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Abstract—Sampling from a real-valued distribution, whose density
is nonsmooth and log-concave, is a computational issue that often
arises in Machine Learning and Statistics. Langevin-based Hastings-
Metropolis methods were proposed: they extend the Unadjusted Langevin
Algorithm by using proximal methods to define a smoothed version of
the density of interest. We consider the case when these extensions do
not apply: the involved proximal operators do not have closed forms
and the density is defined on a subset of the real numbers. We derive
new Gaussian proposal mechanisms in a Metropolis Adjusted Langevin
Algorithm, which use first-order information about the density function.
We numerically compare these strategies and discuss the benefits of a
change of geometry. The gain in using partial updates instead of global
parameter updates is also illustrated.

Index Terms—Monte Carlo Sampling, Langevin-based algorithms,
Proximal and Subgradient methods, Epidemiological model.

I. INTRODUCTION

Context. Sampling from a distribution on Rd is a computational ques-
tion that often arises in Machine Learning and Statistics, including
Statistical Signal and Image Processing, among scientific domains.
This paper considers the case when the distribution possesses a
density π, with respect to the Lebesgue measure, of the form

− log π(θ) =

{
f(θ) + g(θ) + h(Aθ) for θ ∈ D,
+∞ otherwise,

(1)

where D is a measurable convex subset of Rd, A is a d′ × d matrix,
and f, g, h are measurable convex functions finite on D. The appeal
of these three functions allows for various regularity properties: the
function f : O → R is assumed to be continuously differentiable
on an open subset O including D; the functions g : Rd → R and
h : Rd′ → R are lower semicontinuous, their proximal operators
exist and have a closed form expression; nevertheless, the matrix A
is such that the proximal operator of the function h(A·) : θ 7→ h(Aθ)
is intractable. Such a nonsmooth convex composite negative log-
density arises in many problems: let us cite aggregation of estimators
by exponential weighting in PAC-Bayesian learning [1]–[3] and
Bayesian inverse problems in signal and image processing [4]–[12]
as few examples.

Related work. Efficient Monte Carlo sampling takes benefit of
optimization methods (see [13] for a survey). The Metropolis
Adjusted Langevin Algorithm (MALA), introduced in
[14], exploits the discretization of a diffusion process targeting π
in order to design an efficient proposal mechanism in a Hastings-
Metropolis scheme. Given a current point θk ∈ D, sample

θk+
1/2 ∼ µ(θk) +

√
2γNd(0, Id), (2)

where the drift term µ is defined by

µ(θ) := θ + γ∇ log π(θk); (3)
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γ > 0, Id is the d× d identity matrix, Nd(m,C) denotes a Gaussian
distribution on Rd with expectation m and covariance matrix C, and
∇ℓ is the gradient of the function ℓ. The candidate θk+

1/2 is then
accepted or rejected through an acceptance-rejection (AR) step, which
yields θk+1. The AR step implies that θk+1 ∈ D. MALA can be seen
as a sampler using first-order informations on log π when π satisfies
Eq. (1) with g = h = 0.
The Unadjusted Langevin Algorithm (ULA) was then
proposed and studied: the acceptance-rejection step of MALA is re-
moved providing a Monte Carlo approximation {θk, k ≥ 0} targeting
a distribution which is no more π [15], [16]. Since θk+1 = θk+

1/2

in ULA, it samples via the Gaussian distribution Eq. (2), so that the
Monte Carlo approximation can not be restricted to a subset D of
Rd: ULA addresses the case D = Rd.
When π is nonsmooth but h = 0, Langevin-based samplers were
proposed by combining a smoothing technique using the Moreau-
Yoshida envelope and proximal operators (see MYULA in [9] and
proximal Markov Chain Monte Carlo (MCMC) samplers in [9],
[17]–[20] possibly in a Riemannian geometry [21]). All of these
contributions assume that D = Rd. When D ⊊ Rd (and h = 0),
Langevin-based Monte Carlo samplers using projections or reflections
on the boundaries of D were proposed for specific topologies of D
(see e.g. [22], [23]).
Outline, Goals and contributions. The originality of our setting
Eq. (1) is to consider both (i) that a nonsmooth component of − log π
is a convex function combined with a linear operator A, and (ii)
a domain D ⊊ Rd exists. Since we consider the case when the
proximal operator of h(A·) does not have a closed form expression,
the Proximal-based MCMC samplers proposed in the literature do
not apply except the samplers in [12], [19]. Nevertheless, [19] are
ULA-type samplers thus addressing the case D = Rd.
This paper completes the methodological contributions in [12] and
the numerical comparisons in [24]. It is structured as follows:
First, in Section II, we generalize the gradient step in Eq. (3) to the
case log π is nonsmooth and of the form Eq. (1), and propose new
drift terms by using explicit first-order information on log π. When
the matrix A is full column rank, other strategies are derived. The
domain D is not considered in the proposal mechanism: despite the
AR step being known to slow down the convergence of MALA, we
consider an unrestricted Gaussian proposal of the form Eq. (2) but
combined with an AR step which forces θk+1 to be in D. Such a
strategy avoids complex sampling of the candidate θk+

1/2 to ensure
θk+

1/2 ∈ D especially when the topology of D is difficult to handle.
Second, in Section III, we numerically compare these new drift terms
µ(·), and discuss the interest of first-order strategies with respect to
a Random Walk drift term µ(θ) = θ. We also consider the benefit
of a change of geometry, which is a natural idea in situations when
A is full column rank; and compare global updates of the full vector



θ to sequential updates such as a one-at-a-time strategy. Finally,
we comment how adaption mechanisms for an automated choice of
design parameters drastically improve the samplers.

Notations. Hereafter, A⊤ denotes the transpose of the matrix A, and
A−⊤ := (A−1)⊤. ∥ · ∥ is the Euclidean norm on Rp and ∥ · ∥1 is the
L1-norm. ∇f(θ) is the gradient at θ of a continuously differentiable
function f . ∂g is the subdifferential operator of a proper function
g : Rp → (−∞,+∞].

II. PRIMAL DUAL BASED PROPOSAL DISTRIBUTIONS

In this work, we investigate a density π satisfying Eq. (1), such that:
A) D is a measurable convex subset of Rd;
B) there exists an open neighborhood O of D such that f is

continuously differentiable on O;
C) g : Rd → R ∪ {+∞} and h : Rd′ → R ∪ {+∞} are lower

semicontinuous convex functions; for all γ > 0, θ ∈ Rd and θ′ ∈
Rd′ : Proxγg(θ) and Proxγh(θ

′) have a closed form expression;
D) A is a d′ × d matrix. For all γ > 0 and θ ∈ Rd, Proxγh(A·)(θ)

is intractable.
Remember that the proximal operator of a proper lower semicontin-
uous convex function ℓ : Rp → R ∪ {+∞} is defined by

Proxℓ(·) := argminθ∈Rp

(
ℓ(θ) +

1

2
∥θ − ·∥2

)
;

for all ϑ, the minimizer of θ 7→ ℓ(θ) + ∥θ − ϑ∥2/2 exists and
is unique (see [25, Definition 12.23]). When AA⊤ is an invertible
diagonal matrix and for specific functions h (see e.g. [12, Lemma
4]), the assumption C implies that Proxγh(A·)(θ) has a closed form
expression.
In this section, we design Hastings-Metropolis (HM) samplers, with
a focus on the drift term µ(·). One iteration of HM is described by
Alg. 1. Define

α(θ, θ′) := min

(
1;

π(θ′)

π(θ)

q(µ(θ′), θ)

q(µ(θ), θ′)

)
, (4)

where y 7→ q(x, y) denotes the density of a Gaussian distribution
centered at x, with covariance matrix Id. The rate of ergodicity of a
Markov chain is related to how fast, starting from a small set, the
chain returns back to this small set (see e.g. [26, Theorem 15.0.1]).
Since a MCMC sampler produces a Markov chain with a given
invariant distribution, we are interested in drift terms that can push
the chain towards the modes of π when the chain is visiting the tails
of π. For these reasons, the drift terms below are chosen as one step
of a convex optimization procedure for minimizing − log π. It holds
( [25, Theorem 16.3]): θ⋆ is a minimizer of − log π if and only if
(iff) 0 ∈ ∂(f + g + h(A·))(θ⋆), or equivalently under the stated
assumptions: for any γ > 0,{

0 = γ∇f(θ⋆) + γ u⋆ + γ A⊤s⋆;
u⋆ ∈ ∂g(θ⋆), s⋆ ∈ ∂h(Aθ⋆).

(5)

From Eq. (5), a first strategy is to define

µ(θ) := θ − γ∇f(θ)− γG(θ)− γA⊤H(Aθ), (6)

Algorithm 1 one iteration of a HM targeting π

Input: θk

# Sample θk+
1/2 ∼ µ(θk) +

√
2γNd(0, Id)

# (AR step) Set θk+1 = θk+
1/2 with probability α(θk, θk+

1/2) and
θk+1 = θk otherwise.
Output: θk+1.

where G(θ) ∈ ∂g(θ), H(τ) ∈ ∂h(τ) and G,H are measurable
point-to-point maps. For example, when g is continuously differen-
tiable, G(θ) = ∇g(θ); when h(·) = ∥ ·∥1, H(τ) = sign(τ) with the
convention sign(0) = 0. When ∂g(θ) or ∂h(τ) is not a singleton,
it is far simpler to have a deterministic selection of one subgradient,
which here, is denoted by G(θ) and H(τ) respectively. A random
selection of one of the subgradients is possible, but in that case, the
candidate θk+

1/2 is no more Gaussian (see Eq. (2)) and the expression
of its probability distribution has to be derived in closed form for the
AR step (see Eq. (4)); this method is not investigated in this paper.
Eq. (6) is a full sub-gradient strategy, named hereafter, FSG. Using
again Eq. (5) and the property: p = Proxℓ(τ) iff τ − p ∈ ∂ℓ(p) (see
e.g. [25, Proposition 16.44]), another strategy for the drift term is

µ(θ) = Proxγg

(
θ − γ∇f(θ)− γA⊤H(Aθ)

)
. (7)

Again, H(τ) ∈ ∂h(τ) and H is a one-to-one map. Eq. (7) combines
a subgradient of h and an implicit gradient of g through the proximal
operator of γg; hereafter, it is named Prox-SG. Following the
same idea, another strategy could involve a subgradient of g and
the proximal operator of γh: this would yield an update for Aθ but,
without additional assumptions on A, it can not be used for an update
of θ.

When A is invertible. When A is invertible, a change of geometry
is possible. We have indeed
Lemma. Set θ̃ := Aθ. If θ ∼ π then θ̃ ∼ π̃, where π̃ is proportional
to π(A−1·). If {θ̃k, k ≥ 0} is a Markov chain with unique invariant
distribution π̃, then the chain {A−1θ̃k, k ≥ 0} is a Markov chain
with unique invariant distribution π.

As a corollary, iterating Alg. 2 produces a Markov chain {θk, k ≥
0} with unique invariant distribution π. The candidate θ̃k+

1/2 in
Alg. 2 has the same distribution as Aθk+1/2 where

θk+
1/2 ∼ A−1µ̃(Aθk) +

√
2γNd(0,A

−1A−⊤). (8)

It shows that, transcribed in the original θ-space, the change of
geometry has two effects on the proposal mechanism: it yields (i)
a new drift term A−1µ̃(A·) where µ̃ is chosen to be efficient for
sampling π̃, and (ii) a covariance matrix of the Gaussian proposal
which is not the identity matrix. Since − ln π̃ is, up to an additive
constant, equal to θ̃ 7→ f(A−1θ̃) + g(A−1θ̃) + h(θ̃) on the set
{θ̃ : A−1θ̃ ∈ D} and equal to +∞ otherwise, we define two
strategies for a drift term µ̃.
The first one is, again, a full sub-gradient approach

µ̃(θ̃) := θ̃ − γA−⊤∇f(A−1θ̃)− γA−⊤G(A−1θ̃)− γH(θ̃), (9)

where G,H are point-to-point maps such that G(θ) ∈ ∂g(θ) and
H(θ̃) ∈ ∂h(θ̃). Hereafter, it is named inv-FSG. The second one
uses the sub-gradient of g(A−1·) and the proximal operator of γh:

µ̃(θ̃) :=A−1Proxγh

(
θ̃ − γA−⊤

(
∇f(A−1θ̃)+G(A−1θ̃)

))
. (10)

Again, G is a one-to-one map and G(θ) ∈ ∂g(θ). When g = 0,
such a HM sampler was proposed in [12], under the name PGdual.
Hereafter, for consistency purposes, it is named SG-Prox.

Algorithm 2 one iteration via change of geometry

Input: θk

# Set θ̃k := Aθk

# Sample θ̃k+
1/2 ∼ µ̃(θ̃k) +

√
2γNd(0, Id)

# Run an AR step with target distribution π̃ and obtain θ̃k+1.
Output: θk+1 := A−1θ̃k+1.



When A is full column rank. Write h(Aθ) = h̄(Āθ) where Ā is a
d× d invertible matrix with rows #(d− d′ + 1) to #d equal to A,
and h̄(x1, · · · , xd) := h(xd−d′+1, · · · , xd). Then apply the case ”A
invertible” with A← Ā and h← h̄. Such an idea is detailed in [12,
Section III-C].

When π is known up to a normalizing constant. All the drift terms
depend on f via its gradient, so f can be defined up to an additive
constant. This remark combined with the expression of the AR ratio
(see Eq. (4)), shows that the above HM samplers apply even when
π is known up to a multiplicative constant.

III. A COMPARATIVE STUDY

We consider a density π given by a penalized Poisson likelihood
introduced to model counts Z1, · · · ,ZT in an epidemiological model
(see e.g. [12, Section II-C]). Let D be a T × T matrix, and
Φ1, · · · ,ΦT be non-negative numbers; set Φ the T × T diagonal
matrix with diagonal entries {Φs, 1 ≤ s ≤ T}. On a set D, − lnπ(θ)
is equal to

T∑
t=1

(Φt(Rt + Ot)−Zt ln(Rt + Ot))+λR∥DR+ δ∥1+λO∥ΦO∥1

and to +∞ otherwise. Here, θ := (R1, · · · ,RT ,O1, · · · ,OT ),
R := (R1, · · · ,RT ) ∈ RT , O := (O1, · · · ,OT ) ∈ RT . This
model aims to learn a time-varying reproduction number t 7→ Rt

from highly corrupted data Z1, · · · ,ZT and averaged past counts
Φ1, · · · ,ΦT (see Fig. 1). The Ot’s model errors in the counts,
and D is the discrete-time 2nd order derivative matrix: the penalty
terms favor sparse errors and slowly varying reproduction numbers. δ
corresponds to initial values of the 2nd order derivative of R. Finally,
the set D ⊆ (R+)

T ×RT ensures that the Poisson intensity and the
reproduction numbers are non-negative (a Poisson with null parameter
is a Dirac mass at zero):

D :=
⋂

t:Zt>0

{(R,O) : Rt+Ot > 0} ∩
⋂

t:Zt=0

{(R,O) : Rt+Ot ≥ 0}.

Note that the density π is of the form Eq. (1) with d = 2T ;
f = 0; g : θ 7→

∑T
t=1 (Φt(Rt + Ot)−Zt ln(Rt + Ot)) + ιD(θ),

where ιD is the characteristic function of the convex set D; A is
the block-diagonal d× d matrix with block entries D and λOΦ/λR;
h(·) := λR∥ · +δ∥1, where δ concatenates δ ∈ RT and the null
vector 0 ∈ RT . The functions g and h are convex, finite on
D and lower semicontinuous. The proximal operators have closed
form expressions: for example, the component #t of Proxγh(θ) is
−δt + max(0, |θt + δt| − γλR) sign(θt + δt); for g, see e.g. [11,
Proposition 3] for a similar computation. We have ∂g(θ) = {∇g(θ)}
and ∂h(θ) = {λR sign

(
θ + δ

)
} for θ ̸= 0; for θ = 0, we choose

H(0) = 0. Finally, DD⊤ is not a diagonal matrix and Proxγh(A·)(θ)
is intractable.

COVID-19 data. The data Z1, · · · ,ZT are the daily new infection
counts of COVID-19, in France, from 2022/02/20 to 2022/04/28;
T = 68. They are provided by the Johns Hopkins University repos-
itory1. Due to poor reporting of the counts during the weekends and
public holidays, there are regularly abnormally low counts followed
by abnormally high ones.

Algorithms setup. All the samplers are run for 107 iterations and
start from a poor initialization R0 := (1, · · · , 1) ∈ RT and O0 :=
(0, · · · , 0) ∈ RT . They all depend on a step size γ. This design
parameter is adapted during 5 · 106 iterations and then, it is fixed to

1https://coronavirus.jhu.edu/

Fig. 1: The data Z1, · · · , ZT (black curve) and the averaged past
counts Φ1, · · · ,ΦT (dashed line curve)

its current value. The adaption mechanism drives the empirical mean
acceptance rate to 25%. The initial value of γ is chosen so that each
sampler accepts a candidate before the 5 · 104-th iteration.
In Fig. 2 to 4, the curves are averaged curves obtained from ten
independent runs of the samplers.

Analyzes. θ 7→ log π(θ) has a unique maximizer θ⋆ := (R⋆,O⋆)
(see [12, Proposition 1]) which can be approximated by a primal-dual
algorithm (see [11]). In order to visualize how fast the sampler moves
towards the mode of π when started from a poor initialization, we
display the log π criterion k 7→ (log π(θ⋆) − log π(θk))/ log π(θ⋆)
(see Fig. 2, top row). We also display the MAP-R criterion: k 7→
∥Rk−R⋆∥/∥R⋆∥ (see Fig. 2, bottom row). The asymptotic efficiency
of the samplers is compared via a mean auto-correlation function
(ACF) criterion: on Fig. 4, we report τ 7→ (1/T)

∑T
t=1 |ACF

U
t (τ)|

where ACFU
t (·) is the ACF of the component #t of the vector U ;

we consider in turn U = R and U = O. A rapid decay to zero of this
criterion is expected iff the Markov chain has good mixing properties
(see e.g. [26, Section 17.5]). Finally, we report the value of the step
size γ at the end of the adaption period (see Fig. 3).

RW, FSG and Prox-SG. We run the HM samplers (see Alg. 1)
with the drift term FSG (see Eq. (6)) and the drift term Prox-SG
(see Eq. (7)). For comparison, we also run a Random Walk (RW)
algorithm which corresponds to the drift term µ(θ) = θ; see solid
red, solid green and solid black curves respectively, on Fig. 2 left to
Fig. 4 left. FSG and Prox-SG are almost equivalent, and better than
RW: there is a gain in using first-order information on log π. From
the ACF criterion, there is a slight advantage to FSG. The step size
γ is the same for the 2T components of θ: it is very small (about
10−11 for the three samplers, see Fig. 3 left) thus explaining the poor
decay of the ACF (see Fig. 4 left).

Change of geometry. We compare inv-FSG (see Eq. (9)),
SG-Prox (see Eq. (10)) and inv-RW which corresponds to µ̃(θ̃) =
θ̃; see solid red, solid blue and solid black curves respectively, on
Fig. 2 right to Fig. 4 right. From Eq. (8), inv-RW and RW have
the same drift term in the θ-space but differ through the covariance
matrix. Comparing RW and inv-RW shows that the covariance matrix
in the Gaussian proposal mechanism drastically modifies the behavior
(see Fig. 2 and Fig 4). All the methods are improved by this change
of geometry: we observe a faster convergence to the mode of π on
Fig. 2, and a faster decay to zero of the ACF on Fig. 4 even if the
step size γ remains very small, less than 10−12, see Fig 3.

Global update or sequential update. Until now, the vector θ is
updated globally; it is named a no-Gibbs approach. This yields
very small values of the step size γ in order to accept 25% of
the candidates, which in turn implies a high correlation between
successive points θk, θk+1, · · · , and therefore very poor mixing



Fig. 2: log π (top) and MAP-R (bottom) criteria, for algorithms run
in the original space (left, RW, FSG, Prox-SG) or algorithms after a
change of geometry (right, inv-RW, inv-FSG, SG-Prox). No Gibbs
samplers are in solid lines and one-at-a-time Gibbs samplers
are in dotted lines.

Fig. 3: The step size γ, for algorithms run in the original space
(left, RW, FSG, Prox-SG) or algorithms after a change of geometry
(right, inv-RW, inv-FSG, SG-Prox). No Gibbs samplers are in solid
lines and one-at-a-time Gibbs samplers are in dotted lines.
Bottom row: the data Z1, · · · ,ZT are displayed in light gray on an
independent y-scale.

properties of the chain. We investigate the benefit of Gibbs strategies
i.e. sequential updates of θ; here, we consider a one-at-a-time
Gibbs sampler where each component of R and then each compo-
nent of O are updated successively: for each of the 2T components of
θ, a candidate is proposed and accepted conditionally to the current
value of the (2T − 1) other components. The acceptance ratio uses
the conditional distribution of θt given θ1, · · · , θt−1, θt+1, · · · , θ2T .
This distribution (on R) is again of the form (1) so that the drift
terms FSG, Prox-SG, inv-FSG, and SG-Prox can be derived;
details are omitted here but are given in [27]. A key observation is
that for this one-at-a-time approach, there is one step size per
component of θ, whose values at the end of the adaption period are
displayed in dotted lines on Fig. 3.
The six algorithms learn a step size which turns out to vary strongly
along the components (up to a factor 103); this variation is almost
the same for the FSG, Prox-SG and RW on one side (see Fig. 3 left,
dotted curves) and inv-FSG, SG-Prox, and inv-RW on the other
side (see Fig. 3 right, dotted curves). On Fig. 3 bottom, we display
the data Z1, · · · ,ZT (light gray curve) in order to detect similarities
between the step sizes for the O-block and the data; there is no
clear correlation, and the behavior of the step sizes will have to be
explored. Compared to the no Gibbs strategy, the step sizes are at
least 100 times larger (Fig. 3, top left), and even 1010 times larger
(Fig. 3, bottom right). As a consequence, the log π, MAP-R, and
ACF criteria decay more rapidly to zero with a one-at-a-time
Gibbs strategy, than with a no Gibbs one (see Fig 2 and Fig 4,
dotted curves and solid curves).
The three one-at-a-time Gibbs strategies look equivalent

Fig. 4: ACF criteria for R (top) and O (bottom), for algorithms run
in the original space (left, RW, FSG, Prox-SG) or algorithms after a
change of geometry (right, inv-RW, inv-FSG, SG-Prox). No Gibbs
samplers are in solid lines and one-at-a-time Gibbs samplers
are in dotted lines.

when combined with a change of geometry (see Fig. 2 and Fig. 4
right, dotted curves), and otherwise, FSG is preferable since it moves
more rapidly from a low-density region to a high-density region (see
Fig. 2 left, dotted curves).
Note however that the computational cost of a one-at-a-time
Gibbs sampler is higher than the no Gibbs one; partial updates
with intermediate size of the blocks could be considered to balance
the computational cost and the gain in efficiency (see [27]).

Conclusion. These numerical analyzes illustrate that the covariance
structure of the Gaussian proposal plays an important role in the
efficiency of the Random Walk sampler. When A is not full column
rank, FSG is the best strategy; when A is full column rank, there is a
gain in using a change of geometry, for both Random Walk and the
HM samplers with a drift term using first-order information on log π.
The crux of the dimension d of the sampling space exists, even with a
change of geometry: partial sequential updates or even one-at-a-time
updates are preferable to a global update. Based on these analyzes,
we recommend FSG-type approaches, which are among the most
efficient samplers in both the original θ-space and with a change of
geometry, when compared to Random Walk and to methods using
(sub-)gradients and proximal operators.

IV. CONCLUSIONS AND PERSPECTIVES

We compared different strategies for the definition of the drift term
in a HM sampler with a Gaussian proposal, that uses first-order
information on log π.
A next step is to test adaptive methods for learning a covariance
matrix of the Gaussian proposal, following for example the seminal
paper of [28]. Another direction of research is to use fully
proximal drift terms, by adapting the primal-dual optimization
method PD3O of [29]: such an approach will rely on data aug-
mentation and will necessitate the definition of an adequate target
distribution on an extended (θ, s)-space whose marginal in θ is π
(see e.g. [30] for a similar idea).
Finally, MALA is known to be poor for heavy-tailed distributions, ex-
cept when combined with preconditioning strategies [31]: the benefit
of primal-dual based methods with state-dependent preconditioners
will be investigated.
Matlab codes implementing the proposed samplers will be shared
publicly at the time of publication.
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