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Abstract
Light sheet fluorescence microscopy (LSFM) is a widely used technique for imag-
ing cleared tissues and living samples. However, like most filter-based fluorescence
techniques, LSFM cannot quantitatively image samples with autofluorescence or mul-
tiple fluorophores with overlapping spectra. In this study, we introduce hyperspectral
structured LSFM that combines structured illumination in one spatial dimension with
a data-driven algorithm based on a neural network and a physical model of the
acquisition process. Our hyperspectral structured LSFM approach enables the robust
reconstruction of hyperspectral data in samples with multiple fluorophores, in addi-
tion to the quantitative estimation of the abundance of each fluorophore present. We
demonstrate the efficiency of our hyperspectral structured LSFM approach by imag-
ing zebrafish embryos in 3D, illustrating autofluorescence removal and the separation
of two spectrally overlapping red fluorophores. Hyperspectral structured LSFM paves
the way for versatile high-resolution, quantitative hyperspectral imaging in biomedical
research.

Keywords: Fluorescence microscopy, hyperspectral imaging, quantitative imaging,
computational imaging, structured illumination, image reconstruction, spectral unmixing,
deep learning. [Compiled on December 6, 2024]
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1 Introduction

Light sheet fluorescence microscopy (LSFM) enables 3D images of fluorescent samples to

be captured with low photobleaching, high acquisition speeds and high depth penetration

[1]. The ability to acquire images of live specimens over extended periods [2] has made

LSFM the tool of choice in developmental biology and cell biology [3]. In short, LSFM

involves the illumination of a thin plane of the sample, which matches the focal plane of

the detection optics [4, 5]. A myriad of design variants have emerged, facilitating the study

of organ morphogenesis and function across diverse specimens including cellular spheroids,

Drosophila embryos, zebrafish embryos, larvae and other model organisms [4, 6].

Similar to most fluorescence imaging techniques, LSFM requires that optical filters are

chosen to retain the fluorescence emitted by fluorophores of interest while rejecting all other

undesired light. In studies involving the quantification of fluorescent markers or proteins

expressed in transgenic models, the presence of autofluorescence is highly detrimental as it

compromises any quantitative assessment. Moreover, the analysis of samples with multiple

fluorophores is strongly limited, if not impossible, with filter-based systems. In particular,

spectrally-overlapping fluorophores cannot be resolved [7].

Hyperspectral imaging - whereby the light spectrum is measured in hundreds of chan-

nels over several hundred nanometres - has enabled to overcome both issues in fields such as

remote sensing and medical imaging [8]. Hyperspectral LSFM was introduced by Jahr et al.

[9] with a system that scans an illumination line. Although effective, the approach requires

complex synchronisation between illumination, detection and fast cameras. Alternatively,

image mapping spectrometry enables snapshot imaging [10], though the spatial and/or

spectral resolution is compromised by the remapping strategy. Rocha-Mendoza et al. [11]

have demonstrated Raman LSFM with high-speed, electronically-controlled tunable filters

without moving parts, but light collection is poor [12]. The speed of Raman LSFM was

later improved by Müller et al. [13] using a Fourier-transform imaging spectrometer [14]

that involves the acquisition of multiple images at varying optical path differences between
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the two arms of the spectrometer. More recently, LSFM has successfully adopted the con-

cept of phasor-based hyperspectral snapshot imaging [14–16]. Though the technique only

requires a pair of filters with sine/cosine transmission spectra, thereby conferring high

speed and sensitivity, it assumes that only a few parameters are required to describe the

measured spectra [17].

While the first generations of hyperspectral imagers were hardware-driven, more recent

versions are computational systems that reconstruct the hypercube from raw measure-

ments using dedicated algorithms [18]. This trend has been driven by the breakthrough

of compressed sensing theory [19], that provides a theoretical framework for the perfect

recovery of signals from few measurements. Deep learning, after revolutionising the field

of computer vision [20], has also emerged as a powerful tool for image reconstruction

[21], in particular in computational optics problems [22] including multispectral imaging

[23, 24]. Compared to the sparsity-promoting algorithms used in compressed sensing the-

ory, data-driven algorithms based on deep learning not only improve image quality but also

accelerate the reconstruction time [22].

In this study, we present a computational strategy for LSFM, which enables imaging

at high spectral resolution thanks to structured illumination. Our hyperspectral structured

LSFM approach is inspired by single-pixel imaging [25–28] and illustrated in Figure 1. The

fluorescence signal emitted by the light sheet is focused onto the entrance slit of an imag-

ing spectrometer. Spatially-encoded light sheets are achieved using a digital micromirror

device (DMD) in order to recover the spatial dimension orthogonal to the slit that is lost

during the acquisition process. Inspired by algorithms designed for single-pixel imaging

(e.g., see [29]), we introduce a data-driven reconstruction algorithm capable of recovering

the lateral dimension from the modulated measurements. Our algorithm also incorporates

the physical model of the structured light sheets, while benefiting from recent advances

in deep learning. Finally, a spectral unmixing algorithm is integrated into our pipeline to
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separate and quantify the spectral components of the sample. Our hyperspectral struc-

tured LSFM approach supports both conventional and hyperspectral LSFM, in addition

to quantitative imaging in samples with multiple fluorophores. We demonstrate the capa-

bility of hyperspectral structured LSFM in terms of autofluorescence removal in zebrafish

samples, in addition to the spectral separation of DsRed and mRFP, two red fluorescent

proteins with overlapping emission spectra. Hyperspectral structured LSFM opens the door

to high-resolution, quantitative hyperspectral imaging in biomedical research.

2 Results

2.1 Structured light sheet

Conventional LSFM illuminates the sample from the side with a uniform sheet of light [30].

In contrast, our hyperspectral approach is based on structured sheets that are modulated

along the dimension orthogonal to the propagation axis (see Fig. 1b). We achieve the

structured sheets by illuminating a DMD with a Gaussian beam. We then focus the light

using a lens (see L in Fig. 1b) and an illumination objective (see O1 in Fig. 1b). A

diaphragm must be placed at the focal point of the lens (see D Fig. 1b) to filter out the

diffraction pattern created by the DMD. The generation of the structured light sheet is

computer-controlled by uploading appropriate spatial patterns onto the DMD (see Fig. 1c).

The optical layout of our hyperspectral structured LSFM device is provided in Section 1

of Supplementary material.

The transverse modulation of the sheet is controlled by the transverse modulation of

the DMD pattern, while its thickness is controlled by the height of the DMD pattern.

Great care must be taken to cope with diffraction. We retain only the zero-th diffraction

order to maximise the illumination uniformity along the optical axis (see Section 2 of

Supplementary material). While previous attempts to combine a cylindrical lens with a

DMD resulted in a bulky system with low spatial frequency modulation [31], our DMD-only

approach is compact and demonstrates improved spatial resolution. Our system produces
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Fig. 1: Overview of hyperspectral structured LSFM. a, Fluorescence from the illuminated
sheet is focused onto the entrance slit of an imaging spectrometer (spectral arm); the
same signal can also be imaged directly by camera (grayscale arm). b, To recover the
spatial dimension orthogonal to the slit, which is lost during acquisition, the illumination
sheet is modulated transversally using a DMD. D: diaphragm; DMD: digital micromirror
device; L: lens; O1 and O2: objectives; S: sample. c, A sequence of measurements is
acquired by the spectral arm by uploading several modulation patterns onto the DMD. d,
The hypercube is recovered from the sequence of spectral measurements by a data-driven
reconstruction algorithm that combines knowledge of the actual illumination patterns,
Tikhonov regularisation and a convolutional neural network. Given the spectral signature
of the components of the specimen, a non-negative least squares unmixing algorithm then
quantifies the concentration of the fluorescent proteins of interest.
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sharp optical sectioning, generating 1.5× 1.5 mm2 structured sheets whose thickness can

be computer-controlled down to 8 µm (FWHM, see Section 3 of Supplementary material).

Using 128 modulation patterns, sharp transverse modulations are produced that translate

into a transverse resolution of 16 µm for a longitudinal resolution of 7 µm (see Section 4

of Supplementary material).

Hadamard modulation profiles were chosen to benefit from Fellgett’s advantage,

gained from the acquisition of multiplexed rather than direct measurements [32]. Fell-

gett’s advantage is demonstrated by comparing the images obtained with our setup using

Hadamard illuminations and line illuminations. Over the range 500–600 nm, we observe an

improvement in the peak signal-to-noise ratio of 7-8 dB (see Section 7 of Supplementary

material).

2.2 Double arm set-up

The fluorescence emitted within the light sheet passes through the collection objective and

is sent to either a grayscale or spectral arm (see Fig. 1a). The grayscale arm corresponds

to conventional LSFM, where a camera acquires the fluorescence distribution across the

two spatial dimensions of the illumination plane. When a sample with homogeneously

distributed florescence is considered, the grayscale arm acquires the distribution of light

within the illumination plane, which corresponds to the actual illumination profile and

differs from the profile uploaded onto the DMD (see Fig. 1c). The grayscale arm is therefore

capable of both conventional LSFM and calibration of the modulation profiles of the

structured light sheets. Knowledge of the actual illumination profiles is a critical aspect of

the reconstruction algorithm.

In the spectral arm, a camera acquires images that represent spectra along the entrance

slit of the spectrometer after integration in the transverse direction (Fig. 1c and Visual-

isation 1). The transverse spatial dimension can be recovered by exploiting the spectral

6



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

images acquired using several illumination profiles. We consider a Czerny-Turner spec-

trometer with a 300 line/mm grating leading to a spectral resolution of 2 nm across a

bandwidth of 108 nm.

2.3 Two-step algorithm for reconstruction and unmixing

We recover the quantitative abundance maps of fluorophores using the two-step algorithm

depicted in Figure 1d and detailed in Section 4. The first step reconstructs the transverse

spatial dimension lost during acquisition, while the second step unmixes the multiple spec-

tral components (e.g., fluorophores) of the hypercube, leading to quantitative abundance

maps.

The first reconstruction step assumes knowledge of the modulation patterns acquired

by the grayscale arm (see Fig. 6 of Supplementary material). By concatenating all patterns,

we build the measurement matrix that models the acquisition process. As its inversion tends

to amplify noise, the inverse problem is stabilised by combining Tikhonov regularisation

and a convolutional neural network. While Tikhonov regularisation applies to only the

transverse direction, the neural network applies across both spatial dimensions, hence

regularising both the transverse and longitudinal directions. The neural network is a U-Net

whose parameters are trained end-to-end, such that the reconstruction pipeline minimises

the empirical mean squared error of the imageNet database (see Eq. (5) in Section 4.4).

The second spectral unmixing step recovers the quantitative abundance maps of the

fluorescent proteins present in the sample by solving a non-negative least squares minimi-

sation problem. To do so, we assume that the number of components and each of their

spectra are known (see Eq. (6) in Section 4.5). In the case of transgenic animal models, the

expressed florescent proteins are well known and characterised. The autofluorescence spec-

trum needs to be estimated in situ, achieved by considering pixels in anatomical regions

(e.g., yolk sac) where autofluorescence accumulates and no specific fluorescence of interest

is expressed
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2.4 Autofluorescence removal

We demonstrate quantitative imaging with autofluorescence removal in a 4-day-old

Tg(fli1:EGFP;olig2:DsRed) zebrafish larva (Fig. 2). This fluorescent transgenic reporter line

specifically expresses the fluorescent proteins EGFP (Enhanced Green Fluorescent Protein)

and DsRed (Discosoma sp Red fluorescent protein) under the control of fli and olig2 pro-

moters, respectively. The EGFP and DsRed emission peaks are well separated (∆λem ≈ 80

nm, see Fig. 2j) but suffer from autofluorescence. Figure 2a presents the conventional

LSFM image acquired using the grayscale arm, while Figure 2i,k present colour images

acquired using a commercial confocal microscope (Zeiss LSM780) using two excitation

wavelengths (λex
EGFP = 488 nm and λex

DsRed = 561 nm) and appropriate filters.

Figure 2g–h show the EGFP and DsRed images obtained by conventional LSFM, fil-

tered using two virtual band-pass filters whose spectral responses (Fig. 2j) were chosen to

optimise the separation of the two fluorophores while minimising autofluorescence. Fluo-

rescence is notably observed in the yolk sac of both images (Fig. 2g–h), a region where

neither fli1 nor olig2 are expressed (fli1 is expressed in the vascular system [33], olig2 in

the central nervous system [34]), which thus clearly indicates that filtering does not enable

the removal of autofluorescence.

Figure 2d-f show the quantitative abundance maps for EGFP, DsRed and autofluores-

cence obtained by hyperspectral structured LSFM. The spectral signature of EGFP and

DsRed used for spectral unmixing have been taken from the Fluorescent Protein Database

[35], while autofluorescence spectrum has been obtained from the yolk sac (Figure 2a).

Before unmixing, the notch filter is applied to the emission spectrum of EGFP and DsRed

(see Fig. 2j). The EGFP abundance map (Fig. 2d) shows the endothelial cells that are

present in the entire vasculature, in particular in the intersegmental vessels in the trunk

and head, while the DsRed abundance map (Fig. 2e) shows the neural progenitors and

oligodendrocytes that are present in the brain, retina and spinal cord, confirming the effec-

tiveness of our approach. Furthermore, the autofluorescence abundance map (Fig. 2f)
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reveals that distribution is not uniform and consequently, that autofluorescence correction

based on the conventional LSFM filter-based approach is inaccurate.

Figure 2b-c show the sample in, respectively, 2D and 3D after autofluorescence removal,

obtained from the EGFP and DsRed quantitative abundance maps. The 3D images

(Fig. 2c) represents 25 adjacent slices resulting in 512× 512× 25 voxels of size 3× 3× 15

µm3, enhancing the structural and molecular understanding of the sample. The quantita-

tive abundance maps and conventional LFSM images of the different slices are displayed

in Fig. 8 and Fig. 9 of Supplementary material, respectively (see also Visualisation 2 and

Visualisation 3).

2.5 Separation of overlapping fluorophores

We demonstrate the spectral separation of two red fluorescent proteins in a 4-day-old

Tg(sox10:mRFP;olig2:DsRed) zebrafish larva (see Fig. 3). Olig2 is expressed in the central

nervous system, in particular the spinal cord [34], while sox10 is expressed in the neural cell

and in the neural crest-derived Schwann cells located in the peripheral nervous system [36].

Separating sox10 from olig2 is particularly challenging due to the spectral overlap of the

emission spectra of mRFP (monomeric Red Fluorescent Protein) and DsRed (∆λem ≈ 20

nm, see Fig. 3j), as well as the spatial overlap of the sox10 and olig2 signal in the head

and neural tube.

Figure 3a presents the conventional LSFM image acquired with the grayscale arm,

while Figure 3b–c present quantitative abundance maps of mRPF and DsRed (one slice

of the sample in b, 3D representation in c) obtained by hyperspectral structured LSFM.

Figure 3i,k show the images obtained using a confocal microscope (Zeiss LSM780, λex =

561 nm). Figure 3g–h show the images obtained by filtering conventional LSFM with

two band-pass filters whose spectral responses were chosen to optimise the separation

of mRFP and DsRed (see Fig. 3j). Despite these efforts, the mRFP and DsRed filtered

images (Fig. 3g–h) are highly correlated, indicating significant overlap between the two
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Fig. 2: Autofluorescence removal in a 4-day-old Tg(fli1:EGFP;olig2:DsRed) zebrafish
larva. a, Conventional LSFM image acquired using the grayscale arm. b–f, Quantitative
abundance maps obtained from hyperspectral structured LSFM. b–c, Images after aut-
ofluorescence (AF) removal showing only the abundance of EGFP (in green) and DsRed
(in red); b is the same slice as in a; c is the 3D representation obtained from 25 slices. (↓)
points to the spinal cord, (↑) indicate the intersegmental vessels. d–f, Quantitative abun-
dance maps of EGFP, DsRed and autofluorescence (AF) obtained using the spectra in j for
unmixing; Superposing d and e leads to b. g–h, Images of EGFP and DsRed obtained by
conventional LSFM, filtered using the two band-pass filters in j. i,k, Head of the embryo
imaged by a commercial confocal microscope (Zeiss LSM780 using optical filters ([ref]). j,
Filters (dashed lines) and fluorescence spectra for spectral unmixing (solid lines). Lateral
views, anterior is left. Scale bars = 100 µm.
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fluorophores. More specifically, the mRFP image exhibits high intensity in the spinal cord,

confirming that the filtering strategy fails to separate mRFP from DsRed. Figure 3d–

f show the mRFP, DsRed and autofluorescence quantitative abundance maps obtained

by hyperspectral structured LSFM. The spectral signatures of mRFP and DsRed used

for unmixing have been taken from the Fluorescent Protein Database [35], while that of

autofluorescence has been measured in the yolk sac (see spectra in Fig. 3j).

By exploiting the full spectrum, the hyperspectral structured LSFM pipeline success-

fully separates mRFP from DsRed despite their overlapping spectra. In the quantitative

abundance maps, the mRFP signal is only observed in the neural crest cells in the brain

(see Fig. 3d), while DsRed concentrates in the brain, retina and spinal cord (see Fig. 3e),

confirming the effectiveness of our approach. Considering the cerebellum, in which olig2

is specifically expressed, this structure can be observed in both the mRFP and DsRed

images obtained by filtered conventional LSFM (Fig. 3.g-h). Conversely, the cerebellum is

visible only in the DsRed and not mRFP quantitative abundance maps acquired using the

hyperspectral structured LSFM pipeline (Fig. 3.d-e). Similarly to the previous example, the

autofluorescence abundance map is found to vary spatially (see Fig. 3f), indicating that

the conventional LSFM filter-based approach is inaccurate. It should be noted, however,

that the concentration of autofluorescence around the spinal cord (see Fig. 3f) may be

due to unmixing inaccuracies.

Figure 3c shows the distribution of DsRed and mRFP in 3D, obtained from the quan-

titative abundance maps of 20 adjacent slices resulting in 512 × 512 × 20 voxels of size

3× 3× 15 µm3. The quantitative abundance maps of all slices are displayed in Fig. 10 of

Supplementary material (see also Visualisation 4).

3 Discussion

We have demonstrated hyperspectral LSFM by shaping structured light sheets using only

a DMD. Our optical system is simple, with no moving parts, few optical elements and does
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Fig. 3: Separation of fluorescent proteins with overlapping spectra. The sample is a 4-
day-old Tg(sox10:mRFP;olig2:DsRed) zebrafish larva. a–h, Entire embryo imaged using
conventional and hyperspectral structured LSFM. a, Conventional LSFM image acquired
using the grayscale arm. b–c, Quantitative abundance maps after autofluorescence (AF)
removal obtained using hyperspectral structured LSFM; b is the same slice as in a; c
is the 3D representation obtained from 20 slices. d–f, Quantitative abundance maps of
mRFP, DsRed and autofluorescence obtained by hyperspectral structured LSFM using the
spectra in j for unmixing. g–h, Images obtained by filtering conventional LSFM using the
two band-pass filters whose response are depicted in j. i,k, Head of the embryo imaged
by a commercial confocal microscope (Zeiss LSM780 using optical filters ([ref]). j, Filters
(dashed lines) and fluorescence spectra for spectral unmixing (solid lines).(↑) point to the
spinal cord, (↓) indicate the cerebellum. Lateral views, anterior is left. Scale bars = 100
µm.
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not require fast cameras. It can be combined with any standard filter-based light sheet

microscopes. While LSFM is dominated by grayscale imaging, the palette of genetically

encoded and synthesized fluorophores has enabled the labelling and observation of a large

and constantly expanding number of molecular species [37]. Hyperspectral imaging offers

the possibility of studying multiple components, cellular behaviours and cellular metabolism

within the same specimen. In [9], the authors achieved hyperspectral imaging based on

pushbroom acquisitions. Illuminating only a line of the imaging plane at a time, however,

reduces light throughput compared to hyperspectral structured LSFM which illuminates

approximately half of the imaging plane at a time. The higher throughput of hyperspectral

structured LSFM translates into the so-called Fellgett’s advantage [38], an improved signal-

to-noise ratio that we have quantified as 7–8 dB in our configuration (see Sec. 6 of

Supplementary material).

Hyperspectral alternatives based on tunable filers reject a large fraction of the fluo-

rescent signal emitted by the sample [12], leading to poor light collection and increased

photobleaching compared to hyperspectral structured LSFM that exploits all emitted flu-

orescence photons. The snapshot imager introduced in [10] is fast but imposes a tradeoff

between the field of view and the spectral resolution, whereas hyperspectral structured

LSFM, though slower due to is sequential nature, offers higher spectral resolution (e.g., <4

µm ) over a larger field of view (e.g., 1.5×1.5 mm2). The spectral resolution is determined

by the focal length of the cylindrical lens, the slit width and the grating of the spectrome-

ter. Raw acquisitions include 2,048 spectral channels that we have binned to 128 channels

to match the spectral resolution of the spectrometer (2 nm, see Sec. 4 of Supplementary

material) achieved with a 600 µm slit. We have chosen the largest slit available in order

to maximise light throughput while ensuring the different fluorophores can be resolved.

While the longitudinal resolution along the slit of the spectrometer depends only on the

collection objective, the transverse resolution transverse to the slit of the spectrometer is

limited by the number of patterns displayed on the DMD and our ability to engineer systems

13
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capable of generating high-frequency structured light sheets. Using a collection objective

with a low numerical aperture (NA = 0.1, at 500 nm theoretical Rayleigh resolution of

∼3 µm and focal depth of ∼50 µm), we have achieved a lateral resolution of 7 µm for a

longitudinal resolution of 15 µm using 128 patterns (see Sec. 4 of Supplementary material)

over a field of view of 1.5 mm2. Higher spatial resolutions could be achieved using collection

objectives with higher numerical aperture. Moreover, it has been shown that structured

illumination LSFM can achieve resolutions below 100 nm in the lateral direction [39], while

random illuminations can also break the diffraction limit [40]. The spatial resolution of

hyperspectral structured LSFM is therefore ultimately limited by the number of patterns

and light throughput, leading to a trade-off between the spatial resolution and the imaging

speed in the longitudinal dimension. The spatial resolution could also be improved using

software that incorporates the conventional LSFM images acquired using the grayscale

arm, a technique known as pansharpening in remote sensing [41]. By shaping the light

using a DMD, we can numerically adjust both the thickness of the light sheets and the

transverse resolution, providing a high degree of flexibility to adapt to different samples.

Considering a power of 0.64 mW at the sample plane, hyperspectral structured LSFM

acquired more that 65, 000× 128 pixels (spatial × spectral) in approximately 5 min 30 s

(see Table 3 of Supplementary material). The method in [9] achieved shorter acquisition

times (down to 1.5 s) but with higher laser power (2–10 mW in the back focal plane of the

illumination objective) and for only 2, 000 × 70 pixels (spatial × spectral). For fair com-

parison, we introduce the power-time budget per pixel (see Section 5 of Supplementary

material). The lower the power-time budget per pixel, the faster. While the pushbroom

method in [9] works at ∼200 µW.ms/pixel, hyperspectral structured LSFM requires only

40–50 µW.ms/pixel (2–3 µW.ms/pixel before binning raw measurements), which consti-

tutes an acceleration of one or two orders of magnitude. The acquisition of multiple slices

has been done sequentially by translating the sample. The acquisition of multiple slices

using hyperspectral structured LSFM could be further accelerated by exploiting structured
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light sheets in the translation direction, in a similar fashion to [42, 43], or even adapting

the modulation to the sample, in line with the smart microscopy trend [44].

We have proposed a fast, simple yet effective, data-driven reconstruction method.

Building on [29], our algorithm has only two steps. Alternatives include iterative algorithms

based on the concept of unrolling [45] or plug-and-play [46] methods. The different spectral

channels of the same hypercube have different intensities and hence different noise levels.

It is therefore key to adapt regularisation to the noise level. In this regard, the Tikhonov

step was found to generalise better to unseen noise levels than simpler alternatives based

on the computation of the pseudo inverse solution, in accordance with previous stud-

ies [29]. Our approach reconstructs all spectral channels independently. More demanding

alternatives could consider reconstruction strategies working across both the spatial and

spectral dimensions, i.e., handling the different spectral channels jointly (e.g., see [47]).

Here again, great care should be taken to avoid spectral distortions that would significantly

degrade our ability to unmix the spectral components in the sample. The approach devel-

oped in [15] is fit-free and does not require any prior assumptions about the components.

However, it assumes that a only few parameters are required to describe the measured

spectra. Here, we have assumed that the emission spectra of the fluorescent proteins are

known and constant across the sample, hence discarding spectral changes due to the local

environment. However, the assumption may not be met in other samples. In this case, the

spectra can be estimated together with the quantitative abundance maps. This problem,

referred to as non-negative matrix factorisation, has a long history in statistics and linear

algebra [48] but is much harder to solve.

4 Method

4.1 Transgenic lines and sample preparation

The transgenic fluorescent zebrafish lines: Tg(fli1:EGFP), Tg(olig2:DsRed) and

Tg(sox10:mRFP), were produced at the zebrafish PRECI facility (Plateau de Recherche
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Expérimentale de Criblage In vivo, SFR Biosciences UAR3444/CNRS, US8/Inserm, ENS

de Lyon, UCBL) in compliance with French government guidelines (agreement number

C693870602). To obtain the double transgenic lines used in this study, the Tg(olig2:DsRed)

fish were outcrossed with Tg(fli1:EGFP);Casper or Tg(sox10:mRFP) fish. The resulting

Tg(fli1:EGFP);Casper;Tg(olig2:DsRed) and Tg(sox10:mRFP);Tg(olig2:DsRed) transgenic

embryos were collected and raised under standard conditions according to the European

Directive 2010/63/EU. Developmental stages are given in days post-fertilization (dpf) at

28.5°C, based on morphological criteria as previously described [2]. At 1 dpf, the embryos

were treated with 0.2 mM 1-phenyl 2-thiourea (Sigma-Aldrich, France) to inhibit pigmen-

tation. Larvae were selected based on the expression of the fluorescent proteins of interest.

They were sacrificed by an overdose of anaesthetic (0.2 % Tricaine, pH 7.0) and fixed

at 4-5 dpf in paraformaldehyde for 2h at room temperature. After fixation, they were

washed in PBDTT (1X PBS, 1% DMSO, 0.1% Tween, 0.5% Triton; all reagents from

Sigma-Aldrich, France). The samples were then placed in spectrophotometer quartz cells

and embedded in 1% low melting agarose (ThermoFisher Scientific, France), or mounted

on a coverslip in DAKO mouting medium using a spacer for confocal acquisition. The

samples were immediately used for observation or stored at 4-5°C in the dark before obser-

vation. Confocal images were acquired with an LSM 780 and LSM 800 microscope (Zeiss,

Germany). The confocal images were formatted using the ‘Z projection’ tool in the Fiji

software for confocal images.

4.2 Acquisition model

The measurements in hyperspectral structured LSFM acquisitions originate from both the

spatial mixing induced by the imaging device (see Eq. (1)) and the spectral mixing inherent

to the sample (see Eq. (2) models). The measurements are modelled as

Mλ = HFλ +E , 1 ≤ λ ≤ Λ, (1)
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where H ∈ RK×Nx represents the measurement matrix that concatenates the K spatial

light profiles used for acquisition, Fλ ∈ RNx×Ny is a λ-slice of the full hypercube, and

E ∈ RK×Ny represents the measurement errors. The spatial light profiles of our device

are determined experimentally (see Fig. 1c; details provided in Section 3 of Supplementary

material). We denote by F = [vec (F1) , . . . , vec (FΛ)]
⊤ ∈ RΛ×N , N = NxNy, the full

hypercube arranged in matrix form by concatenating all λ-slices, representing the total

number of pixels.

Assuming that the sample is made of Q distinct spectral components, the full hypercube

can be modelled as

F = SA, (2)

where S ∈ RΛ×Q represents the spectral signatures of the components, and A ∈ RQ×N

represents the quantitative abundance of each spectral component per pixel. In the case of

fluorescent imaging, a component can represent either a single specific fluorophore (e.g.,

EGFP, DsRed or mRFP) or a combination of fluorophores (e.g., autofluorescence).

4.3 Image-domain approach

Our goal is to recover the quantitative abundance maps A from the measurements Mλ,

1 ≤ λ ≤ Λ, knowing the measurement matrix H and assuming prior knowledge about the

spectral signatures S. To do so, we adopt an image-domain approach that involves spatial

reconstruction followed by spectral unmixing that has been found in single-pixel imaging

to be more efficient and suitable than spectral unmixing before spatial reconstruction [49].

We first recover the full hypercube F (spatial reconstruction) before recovering the

quantitative abundance maps A (spectral unmixing), as described below and illustrated

in Figure 1.

• (Step 1: spatial reconstruction) Recover the λ-slice Fλ from the measurement Mλ, for

all spectral channels 1 ≤ λ ≤ Λ, given the measurement matrix H. This corresponds

to the inversion of Eq. (1).
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• (Step 2: spectral unmixing) Recover the quantitative abundance maps A from the full

hypercube F calculted in step 1, given the spectral signatures S. This corresponds to

the inversion of Eq. (2).

4.4 Spatial reconstruction: Tikhonov-Net

We reconstruct the λ-slices using the Tikhonov-Net, a two-step reconstruction network of

the form

Rθ = Gθ ◦ R, (3)

where Gθ : RNx×Ny → RNx×Ny is a neural network with parameters θ acting in the

spatial domain (e.g., a convolutional network) and R : RK×Ny → RNx×Ny is a mapping

from the measurement domain to the spatial domain. Inspired by [29], we choose the

measurement-to-spatial domain mapping R as Tikhonov regularisation

R(Mλ) = ΣH⊤ (
HΣH⊤ + Γ

)−1
Mλ, (4)

where Σ ∈ RNx×Nx represents the slice covariance, and Γ ∈ RK×K the measurement

covariance. The computation of covariances Σ and Γ is described in Section 10 of Sup-

plementary material. Note that, as stated by Eq. (4), the Tikhonov regularisation applies

to the transverse x-axis only, while the neural network G applies to both the transverse x-

and longitudinal y- axis. The image domain neural network Gθ, is trained end-to-end in a

supervised manner, i.e.,

θ̂ ∈ argmin
θ

1

L

∑
ℓ

∥Rθ(M
ℓ)− F ℓ∥2F, (5)

where {F ℓ,M ℓ}, 1 ≤ ℓ ≤ L, is a database of L image-measurement pairs and ∥ · ∥2F

denotes the Frobenius norm.
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4.5 Spectral unmixing: non-negative least squares

We formalise spectral unmixing as the constrained least squares minimisation problem

argmin
A∈Ω

∥F̂ − SA∥2F, (6)

where F̂ = [R̂(M1), . . . , R̂(MΛ)] is the hypercube obtained after spatial reconstruction

(see Section 4.4) and Ω ∈ RQ×N represents the solution space. In the unconstrained

case Ω = RQ×N , the solution is given by the pseudo inverse Â = (S⊤S)−1S⊤F̂ , while

the non-negative case Ω = RQ×N
+ requires an iterative algorithm such as [50]. Here, we

assume that the spectral signatures S are known, which is the case for transgenic samples

that express specific fluorescent proteins. The spectrum of autofluorescence may vary

significantly across samples; however, it can be estimated from pure pixels, e.g., anatomical

structures where no fluorescent proteins are present. The minimisation problem of Eq. (6)

is solved using the NNLS function of the PySptools package.

4.6 Implementation details

We consider a sequence of K = 128 Hadamard patterns. We independently measure the

positive components of the patterns, denoted by H+, and the negative components of

the patterns, denoted by H−, where H = H+ −H− is a Hadamard matrix (see Section

3 of Supplementary material). The raw measurements M+ and M−, acquired with H+

and H−, respectively, are binned to Λ = 128 spectral channels and Ny = 512 pixels in

the longitudinal direction. After preprocessing (see Section 9 of Supplementary material),

all Λ spectral slices are reconstructed using the Tikhonov-Net given by Eq. (3), where we

choose the neural network G as a U-Net with 499, 985 trainable parameters. The Tikhonov-

Net has been integrated to SPyRiT, a python package dedicated to single-pixel imaging

[51] and based on PyTorch [52]. It is trained in an end-to-end fashion from simulations

considering raw data corrupted by Poisson noise with an image intensity α of 50 photons.
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We consider the Adam optimiser for 20 epochs, with an initial step size of 10−3 that we

divide by a factor of 2 every 10 epochs. We set the weight decay regularisation parameter

to 10−7. Our training database corresponds to the test set of the ImageNet ILSVRC2012

[53] where each of the 100k images is resized to Nx × Ny = 512 × 512. After spatial

reconstruction, we compensate for a small spectral shift that is observed to vary linearly

with the wavelength across the longitudinal dimension y.
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master-seb/2023_hsLSFM. The covariance matrix and parameters of the neural networks

used for image reconstruction, as well as the spectra used for unmixing, can be found
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63caa9497bef31845d991351/folder/6464d57585f48d3da0718934
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Supplementary material

The Supplemental Document includes a description of the experimental setup, the handling

of DMD diffraction, a characterisation of the light sheet, an analysis of the resolution of

the system, an analysis of the imaging speed of the system, the quantitative maps for all

slices of the samples, the verification of the Fellgett’s advantage, the description of the

noise model of the raw data, the description of the preprocessing of the raw data, and the

description of the estimation of the covariance matrices.

Visualisation 1 shows the raw measurements for one slice of the

Tg(fli1:EGFP;olig2:DsRed) sample.

Visualisation 2 shows the abundance of EGFP (in green) and DsRed (in red) for all

the 25 slices of the Tg(fli1:EGFP;olig2:DsRed) sample. Many more visualisations of the

abundance maps can be found here.

Visualisation 3 shows the conventional LSFM images for 21 slices of the

Tg(fli1:EGFP;olig2:DsRed) sample. Other conventional LSFM images of the sample can

be found here.

Visualisation 4 shows the abundance of mRFP (in cyan) and DsRed (in red) for all

the 20 slices of the Tg(sox10:mRFP;olig2:DsRed) sample. Many more visualisations of the

abundance maps can be found here.
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