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I'-CONVERGENCE AND STOCHASTIC HOMOGENIZATION OF INTEGRAL
FUNCTIONALS DEFINED ON MEASURES

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. We study the I'-convergence of nonconvex integral functionals on vector measures,
investigating both I'-convergence and stochastic homogenization. By setting abstract condi-
tions on the behavior of adapted minimization problems associated with these functionals, we
establish an integral representation of the I'-limit. This representation is then used to prove
stochastic homogenization theorems, resulting in new homogenization formulas.

1. INTRODUCTION

Let N,l € N* be two positive integers. Let  C R be a bounded open set. Let M (Q; Rl) be
the space of Rl-valued Radon measures and B () the set of all Borel subsets of Q. In this paper,
we study the I'-convergence with respect to the weak® convergence in M (Q;]Rl) of integrals
{I}es0 with I. : M (;R!) x B(Q) — [0, 0] defined by

dv
el T, — (T dg.ZE if v .
L (1, A) = /Af< . ¢ >> e () <

%) otherwise,

where {/ic}.>0 is a family of positive Radon measures on  satisfying . — po in M (Q) for
some positive Radon measure o, and the integrands f. :  x R! — [0, oo] are Borel measurable
and not necessarily convex.

The T'-convergence of the family {I.}.~o has been previously studied using convex du-
ality methods in [Bou87, [AB98, [BEF91], for relaxation and integral representation problems
see [BVS8S8| But89, DGABST, [BB93, BB90, BB92, [AB88]. While these convexity duality tech-
niques are powerful, providing very general integral representation theorems for abstract func-
tionals defined on measures over a locally compact and separable metric space € (see [BB92]),
they do not readily yield tractable formulas for the limit integrands.

In this work, with the stochastic homogenization of such functionals in mind, the I'-convergence
analysis is conducted using the behavior of the family of local minimization problems {m. }.~o,
where each m. : M (Q;R!) x B(Q) — [0, 00] is defined by

me (v, B) := inf {15 (\B): M (Q;Rl) 5 A< e, and A(B) = v (B) } (1)

We first present the following I'-convergence result by assuming linear growth on the integrands;
we also state and prove a version of this result without linear growth (see Theorem [2.1)).

Theorem 1.1. Assume that

(Cy) there exist c,C' > 0 such that for every e >0 and every (z,v) € Q x R!
clo] < fe (x,0) < C (14 [v]);

(C2) fe(x,0) =0 for alle >0 and all xz € Q;
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(Hyeg) for every (u,0) € L, (4R x O (Q), it holds

me (u () po, By (x)) w— me (u () po, By (2))

lim lim > lim lim -a.e. in O;
P50 po (B, () o eo0es0 g (B, (@) Ho
(Hsing) for every (v,0) € M (;RY) x O (), and every v € L|1V8| (;S'71), it holds
s| B I 5. B
im T 7 @] By (7)) g e me (v (2) 15, By () Vel-ace. in O,

p—0e=0 |51 (Bp (2)) p=0e=0 5] (B (2))
where v§ = v — ddTVOMO 1s the singular part in the Lebesgue decomposition of v with respect
to the measure uyg.
(Mp) the limit measure o € My () satisfies
B
lim lim 2022 (Bir (x))
t=1=r—0 o (Br (x))

Then for every O € O (Q) with pg (00) = 0, the family of integral functionals {I: (-,0)}
I (w*)-converges to Iy (-, O) with

1:0) = [ o (4 @) ) o @) + [ 1. (o = (@)) il 2}

for allv € M (Q;Rl), where fo: Q2 x Rl — [0,00] and fs : Q x S"1 — [0, 00] are respectively
defined by :

=1 forallz e (2)

= o— me (vpo, B, (7))
foavo) = Ty T 25 60,

and
£ (@ w) = T T e (216l By (@)
S S T (B, (@)

To derive homogenization theorems, it suffices to verify (Hyeg) and (Hging) along with addi-
tional assumptions on the integrands. Thus, we are able to study the stochastic homogenization
of integrals {I.}.~o where each I. : M (;R") x B(Q) x £ — [0, 0c] is defined by

d
/f(x,dy(w),w>dus(w) if 1 < e
I (v, A, w) = A € apte

o0 otherwise,

where (3, T, P, (7:),czv) is a measurable dynamical system with {7, : ¥ — ¥},cz~ a group of
P-preserving transformations on the measurable space (X, 7). The family of measures { . }e>0

is defined by
1
pe (1) =" p <6>

with o € M4 (RY) a 1-periodic measure, i.e. satisfying p (e; + A) = p (A) foralli € {1,..., N}
andall A e B (]RN ), where {ei}ij\;l is the canonical basis of RY. Observe that p. N o = poLn
in My (RN) as € — 0, where pg = 1 (Y) and Ly denotes the Lebesgue measure on RY. By
using a subadditive theorem (see Section [4]) we obtain explicit formulas for the homogenized

integrands. A version of this result without assuming linear growth on the integrand is also
provided, as stated in Theorem

Theorem 1.2. Let f : RV x R! x £ — [0,00] be a (B(RY) ® B(R") ® T, B(R.))-measurable
integrand satisfying the following four assumptions
(CY) there exist ¢,C > 0 such that for every w € ¥ and for every (z,v) € RN x R!

clo] < f(z,0,w0) <C 1+ v));

(C%) f(x,0,w) =0 for all z € RN and all w € ¥;
2



(CY) for all w € ¥ and for every (z,z,v) € ZV x RV x R!
f@+z0,0)=f(z,0,7w);

(CY) there exist T > 0, f > 0 and r €]0, 1] such that for every w € X, for every t > T, every
v e ST and every x € RN we have

‘f (x,tv,w) — f(z,tv,w)
— SRS Rty

7foo (:E,U,UJ)

t
Then for every O € O (Q) with pp (00) = 0, and for P-a.e. w € ¥ the family {I. (-,0,w)}.
I (w*)-converges to Iy (-, O,w) with

0.0 = [ o (2@ )+ [ o (G @) ) dig] @)

forallv e M (Q;Rl), where f20 : REx Y — [0, 00] and fPom : SI71x % — [0, 00] are respectively
given by:

1
pokN

prom )= jnt Bint { e [ F Gk 0 () ) du(a) v € A | ),

and

fhom (4. w) = king EX inf{
6 *

L f°°<z,v+w<z>,->du<z>:werm}(w),

bo kY
where Ao (KY) := {1[) € L' (kY;R!) : f,y ¥dLy = 0}.
When (£, T,P,{1.},czn~) is ergodic then the homogenized integrands are deterministic, i.e.

P o,0) = £ (1) =
(1 '
inf /me{ /Wf(z,erw(z),w)du(z).@Z)EAo(k:Y)}dIP(w),

keN* pokN
hom (4, ) = oM (y) .=
. . 1 0o )
it fnt{ o [ o v () @) € Ao f P ).

The paper is structured as follows. In Section [2, we provide the proof of the abstract I'-
convergence result, Theorem We begin by proving the result in the case where the initial
integrands have linear growth. Subsequently, through a standard approximation procedure,
we establish and prove an abstract I'-convergence theorem without assuming growth on the
integrands. Section [3| focuses on some examples. Subsection highlights an example where
fe is convex and independent of both = and . In Subsection [3.2] we apply our result to the
relaxation problem for z-dependent integrands, complementing the general result of [DGABST,
Theorem 2.4.] by obtaining additional insights on the limiting integrands. Section [4| deals
with the proof of the stochastic homogenization result, Theorem [I.2] Section [f] is dedicated
to proving Propositions [2.1] and [2.2] These propositions provide bounds under integral form
for the I-lim,_, I (-, 0), I-lim._ I (-, O), and local bounds of the average of lim._,o m. over
small balls. The proof of Theorem is then an easy and direct application of these previous
propositions. Finally, Section [6] concludes with the proofs of some auxiliary results that are
necessary for the overall arguments.

Notation. We denote by M (2) the set of all positive Radon measures on 2 and by M (Q; Rl)

the space of all Rl-valued Radon measures on 2 with [ € N*,
For pe My (Q),ifw e LL (Q;]Rl) then wy € M (Q; ]Rl) where

wp (B) = /de,u for all Borel set B C (.
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In particular, for a Borel set A C 2, 1 4 p is the measure defined by

]lAu(B):/]lAdp:,u(AﬁB) for all Borel set B C €.
B

When we write v < p for p € My () and v € M (€ R'), we mean that the total variation |v/|
of v is absolutely continuous with respect to u, i.e. |v| < p.
The Lebesgue decomposition of A € M (Q Rl) with respect to u is given by

dA
A= X
i (Yp+
where % () € Lh (Q;R!) is given by % (x) = lim, 0 ;Egiggg p-a.e. in €, and where X and pu

are mutually singular, denoted by X L u, this means that there exists a Borel set X C 2 such
that © (2\ X) =0 and |[X¥|(X) = 0.
We also introduce the following notation:

Oo (Q) = {O €O (Q) L o (80) = 0}.
RE = {p €]0,00[: (8B, (x))>0}.

o V:=]0,1[N and YV := |3, [V
e S'~! denotes the unit sphere of R! centered at 0, i.e. S"!:= {v € R : |v] = 1}.

2. PROOF OF I'-CONVERGENCE THEOREMS [LT] AND 2.T]
For every (v,0) € M (Q;R') x O (Q) we set:
*\ T R T . .l N : .l .
(F(w )—hmlg) (v,0) := 1nf{ig%ls (Ve,0) : M (Q,]R) Sv.—~vin M (O,R)} ;

e—0

(r (w*)—limlg> (v,0) := inf {hmg (v, 0) : M (Q;Rl) Sv. S vin M (o;Rl)} .

e—0 e—0

For each O € O (Q), if
(F(w*)-mg) (-,0) = (r( ) Tm I ) (-,0)
then we say that {I. (-, 0)}e>0 I'-converges to
10(.0) = (T ) -l 1) (.0) = (F(w) -Tiy 1) (. 0).

For more details on the theory of I'-convergence we refer to [DM93] (see also [BD9S]).
2.1. Bounds for T (w™)- iijrr(l)[e (-,0), I'(w*)- E)IE (+,O) and m.. The proof of Theo-
rem is based on the following two propositions below. Proposition provides lower (resp.
upper) bound for the I'-liminf (resp. I'-limsup) under integral form.
Proposition 2.1. Let O € O ().

(i) For every v € M (Q; Rl), there exists a sequence {v:}eso C M (Q;Rl) such that

sup . (v.,0)<o0, v. =v in M (O;Rl)
e>0

. T T 1. I (stBt (Z’))
and T (w*)-lim I, (v,0 / lim lim lim =" (o (). 3
W) kwo)> S [ Rl GTE R).@
o g
(i) Assume that holds. If po (00) = 0 then for every v € M (€ R)
N T me V7Bp (l‘))
I (w*) -;1_{% I. (v,0) < Z /Ofl)l_rg% ;1_1%J o (B, () do (x). (4)

JE{uo,Ivol}



The proof of Proposition is standard and involves weak convergence and Lebesgue
decomposition of measures, using the blow-up method outlined in [FM92) [FM93]. The main
challenge lies in the proof of Proposition which is divided into two steps. Firstly, we show
that the I'-limsup is lower than the lower Vitali envelope of the set function lim._,q m. (-,0).
Then, we establish (see Lemma that the lower Vitali envelope admits an integral represen-
tation with density the derivative of the set function lim._,qm. (-, O).

Proposition 2.2. Let O € O (). Assume that|(Cy)| holds. Then:

(i) for every v € M (Q;Rl), every sequence {Ve}eso C M (Q;Rl) and every 0 € My (O)
satisfying

v. =~ v in M <O;Rl> and  |ve| =0 in M, (O)

we have:

. - IL(v,B,

lim lim dio < lim lim lim L (ve, Bry () po-a.e. in O; (5)

p—0c50 Mo (Bp (z)) =17 p=0:50 o (Bp (z))

dv
me | —— (x) |v3], B, (z

o om(GE@me@) -
lim lim . < lim lim lim ————"—-=%> |5]-a.e. in O; (6)
p—0e—0 w5l (By (x)) 1= =00 |15 (B, ()

(i) for every v € M (Q;R') and every o € {po, |V§|},

me (v, B, (7)) e

lim lim -a.e. in O. 7
p20:50 o (B, (x P20 250 (B, (1)) o-a.c. in O ™

The proof of Theorem consists in using the inequalities of Propositions and the
conditions (Hyeg) and (Hging) to bridge the gap between the I'-liminf and I-limsup.

2.2. Proof of Theorem Let v € M (Q;R") and O € Oy (2). Combining Proposition
Proposition and condition (Hyeg), we can write, for pp-a.e. x € O, that

(r <w*>-nmfe> (v, B, ())

e—0

I B
lim > lim lim lim ———2 77 (v, Bip (2))

r—0 po (By (7)) T 1 p0.50  po (B, (7))

dv
g (52 @B, w)
> lim lim
p=0e:50 po (By (z))
dv
(Hreg) me (dﬂo (ZE) Mo, Bp ($)>
> lim lim
p—0e—0 1o (Bp (l‘))

0, mB,) @ (@) RL) 05 @)
= N T (B, (@) e B @)

5
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It follows, since <F (w*) - limI€> (v,-) < <F (w*) - @)L;) (v,-), that for ug-a.e. € O we have
E—

e—0

(P @)t 1) . ()

e—0

(1 (w*)- T 1.) (v, B, (x))

Y 10 (By (7)) = 1o (Br (2))
_ me (g @B, ()
0230 1o (By (x))
e me (1B, ()

p—0e—=0 1o (B, x))

df )
= Jimy iy (d :ZZ»())

which shows that all these functions are Borel measurable, as ensured by Lemma [6.3] which
guarantees the measurability of the following function:

B
Q> 2+ lim lim w
p—0e—=0 Lo (B (.’E))

Similarly by using (Hging), we have for |v§|-a.e. z € O

(I‘ (w*)-lirnle> (v, By (f’f)) -

— 1 B
lim ES_>0 > lim lim lim M
r—0 51 (Br (2)) = O 151 (B (2))
dv
g (e @B o)
> lim lim -
p—0e—0 ’VO‘ (Bp (:U))

Gy e (dTlm () %3], B, <x>)

> lim lim
- p—0e—0 |I/(S)‘ (Bp (.T))

H im T me (v, B, (x)) - (F (W*)'mk) (v, By ())
I T (B, (@) — 1 gl (B ()

It follows that for |vi|-a.e. z € O

(P @)t 1) (.5 ()

e—0

(r (w*) - @)1) (v, B, (z))

lim = lim
r—0 lvs| (Br (x)) r—0 |5l (Br (x))
dv s
me (e @61, ()
= 5]
= lim lim
p—0e—0 ’1/8| (Bp (x))

dv . N
= lim lim M:E - e (W (z) |5, B, ( ))
p—0e—0 ‘1/0’ ( (QU)) p—0:50 ‘yg‘ (Bp (m)) .

From the above, we see that for all o € {0, ||} and o-a.e. x € O,

S Ia(Vthp(l’))_ L — Mg IR e
lim lim lim ———*—** = lim lim ——%—%* = lim lim
t—1-p—0.50 0 (B, (x)) p—0e—0 o (B, (x)) p—0e—0 o(B,(x))




Using Proposition we conclude that

(Pe)-imn) o> 3 [ fn i ™ & @ B@) )

e—0 ce{uovil} p—0e—0 O'(Bp (x))

> (1 (w)-Tm 1) (1, 0),

which completes the proof. B

2.3. I'-convergence without linear growth. In the case where the integrands f. do not have
linear growth, set f the Moreau-Yosida envelope of f. of index 1 defined by

QxR'3 (z,v) — fI (z,v) ::inf{fg(x,w)—f—ﬂv—w\ :wERl},

and for every v € M (Q; Rl) and every B € B (£2), the associated integrals

| [ (s 50 @) dne@) ia< e
I’ (v,B) := B He

o0 otherwise,

with the corresponding local minimisation problems
md (v, B) := inf {[g (\,B) : M (Q;Rl) 5 A< pie, and A(B) = v (B) }
for all (j,e) € Nx R7.
The conditions (Hyeg) and (Hging) become, for each j € N:
(Hreg) for every (u,0) € L}LO (O RY) x O (), it holds
J J

lim lim m (u () pio, B, (z)) > Tim Gm mi (u () po, B, (7))

p=0em0  po (Bp (2)) p=0e=0 o (By (2))
(H Smg) for every (v,0) € M (Q;R!) x O (1), and every v € L‘VS‘ (©;S'71), it holds

lim lim mi (v (Sx) 151, By () > Tim lim m (v (Sx) 51, Bp (2))
p—0e—0 |51 (Bp (2)) p=0e=0 5] (B, (2))

Theorem 2.1. Suppose|(My)| and

(C}) there exists ¢ > 0 such that for every e >0 and every (z,v) € Q x R!

clv| < fe (x,0).

po-a.e. in O;

|vg]-a.e. in O.

Assume that (H{eg) and (H Smg) hold for all j € N. Then for every O € Oy (), the family of
integral functionals {I. (-,0)}: I (w*)-converges to Iy (-, O) with

b0 = [ (G @ ) duo @)+ [ £ (o i @) bl @

for allv € M (Q;Rl), where fo : Q@ x Rl — [0,00] and fs : Q x S"=1 — [0, 00] are respectively
defined by:

ml (v, B
fO (:C) U) = sup hm hm me (Ulu‘oa P (,’L‘))’
SR 0 (B, ()

and

B
fs (x,w) := sup lim lim m? (w]vl, B, (« ))_
jeN p=0e—=0 ‘VO|( p(m))
7




Proof of Theorem Let € > 0. First, observe, by using |(Cy)| that for every x € Q and every
jeN '

f () < g (1+v]),
moreover, we also see that fZ (z,v) > min (c, j)|v] for all j € N*, where c is the constant
appearing in |( Cy )} Thus|(C})|holds for each of {fZ}.0. Fix O € Oy (Q). Applying Theorem.
to each of {fZ}.~0, the family of integral functionals {IZ (-, 0)}. T (w*)-converges to I3 (-, O)

with 0 :/Ofg <$’C;Z/O($)> dio (z) + /fﬂ( dTZVOI( )> d|vg] ()

for all v € M (Q;R), where fg : QxR = [0,00] and f7 : Q x SI=1 — [0, 0] are respectively
given by:

i ] mg (UMO7B (:U))
3 (evo) o=l T == B )
and

‘ . mi (w|vg], B, ()
1 (o) = Ty T 50 S

Let (v,0) € M (2;R') x O (). On one hand, since f. > fZ, we have

(F (w*)—limfg> (v,0) >T (w*)-lim I (v,0) = Ig (v,0) forall j €N.

e—0 e—0
On the other hand, applying Lemma

J _ *\ _ 15
?ellr\l)lo (v,0) = (F (w*) ili%fg) (v,0).

It follows that <F (w™) —limIE> (v,0) > supjen Iy I (v,0) = < (w*) - @)L_;) (v, 0), which mea-
E—

e—0
ns that {I (-,0)}c ' (w*)-converges to Iy (-,0) = sup;ey I[J) (-,0). We conclude the proof by
applying the monotone convergence theorem to derive the formulas for the limit integrands. W

3. EXAMPLES

3.1. T-convergence with convex integrands not depending on (z,¢). Let ® : R® — R be a
convex and lower semicontinuous function satisfying for some ¢ > 0

clv] <®(v) forallveR and ®(0)=0. (8)
For each € > 0 define I. : M (;RY) x B (Q) — [0, 00] by
d
/@(dy>dus if v < pe
I (v,A):={ /4 He
o0 otherwise,

¢

where {:}es0 C M4 (Q) is a family of positive Radon measures.
As a consequence of Theorem we retrieve the following result (see [Bou87, [AB9S]). It

is worth noting that we make the additional assumption which can be explained by the

“nonconvex” approach used to prove Theorem (see Subsection for the proof).

Theorem 3.1. Let py € My () satisfy . Let O € Oy (Q). If pe = po in My (Q) then
{I: (-,0)}e T (w*)-converges to Iy (-, O) with

dv dv
Iy (v, 0 :/(I)( >d +/<I)°°( >du3

for allv € M (4 RY), where @ (+) := sup, %<I> (t-) is the recession function of ®, and v§ =

v = o

8



As an illustration of Theorem [3.1| we consider the example of [Bou87, Exemple 4.1, pp. 138].
Let 1 € My (Q) be a positive Radon measure. Let {ac}e>0 C L, () be such that for some
¢, C' > 0 we have for every € > 0,

c<a:. <C.

-1
Let p>1and ¢ = (1 — %) . Define the integrals J. : M (;R!) x B(Q) — [0, oc] by

d p
/ Qe d—y dp ifr<py
J. (v, A) = A H
s otherwise.
Setting p. := aq%lu, we can rewrite J. as
dv |P
/ ¥ due  if v << e
J: (v, A) = Al
o0 otherwise.

Now, under the assumptions of Theorem the family {J. (-,0)}c I'-converges at each v €

M (Q;Rl) to Jo (+, O) given by
v [P dv
JI/,O:/ d —|—/X ()dus,
0 (¥, 0) o ldmo| ot X0\ g 5]

where X g} is the indicator function of {0}, i.e.

0 ifv=0

X{0} (v) ==
oo otherwise. B

3.2. Relaxation with integrand dependent on x. Let ® : Q x R! — [0, 00] be a Borel function
satisfying for some ¢ > 0

®(x,00=0 and cv| <®(z,v) forall (z,v) € QxR 9)
Define I : M (4 R') x B(Q) — [0, 00] by
/ ) (x, jy> duo if v < po
I(v,A):= A Ho
s otherwise,

where pg € M4 (Q) is a positive Radon measure. The relaxed functional with respect to the
weak star convergence of measures is given by

1 (v, A) :inf{limI(VE,A) Cve S vin M <Q;}Rl>}

e—0

for all v € M (Q;R'). The following result was proved in [DGABS7, Theorem 2.4] (see
also [AB8S, Theorem 2.4] and [But89, Theorem 3.3.1, pp. 99])

Theorem 3.2. There exists a Borel function ¢ : Q x Rt — [0, 00] such that for pg-a.e. in x € Q
the function ¢ (x,-) is convex and lower semicontinuous and

- dv dv
I(v,A :/4p<x,)d,u +/g0°° <:L‘,>d1/3.
. 4) A dmo) s dlvg| i«
for all (v, A) € M (4 RY) x B (). Moreover, the recession function o™ defined by

0> (z,v) := lim p @ tv)

t—oo t

is lower semicontinuous in (x,v).



The following result provides, in the case where the measure g satisfies [(Mg)], a representa-
tion for the relaxed integrands. This complements the result of [DGABS&7, Theorem 2.4]. By
combining Theorem [3.2] and Theorem [2.1] we have:

Theorem 3.3. Assume that po satisfies|(Mo)| Let O € Oy (Q). Then for every v € M (O;R)

- dv dv
I(v,0 :/<I> (x,)d —|—/<I>s (x,)dus
(0) o "\ duo Ho 0 dlvg| i

where ®g : Q x RE = [0, 00] and @, : Q x SI=1 — [0, 00] are respectively given by:
®¢ (z,u) := sup lim inf ][ O (z,u +w(2)) dpo (2) ;
JeNP0weLl (B,(x);RY)) B,(x)
pr(z) wdyio=0

and
Ty , 1 (W61 (B (x))
O, (z,v) ;= sup lim inf / o’ (z, PO 0 +w (2) ) dpo (2) .
’ jen P=0uwerl (By@yw!) V5] (Bp (%)) /B, (@) ro (By (2))
pr(z) wdpio=0

Moreover, for pg-a.e. in x € Q the function ®¢ (x,-) is convex and lower semicontinuous, and
g is lower semicontinuous in (x,v) and @4 (z,-) = O° (z,) |v5|-a.e. z € Q.
Proof of Theorem B.3l We see, by setting f. (z,v) := ® (x,v) for all (z,v) € Q x R!, that

and [(Cy)] are fulfilled since ().
Let x € Q. Let v e M (Q; ]Rl). For each j € N we denote by ®/ the Moreau-Yosida envelope

of ® of index 1 defined by

7 (z,w) == 35@ D (z,w +v) + jlv|.

Combining Lemmaand Corollary we see that for every j € N, every (v,0) € M (Q; RZ) X
O (Q), and every v € L] (Q; Sl_l), the following limit exists

V5
J s| B
=0l (B ()
dv

where 1§ = v — dpig Mo is the singular part in the Lebesgue decomposition of v with respect to

the measure pg, which means that (Hging) hold. We apply Theorem and the properties of

convexity and lower semicontinuity of the relaxed formulas are given by Theorem |

4. STOCHASTIC HOMOGENIZATION OF INTEGRALS DEFINED ON MEASURES

4.1. Subadditive theorem. Let (X,7,IP) be a probability space. Let {7, : ¥ — X}, .z~ be a
group of P-preserving transformations on (X, 7), i.e.

(1) 7. is T-measurable for all z € Z"V (measurability);

(%) T.0Ty = Tyy and 7_, = 7! for all 2,2’ € ZV (group property);

(%) P(r,(E))=P(E) forall E€ T and all z € Z" (mass invariance).
The quadruplet (X,7,P,{r.},cz~) is called a measurable dynamical system. We denote by
Z:={EeT:V2€Z" P(r.,(E)AE)=0} the o-algebra of invariant sets with respect to
(3, T,P,{1.},eznv). When P (E) € {0,1} for all E € Z, the measurable dynamical system
(5, 7T.P,{.},ezn) is said to be ergodic. Denote by By, (RY) the set of all bounded Borel sets
of RV,
Definition 4.1. We say that S : By (RN) — LY (X, T,P) is a subadditive process if

(#1) S(AUB) < S(A)+S(B) for all A, B € By (RY) such that AN B = { (subadditivity);

(#) S(A+2)=8(A)or. for all A € By (RY) and all z € ZV (stationarity).
If in addition the measurable dynamical system (X, T,P,{1.},cz~) is ergodic, we say that S is

an ergodic subadditive process.
10



For a bounded Borel set A € B (]RN ) we set
R(A):=sup{peRy:3z €A B,(z)C A}.

A sequence of bounded Borel sets { Ay, }ren is called regular if there exist an increasing sequence
of intervals {J, }nen whose the bounds belongs to Z~ and C' > 0 such that Ly (J,,) < CLy (Ay)
for all n € N. We denote by Y the unit cell [0, 1["V.

Theorem 4.1 ([LM02, Theorem 4.1, p. 33]). Let S : By (RN) — LY (3, T,P) be a subadditive
process such that

(S1) S is a nonnegative subadditive process, i.e. S(A)(w) >0 for all A € By (RY) and all
wE X;
(Sa) there exists h € L' (X, T,P) such that S (A) < h for all Borel set ACY.
Then there exists X' € T with P (X") = 1 such that for every w € ¥ and every reqular sequence
of Borel convex sets {C,}nen C By (]RN) satisfying lim, oo R (Cy) = 0o we have

- S(Cn) (w) g [S(RY)
lim —————~* = inf E° |——= .
e R S e
If (8, T,P,{7.},czn) is ergodic then for P-a.e. w € ¥
. S(Cy) (w) . S (kY) (w)
lim ——————* = inf ————=dP .
fim e = [ e )
4.2. Properties of subadditive processes associated with f and f°°. For the proof of Theo-
rem [I.2] we will need the following lemma which is proved in Subsections [6.5] and

Lemma 4.1. For each u € R!, each A € By, (RN) and each w € ¥ we set

. d\
S @)= o X ( 2@ ,w) i ().

A(A)=upo(A)
(i) For eachu € R! the map S, : By (RN) — LY (3, T, P) is a nonnegative subadditive process
satisfying for some C > 0, for P-a.e. w € ¥ and for every Borel set A C [0, 1[V
Su(A) (w) <C(1+ul).
(i) There exists ' € T with P (X') = 1 such that for every w € ¥/, every u € R' and every
cube B C RN
5. (25) () _

lim “671 —
e—0 EN (EB) keN*

We will also need the following lemma, the proof of which is similar to that of Lemma
which is stated just above.

Lemma 4.2. For each w € S'™1, each A € B, (RN) and each w € ¥ we set

d\
Sy (A) (w) := inf /f°°<x,a:,w>d.
(4) @) M(GR) 3 <0 J A dM( ) .
A(A)=wpo(A)

(i) For each w € S'=! the map SF : By (RY) — L' (X,T,P) is a nonnegative subadditive
process satisfying for some C > 0, for P-a.e. w € ¥ and for every Borel set A C [0,1[V

Sp (A) (w) < Clwl.
(i) There exists ' € T with P (') = 1 such that for every w € ¥, every w € =1 and every

cube B C RN
00 lB 00 N
lim Su (5 1) w) — inf EL Su ([O’k[ ) (w).
e—0 ﬁN (EB keN* k‘N




4.3. Proof of Theorem We recall that the measure p € M4 (RN ) is a 1-periodic measure
which satisfies

e — p1g = poLy in M (RN) as ¢ — 0,

where po = p(Y) with Y :=]0,1[V. The proof consists in verifying the assumptions of Theo-
rem Since [(CY), we note that for P-a.e. w € ¥ the family of integrands

{£-0=1(5nw) o}

satisfies It remains to show that (Hyeg) and (H Smg) hold, i.e. for every O € O (), for
P-a.e. w e X, for every u € L}LO (Q;]Rl) and every v € L! ;| (Q Sl 1) it holds

v,

o Me (u (@) po, By (2) ,w)  1— — me (u(x) o, By (7) ,w) .
Fl)l_r)r(l)iljﬂ(l) 10 (B, (v )) Z})I_I}%il_rg(l) 10 (B, (x )) po-a.e. in O; (10)
o i e (e (@ )lVo\ By (2),w) | g e (u ( ) w3l By (), w) o
I TR B @) i 1l (B, ) plae O, (1)

where 1§ =v — ﬁuo, and where for every r > 0, every ¢ > 0, every z € ) and every w € X

d\
me (u (z) po, By (2) ,w) = inf / f <y7 — (y) ,w) dpe (y);
M(UR!)3A<pe (@) \E dpe
A(Br(z))=u(x)po(Br(z))
e (0/2) 1), By (&) ) 1= inf [l ) det)
5 0l Pr ) . (Q;Rl)g)\<<y,€ T(x) E’d,ug Yy), He \Y) -

M
A(Br(z))=v(2)|3|(Br(z))
Proof of . Note that for a measure A € M (Q;Rl) with A < p

A(eB dA
Aax (ex) = LN lim (8¢ (@) = e () p-ae. in Q,
e 00 p(Byye (x))  dp

where A /. () ;= e N A () for all € > 0. Fix w € ¥. For every p > 0 and every u € L' (R
we can write for pg-a.e. x € )

me (u (x> o, By (x) ,w) _ inf 1/B ( )f (g,zz (y) ,w> dpe (y)

po (B () M(R)ar<p.  Ho (By (2))
A(Bp () =u(x) o (Bp(x))

1 dA
= inf / f <s, — (es) ,w> dp (s)
M(@R)oA<p:  po (2B (2)) J1B, () dpe
A(Bp(z))=u(z)po(Bp(z))

_ it P . ( e () w) du ()
MRS e o (%Bp (m)) 1B,y (x) " dp ’
A(Bo (@) =u(@)po(By ()

1 dA
= inf / f<s, S ,w) du (s
Mm(@E)r<n o (2Bp () J1B,0) i )
A(£Bp(x))=u(x)uo( £ Bp(z))
_ Suw (2B (7)) @) 1 Suw) (2B, (7)) @)
w0 (B, @) pa L (LB, ()
Applying Lemma we obtain for P-a.e. w € X
Su(z) (1B
lim Mme (U (33) ,uo,Bp (:C) ,w) — lim () (61 ) (a:)) (w) _ i inf EI
12




and so by letting p — 0

lim Lim me (u () po, B, (7),w) o
p—0e—0 o (B, (2)) kEN*

which means that holds.
Proof of . Fix w € X. Let € O be such that

x*OO where J:, ‘VOH ([E))
Pt =20 M L B, (@)

For every p > 0, every € > 0 and every v € L|VS| (Q; Sl_l) we can write

me (v (z) V5], By (x) ,w)
751 (By ()

y dA

. 1 / (
= inf _— fl=—-—
MR o< V51 (B (@) )" \ & dpe
A(By(@))=v(z)|v5|(Bp(2))

= inf gN/ f <s Aax (es) w> du (s)
mer)aep. 1By (@) Jipy 7 due

%/\(Bp(w)):v(:v)lv[ﬁ‘I(Bp(w))

1 )y /e
= inf / —f (8, s ,w) du (s
Mm(@R)<pe o (:By (7)) J1p,@) & an )

e A(By(@)=v(@)po (By())

1 1 dA
= inf / f(s, S ,w)dus
M(Q;Rl)a)\(u 1o (pr (a:)) éBp(:v) tg d/L ( ) ( )
FAMEBo(@)=v(@)uo( 2 Bp(=))

. 1 / 1 ( d\ >
= inf _ —fls,t5—(s),w | du(s).
Mm(@)r<n  po (2Bp (@) Jip,@ G5\ " *)
A(LBy(@))=v(@)p0( 2 Bo(x))

Fix w € ¥/ with ¥/ € T given by Lemma Using |(C{)|and taking ty = 1315, () > T,

() ) duc (1)

L to(Bp(x))
me (v (@) vl By (x) w) _ B p(:By(x)) N Sow (B, (2)) (W)
W31 (By () T () mo(IBy(@)  mo(IBy(x)
letting ¢ — 0, we obtain
H Me (1} (iL‘) ‘Vg‘va (:):),w) BPO 781?&) (éBP (‘T)) (w)
BTG @) S ) e w(B,@)

Applying Lemma and passing to the limit p — 0, we have
N
1 e (v () 1], By (2) ,w) Syt ([0, [ )] )

P T 11 (B, () po K
On the other hand
me (v (@) [V, By (@), w) B (2B, (@) Sty ((Br (@) @)
15| (By () N (tpx)r po (2B, (z))
letting € — 0, we obtain
. me (v(z) 5], Bp (x) ,w) . 5&) (%BP (a?)) (w) Bpo
B %IB,W) & -




which gives by letting p — 0

lim Lim e @ @) 116, By (7))

p—0e—0 |V8| (Bp (7)) Po keN*

We finally obtain

lim lim me (v (z) |v5], By (7) ,w) — Tim Tim me (v (2) V5], By (7) ,w)
020 151 (Bp () p=0e-0 151 (B, (%))
S ([0, k[Y)
. 7 | Tv(@) \LD
klélI\];*E R w).

The following result is a stochastic homogenization theorem without assuming linear growth on
f. The proof follows the same strategy as that in Theorem

Theorem 4.2 (Stochastic homogenization without linear growth). Let f : RV xR x ¥ — [0,00] a
(B(RM)@B(R)®T, B(Ry))-measurable integrand satisfy. Assume that|(C4)},[(C5)| and|(CY)|
hold. Assume that

(CYY there exists ¢ > 0 such that for every w € ¥ and every (z,v) € RV x R
clv| < f(z,v,w).

For every O € Oy () and for P-a.e. w € ¥ the family of integral functionals {Ic (-,0,w)}s
I (w*)-converges to Iy (-, O,w) with

1000 = [ o (@) ) dun @)+ [ o (G @) digl @)

forallv e M (Q;Rl), where fPom : REx Y — [0, 00] and 1o : S'=1x ¥ — [0, 00| are respectively
given by:

o o) o= sup int B [inf { o [ PG o @) 0au ()0 € Ao ) | )

jeN keN*
and
piem o) = sup int B [ e [ () oo (20, dn (90 € A0 6 ] 0.

where Ao (kY) := {1y € L' (kY;R") : f,, vdLy = 0}.
When (2, T,P,{1.}.ezn) is ergodic then:

7RO (0,0) = 17 (0) =

sup inf 1nf
J GN kEN*

£ (v,w) = £ <v> =
sup inf / inf {po}gN /kY (fj)oo (z,v 4+ (2),w)du(z) : ¢ € Ay (kY)} dP (w) .

jEN keN*

PokN fﬂ(zv+¢() w) M(z):zper(k;Y)}de(w),

5. PROOF OF PROPOSITIONS AND [2.7]
For a measure A € M (Q;Rl) or A € M, () we set for every x € Q, every p > 0 and every
S M+ (Q)
dA A(B
do™ "], o (B,(z))

The following lemma is used in the proof of Proposition
14



Lemma 5.1. Let 0 € M, (Q), v € M (QRY), u € WH (Q;R™) and O € O (). Let {v:}. C
M (4 RY) be such that v. = v in M (O;RY) and |v:| = 0 in My (O) ase — 0. Let x € O and
p>0 with B, (z) C O. Lett €]0,1[ and r € [t*p,tp. Let ¢, € C.(B,(x);[0,1]) be such that
or =1 in B, (x) and o, =0 in B, (x)\ By, (z). For each e >0 we set V] := (@pve 1, -, prle)) €
M (O;Rl) where Ve = (Ve 1, ..., Veyiy. .. Ve ). Then

fing B do o(B,(z)) | do

dv
a:) me (dg((BZ?x)lj o (T )) mea(l(/é’ﬁ;;) ) 20 ([d‘y‘(@]p (B, () [dlv|<$)} 2p>

+C

dv dv
- | @)

p
where C' >0 is the constant growth appearing in|(Cy)| and

vl ] WM By@)
[da”Lp“ o By (a)) o ols €l 1)

Proof. We see that v/ = v™ in M (O;R!) and [v7| = 6" in M4 (O) as e — 0, where 0" := @, p
verifies 8" (0B, (x)) = 0 since the support of ¢, is include in By, (z). So, by [FL07, Corollary

1.204, pp. 131] we have lim. o] (B, (z)) = v" (B, (z)). Using Lemma we have for every
e>0

‘ms B,(®) me (B, <as>>’ o[ Bae) s, <w>>’
B,(x)  o(B,) (B, ()  o(B,®)
v (Bp (QU)) Z (Bp (53))
U8, @) 0B, ()
V" (B () _ Vi (By (2))
B, @) " 0B, @) ‘

Passing to the limit € — 0 we obtain

m. (v, B, () m. (3B, W‘ <c

_ v(By(z)) v
o (By (x)) o (B, (z)) o (By(x)) o (B,(r))

p
Since v (B;) = v" (B;), [v"| < |[v| and B, (x) D B2, (z) it follows that
\

v (Bp (z)\ By) _ V" (Bp (z)\ By) <
o (B, () g (Bp (z))

lim

e—0

Moreover, we can write

VI (By () \ B2y (z)) _ |v| (B, (2)) _ o (Be, (7)) [v] (Be, (7))
7 (B (x)) o (By(x)) o (By(x)) o (Bg,(r)

The assertion of the lemma follows by combining and . |

5.1. Proof of Proposition Let O € O(2). Let v € M (RY), and let {v:}eso C
M (2 Rl) be a sequence satisfying

ve = vin M (O;RZ) and  |v.] 26 in My (O).
15



Fix o € {uo, ||} Fix z € O satistying

dv v (B, (z))
0=lim | (@)~ B @) (14)
[0 ) 0+ 140) (Be ()
0= lim do (z) (B (2)) (15)

Let t €]0,1[ and p €]0,1[ with B, (z) C O. Let K € N*. For each i € {0,1,..., K}, we set
B; := Bt2p+(1—t)tp% (z) (note that By = B2, () C -+ C B; C --- C Bg = By, (x)) .

For every i € {1,..., K}, let ¢; € C.(B;;[0,1]) be a cut-off function between the following two
closed sets B;_1 and O \ B;, which means that ¢; = 1 on B;_; and ¢; = 0 on O \ B;. Set
1/2 = v € M (Q;Rl). We have

me (1/2, B, (x)) < 1. (Vé, B, (:z))

U(Bp<33)) B U(Bp(m))
_ U(Bl( (I (ves Biy) + I (v, Bi \ Bi_1) + L (0, B, () \ By))
p
I (ve, By (x)) | I (v}, Bi \ Bi-1)
o (B, (x)) o (B, (x))
(VaBtp(f'?)) Cﬂe( Bi\ Bi—1) + |ve| (Bi \ Bi—1)
o (B, (x)) o (B, (z)) '

By averaging over every layer, i.e. summing over all i € {1,..., K} and dividing by K, there
exists ig € {1,..., K} such that

(VéaBp( ))
)

me (VK B, (z)) < 1 i

0(By(z)) K4 o(B,(x))
L (e, Bip () | C e (Bp (@) \ By (2)) | C |ve| (Byp (@) \ Bezy ()
T o(By(x)) K o (B, (z)) K o (B, (z)) '

Passing to the limit ¢ — 0

me (2%, By (z)) L (ve, Biy (2))

< lim

lim

—o0 o0(B,(x)) Tem0 0 (By(x))
C b (Bip () \ Bz (%)) | C «— |v=| (B (%) \ Bz ()
TR eB,@) T ESNT oB,0)
im I. (ve, By (x))  C dug . ﬁ .
=M oB,@) K ([da< ﬂﬁ{da( )D 10
By using Lemma with r = t2p +t (1 —t) p%(, we have
dv
- me <da (z) 0, B, (x)) e (vix, B, (z))
e—=0 o (B, () Tem0 0 (By (@)
_U(Bt2p (z)) [d|v] . d|v|
2 ( B L >L2p+ e )])

@ Fw]
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where C'>0 is given by [(C;)l Therefore combining and
dv
e (G (@B, (@)

. o
lim

e=0 o (B (x))
égw + % ([‘Zg)(x)]p + [Zg(x)]p) +C
vae (G e, - [fe] )

o (B2, () d|v| . Ie (ve, By () | C [ [dpo . df .
(B, (@) do DTG Gy TR [d ()L+[da( )L
d|lv

_|_20[d| dvi, )L+C %(m)— [ZZ(Z‘)L d||($) [dxr( )Lp '

do
We show only the case o = |ij§|; the case with o = pg is similar and follows the same lines. So,
in case o = |1jj|, letting p — 0 and using Lemma

dv s
e (e ()l By o))
s V5|
lim lim

p—0e—0 ’VS| (Bp (x))

@ | mw]

—-2C

+2C

, o (B, () d|v| — . L. (v, By, (z))  C (duo d dlv|
<hm 2075 ) de ) i i = +K<da(‘”)+da( )>+2C do @)
djv| C (duo do . 1 (v, By (2))
<2000 G e g (G 0+ @) + Byl ST

and letting ¢ — 1 and K — oo one obtains @ |

5.2. Proof of Proposition Fix v € M (4 R!) and o € {uo, |[1§|}. Let = € O be such
that
oo V(B (@) v
r—00 (B, (z)) do

Let p > 0. It is easy to deduce from the following inequality

ma<fll;(x)a,3p(x)> me (v, B, ()| _ ,|dv

T B,@) o B@) |-l T e B, @)

() < o0.

which is a consequence of Lemma [ |

5.3. Proof of Proposition Let O € O (Q). Let v € M (Q;R!) be such that I_ (v, 0) < <.
There exists a sequence {v;}es0 C M (Q;Rl) such that v. = v in M (O;Rl) as € — 0, and

I_(v,0) = iiﬁ%lﬁ (e, 0) <0 and Sl;]g]s (ve, O) <oo0. (18)

For each e > 0 we set O, := f; ( e (¢ )) pelo € M4 (0O). Using there exists a subsequence
{0, }nen € M4 (0) and © € M, (O) such that ©., = © in My (O) as n — oco. The

Lebesgue decomposition theorem gives that

_do 4o
0
dpo™ " djvg]

17

gl + ©°



where 1§ is the singular part of the Lebesgue decomposition of v with respect to pyo, i.e. v =
d% (+) o + v, and ©° the singular part of the Lebesgue decomposition of © with respect to
po + |v§|. Therefore we have

I_(v,0) = gl_r}(l) I. (v, 0) = lim I, (v.,,0)

n—oo
d
—lim 6., (0)>0(0)> Y / © o).  (9)
n—oo o) do
o€{po,|v5l}

Moreover, for every t €]0, 1],

__O(Bp@)

a0 ) T 35 o (B, (2)) = 050 a0 (B, (@) © i3 o (B, (@)
hence for pg-a.e. x € O
de I (ve, By (7))

D (2)> Tim Tim lim

dpg t—1=p=0-0  fo (By ()

Similarly, we have

ﬂx):limw C\P ) e i 9en (Bip (7))
dlvg)| =0 V5] (B, (z)) ~ p=0 5] (B, (z)) ~ p=0n—o0 |15] (B, (z))

and then

lvgl-a.e. in O,

Timm i IE E,B
s (z) > lim lim Jim L2 (Ve Bep (2))

vil-a.e. in O.
gy @) 2 Jim T lim =2 sy Wl

To finish the proof, it suffices to verify that for o = pg or o = 1| the function

O3z v+ hy (z) := lim T limg 22 (Ve: Beo (2)
t=1=p=>0c50 O (Bp (x))

is Borel measurable. For this, we need the following result (for a proof, see [FM93, Lemma 2.13,
pp. 46] and |AIb93l Theorem 5.8, pp. 33], see also [ADM92]).

Lemma 5.2. Let o be a positive locally finite measure on Q. For o-a.e. x €  and for every
t €]0,1[, we have
fim o (B (2)) > ¢V,
p—=0 0 (B, (2))
We have by using Lemma for o-a.e. z € O and every t €]0, 1]
do I (ve, Bty (2)) > Tim © (Bip (z)) — Tm O (Bt (x)) o (Btp (7)) > tN@

— (z) > lim lim

do M =B @) S A (B, (@) o o (By (@) o (B, @) = do )

letting ¢t — 1 we obtain h, (x) = % (z) o-a.e. in O. Thus h, is Borel measurable. B

Remark 5.1. Since (19) we can write
dO — = I (ve, Byp (x))
_ > S e = ¥ '
I_(v,0)> /O T (z)do (z) /O lim lim lim do (x)

- p—0 B
oe (o} velray /0T P00 (B, ()

5.4. Proof of Proposition Taking Lemma into account, which gives an integral
representation of the lower Vitali envelope with density the derivative of the set function

m(v,-) = il_r% me (v,-),
we see that it is sufficient to show that for every (v,0) € M (4 RY) x Op ()

I'(w*)-limI.) (v,0) <m* (v,0).
e—0
18



Let (v,0) € M (4 R!) x Op (€2) be such that m* (v,0) < oo with

m* (v,0) = (%1_1}1[1) inf {Zm(y, B;) : {Bi}ier € V‘;(O)} ,

i€l

where, for every 6 >0,
V3 (0) := { {Bi};cr : Bi is an open ball, m (0B;) = 0, B; C O, diam (B;) €0, 6]

I is countable, <O\ U BZ) =0, and B;NB; =0 forall i+ j}
el

with mo := po + 1]

Fix § €]0,1[. There exists {B?} _, € V° (O) such that

i€ls

L (r,0)+6>Y m (y, Bf) . (20)

i€lg
Using we have for every € > 0, every v € M (Q; ]Rl) and every A € B(Q)
0 <me (v, A) < e (A) + Clv|(A),
where [i; := Cpe with C' > 0 given by |(C)

Step 1: we prove that lim._,q > iers Me (v, Bf) <Yier, M (v, Bf). Set g := Cug. We
apply the Fatou lemma to the nonnegative function

Iy 30— (i + Clw|) (BY) = m. (v, BY)

so, we have

tim Y (2 + Clv)) (BY) = me (v.BY) =3 lim (@ + Clol) (B) = me (v, BY))

5%01.611s icls e—0

> (i +Clvl) (B!) - T m. (v, BY)

i€l
> (i + Clw)) (0°) = > Ty m. (v, BY)
i€l

where O% := J B?. On the other hand, we have

i€l
tim 3 (e + Clw)) (BY) = me (v, BY) <5 (07) + Cl| (0°) = T Y- me (v, BY) .
e—0 icly = i€ls
Hence
T 0 —_ 1 _ —_ 1)
ig%z:mg (V,BZ»> < Zm (Vsz-) + Cup (00) = Zm (V,BZ»>
i€lg i€lg i€ls

since po (00) = 0.
Step 2: we prove that there exists {ug}€>0 s>0 C M (O; Rl) such that

e T ) — 5 : ; i g
(%1_13(1) r!1_1{)1((1) I. (I/E,O> < ; m (V, Bi>. Fix ¢ €]0,1[. For each i € I there exists vy, €
i€ls

M (Q;Rl) such that 1/2E (Bf) =v (Bf), Vgg < e and

mo (BY)

7o (0)
19

Me (1/, Bf) +e€ > 1. <u§ Bf) . (21)

i,e)



Set ¢ := Zld& ie Lps. Using we have v € M (O;R!), indeed

1 o (B‘-s)
1 § 0 %
0) < ( 5 1 - (,B»)
0= 3 (1l 0) =5 [ =t 5 (o) #2055
s i€ls
1 ~
<1 (swie(0)+ W0 +1). @2
C \e>0
By using Step 1 and we have
1 é T — é
= < < :
fy Ty e (+.0) = ;z%i% L= (v B) < Fop g 3 ome (v B0) < Jig 3 o (1 57)
i€lg i€lg 1€1s

moreover
sup T (7. + v + o) (0\ U Bf) —o.
6>0¢ i€l

Using a diagonalization argument, there exists {0 (¢)}e>0 increasing with lim._,od (¢) = 0 such
that

lim I, (v:,0) < m* (v,-) (0) and lim (fic + |v| + mo) (0\ U B?@):o. (23)
e—0 =0

1€15(c)
where v, := 1/5( ). To finish the proof we need to show that v, = v in M (O Rl)

Step 3: we prove that I/g(s) AvinM (Q; Rl). Let U C O be an open set. We consider the
sets
Ul = U B} and Us:= U BY. (24)
ie{i€l;:BINU#0} ie{iels:B{CU}

Setting Ks:={i € Iy : B)NU # 0 and B N O\ U # 0}, we have

A (U Us) < 3 WALl (BY) < 2 30 1 (W BY) < > me (v B7) + 7

€K €K €K

o \

<C' (i + vl +m0) (U\U;) - (25)
r_ 1 1
where C' := max (c, CKO(O),C>.
Let {&,,}nen CJ0, 1] be a sequence satisfying lim,, o0 €, = 0. We have to prove that 1™ = v
in M (Q;Rl) where V" := IJET(L "), Since ([22 ., consider f € C. (O Rl) we need to show that

lim fdy /fdy where /fdu /fsclV;1 for all n € N,
0]

n—oo

where f = (f1,.. s fss-oos 1), V" = (V7. 00 ... ) fs € C.(0O) and v € M(O;R) is
a signed measure. Reasoning component by component we can assume that v is a signed
measure for all n € N and f € C. (O). We have for every n € N

/ Fdv™ /O v — /O fmdv"

where f* = max{f,0} and f~ = max{—f,0}. Set M := max (supp f*,supp f~) < co. We can
express this by

M M
"t = ([ fT — v ([~ .
/Ofd /0 ([fF>t])dt /0 ([f~ >t])dt (26)
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Set Up:=[g>t]={x€0:g(x) >t} forallt >0andall g€ {ft,f }. Our task is to prove

that
M

lim v (Uy) dt = /M v (U) dt. (27)
0

n—o0 0

To establish this, we need the following lemma:

Lemma 5.3. Let {e,,}nen CJO, 1] be a sequence satisfying lim, o £, = 0. Then for every n € N
and every open subset U C O

vVP(U)—v(U)=vU"\U)—-v"(U"\U). (28)
where U™ := | B with Jy, = {z el, Ba(a") NU # Q)} = B?(E"), L, := Is(,,) and where
J€JIn
V"= V Z v; ILBn
€l5(en)
with v} : 1/5(5").

Proof of Lemma 5.3l Fix n € N. Let U C O be an open set. We have v" (U \ U") = 0 since
v"(UNU™) =v" (U). Indeed, we have

nUrNU) = Zu< (UB”) ):Zyy(B;mU):yn(U).

i€ly JEIn JE€JIn

Moreover, we have

VU™ =Y v (BY) =Y v (B =v(UM).

JjEJIn J€JIn
Thus, we can write, since U" U (U \ U") = U U (U™ \ U), that
VI (U)=vU)—vU\NU")+v(U"\U)—v"(U"\U). (29)
But v (U\ U") = 0. Indeed, we have U\ U™ = U\ |J B} since B} NU = () when j ¢ J,, and
]Gln

by using the fact that |v| < po + ||, we obtain
pO\UM) | <y (U\ U B”) < v (0\ U B;) 0.

]E n ]EI’rL
Thus, becomes . |
By we see that

M M M
| —u(Uadt] - '/ v O\ Ut~ [ U\ U]
0 0 0
thus to prove , it is sufficient to show that
- M M
lim (/ v (UM \ Uyp)dt +'/ " (Ut”\Ut)dtD =
n—oo 0 0
But, by (25) we have for every n € N
M M
‘/ UM\ Uy) dt‘ / [ (U N\ Upy) dt < C”/ an (U \ Upy) dt
0 0

with ay, == [, + V| + 7o,

Upr = [U]°E) = U B} and Upp = [Use,) = U By
je{i€ln:BINUA0} je{i€ln:BrCU}

Therefore, we are reduced to prove that lim, s fOM an (U \ Uyy,) dt = 0, which is the goal
of the following lemma.
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Lemma 5.4. Let g € C, (O; ]Rl) and set Uy == [g > t] for allt € Ry. Set M :=supp g. For every
sequence {ep tnen CJ0, 1] satisfying lim,,_o €, = 0 we have

M

lim an (U \ Ugy)dt = 0.

n—o0 0

Proof of Lemma 5.4l Fix n € N. Since diam (B]") <4 (n), we have
Ul' C NsnylUt] :={z € O = dist (z,U;) <0 (en)}

thus oy, (U \ Upp) < ap (J\/;;%Ut] \ Ut’n) . Now, we give an estimate of o, (N,;(n) (U] \ Utm)

from above as n — oo. Since (23] we can write

0> Ima, (;\| UBru U B lim a, | U;\ U B"|UUpn
n—00 i€Jn i€l \Jn oo i€Jn\Kn

= Tim a ((Ue\ Usn) \ F)

where F;, ;= |J B} and K,, := Ks(,). Observe that
1€Jn \Kn

F, C{x € O :dist (x,0U;) < 26 (en)} =: Nos(m)[0U1],

it follows that

Lm Qnp (Ut \ Ut,n) < @ O, ((Ut \ Ut,n) \Fn) + @ Qnp ((Ut \ Utm) N Fn) < m Qp (Fn) .

n n—oo

Now, for every k € N there exists N € N such that for every n > Ny we have ¢ (¢,,) < § (),
which implies that N s,y [0U:] C Nog(x)[0U:]. Therefore for every k € N

T a (U \ Urn) < Tm_om (Nag() [0U]) < a0 (Nasw) [OU])
where g := pg + |v| + 7. Letting k — oo we obtain
n@o an (U \ Uryn) < g (OU) .
In the same way, for every k € N
TIimap, (N [0\ Ur) < Tim_a (N [U2]\ Ur)

and letting k — oo
n@ Qnp (Ng(n) [Ut] \ Ut) < ((3Ut) .

Now, we can write

i ag (U \ Urn) < Tim o (N (U] \ Urn)

= m (an ((./\/’5(”) [Ut] \ Ut) \ Ut,n) + ap, (Ut \ Ut,n))

n—o0

< n@(} Ol (Né(n) U]\ Ut) + n@ an (U \ Ut,n) < 2a (0Uy)

Now, by noticing that OU; C [¢g = t] and fOM ag ([g = t]) dt = 0 (by Fubini-Tonelli theorem), we
apply the Lebesgue dominated convergence theorem to find

M
lim an (U \Usyp)dt=0.1

n—oo Jq
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6. AUXILIARY RESULTS

6.1. Reduction to integrands with linear growth. For each 5 € N* and each € > 0, we set

/ff( d: (x)) dpe (z)  if v < pe

)

I (v,0) :=
o0 otherwise,

where f (z,v) := inf {f- (z,w) +jlv—w|:we Rl}. Observe that f/ < f., and then I < I.
for all 7 € N* and all € > 0.

Lemma 6.1. Assume that and hold. For every v € M (Q; Rl) and every O € O ()

*\ _ T — *\ _ T3 TJ

(I (w*)- T .) (,0) sup (P (w) -Tim 17) (v, 0)..
Proof. Let v € M (;R") and let O € O (). It is sufficient to show that
00 > A, = sup (r (w*)-mfg) (v,0) > (r (w*)-ﬂ[s) (v,0).

jEN* e—0 e—0
Let j € N. There exists {u£}5>0 cM (Q'Rl) such that v! < pe for all e > 0, vl Xy as
e —0,and A, = supJGNA where Al = lim,_,q IZ <1/6,O>. For each € > 0 and j € N*, set

ol (w,0) := [, f- ( , (fllll:i () +w (m)) + jlw () |dpe (z) for all w € L), (O;R"), which satisfies

) dv! .
! (—duo> = j[11](0) < co.
€

Applying Rockafellar interchange of infimum and integral theorem [Roc76, Theorem 3A], we
obtain, for every ¢ > 0 and every j € N*,

I (v1,0) = eLlin(fO ) @ (w,0) .
w He i

There exists C), > 0 (depending on A,) such that for every ¢ €]0,1[ and every j € N* there
exists wl € L}LE (O;RZ) satisfying

L+ Cy 2 e+ 12 (1,0) 2 L (v - wlpe, 0) +j [wl] 1y (om0

It follows, on one hand, that sup..g |w:

coercivity condition |(Cy)) that

< 1% and, on the other hand by the

L (O:R) !
V2[(0) <7y

for all € > 0 and all j € N* where 7, := (1 + c_l) (1+ C,). By the lower semicontinuity of the

total variation, we infer |v| (O) < r,. Since Cy (O; Rl) is a separable Banach space when endowed

with the sup norm, the weak* topology on the ball B, (0) C M (O' ]Rl) of radius r, and center

0 is metrizable, thus there exists a metric d,, on B, (0) such that lim._,od, (1/5, ) =0 for all

j € N*. By a simultaneous diagonalization, there exists an increasing sequence {j (¢)}. C N*
such that

Tim j(e) j(e) Tim Tm J J ; j(e) —
ilg(l]lg (1/6 + wl! ,uE,O> < lim lim I, (V + w ,LLE,O) < A, and ilg(l)d,, (1/6 ,1/) =0.

j—o0e—0

Now, we see that for every ¢ € Cy (O; Rl) and every € > 0

()| 2020 (80

< ‘<Vﬁf(5) ~v, 90>‘ + 10l 1j+(g 7
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which shows that ug(s) + wg(s),u8 S vin M (O; Rl) as € — 0, and consequently
4,2 (T(w)-Tm 1) (,0). m
e—0
6.2. Properties of m.. In this part, we assume that [(C;)[ holds. We begin with the following
lemma.
Lemma 6.2. Let B € O (2). For every e>0 and every (A, v) € M (Q;R') x M (;R!) we have
[me (A, B) —me (v, B)] < C|X(B) — v (B) (30)
with C > 0 is given by|(Cy). In particular, we also have
v(B)
B = B).
mf': <M€ (B)ILLE? ) ms <V7 )

Proof. Fix B € O(92), e>0 and \,v € M (Q;Rl). Let § > 0. There exists v € M (Q;Rl)
with v5 < p and v5 (B) = v (B) such that m. (v, B) + 9 > I. (vs,B). Let k € N* and By, :=
{z € B:dist(z,0B)>1}. We set

1
e (B \ Bk)
We observe that A\s < p and As (B) = A (B), so we can write
Mg ()\, B) < I ()\g,B) =1 (V5, Bk) + I ()\5, B \ Bk) < meg (I/, B) + 64 1. ()\5, B \ Bk) . (31)
Using the growth condition |(Cy)} we have

As = I/g]lBk—{—( ()\(B)—I/(g (Bk))> /-I/E]IB\Bk'

1
I (\s, B\ By) < C )
(o, BA B B\Bs pe (B \ Bg)

Since limg_yo 5 (By) = vs (B) = v (B) and limg_, o0 pe (B \ Bg) = 0, we have
T L (3, B\ By) < CIA(B) - v (B).
—00

(A(B) — vs <Bk>>\ e

So, inequality becomes
me (A B) < me (v, B) + 5+ C|A(B) — v (B)
and the proof of is complete by letting 6 — 0. B

Using Lemma we obtain the following consequence which is used in the proof of Propo-
sition

Corollary 6.1. Let 0 € M (Q) and v € M (4 RY). Let x € Q be such that

B )| By )|
tiny 52 (1)~ e =0 and g |9 ) RO 20 )
Then for every ¢ € C (ﬁ)
dv
me <¢ (x)o, B, (x))
im su do _ Mne (¢V7BP (33)) _
P o (B, (@) o(B, (@) | (33)

Proof. Fix x € Q satisfying (32). Let ¢ € C(Q), and let w : [0, 00[— [0,00] its modulus of
continuity, i.e.

w(p) = sup({‘cb(z)—qb(z')‘ QX Q3 (2,7), [z=2]<p})
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satisfies lim, ,ow (p) = 0. Using Lemma we have for every p>0

Me ((bzll:;( )o, By (z )> me (v, B, (x))

sup

e>0 o (B (x)) o (B (x))
<olf F@eEdr e~ pes [ s
dv dv

<Olf @O 6@+ @ow
st - LDy

B o, O O ) = L)

W o VB @)l | 1 (B, ()

e[ e~ Ty w| + o ([ o)+ T )

Passing to the limit p — 0, the proof of . is complete. B

6.3. Integral representation of the Vitali envelope of a set function. This section is dedicated to
establishing the integral representation of the Vitali envelope of a set function defined on open
subsets of ). The inspiration for this approach partly stems from [BB00, [DMMS86, [BEMOS].
We then apply this representation to the set function m (v, -) := lim. o m. (v, -).

Let € My (2). For each open set O C Q, let %, (0O) C O (O) be the set of all open balls
B in O whose boundaries have zero measure, i.e. u(90B) = 0.

Let G : By (2) — R be a set function. We define the lower Vitali envelope of G' with respect
to

O(Q) 30— G* (0) —sugmf{ZG {B; }ZeIeVS(O)}
€= i€l

and the upper Vitali envelope with respect to u

0)>0+— GL(0) mfsup{ZG :{B; }lgGVE(O)}

el

where for every € >0

V4(O) = {{Bi}z‘el C Ao () : I is countable, (O\ U Bi) =0, B; C O,

el
diam (B;) €]0,e[ and B; N B; =0 for all 2%;}

We consider the following two conditions on a set function G : O () — R:
(V1) the set function G is dominated by a positive measure absolutely continuous with respect
to u, i.e. there exists a € My () with o < p satisfying
|G(0)| <a(0) forallOeO(Q).
(V2) the set function G is subadditive, i.e. for every U,V,0 € O (Q) with UNV =0, U C O,
VcCOand p(O\ (UUV)) =0 it holds
GO)<GU)+G(V).

In [AHMI18| Theorem 3.17, p. 65], we established the integral representation result for the

Vitali envelopes of G under and It is worth noting that the theorem is proved

in the particular case where the measure of the boundaries of balls is zero. However, this

result naturally extends to the more general case where the measure of the boundaries of balls
25



is non-zero, as shown in [AHMZI9]. Consequently, we introduce the set R% := {p €0, o0]:
1 (0B, (x))>0}.

Theorem 6.1. Let p € My (). If G: O () — R satisfies and [(V,)] then
GBI
Qo>zr— Rﬁlﬁp—)O (B, (2)) €L,(Q)
and G(B
G} (0) =G~ (0) = /()leigr;lﬁo /Mdu ()  forallO € O(N). (34)

For each v € M (Q; Rl) we consider m* (v, -) the lower Vitali envelope of
m(v,-) = 51_13(1) me (v,+)
with respect to the measure mg = o+ |/5]. The following result is deduced from Theorem ((6.1)):

Lemma 6.3. Assume that holds. Then, for every v € M (4 RY), and every o € {uo, |v§|}
the function

s i B @) e (1B (@)
BT I e (B, @) i o (B, (@)

and for every O € Oy ()
m* (v,0) = Z /0 lim Mda( )

—0 0' x
oeluolng} 7 © " p ()

_ / lim Tm e W B (@) ) oy / lim T Mdm(m).
O O

p=0e=0 pio (B, (x)) p=0=0 i (B (2))

€L, (Q)

Proof. The proof is divided into two steps.

Step 1: We begin by verifying the assumptions and to apply Theorem with
G()=m (v, ) and w9 = po + |/§]-

Let v € M (Q;R!). We start by showing that the set function m (v,-) : O(Q) — Ry is
subadditive. Let Uy, U, W € O () be such that U; € W, Uy C W with o (W \ (U1 UUz2)) =0
and Uy N Uz = 0. We can assume that m (v,U;) < oo and m (v,Usz) < co. Thus, there exists
g0 >0 such that m. (v, U;) < oo for all € €]0,g0[ and all i € {1,2}. Let € €]0,e0[. There exists
A€M (Q;Rl) such that \; < pe, A (U;) = v (U;) and

2 2
€—|—st VU ZZ AzaUz
=1 =1

Set Ao := Y7, A\ Iy, We see that Ag < g and Ao (W) = Ao (U3 UUz) = Ay (Uy) + Ao (U) =
v (Uy UUy) = v (W) since v < mp. Therefore, we obtain
2
e+ me (v, Ui) > I (Ao, W) = me (v, W).
i=1
Passing to the limit € — 0, we obtain
By we have for every O € O (2)

m (v,0) < T I (1,0) < C (T 1 (0) + 7] (0)) <, (0)

where ay, := Cpp + C|v| < 7y and, with C' > 0 given by |(Cy)l Thus|(V;)|is satisfied. It follows
that m (v, ) is mp-differentiable, and for every O € O ()

m* (v,0) = / lim MdWO (z).

0 Rz, #p=0 0 (B, (7))
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Step 2: In this second step, we show that the limit in p appearing in the density of the
integral representation does not depend on R7 . So, let us show that for every z €

i OB @) 05, @)
Rz Fp—0 o (B, (x)) p—0 m (B, (x))

Fix & € Q. The proof is divided into two substeps.

(35)

Substep 2.1: Let {pn}nen CJ0, 1] satisfies lim,,_, pr, = 0 and
OB @) By, @) (0B, (0)
neN 0 (B, (7)) n=oe o (By, (2)) p—0 70 (By (2))
Fix n € N and § > 0. There exists €2 > 0 such that for every e €]0,&3[
me (v, By, (1))
7o (Bp, (1))
Fix ¢ €]0,3[. There exists A € M (Q;R!) such that A < pie, A (B,, () = v (B,, (z)) and
o

570 (B, (2)) +m2 (v, By, () = L (\, B, (2)).

We claim that there exists 7, 5 €]1, 2] such that

1L 70a] < {1125 0, (B (0)\ By (0) < 70 (B )}

< 00

Indeed, otherwise there exists a sequence {tx}ren C|1, 2] satistying ¢ €]1,1 + %‘H] and

00 (Buypn (1) \ By, (2) > 570 (By, (1)
which implies
0
o (B 1y @)\ By, (2)) > 570 (B, (2))

for all £ € N. By letting & — oo we obtain gTF() (Bp, (z)) = 0 a contradiction. Now, since
7o (Q) < o0, the set {t €]1,2[: my (0B, (z)) > 0} is countable, thus

11, 7.6] \ {t €]1,2[: w9 (0Byp, (x)) > 0} # 0.
So, there is a sequence {t} },en C]1,2[ which satisfies for every n € N

o (Bigp, (2)\ By, (@) < gwo (B, (x)) and m (0Byg,,, (x)) =0.
Set
v (Bugy, (2)\ By, ()

IU’E ]lB Pl (
e (Bigp, @)\ By, (@)

It is direct to see that \) < p. and A (Btg on (az)) =v (Bt% o (x)) We can write using growth

conditions
me (v, By, @) < L (X, By, (2)) + L (M, By, (2)\ By, (x))
= L\ By, (@) + I (X, By, () \ By, (@)
270 (By, () + me (v, By, (2)) + 05 (B, (2)\ By, (1)
where o := Cp. + C|v|. Dividing by o (Bti . (x))
Me (V, Bys ., (:c))
7o (Big,, (@)

o .
Ay = A 1p,, )+ z)\Bpy, () *

IN

me (v, By, (2)) (Bigp. (2)\ By, ()
70 (B, (2)) 70 (B, (1))
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letting € — 0, since oy, (8Bt§lpn (:):)) = 0 because o, < 7, we obtain

W (1. Byy, @) 5w, @) (B @)\ By (@) m (v, By, (x))
o(Bap @) 2 mBu@) T wBL @) S (B, (@)
Now, letting n — oo, one has lim,, tipn =0 and
o mwB@) T (%P, @)
madron 0 (Bp@) o (B (o)
m (v, By, (x)) m (v, B, (z))

n=oo g (B,, (z)) :“,1%% mo (By (2))

Substep 2.2: Let {pp tnen CJ0, 1] satisfies lim, o pp, = 0 and

m (v, B m (v, B — m(v,B
Sup m (1/7 Pn (:U)) < 00 and hm m (V7 Pn (x)) — llm m (1/7 14 (x)) .
neN 70 (By, (2)) oo o (By, (2))  p=0 7o (B, (7))
Fix n € N and § > 0. There exists €2 > 0 such that for every e €]0,&3[
me (v, By, (x))
70 (B, (2))

Fix € €]0,€%[. There exists 7, 5 €]0, 1[ such that

(36)

< 00

s 116 {1 €10.18 4 (B () By, (@) < G0 (B ()}

and
[Tn.6, 1\ {t €]0, 1[: mo (0B, (x)) > 0} # 0.
So, there exists a sequence {t},en CJ0, 1[ which satisfies for every n € N

o (Epn () \ By ., (x)) < gwo (B, (x)) and m (E)Bt%pn (m)) —0.

There exists A € M (Q;R!) such that A < e, A (Bt%pn (:U)) =v (Btélpn (az)) and

gm (Btzpn (a:)) + m. (V, Bys ., (l‘)) > I (N Bis p, (“’)> :

Set
v (By. (2)\ Bygy, (@)

(
5 .
Ay = A]lBtéLpn(w) +
e (By, (2)\ By, (@)

It is direct to see that \) < p. and N (B,, (z)) = v (B,, (r)). We can write using growth
conditions

me (v, By, (2)) < L (N, Big,, (0)) + L (N, By, (2) \ Byg,, (@)
= L. (A, By, (@) + L (N, By, () \ By, (@)

70 (By, (2)) +me (v, By, (2)) + 05 (By, () \ By, (@)

Dividing by mg (B,,, (x)) we have

) pelp,, @\By, (@)

me (v, By, (1)) n
o (Bpn (38)) ) (Bt%pn (x)) o (Bpn (iﬂ))




Letting ¢ — 0 we obtain

m <V, Bys ., (1:)) ay (

m(v,B,, (x)) ¢ op
o (BP: (2)) = 2 " 0 (Btflpn (x)) " o (Bp, (7))
. m <1/, Bys ., (x)) s
7o (Bug,, ()

since <8Bt2pn (x)) = 0 because o, < my. Letting n — oo

o BBy (@) _ (0.5, (2)
p—0 7 (B, (z))  n—oo mo(B,, (x))
(v By, @) ™ (v, B, (2))
S (g @) e B, )

Combining and and letting 0 — 0 we obtain . |

6.4. Proof of Theorem We see, by setting f. (x,v) := ® (v) for all (x,v) € Q xR!, that
and are fulfilled since ([9)). So, it remains to verify (Hfﬂ'eg) and (Hging).

Let p > 0,e >0and x € Q. Let v € M (Q;Rl). For each j € N we denote by ®/ the
Moreau-Yosida envelope of ® defined by

I (w) = Uiél]}gl D (w+v) + jlv|.

(37)

Note that ®7 (0) = 0 for all j € N since (9), and
‘(I)j (w) — &7 (w')| <j ‘w - w" for all (w,w’) € R! x R,

Fix j € N. Let ¢ €]0,1[. Consider ¢ € C. (B, (z);[0,1]) be such that ¢, =1 on By, (z) and
set fie := w¢pte. Using Lemma one has for every u € R! and every o € {uo, ||}

| (2B
il (uo, B, (1)) _ (2B ) < B Boloyy (2B
7 (B, @) 7 (B, &) = 0B, ) "\ (B, ()

Therefore when o = pg

mi (uo, By (z)) _ i (B, () . ; o, Fo (B (2))
po (B (2)) = o (By (w))q)] ( fic (B (w))>'

Since iz (0B, (x)) = 0, we have lim._, /i (B, (z)) = pr(w) @rdpo. Weset o, () ::pr(x) rdig.

Passing to the limit € — 0, one has
, 1
t
pp (2) @7 | u
’ ¥, (@)

7 mz (uo, B, (x))
=0 po (By (7))

IN

Since 1 > ¢y > 1p, (), by using we see that

. TR / BT . t -
lim lim 7, () = }gl}iljn(l)sop (z) = 1. (39)
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Consequently, letting p — 0

j
Tim Tim 212 P 1)) (uo, B, (@))

< Tim 4 ot — j
p—0e—=0 g (Bp (r)) — ;l_r}(l)]]u‘ (1 Yp (x)) + ;lg(l) Pp (z) 7 (u)

= jlu 1—lim<ptac —i—limtptxfbju
.7‘ ’ ( /ﬁ) P ( )) p—0 p( ) ( )
and passing to the limit ¢ — 1 one obtains

77?] 7, E;

Thus

ml (uo, B, (x)) i (y
PRI B,y = "o

Assume now that o = |/5|. We suppose

v51 (Br (2))

lim —————- =
r—0 po (B (2))

and we set t7 := % Using (38) one has

im mé (U’VS\, B, (x)) < Mo (Bp (z)) t (z) AR ’Vg, (Bp (7))

0 gl (B (0) Il (B, (@) 7 [ g
By()

<1t () ® <u b >
S ¢y ()

1, & 1
st (1% )~ 0] < s

tr i

Sé‘(pz(x) ugpf,p(as)_tg + (z) @ (tu)

letting p — 0

&7 (t7u)

&

— mi (u|5], B, (x))
;1)—>Oi—>0 ’VO‘( p(l'))

<l (1 1 () + i )

= jlu| (1= lim ¢ (z) ) + lim ¢! (z) (D’ u).
j‘ |( e p( )> 20 p()( ) ()
and passing to the limit ¢ — 1 by using (39)), one obtains

mhime(ulyd B, (7))
p—0e—0 ‘V()’( p x))
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Using a change of variable, the Jensen inequality and the Lipschitz property of ®/ we have

)
a (B (1)) (B (

p
pe (B () j uU(Bp(ff)) Y UU(Bp($))
Zcf(Bp(azr) <CI) < us(Bp(:v))> ? ( ﬁs(Bp(x))>>
ol g (05 o)
o (B (x))
e (By@) .
> G e By )
fie (B (w))q)j< o (B, (l‘)))
P

+

But

hence, by convexity, one has

lim mi (uo, B, (x))
0 0 (By(z))

1o (Btp (2)) o (B, (@)) u/ wrd o
By(z)
) wo (Bry @)\ o By @)+ o (By()
e (1 R o (Bip () ) ! o (B, (x)) i ()& (uNO (Bp () 902 (x)>
| wo (Br, @)\ 1o (B, () [ o (B, @)
o (1  ho (Bip () ) ’ o (B (x)) v <ur“0 (By (:c)))

Suppose o = pg. We have

0 (B, @)

' o
2 Jlul+ @7 (w) = jlul= S =y

A

m mz: (U/.L(),Bp (:U))

=0 Ho (B, (x))
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Letting p — 0 one has

— J B A Mo (B; (w))

Tim lim mz (upio, P (z)) > jlu| + ®7 (u) — jlu| im NI T

p=0c50 o (By () p=0 1o (Bip (7))
1

and passing to the limit ¢ — 1 one obtains
. J B
im hil’Il me (ulu’O’ p ($))
p—0:0  po (B (2))
Suppose o = [55]. Let O € O (2). Since Lemmal5.2} consider z € O such that for every o €]0,1|

7 (u). (41)

lim 461 (B (2)) =00 and lim M > ol (42)
r=0 po (By () =0 [15] (B ()
Let p > 0. Set ¢; := %. We have
J &I (ut® to (B, (x
@ Mg guaa BP (1")) > ]|u’ 4 (uP) —j|u| < P )
=0 151 (B (7)) ty fo (Bip (2))

Letting p — 0

1
0 (B @)
r—0 MO (Br (.CE))

o J B
o lim mi Eua, b ()
p=0es0 V5] (B, ()

> jlul + (7)™ (w) = jlul

and letting ¢ — 1 one obtains

J
T Lin 222 (4 B (1))

oy lan =B, @) = () @)

Now, we see that the formulas for the limit integrands are given by:

— mé (upo, B, (7))

lim lim =sup®’ (u) =P (u -a.e. in O,
p=0e=0  po (B (2)) jeN (u) () po
and
ey s| B 1. 1.
Tim Tim (Z‘VOI’ o (2)) = supsup - P’ (tv) = supsup -’ (tv) = * (v) |y5l-a.e. in O. A
p—0e—=0 5] (B, (x)) jeN t>0 t t>0 jeN

6.5. Proof of Lemma Fix AeB (RN), w € Y and u € R'. First, observe that we can

write

= in T x u'uo (4) w
5. (4) () .—M(gw)/f‘f( o)+ ) an
Ja ¥du=0

= weLi?g;Rl)Ag (x,w (z) —]gwdu,w) du,

where g (z,v,w) = f (x,v + u‘ﬁ%%w) satisfies

g(z,v,w) < C' (1 +v]) (43)
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for all + € RY and all v € R!, with C' := C (1 + Jul l:f((,f))) since [(CY)l As L, (;RY) is

separable, there exists a countable set D such that cl D&)Rl) (D) = Lb (Q;RN )’ and by using
123 b
43,

—

Vitali convergence theorem and the growth condition (43 we have

inf - = inf - .
weﬁrész;w)/Ag (x,wx) ][Awdu,w> dp felD/Ag <x,w<:c> ][AWM,W> dp

Now, for each ¢ € D the map ¥ > w +—— ng (a: U (x fA Ydpu, ) dp is measurable since for
every x € {2
g als ),
w4+ ul (A s (T,B(R4))-measurable.
It follows that ¥ 3 w — mfweLl (Qm?) ng (z,9 (z) — f, ¥dp,w) duis (T, B (Ry))-measurable,
which means that S, (4) is a (T,B(Ry))- easurable function. Now, the condition |(CY)]

and insures that S, (4) € L' (3, T, P).
Let A C [0,1[" be a Borel set. We see that for P-a.e. w € %

upio (A)
su<A><w>s/Af(x, e M)duSCo(lHUl)

where Cp := C (o + 1) ([0,1[Y) (1 4 |u), and with C > 0 given by [(CY)
Next, we verify that S, is a stationary process by using|(C%)} For P-a.e. w € X and for every
z € ZN, one has

Su(A+ 2) (w)

:inf{/AJr f(x,ji(m),w) du:M(Q;RZ) 5 A < pand )\(A+z):uuo(A+z)}

:inf{/Af<y—|—z,flz(y+z),w>du:/\/l(Q;Rl> 9)\<<uand)\(A—|—z):uu0(A)}

- inf{/Af <y ;Z: (y) ,Tzw) dy - M (Q;Rl) 5 A < poand A (A) = upo (A)}
=Sy (4) (row)

since puo = poLy is invariant by translation.

It remains to show that S is subadditive, i.e. satisfies Let w € ¥ and let (A,B) €
B(RN) X B(RN) be such that AN B = (. Let € > 0. There exist Ay € M (Q;Rl) and
A € M (€ RY) such that Ay < p1, Ap < p, A (A) = upo (4), Ap (B) = upo (B) and

€+Su(A)(W)+5u(B)(W)ZAf<y,C?;‘(y),w> du+/Bf(y,Cf2f<y>,w) dn.

Set \=Apla+Aplp e M (Q;Rl). It is direct to see that A < pand A (AU B) = upug (AU B).

Thus
) (W) AUBf(y,fhi(y),w>du
S/Af<y,dc?:(y)»W>du+/Bf<y,c$(y)7w>du
<e+Su(4) (W) +Su(B)(w). B

6.6. Proof of Lemma [4.1][(24)} First, note that there exists ¥’ € 7 with P (¥’) = 1 such that
for every w € ¥/, every u € Q' and every cube B C R¥,
S. (1B S, ([0, k[N
hmM — inf FZ “([7]\/[) (w).
e—=0  po (EB) keN* pok
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Fix w € Y. Let § >0, u € R and u € Q! be such that |u —u| < /2. By Lemma for every

€ >0 and every k € N*
Sy (%Bp (m)) (w) i Sy ([0, k‘[N) ()
1o (B, (@) pok™
Sy (%Bp (CL‘)) (w) B S, (%Bp (33)) (w) N S. (%Bp (a:)) (w) _EZ S, ([O,k[N) ()
T ko (2B, (2)) po (2B, (x)) po (B, (x)) pok™
N N
T |Er |2 gf,;ﬁ[ ) () — BT |2 g(?,;ﬁ[ ) (w)
S, (%Bp (:L’)) (w) e S, ([O,k[N) N
<6+ v (1B, (1)) E ST (w)]-
Passing to the limits € — 0, k — oo and § — 0, we conclude that
. Sg(iB) (w) | Sz ([0, k[Y)
B 1m) T |
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