn ≪ µε and λδn (Bρn (x)) = ν (Bρn (x)). We can write using growth
conditions

mε (ν,Bρn (x)) ≤ Iε

(
λδn, Btδnρn (x)

)
+ Iε

(
λδn, Bρn (x) \Btδnρn (x)

)
= Iε (λ,Bρn (x)) + Iε

(
λδn, Bρn (x) \Btδnρn (x)

)
≤ δ

2
π0 (Bρn (x)) +mε

(
ν,Btδnρn (x)

)
+ αεν

(
Bρn (x) \Btδnρn (x)

)
.

Dividing by π0 (Bρn (x)) we have

mε (ν,Bρn (x))

π0 (Bρn (x))
≤ δ

2
+
mε

(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) +
αεν

(
Bρn (x) \Btδnρn (x)

)
π0 (Bρn (x))

.
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Letting ε→ 0 we obtain

m (ν,Bρn (x))

π0 (Bρn (x))
≤ δ

2
+
m
(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) +
αν

(
Bρn (x) \Btδnρn

(x)
)

π0 (Bρn (x))

≤
m
(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) + δ

since αν

(
∂Btδnρn (x)

)
= 0 because αν ≪ π0. Letting n→ ∞

lim
ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
= lim

n→∞

m (ν,Bρn (x))

π0 (Bρn (x))

≤ δ + lim
n→∞

m
(
ν,Btδnρn (x)

)
π0

(
Btδnρn (x)

) = δ + lim
Rx

π0
̸∋ρ→0

m (ν,Bρ (x))

π0 (Bρ (x))
. (37)

Combining (36) and (37) and letting δ → 0 we obtain (35). ■

6.4. Proof of Theorem 3.1. We see, by setting fε (x, v) := Φ (v) for all (x, v) ∈ Ω×Rl, that (C1)

and (C2) are fulfilled since (9). So, it remains to verify (Hjreg) and (Hjsing).

Let ρ > 0, ε > 0 and x ∈ Ω. Let ν ∈ M
(
Ω;Rl

)
. For each j ∈ N we denote by Φj the

Moreau-Yosida envelope of Φ defined by

Φj (w) := inf
v∈Rl

Φ (w + v) + j|v|.

Note that Φj (0) = 0 for all j ∈ N since (9), and∣∣Φj (w)− Φj
(
w′)∣∣ ≤ j

∣∣w − w′∣∣ for all
(
w,w′) ∈ Rl × Rl.

Fix j ∈ N. Let t ∈]0, 1[. Consider φt ∈ Cc (Bρ (x) ; [0, 1]) be such that φt ≡ 1 on Btρ (x) and

set µ̃ε := φtµε. Using Lemma 6.2, one has for every u ∈ Rl and every σ ∈ {µ0, |νs0|}

mj
ε (uσ,Bρ (x))

σ (Bρ (x))
=

mj
ε

(
u
σ (Bρ (x))

µ̃ε (Bρ (x))
µ̃ε, Bρ (x)

)
σ (Bρ (x))

≤ µ̃ε (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ̃ε (Bρ (x))

)
. (38)

Therefore when σ = µ0

mj
ε (uσ,Bρ (x))

µ0 (Bρ (x))
≤ µ̃ε (Bρ (x))

µ0 (Bρ (x))
Φj
(
u
µ0 (Bρ (x))

µ̃ε (Bρ (x))

)
.

Since µ̃ε (∂Bρ (x)) = 0, we have limε→0 µ̃ε (Bρ (x)) =
´
Bρ(x)

φtdµ0. We set φtρ (x) := −́
Bρ(x)

φtdµ0.

Passing to the limit ε→ 0, one has

lim
ε→0

mj
ε (uσ,Bρ (x))

µ0 (Bρ (x))
≤ φtρ (x) Φ

j

(
u

1

φtρ (x)

)

≤ φtρ (x)

∣∣∣∣∣Φj
(
u

1

φtρ (x)

)
− Φj (u)

∣∣∣∣∣+ φtρ (x) Φ
j (u)

≤ jφtρ (x) |u|

(
1

φtρ (x)
− 1

)
+ φtρ (x) Φ

j (u)

= j|u|
(
1− φtρ (x)

)
+ φtρ (x) Φ

j (u) .

Since 1 ≥ φt ≥ 1Btρ(x), by using (M0), we see that

lim
t→1

lim
ρ→0

φtρ (x) = lim
t→1

lim
ρ→0

φtρ (x) = 1. (39)
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Consequently, letting ρ→ 0

lim
ρ→0

lim
ε→0

mj
ε (uσ,Bρ (x))

µ0 (Bρ (x))
≤ lim

ρ→0
j|u|

(
1− φtρ (x)

)
+ lim
ρ→0

φtρ (x) Φ
j (u)

= j|u|
(
1− lim

ρ→0
φtρ (x)

)
+ lim
ρ→0

φtρ (x) Φ
j (u)

and passing to the limit t→ 1 one obtains

lim
ρ→0

lim
ε→0

mj
ε (uσ,Bρ (x))

µ0 (Bρ (x))
≤ j|u|

(
1− lim

t→1
lim
ρ→0

φtρ (x)

)
+ lim
t→1

lim
ρ→0

φtρ (x) Φ
j (u) = Φj (u) .

Thus

lim
ρ→0

lim
ε→0

mj
ε (uσ,Bρ (x))

µ0 (Bρ (x))
≤ Φj (u) . (40)

Assume now that σ = |νs0|. We suppose

lim
r→0

|νs0| (Br (x))
µ0 (Br (x))

= ∞

and we set txρ :=
|νs0 |(Bρ(x))
µ0(Bρ(x))

. Using (38) one has

lim
ε→0

mj
ε (u|νs0|, Bρ (x))
|νs0| (Bρ (x))

≤ µ0 (Bρ (x))

|νs0| (Bρ (x))
φtρ (x) Φ

j

u |νs0| (Bρ (x))ˆ
Bρ(x)

φtdµ0


≤ 1

txρ
φtρ (x) Φ

j

(
u

txρ

φtρ (x)

)

≤ 1

txρ
φtρ (x)

∣∣∣∣∣Φj
(
u

txρ

φtρ (x)

)
− Φj

(
txρ u
)∣∣∣∣∣+ 1

txρ
φtρ (x) Φ

j
(
txρ u
)

≤ j

txρ
φtρ (x)

∣∣∣∣∣u txρ

φtρ (x)
− txρ u

∣∣∣∣∣+ 1

txρ
φtρ (x) Φ

j
(
txρ u
)

≤j|u|
(
1− φtρ (x)

)
+

1

txρ
φtρ (x) Φ

j
(
txρ u
)
,

letting ρ→ 0

lim
ρ→0

lim
ε→0

mj
ε (u|νs0|, Bρ (x))
|νs0| (Bρ (x))

≤ j|u|
(
1− lim

ρ→0
φtρ (x)

)
+ lim
ρ→0

φtρ (x)
Φj
(
txρ u
)

txρ

= j|u|
(
1− lim

ρ→0
φtρ (x)

)
+ lim
ρ→0

φtρ (x)
(
Φj
)∞

(u) .

and passing to the limit t→ 1 by using (39), one obtains

lim
ρ→0

lim
ε→0

mj
ε (u|νs0|, Bρ (x))
|νs0| (Bρ (x))

≤
(
Φj
)∞

(u) .
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Using a change of variable, the Jensen inequality and the Lipschitz property of Φj we have

mj
ε (uσ,Bρ (x))

σ (Bρ (x))
=

mj
ε

(
u
σ (Bρ (x))

µε (Bρ (x))
µε, Bρ (x)

)
σ (Bρ (x))

≥ inf
w∈L1

µε(Bρ(x);Rl)´
Bρ(x)

wdµε=0

µε (Bρ (x))

σ (Bρ (x))
Φj

(
−
ˆ
Bρ(x)

w + u
σ (Bρ (x))

µε (Bρ (x))
dµε

)

=
µε (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µε (Bρ (x))

)
≥µε (Bρ (x))
σ (Bρ (x))

(
Φj
(
u
σ (Bρ (x))

µε (Bρ (x))

)
− Φj

(
u
σ (Bρ (x))

µ̃ε (Bρ (x))

))
+
µ̃ε (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ̃ε (Bρ (x))

)
≥− µε (Bρ (x))

σ (Bρ (x))
j |uσ (Bρ (x))|

∣∣∣∣ 1

µε (Bρ (x))
− 1

µ̃ε (Bρ (x))

∣∣∣∣
+
µ̃ε (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ̃ε (Bρ (x))

)
=j|u|

(
1− µε (Bρ (x))

µ̃ε (Bρ (x))

)
+
µ̃ε (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ̃ε (Bρ (x))

)
.

But

lim
ε→0

µε (Bρ (x))

µ̃ε (Bρ (x))
≤

µ0
(
Bρ (x)

)
ˆ
Bρ(x)

φtdµ0

≤
µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

,

hence, by convexity, one has

lim
ε→0

mj
ε (uσ,Bρ (x))

σ (Bρ (x))

≥j|u|

1−
µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

+

ˆ
Bρ(x)

φtdµ0

σ (Bρ (x))
Φj

u σ (Bρ (x))ˆ
Bρ(x)

φtdµ0


=j|u|

1−
µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

+
µ0 (Bρ (x))

σ (Bρ (x))
φtρ (x) Φ

j

(
u

σ (Bρ (x))

µ0 (Bρ (x))φ
t
ρ (x)

)

≥j|u|

1−
µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

+
µ0 (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ0 (Bρ (x))

)

=j|u|+ µ0 (Bρ (x))

σ (Bρ (x))
Φj
(
u
σ (Bρ (x))

µ0 (Bρ (x))

)
− j|u|

µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

.

Suppose σ = µ0. We have

lim
ε→0

mj
ε (uµ0, Bρ (x))

µ0 (Bρ (x))
≥ j|u|+Φj (u)− j|u|

µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

.
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Letting ρ→ 0 one has

lim
ρ→0

lim
ε→0

mj
ε (uµ0, Bρ (x))

µ0 (Bρ (x))
≥ j|u|+Φj (u)− j|u| lim

ρ→0

µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

= j|u|+Φj (u)− j|u| 1

lim
r→0

µ0 (Bt2r (x))

µ0 (Br (x))

,

and passing to the limit t→ 1 one obtains

lim
ρ→0

lim
ε→0

mj
ε (uµ0, Bρ (x))

µ0 (Bρ (x))
≥ Φj (u) . (41)

Suppose σ = |νs0|. Let O ∈ O (Ω). Since Lemma 5.2, consider x ∈ O such that for every α ∈]0, 1[

lim
r→0

|νs0| (Br (x))
µ0 (Br (x))

= ∞ and lim
ρ→0

|νs0| (Bαρ (x))
|νs0| (Bρ (x))

≥ αN . (42)

Let ρ > 0. Set txρ :=
|νs0 |(Bρ(x))
µ0(Bρ(x))

. We have

lim
ε→0

mj
ε (uσ,Bρ (x))

|νs0| (Bρ (x))
≥ j|u|+

Φj
(
utxρ
)

txρ
− j|u|

µ0

(
B 1

t
ρ (x)

)
µ0 (Btρ (x))

.

Letting ρ→ 0

lim
ρ→0

lim
ε→0

mj
ε (uσ,Bρ (x))

|νs0| (Bρ (x))
≥ j|u|+

(
Φj
)∞

(u)− j|u| 1

lim
r→0

µ0 (Bt2r (x))

µ0 (Br (x))

,

and letting t→ 1 one obtains

lim
ρ→0

lim
ε→0

mj
ε (uσ,Bρ (x))

|νs0| (Bρ (x))
≥
(
Φj
)∞

(u) .

Now, we see that the formulas for the limit integrands are given by:

lim
ρ→0

lim
ε→0

mj
ε (uµ0, Bρ (x))

µ0 (Bρ (x))
= sup

j∈N
Φj (u) = Φ (u) µ0-a.e. in O,

and

lim
ρ→0

lim
ε→0

mj
ε (v|νs0|, Bρ (x))
|νs0| (Bρ (x))

= sup
j∈N

sup
t>0

1

t
Φj (tv) = sup

t>0
sup
j∈N

1

t
Φj (tv) = Φ∞ (v) |νs0|-a.e. in O. ■

6.5. Proof of Lemma 4.1 (i). Fix A ∈ B
(
RN
)
, ω ∈ Σ and u ∈ Rl. First, observe that we can

write

Su (A) (ω) := inf
ψ∈L1

µ(Ω;Rl)´
A ψdµ=0

ˆ
A
f

(
x, ψ (x) + u

µ0 (A)

µ (A)
, ω

)
dµ

= inf
ψ∈L1

µ(Ω;Rl)

ˆ
A
g

(
x, ψ (x)−−

ˆ
A
ψdµ, ω

)
dµ,

where g (x, v, ω) := f
(
x, v + uµ0(A)µ(A) , ω

)
satisfies

g (x, v, ω) ≤ C ′ (1 + |v|) (43)
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for all x ∈ RN and all v ∈ Rl, with C ′ := C
(
1 + |u| µ0(A)µ(A)

)
since (Cω1 ). As L1

µ

(
Ω;Rl

)
is

separable, there exists a countable set D such that clL1
µ(Ω;Rl) (D) = L1

µ

(
Ω;RN

)
, and by using

Vitali convergence theorem and the growth condition (43) we have

inf
ψ∈L1

µ(Ω;Rl)

ˆ
A
g

(
x, ψ (x)−−

ˆ
A
ψdµ, ω

)
dµ = inf

ψ∈D

ˆ
A
g

(
x, ψ (x)−−

ˆ
A
ψdµ, ω

)
dµ.

Now, for each ψ ∈ D the map Σ ∋ ω 7−→
´
A g
(
x, ψ (x)− −́

A ψdµ, ω
)
dµ is measurable since for

every x ∈ Ω

f

(
x, ψ (x)−−

ˆ
A
ψdµ+ u

µ0 (A)

µ (A)
, ·
)

is (T ,B (R+)) -measurable.

It follows that Σ ∋ ω 7−→ infψ∈L1
µ(Ω;Rl)

´
A g
(
x, ψ (x)− −́

A ψdµ, ω
)
dµ is (T ,B (R+))-measurable,

which means that Su (A) is a (T ,B (R+))-measurable function. Now, the condition (Cω1 )
and (43) insures that Su (A) ∈ L1 (Σ, T ,P).

Let A ⊂ [0, 1[N be a Borel set. We see that for P-a.e. ω ∈ Σ

Su (A) (ω) ≤
ˆ
A
f

(
x,
uµ0 (A)

µ (A)
, ω

)
dµ ≤ C0 (1 + |u|)

where C0 := C (µ0 + µ)
(
[0, 1[N

)
(1 + |u|), and with C > 0 given by (Cω1 ).

Next, we verify that Su is a stationary process by using (Cω3 ). For P-a.e. ω ∈ Σ and for every
z ∈ ZN , one has

Su (A+ z) (ω)

= inf

{ˆ
A+z

f

(
x,
dλ

dµ
(x) , ω

)
dµ : M

(
Ω;Rl

)
∋ λ≪ µ and λ (A+ z) = uµ0 (A+ z)

}
= inf

{ˆ
A
f

(
y + z,

dλ

dµ
(y + z) , ω

)
dµ : M

(
Ω;Rl

)
∋ λ≪ µ and λ (A+ z) = uµ0 (A)

}
= inf

{ˆ
A
f

(
y,
dλ

dµ
(y) , τzω

)
dµ : M

(
Ω;Rl

)
∋ λ≪ µ and λ (A) = uµ0 (A)

}
= Su (A) (τzω)

since µ0 = p0LN is invariant by translation.
It remains to show that S is subadditive, i.e. satisfies (S1). Let ω ∈ Σ and let (A,B) ∈

B
(
RN
)
× B

(
RN
)
be such that A ∩ B = ∅. Let ε > 0. There exist λA ∈ M

(
Ω;Rl

)
and

λB ∈ M
(
Ω;Rl

)
such that λA ≪ µ, λB ≪ µ, λA (A) = uµ0 (A), λB (B) = uµ0 (B) and

ε+ Su (A) (ω) + Su (B) (ω) ≥
ˆ
A
f

(
y,
dλA
dµ

(y) , ω

)
dµ+

ˆ
B
f

(
y,
dλB
dµ

(y) , ω

)
dµ.

Set λ = λA 1A+λB 1B ∈ M
(
Ω;Rl

)
. It is direct to see that λ≪ µ and λ (A ∪B) = uµ0 (A ∪B).

Thus

Su (A ∪B) (ω) ≤
ˆ
A∪B

f

(
y,
dλ

dµ
(y) , ω

)
dµ

≤
ˆ
A
f

(
y,
dλA
dµ

(y) , ω

)
dµ+

ˆ
B
f

(
y,
dλB
dµ

(y) , ω

)
dµ

≤ ε+ Su (A) (ω) + Su (B) (ω) . ■

6.6. Proof of Lemma 4.1 (ii). First, note that there exists Σ′ ∈ T with P (Σ′) = 1 such that
for every ω ∈ Σ′, every u ∈ Ql and every cube B ⊂ RN ,

lim
ε→0

Su
(
1
εB
)
(ω)

µ0
(
1
εB
) = inf

k∈N∗
EI

[
Su
(
[0, k[N

)
p0kN

]
(ω) .
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Fix ω ∈ Σ′. Let δ > 0, u ∈ Rl and u ∈ Ql be such that |u− u| < δ/2. By Lemma 6.2, for every
ε > 0 and every k ∈ N∗∣∣∣∣∣Su

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) − EI

[
Su
(
[0, k[N

)
p0kN

]
(ω)

∣∣∣∣∣
≤

∣∣∣∣∣Su
(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) −
Su
(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) ∣∣∣∣∣+
∣∣∣∣∣Su

(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) − EI

[
Su
(
[0, k[N

)
p0kN

]
(ω)

∣∣∣∣∣
+

∣∣∣∣∣EI

[
Su
(
[0, k[N

)
p0kN

]
(ω)− EI

[
Su
(
[0, k[N

)
p0kN

]
(ω)

∣∣∣∣∣
≤δ +

∣∣∣∣∣Su
(
1
εBρ (x)

)
(ω)

µ0
(
1
εBρ (x)

) − EI

[
Su
(
[0, k[N

)
p0kN

]
(ω)

∣∣∣∣∣ .
Passing to the limits ε→ 0, k → ∞ and δ → 0, we conclude that

lim
ε→0

Su
(
1
εB
)
(ω)

µ0
(
1
εB
) = inf

k∈N∗
EI

[
Su
(
[0, k[N

)
p0kN

]
(ω) . ■
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