
HAL Id: hal-04824175
https://hal.science/hal-04824175v1

Preprint submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Peano Arithmetic and µMALL
Matteo Manighetti, Dale Miller

To cite this version:

Matteo Manighetti, Dale Miller. Peano Arithmetic and µMALL. 2024. �hal-04824175�

https://hal.science/hal-04824175v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ar
X

iv
:2

31
2.

13
63

4v
2

 [
cs

.L
O

]
 4

 N
ov

 2
02

4

1

Peano Arithmetic and µMALL

Matteo Manighetti

Inria Saclay

Saclay, France

Dale Miller

Inria-Saclay and LIX, Institut Polytechnique de Paris

Palaiseau, France

Abstract. Formal theories of arithmetic have traditionally been based on either classical or in-

tuitionistic logic, leading to the development of Peano and Heyting arithmetic, respectively. We

propose to use µMALLas a formal theory of arithmetic based on linear logic. This formal sys-

tem is presented as a sequent calculus proof system that extends the standard proof system for

multiplicative-additive linear logic (MALL) with the addition of the logical connectives uni-

versal and existential quantifiers (first-order quantifiers), term equality and non-equality, and

the least and greatest fixed point operators. We first demonstrate how functions defined using

µMALLrelational specifications can be computed using a simple proof search algorithm. By in-

corporating weakening and contraction into µMALL, we obtain µLK+

p
, a natural candidate for a

classical sequent calculus for arithmetic. While important proof theory results are still lacking for

µLK+

p
(including cut-elimination and the completeness of focusing), we prove that µLK+

p
is con-

sistent and that it contains Peano arithmetic. We also prove some conservativity results regarding

µLK+

p
over µMALL.

1. Introduction

First-order logic formulas are built from propositional connectives, first-order quantifiers, first-order

terms, and the class of non-logical constants called predicates that denote relations between terms.

Moving from first-order logic to first-order arithmetic, one introduces induction principles and ban-

ishes the predicate constants by formally defining relations between terms using those inductive prin-

ciples. When moving from classical logic to arithmetic in this fashion, one arrives at a presentation of

Peano Arithmetic. In this paper, we continue the project of studying arithmetic based instead on linear

http://arxiv.org/abs/2312.13634v2

2 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

logic that was initiated in [1–3] where this linearized version of arithmetic was called µMALL. Since

that earlier work, many researchers (e.g. [4, 5]) have adopted this name to refer to the propositional

fragment of this logic, i.e., the fragment without first-order terms, quantification, and equality. To

emphasize our focus on first-order structures, we will use the name ¯̄µMALL (and ¯̄µLKp) in the rest of

this paper.

Linear logic has played various roles in computational logic. Many applications rely on the ability

of linear logic to capture the multiset rewriting paradigm [6], which, in turn, can encode Petri nets [7],

process calculi [8, 9], and stateful computations [10, 11]. Our use of linear logic here will have none

of that flavor. While the sequent calculus we use to present ¯̄µMALL in Section 3 is based on multisets

of formulas, we shall not model computation as some rewriting of multisets of atomic-formulas-as-

tokens. In contrast, when we use linear logic connectives within arithmetic, we capture computation

and deduction via familiar means that rely on relations between numerical expressions. We propose

linearized arithmetic not to build a non-standard arithmetic but to better understand computation and

reasoning in arithmetic.

Since we are interested in using ¯̄µMALL to study arithmetic, we use first-order structures to

encode natural numbers and fixed points to encode relations among numbers. This focus contrasts

the uses of the propositional subset of ¯̄µMALL as a typing system (see, for example, [12]). We shall

limit ourselves to using invariants to reason inductively about fixed points instead of employing other

methods, such as infinitary proof systems (e.g., [13]) and cyclic proof systems (e.g., [14, 15]).

We begin our analysis of arithmetic by demonstrating that functions defined relationally in ¯̄µMALL

can be directly computed from their specifications using unification and backtracking search (Sec-

tion 4). We then introduce a new proof system, ¯̄µLK+
p , which extends ¯̄µMALL with the weakening

and contraction rules. While the addition of these rules provides a natural foundation for classical

logic, the precise nature of ¯̄µLK+
p is not well understood. In particular, we do not yet know if ¯̄µLKp,

the cut-free version of ¯̄µLK+
p , is equivalent to ¯̄µLK+

p or if it admits a complete focusing proof sys-

tem. In this paper, we establish the consistency of ¯̄µLK+
p , demonstrate its capacity to encode Peano

Arithmetic (Section 6), and prove specific conservativity results of ¯̄µLKp over ¯̄µMALL (Section 7).

2. Terms and formulas

We use Church’s approach [16] to define terms, formulas, and abstractions over these by making

them all simply typed λ-terms. The primitive type o denotes formulas (of linear and classical logics).

For the scope of this paper, we assume that there is a second primitive type ι and that the (ambient)

signature contains the constructors z : ι (zero) and s : ι → ι (successor). We abbreviate the terms z,

(s z), (s (s z)), (s (s (s z))), etc by 0, 1, 2, 3, etc.

2.1. Logical connectives involving type ι

We first present the logical connectives that relate to first-order structures. The two quantifiers ∀ and

∃ are both given the type (ι → o) → o: the terms ∀(λx.B) and ∃(λx.B) of type o are abbreviated

as ∀x.B and ∃x.B, respectively. Equality = and non-equality 6= are both of the type ι → ι → o.

For n ≥ 0, the least fixed point operator of arity n is written as µn and the greatest fixed point

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 3

operator of arity n is written as νn, and they both have the type (A → A) → A where A is the type

ι → · · · → ι → o in which there are n occurrences of ι. We seldom write explicitly the arity of fixed

points since that can usually be determined from context when its value is important. The pairs of

connectives 〈∀,∃〉, 〈µ, ν〉, and 〈=, 6=〉 are De Morgan duals.

Our formalizations of arithmetic do not contain predicate constants: we do not admit any non-

logical symbols of type ι → · · · → ι → o. Consequently, there are no atomic formulas in the

traditional sense, i.e., formulas headed by non-logical symbols. Equality, non-equality, and fixed-

point operators are treated as logical connectives, as they will be given introduction rules in the sequent

calculus proof systems we will soon introduce.

We shall use the usual rules for λ-conversion, namely, α, β, and η conversion [16], as equality on

both terms and formulas. In general, we assume that terms and formulas are in β-normal form.

2.2. Propositional connectives of linear logic

The eight linear logic connectives for MALL are the following.

conjunction true disjunction false

multiplicative ⊗ 1 ` ⊥

additive & ⊤ ⊕ 0

The four binary connectives have type o → o → o, and the four units have type o. (The use of 0 and 1

as logical connectives is unfortunate for a paper about arithmetic. As we mentioned above, numerals

are written in boldface.) Formulas involving the set of logical connectives in Section 2.1 and these

propositional connectives are called ¯̄µMALL formulas, a logic that was first proposed in [1]. Many of

the proof-theoretic properties of ¯̄µMALL will be summarized in Section 3.

We do not treat negation as a logical connective: when B is a formula, we write B to denote the

formula resulting from taking the De Morgan dual of B. We occasionally use the linear implication

B ⊸ C as an abbreviation for B ` C . We also use this overline notation when B is the body of a fixed

point expression, i.e., when B has the form λpλ~x.C where C is a formula, p is a first-order predicate

variable, and ~x is a list of first-order variables, then B is λpλ~x.C [3, Definition 2.1]. For example, if

B is [λpλx.x = z ⊕ ∃y.x = (s (s y)) ⊗ p y] then B is [λpλx.x 6= z & ∀y.x 6= (s (s y)) ` p y].

2.3. Polarized and unpolarized formulas

The connectives of linear logic are given a polarity as follows. The negative connectives are `, ⊥,

&, ⊤, ∀, 6=, and ν while their De Morgan duals—namely, ⊗, 1, ⊕, 0, ∃, =, and µ—are positive. A
¯̄µMALL formula is positive or negative depending only on the polarity of its topmost connective. The

polarity flips between B and B. We shall also call ¯̄µMALL formulas polarized formulas.

Unpolarized formulas are built using the four usual classical propositional logic connectives ∧, tt ,

∨, ff plus =, 6=, ∀, ∃, µ, and ν. Thus, the six connectives with i in their typing can appear in polarized

and unpolarized formulas. Unpolarized formulas are also called classical logic formulas. Note that

unpolarized formulas do not contain negations. We shall extend the notation B to unpolarized formulas

4 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

B in the same sense as used with polarized formulas. For convenience, we will occasionally allow

implications in unpolarized formulas: in those cases, we treat P ⊃ Q as P ∨Q.

A polarized formula Q̂ is a polarized version of the unpolarized formula Q if every occurrence of

& and ⊗ in Q̂ is replaced by ∧ in Q, every occurrence of ` and ⊕ in Q̂ is replaced by ∨ in Q, every

occurrence of 1 and ⊤ in Q̂ is replaced by tt in Q, and every occurrence of 0 and ⊥ in Q̂ is replaced

by ff in Q. Notice that if Q has n occurrences of propositional connectives, then there are 2n formulas

Q̂ that are polarized versions of Q.

Fixed point expressions, such as ((µλPλx(B P x)) t), introduce variables of predicate type (here,

P) into their scope. In the case of the µ fixed point, any formula built using that predicate variable as

its topmost symbol will be considered positively polarized. Dually, if the ν operator is used instead,

any formula built using the predicate variable it introduces is considered negatively polarized. For

example, expression (p y) in [µλpλx.x = z ⊕ ∃y.x = (s (s y)) ⊗ p y] is polarized positively while

that same expression in [νλpλx.x 6= z & ∀y.x 6= (s (s y)) ` p y] is polarized negatively.

2.4. The polarization hierarchy

A formula is purely positive (resp., purely negative) if every logical connective it contains is positive

(resp., negative). Taking inspiration from the familiar notion of the arithmetical hierarchy, we define

the following collections of formulas. The formulas in P1 are the purely positive formulas, and the

formulas in N1 are the purely negative formulas. More generally, for n ≥ 1, the Nn+1-formulas

are those negative formulas for which every occurrence of a positive subformula is a Pn-formula.

Similarly, the Pn+1-formulas are those positive formulas for which every occurrence of a negative

subformula is a Nn-formula. A formula in Pn or in Nn has at most n − 1 alternations of polarity.

Clearly, the dual of a Pn-formula is a Nn-formula, and vice versa. We shall also extend these classi-

fications of formulas to abstractions over terms: thus, we say that the term λx.B of type i → o is in

Pn if B is a Pn-formula.

Note that for all n ≥ 1, if B is an unpolarized Π0
n-formula (in the usual arithmetic hierarchy) then

there is a polarized version of B that is Nn. Similarly, if B is an unpolarized Σ0
n-formula then there

is a polarized version of B that is Pn.

3. Linear and classical proof systems for polarized formulas

3.1. The ¯̄µMALL and ¯̄µLK+

p proof systems

The ¯̄µMALL proof system [1,3] for polarized formulas is the one-sided sequent calculus proof system

given in Figure 1. The variable y in the ∀-introduction rule is an eigenvariable: it is restricted from

being free in any formula in the conclusion of that rule. In the 6=-introduction rule, if the terms t and

t′ are not unifiable, the premise is empty and the conclusion follows immediately.

The choice of using Church’s λ-notation provides an elegant treatment of higher-order substitu-

tions (needed for handling induction invariants) and provides a simple treatment of fixed point expres-

sions and the binding mechanisms used there. In particular, we shall assume that formulas in sequents

are always treated modulo αβη-conversion. We usually display formulas in βη-long normal form

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 5

⊢ Γ, B,C

⊢ Γ, B ` C
`

⊢ Γ
⊢ Γ,⊥

⊥
⊢ Γ, B ⊢ ∆, C

⊢ Γ,∆, B ⊗ C
⊗

⊢ 1
1

⊢ Γ, B ⊢ Γ, C

⊢ Γ, B & C
&

⊢ Γ,⊤
⊤

⊢ Γ, Bi

⊢ Γ, B0 ⊕ B1

⊕

{ ⊢ Γθ : θ = mgu(t, t′) }

⊢ Γ, t 6= t′
6=

⊢ t = t
=

⊢ Γ, By

⊢ Γ,∀x.Bx
∀

⊢ Γ, Bt

⊢ Γ,∃x.Bx
∃

⊢ Γ, S~t ⊢ BS~x, (S~x)

⊢ Γ, νB~t
ν

⊢ Γ, B(µB)~t

⊢ Γ, µB~t
µ

⊢ µB~t, νB~t
µν

Figure 1. The inference rules for the ¯̄µMALL proof system

⊢ Γ, B(νB)~t

⊢ Γ, νB~t
unfold

⊢ B,B
init

⊢ Γ, B ⊢ ∆, B

⊢ Γ,∆
cut

Figure 2. Three rules admissible in ¯̄µMALL

⊢ Γ, B,B

⊢ Γ, B
C

⊢ Γ
⊢ Γ, B

W

Figure 3. Two structural rules

when presenting sequents. Note that formula expressions such as B S ~t (see Figure 1) are parsed as

(· · · ((B S)t1) · · · tn) if ~t is the list of terms t1, . . . , tn.

If we were working in a two-sided calculus, the ν-rule in Figure 1 would split into the two rules

Γ ⊢ ∆, S~t S~x ⊢ BS~x

Γ ⊢ νB~t,∆
coinduction and

Γ, S~t ⊢ ∆ BS~x ⊢ S~x

Γ, µB~t ⊢ ∆
induction .

That is the rule for ν yields both coinduction and induction. In general, we shall speak of the higher-

order substitution term S used in both of these rules as the coinvariant of that rule.

We make the following observations about this proof system.

1. The µ rule allows the µ fixed point to be unfolded. This rule captures, in part, the identification

of µB with B(µB); that is, µB is a fixed point of B. This inference rule allows one occurrence

of B in (µB) to be expanded to two occurrences of B in B(µB). In this way, unbounded

behavior can appear in ¯̄µMALL where it does not occur in MALL.

2. The proof rules for equality guarantee that function symbols are all treated injectively; thus,

function symbols will act only as term constructors. In this paper, the only function symbols we

6 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

employ are for zero and successor: of course, a theory of arithmetic should treat these symbols

injectively.

3. The admissibility of the three rules in Figure 2 for ¯̄µMALL is proved in [3]. The general form of

the initial rule is admissible, although the proof system only dictates a limited form of that rule

via the µν rule. The unfold rule in Figure 2, which simply unfolds ν-expression, is admissible

in ¯̄µMALL by using the ν-rule with the coinvariant S = B(νB).

4. While the weakening and contraction rules are not generally admissible in ¯̄µMALL, they are

both admissible for N1-formulas, a fact that plays an important role in Section 7.

We could add the inference rules for equality, non-equality, and least and greatest fixed points to

Gentzen’s LK proof system for first-order classical logic [17]. We take a different approach, however,

in that, we will only consider proof systems for classical logic using polarized versions of classical

formulas. In particular, the ¯̄µLK+
p proof system is the result of adding to the ¯̄µMALL proof system

the rules for contraction C and weakening W from Figure 3 as well as the cut rule.

3.2. Examples

The formula ∀x∀y[x = y ∨ x 6= y] can be polarized as either

∀x∀y[x = y ` x 6= y] or ∀x∀y[x = y ⊕ x 6= y].

These polarized formulas belong to N2 and N3, respectively. Only the first of these is provable in
¯̄µMALL, although both formulas are provable in ¯̄µLKp.

Note that it is clear that if there exists a ¯̄µMALL proof of a P1-formula, then that proof does not

contain the ν rule, i.e., it does not contain the rules involving coinvariants. Finally, given that first-order

Horn clauses can interpret Turing machines [18], and given that Horn clauses can easily be encoded

using P1-formulas, it is undecidable whether or not a P1 expression has a ¯̄µMALL proof. Similarly,

P1 formulas can be used to specify any general recursive function. Obviously, the provability of

N1-formulas is also undecidable.

The following are proofs of two axioms of Peano Arithmetic (see also Section 6).

⊢ (s x) 6= 0
6=

⊢ ∀x. (s x) 6= 0
∀

⊢ x = x
=

⊢ s x 6= s y, x = y
6=

⊢ (s x 6= s y) ` (x = y)
`

⊢ ∀x∀y. (s x = s y) ⊃ (x = y)
∀ × 2

The unary relation for denoting the set of natural numbers and the ternary relations for addition

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 7

and multiplication can be axiomatized using Horn clauses as follows.

nat 0

∀x(nat x ⊃ nat (s x))

∀x(plus 0 x x)

∀x∀y∀u(plus x y u ⊃ plus (s x) y (s u))

∀x(mult 0 x 0)

∀x∀y∀u∀w(mult x y u ∧ plus y u w ⊃ mult (s x) y w)

These Horn clauses can be mechanically transformed into the following least fixed point definitions

of these relations.

nat = µλNλx(x = 0⊕ ∃x′(x = (s x′) ⊗ N x′))

plus = µλPλxλyλu((x = 0 ⊗ y = u) ⊕ ∃x′∃u′∃w(x = (s x′) ⊗ u = (s u′) ⊗ P x′ y u′))

mult = µλMλxλyλw
(

(x = 0 ⊗ u = 0) ⊕ ∃x′∃u′∃w(x = (s x′) ⊗ plus y u′ w ⊗ M x′ y w)
)

Both of these fixed point expressions are P1.

The following derivation verifies that 4 is a sum of 2 and 2.

⊢ 2 = (s 1)
=

⊢ 4 = (s 3)
=

⊢ plus 1 2 3

⊢ 2 = (s 1) ⊗ 4 = (s 3) ⊗ plus 1 2 3
⊗ ×2

⊢ ∃n′∃p′(2 = (s n′) ⊗ 4 = (s p′) ⊗ plus n′
2 p′)

∃ × 2

⊢ (2 = 0 ⊗ 2 = 4) ⊕ ∃n′∃p′(2 = (s n′) ⊗ 4 = (s p′) ⊗ P n′
2 p′)

⊕

⊢ plus 2 2 4
µ

⊢ nat 4

⊢ ∃p.plus 2 2 p ⊗ nat p
∃,⊗

To complete this proof, we must construct the (obvious) proof of ⊢ nat 4 and a similar subproof

verifying that 1 + 2 = 3. Note that in the bottom-up construction of this proof, the witness used to

instantiate the final ∃p is, in fact, the sum of 2 and 2. Thus, this proof construction does not compute

this sum’s value but simply checks that 4 is the correct value.

In contrast to the above example, the following proof of ∀u(plus 2 2 u ⊃ nat u) can be seen as a

computation of the value of 2 plus 2. The proof of this sequent begins as follows.

⊢ 2 6= 0 ` 2 6= u, nat u
`, 6=

⊢ plus 1 2 u′, nat (s u′)

⊢ 2 6= (s x′), u 6= (s u′), plus x′ 2 u′, nat u
6= ×2

⊢ ∀x′∀u′∀w(2 6= (s x′) ` u 6= (s u′) ` plus x′ 2 u′), nat u
∀,`

⊢ plus 2 2 u, nat u
unfold ,&

⊢ ∀u(plus 2 2 u ` nat u)
∀,`

Similarly, the open premise above has a partial proof which reduces its provability to the provability

of the sequent ⊢ plus 0 2 u′, nat (s (s u′)). This final sequent is similarly reduced to ⊢ 0 6= 0,2 6=

8 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

u′, nat (s (s u′)), which is itself reduced to ⊢ nat 4, which has a trivial proof. Note that the bottom-up

construction of this proof involves the systematic computation of the value of 2 plus 2.

The previous two proofs involved with the judgment 2 + 2 = 4 illustrates two different ways to

determine 2 + 2: the first involves a “guess-and-check” approach, while the second involves a direct

computation. We will return to these two approach in Section 4.

Unpolarized formulas that state the totality and determinacy of the function encoded by a binary

relation φ can be written as

[∀x.nat x ⊃ ∃y.nat y ∧ φ(x, y)] ∧

[∀x.nat x ⊃ ∀y1.nat y1 ⊃ ∀y2.nat y2 ⊃ φ(x, y1) ⊃ φ(x, y2) ⊃ y1 = y2].

If this formula is polarized so that the two implications are encoded using `, the conjunction is re-

placed by &, and the expression φ is P1, then this formula is a N2 formula.

Given the definition of addition on natural numbers above, the following totality and determinacy

formulas

[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∃y.(plus(x1, x2, y) ∧ nat y)]

[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∀y1∀y2. plus(x1, x2, y1) ⊃ plus(x1, x2, y2) ⊃ y1 = y2]

can be proved in ¯̄µMALL where ⊃ is polarized using ` and the one occurrence of conjunction above

is polarized using &. These proofs require both induction and the µν rule.

The direct connection between proof search in ¯̄µMALL and the model checking problems of

reachability and bisimilarity (and their negations) has been demonstrated in [19]. In particular, reach-

ability problems were encoded as P1-formulas, while non-reachability problems were encoded as

N1-formulas. The paper [19] also showed that the specification of simulation and bisimulation can

be encoded as N2- formulas. Another common form of P1-formulas arises when applying the Clark

completion [20] to Horn clause specifications.

3.3. Some known results concerning ¯̄µMALL

While ¯̄µMALL does not contain the contraction rule, it is still possible for the number of occurrences

of logical connectives to grow in sequents when searching for a proof. In particular, the unfolding

rule (when read from conclusion to premise) can make a sequent containing (µB~t) into a sequent

containing (B(µB)~t): here, the abstracted formula B is repeated. Surprisingly, however, the subset of
¯̄µMALL that does not contain occurrences of fixed points is still undecidable. In particular, consider

the following two sets of inductively defined classes of ¯̄µMALL formulas.

Φ ::= Φ & Φ | ∃x.Φ | ∀x.Φ | Ψ

Ψ ::= t1 = t′1 ⊸ · · · ⊸ tn = t′n ⊸ t0 = t′0 (n ≥ 0)

If we also assume that there are exactly three constructors, one each of type ι → ι, ι → ι → ι, and

ι → ι → ι → ι, then it is undecidable whether or not a given formula Φ is provable in ¯̄µMALL [21].

The two main proof-theoretic results concerning ¯̄µMALL are the admissibility of the cut rule (in

Figure 2) and the completeness of a focusing proof system [3].

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 9

3.4. Definable exponentials

As Baelde showed in [3], the following definitions

?P = µ(λp.⊥⊕ (p ` p)⊕ P) !P = ?P

approximate the exponentials of linear logic in the sense that the following four rules—dereliction,

contraction, weakening, and promotion—are admissible in ¯̄µMALL.

⊢ Γ
⊢ ?B,Γ

W
⊢ ?B, ?B,Γ

⊢ ?B,Γ
C

⊢ B,Γ

⊢ ?B,Γ
D

⊢ B, ?Γ

⊢ !B, ?Γ
P

In particular, we use ¯̄µMALL(!, ?) to denote the extension of ¯̄µMALL with the two exponentials !
and ? and the above four proof rules. Thus, every ¯̄µMALL(!, ?)-provable sequent can be mapped to

a ¯̄µMALL-provable sequent by simply replacing the exponentials for their corresponding fixed point

definition.

4. Using proof search to compute functions

We say that a binary relation φ encodes a function f if φ(x, y) holds if and only if f(x) = y. Of course,

this correspondence is only well defined if we know that the totality and determinacy properties hold

for φ. For example, let plus be the definition of addition on natural numbers given in Section 3. The

following polarized formulas encoding totality and determinacy are N2-formulas.

[∀x1∀x2. nat x1 ⊸ nat x2 ⊸ ∃y.nat y ⊗ plus x1 x2 y]

[∀x1∀x2. nat x1 ⊸ nat x2 ⊸ ∀y1∀y2. plus x1 x2 y1 ⊸ plus x1 x2 y2 ⊸ y1 = y2]

These formulas can be proved in ¯̄µMALL.

One approach to computing the function that adds two natural numbers is to follow the Curry-

Howard approach of relating proof theory to computation [22]. First, extract from a natural deduction

proof of the totality formula above a typed λ-term. Second, apply that λ-term to the λ-terms repre-

senting the two proofs of, say, nat n and nat m. Third, use a nondeterministic rewriting process that

iteratively selects β-redexes for reduction. In most typed λ-calculus systems, all such sequences of

rewritings will end in the same normal form, although some sequences of rewrites might be very long,

and others can be very short. The resulting normal λ-term should encode the proof of nat p, where

p is the sum of n and m. In this section, we will present an alternative mechanism for computing

functions from their relational specification that relies on using proof search mechanisms instead of

this proof-normalization mechanism.

The totality and determinacy properties of some binary relation φ can be expressed equivalently

as: for any natural number n, the expression λy.φ(n, y) denotes a singleton set. Of course, the sole

member of that singleton set is the value of the function it encodes. If our logic contained a choice

operator, such as Church’s definite description operator ι [16], this function can be represented as

λx.ιy.φ(x, y). The search for proofs can, however, be used to provide a more computational approach

to computing the function encoded by φ. Assume that P and Q are predicates of arity one and that

10 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

P denotes a singleton. In this case, the (unpolarized) formulas ∃x[Px ∧ Qx] and ∀x[Px ⊃ Qx] are

logically equivalent, although the proof search semantics of these formulas are surprisingly different.

In particular, if we attempt to prove ∃x[Px ∧ Qx], then we must guess a term t and then check

that t denotes the element of the singleton (by proving P (t)). In contrast, if we attempt to prove

∀x[Px ⊃ Qx], we allocate an eigenvariable y and attempt to prove the sequent ⊢ Py ⊃ Qy. Such

an attempt at building a proof might compute the value t (especially if we can restrict proofs of that

implication not to involve the general form of induction). This difference was illustrated in Section 3

with the proof of ⊢ ∃p.plus 2 2 p ⊗ nat p (which guesses and checks that the value of 2 plus 2 is 4)

versus the proof of ∀u(plus 2 2 u ` nat u) (which incrementally constructs the sum of 2 and 2).

Assume that P is a P1 predicate expression of type i → o and that we have a ¯̄µMALL proof

of ∀x[Px ⊃ nat x]. If this proof does not contain the induction rule, then that proof can be seen as

computing the sole member of P . As the following example shows, it is not the case that if there is

a ¯̄µMALL proof of ∀x[Px ⊃ nat x] then it has a proof in which the only form of the induction rule

is unfolding. To illustrate this point, let P be µ(λRλx.x = 0 ⊕ (R (s x))). Clearly, P denotes the

singleton set containing zero. There is also a ¯̄µMALL proof that ∀x[Px ⊃ nat x], but there is no

(cut-free) proof of this theorem that uses unfolding instead of the more general induction rule: just

using unfoldings leads to an unbounded proof search attempt, which follows the outline

⊢ nat 0

...

⊢ P (s (s y)), nat y

⊢ P (s y), nat y
unfold ,&, 6=

⊢ P y, nat y
unfold ,&, 6= .

Although proof search can contain potentially unbounded branches, we can still use the proof

search concepts of unification and nondeterministic search to compute the value within a singleton.

We now define a nondeterministic algorithm to do exactly that. The state of this algorithm is a triple

of the form

〈x1, . . . , xn ; B1, . . . , Bm ; t〉,

where t is a term, B1, . . . , Bm is a multiset of P1-formulas, and all variables free in t and in the

formulas B1, . . . , Bm are in the set of variables x1, . . . , xn. A success state is one of the form 〈· ; · ; t〉
(that is, when n = m = 0): such a state is said to have value t.

Given the state S = 〈Σ ; B1, . . . , Bm ; t〉 with m ≥ 1, we can nondeterministically select one of

the Bi formulas. For the sake of simplicity, assume that we have selected B1. We define the transition

S ⇒ S′ of state S to state S′ by a case analysis of the top-level structure of B1.

• If B1 is u = v and the terms u and v are unifiable with most general unifier θ, then we transition

to 〈Σθ ; B2θ, . . . , Bmθ ; tθ〉.

• If B1 is B ⊗ B′ then we transition to 〈Σ ; B,B′, B2, . . . , Bm ; t〉.

• If B1 is B ⊕ B′ then we transition to either 〈Σ ; B,B2, . . . , Bm ; t〉 or 〈Σ ; B′, B2, . . . , Bm ; t〉.

• If B1 is µB~t then we transition to 〈Σ ; B(µB)~t,B2, . . . , Bm ; t〉.

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 11

• If B1 is ∃y. B y then we transition to 〈Σ, y ; B y,B2, . . . , Bm ; t〉 assuming that y is not in Σ.

This nondeterministic algorithm is essentially applying left-introduction rules (assuming a two-

sided sequent calculus) in a bottom-up fashion and, if there are two premises, selecting (nondetermin-

istically) just one premise to follow.

Lemma 4.1. Assume that P is a P1 expression of type i → o and that ∃y.Py has a ¯̄µMALL proof.

There is a sequence of transitions from the initial state 〈y ; P y ; y〉 to a success state with value t
such that P t has a ¯̄µMALL proof.

Proof:

An augmented state is a structure of the form 〈Σ | θ ; B1 | Ξ1, . . . , Bm | Ξm ; t〉, where

• θ is a substitution with domain equal to Σ and which has no free variables in its range, and

• for all i ∈ {1, . . . ,m}, Ξi is a (cut-free) ¯̄µMALL proof of θ(Bi).

Note that we are left with a regular state if we strike out the augmented items. Given that we

have a ¯̄µMALL proof of ∃y.Py, we must have a ¯̄µMALL proof Ξ0 of P t for some term t. Note

that there is no occurrence of the induction rule in Ξ0. We now set the initial augmented state to

〈y | [y 7→ t] ; Py | Ξ0 ; y〉. As we detail now, the proof structures Ξi provide oracles that steer this

nondeterministic algorithm to a success state with value t. Given the augmented state

〈Σ | θ ; B1 | Ξ1, . . . , Bm | Ξm ; s〉,

we consider selecting the first pair B1 | Ξ1 and consider the structure of B1.

• If B1 is B′ ⊗ B′′ then the last inference rule of Ξ1 is ⊗ with premises Ξ′ and Ξ′′, and we make

a transition to 〈Σ | θ ; B′ | Ξ′, B′′ | Ξ′′, . . . , Bm | Ξm ; s〉.

• If B1 is B′ ⊕ B′′ then the last inference rule of Ξ1 is ⊕, and that rule selects either the first or the

second disjunct. In either case, let Ξ′ be the proof of its premise. Depending on which of these

disjuncts is selected, we make a transition to either 〈Σ | θ ; B′ | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉
or 〈Σ | θ ; B′′ | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉, respectively.

• If B1 is µB~t then the last inference rule of Ξ1 is µ. Let Ξ′ be the proof of the premise of that

inference rule. We make a transition to 〈Σ | θ ; B(µB)~t | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉.

• If B1 is ∃y. B y then the last inference rule of Ξ1 is ∃. Let r be the substitution term used to

introduce this ∃ quantifier and let Ξ′ be the proof of the premise of that inference rule. Then,

we make a transition to 〈Σ, w | θ ◦ ϕ ; B w | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉, where w is a

variable not in Σ and ϕ is the substitution [w 7→ r]. Here, we assume that the composition of

substitutions satisfies the equation (θ ◦ ϕ)(x) = ϕ(θ(x)).

• If B1 is u = v and the terms u and v are unifiable with most general unifier ϕ, then we make

a transition to 〈Σϕ | ρ ; ϕ(B2) | Ξ2, . . . , ϕ(Bm) | Ξm ; (ϕt)〉 where ρ is the substitution such

that θ = ϕ ◦ ρ.

12 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

We must show that the transition is made to an augmented state in each of these cases. This is easy

to show in all but the last two rules above. In the case of the transition due to ∃, we know that Ξ′ is a

proof of θ(B r), but that formula is simply ϕ(θ(B w)) since w is new and r contains no variables free

in Σ. In the case of the transition due to equality, we know that Ξ1 is a proof of the formula θ(u = v),
which means that θu and θv are the same terms and, hence, that u and v are unifiable and that θ is a

unifier. Let ϕ be the most general unifier of u and v. Thus, there is a substitution ρ such that θ = ϕ◦ρ
and, for i ∈ {2, . . . ,m}, Ξi is a proof of (ϕ ◦ ρ)(Bi). Finally, termination of this algorithm is ensured

since the number of occurrences of inference rules in the included proofs decreases at every step of

the transition. Since we have shown that there is an augmented path that terminates, we have that there

exists a path of states to a success state with value t. ⊓⊔

This lemma ensures that our search algorithm can compute a member from a non-empty set, given

a ¯̄µMALL proof that that set is non-empty. We can now prove the following theorem about singleton

sets. We abbreviate (∃x.P x) ∧ (∀x1∀x2.P x1 ⊃ P x2 ⊃ x1 = x2) by ∃!x.P x in the following

theorem.

Theorem 4.2. Assume that P is a P1 expression of type i → o and that ∃!y.Py has a ¯̄µMALL proof.

There is a sequence of transitions from the initial state 〈y ; P y ; y〉 to a success state of value t if and

only if P t has a ¯̄µMALL proof.

Proof:

The forward direction is immediate: given a sequence of transitions from the initial state 〈y ; P y ; y〉
to the success state 〈· ; · ; t〉, it is easy to build a ¯̄µMALL proof of P t. Conversely, assume that

there is a ¯̄µMALL proof of P t for some term t and, hence, of ∃y.P y. By Lemma 4.1, there is a

sequence of transitions from the initial state 〈y ; P y ; y〉 to the success state 〈· ; · ; s〉, where P s has

a ¯̄µMALL proof. Given a (cut-free) ¯̄µMALL proof of ∃!y.Py, that proof contains a ¯̄µMALL proof of

∀x1∀x2.P x1 ⊃ P x2 ⊃ x1 = x2, which, when combined using cut with the proofs of the formulas

Pt and Ps (and the admissibility of cut for ¯̄µMALL) allows us to conclude that t = s. ⊓⊔

Thus, a (naive) proof-search algorithm involving both unification and nondeterministic search

is sufficient for computing the functions encoded in relations in this setting. This result puts the

computation of such functions inside the domain of logic programming, where relations, unification,

and nondeterministic proof search are routinely encountered. As a result, deploying any number of

Prolog-style implementation strategies, such as those found in [23, 24], can make the search for such

proofs more effective.

5. The totality of the Ackermann function

The question of the expressivity of ¯̄µMALL has been analyzed by Baelde [2, Section 3.5], who pro-

vided a lower bound to it by characterizing a subset of ¯̄µMALL where proofs can be interpreted as

primitive recursive functions, and cut elimination corresponds to computing those functions. The

ideas behind the encoding can be used in order to express primitive recursive functions as fixpoints

and provide proofs of the totality of these functions in a similar fashion to what we did for the plus

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 13

relation. However, Baelde noted that this encoding is insufficient for a computational interpretation

of Ackermann’s function. We can add that it is also insufficient to obtain a proof that the underlying

relation represents a total function.

We show here a different method, based on the extension to ¯̄µMALL(!, ?) provided in Section 3.4,

that allows us to prove the totality of Ackermann’s function. The encoding of Ackermann’s function

in ¯̄µMALL is based on the following relational specification.

ack = µ(λackλmλnλa. (m = 0 ⊗ a = s n) ⊕

∃p(m = s p ⊗ n = 0 ⊗ ack p (s 0) a) ⊕

∃p∃q∃b(m = s p ⊗ n = s q ⊗ ack m q b ⊗ ack p b a))

In order to prove that this three-place relation determines a total function, we need to prove determi-

nacy (the first two arguments uniquely determine the third argument) and totality (for every choice of

the first two arguments, there exists a value for the third argument). The proof of determinacy, that is,

of the formula

∀x∀y∀a1∀a2.(ack x y a1 ⊸ ack x y a2 ⊸ a1 = a2),

proceeds simply as follows: first, do induction on ack x y a1 using the rest of the context as an

invariant; second, do a case analysis on the three ways that ack x y a1 is defined, and, third, in each

case use the inductive assumption to complete the proof. We have described an ¯̄µMALL proof since

neither contraction nor weakening is needed in this proof. (This proof outline also applies to proving

the determinacy of the plus relation in Section 3.2.) In the rest of this section, we prove the following

formula regarding the totality of this relation.

∀m∀n(nat m ⊸ nat n ⊸ ∃a. (ack m n a ⊗ nat a))

We now illustrate a proof of this formula.1 In doing so, we will highlight the crucial use of the encoded

exponentials in ¯̄µMALL(!, ?). For greater clarity, we will use ⊸ as a shorthand, and we will retain the

overline syntax for negation instead of computing the explicit De Morgan duality. The proof begins

by introducing the universal quantifiers and then applying twice the ` rule:

⊢ nat m, nat n,∃a. ack m n a

∀m∀n(nat m ⊸ nat n ⊸ ∃a. ack m n a)
∀,`

At this point, we need to use the coinduction rule twice, once with nat n and once with nat m. The

coinvariants we introduce for these inductions will be where we exploit the encoding of the expo-

nentials. In the first induction, we use as coinvariant the negation of the remaining context of the

sequent with a ! added, that is λm!(∀n nat n ⊸ ∃a(ack m n a ⊗ nat a)). This coinvariant needs to

be contracted later in the proof, hence the need for the exponential. The left premise of the ν rule

is immediately verified since the coinvariant starts with a ? which we can derelict away, and we can

conclude immediately after by using the fact that a generalized initial rule ⊢ Γ,Γ⊥ is admissible in

1A formalization of this proof using the Abella theorem prover [25] is available at

https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/PA-and-muMALL/ .

https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/PA-and-muMALL/

14 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

¯̄µMALL.2 The right premise of the ν rule then yields the base and inductive steps. In the base case,

we need to prove ⊢ !(∀n nat n ⊸ ∃a(ack 0 n a ⊗ nat a)), and we do this by promoting away the

exponential and then unfolding the base case of the ack definition. The inductive step gives us:

⊢ !(∀n nat n ⊸ ∃a(ack x n a ⊗ nat a)), nat n,∃a(ack (s x) n a ⊗ nat a)

⊢ !(∀n nat n ⊸ ∃a(ack x n a ⊗ nat a)), !(∀n nat n ⊸ ∃a(ack (s x) n a ⊗ nat a))
!,∀ `

Since the coinvariant starts with a question mark, we can promote the dualized coinvariant and

continue the proof. We have again exposed the dualized nat n predicate, over which we can perform

the second induction. As before, we take the entire sequent (abstracted over by n) and negate it, but

this time there is no need to add another occurrence of an exponential, obtaining the coinvariant

λk!(∀n nat n ⊸ ∃a(ack x n a ⊗ nat a)) ⊸ ∃a(ack (s x) k a ⊗ nat a).

The left-hand premise of the ν rule is now exactly an instance of ⊢ Γ,Γ⊥. The base case and the

inductive steps for this second induction remain to be proved. The base case (where we need to prove

the coinvariant for k being 0) is again proved by a routine inspection of the definition of ack. The

antecedent part of the coinvariant can be used directly since it starts with ?.

The final step is the coinductive case, where we need to prove the invariant for (s k) given the

invariant for k: that is, we need to prove the sequent

⊢!∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a)) ⊸ ∃a(ack (s y) k a ⊗ nat a),

!∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a)) ⊸ ∃a(ack (s y) (s k) a ⊗ nat a)

Introducing the second linear implication gives the dual of the antecedent, which starts with ? and,

hence, is a contractable copy of the coinvariant from the previous induction:

?∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a)).

The entire reason for using ¯̄µMALL(!, ?) to state coinvariants in this proof is to make this contraction

possible. Now, we can decompose the new coinvariant, a universally quantified implication, and use

the two copies we have obtained: one copy is provided to the antecedent of the implication, and one

copy is used to continue the proof. The two premises of this occurrence of the ν rule are:

⊢!∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a)), ?∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a))

⊢∃a(ack (s y) k a ⊗ nat a), ?∀x(nat x ⊸ ∃a(ack y x a ⊗ nat a)),∃a(ack (s y) (s k) a ⊗ nat a)

The first one is immediately proved thanks to the fact that the exponentials are dual. The second

sequent is also easily proved by unfolding the definition of ack using its third case; the exponential

can be derelicted, and all the arising premises can be proved without the exponentials.

Given that we have a ¯̄µMALL(!, ?) proof (hence, also a ¯̄µMALL proof) of the totality of the

Ackermann relation, we can use the proof search method in Section 4 in order to actually compute

the Ackermann function. Additionally, from the cut-elimination theorem of ¯̄µMALL, we obtain an

interpretation as a computation via proof normalization.

2If Γ is the multiset {B1, . . . , Bn} then Γ
⊥ is B1 ⊗ · · · ⊗ Bn}.

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 15

6. ¯̄µLK+
p contains Peano Arithmetic

The consistency of ¯̄µMALL follows immediately from its cut-elimination theorem. It is worth noting

that adding contraction to some consistent proof systems with weak forms of fixed points can make

the new proof system inconsistent. For example, both Girard [26] and Schroeder-Heister [27] describe

a variant of linear logic with unfolding fixed points that is consistent, but when contraction is added,

it becomes inconsistent. In their case, negations are allowed in the body of fixed point definitions.

(See also [28].) The following theorem proves that adding contraction to ¯̄µMALL does not lead to

inconsistency.

Theorem 6.1. ¯̄µLK+
p is consistent: that is, the empty sequent is not provable.

Proof:

Consider the sequent ⊢ B1, . . . , Bn, where n ≥ 0 and where all the free variables of formulas in this

sequent are contained in the list of variables x1, . . . , xm (m ≥ 0) all of type ι. We say that this sequent

is true if for all substitutions θ that send the variables x1, . . . , xm to closed terms of type ι (numerals),

the disjunction of the unpolarized versions of the formula B1θ, . . . Bnθ is true (in the standard model).

(The empty disjunction is the same as false.) A straightforward induction on the structure of ¯̄µLK+
p

proofs shows that all of the inference rules in Figures 1, 2, and 3 are sound (meaning that when the

premises are true, the conclusion is true). Thus, we have the following soundness result: if the sequent

⊢ B1, . . . , Bn is provable in ¯̄µLK+
p , then that sequent is true. As a result, the empty sequent is not

provable. ⊓⊔

We now show that Peano arithmetic is contained in ¯̄µLK+
p . The terms of Peano arithmetic are

identical to the terms introduced in Section 2 for encoding numerals. The formulas of Peano arithmetic

are similar to unpolarized formulas except that they are built from =, 6=, the propositional logical

connectives ∧, tt , ∨, ff , and the two quantifiers ∀̂ and ∃̂ (both of type (i → o) → o). Such formulas

can be polarized to get a polarized formula as described in Section 2.3. Finally, all occurrences of ∀̂
and ∃̂ are replaced by λB.∀x (nat x ` (Bx)) and λB.∃x (nat x ⊗ (Bx)), respectively. Here, nat is

an abbreviation for µλNλn(n = 0 ⊕ ∃m(n = (s m) ⊗ N m))).
Most presentations of Peano arithmetic incorporate the addition and multiplication of natural num-

bers as binary function symbols or as three-place relations. We will avoid introducing the extra con-

structors + and · and choose to encode addition and multiplications as relations. In particular, these

are defined as the fixed point expressions plus and mult given in Section 3. The relation between

these two presentations is such that the equality x+ y = w corresponds to plus x y w and the equality

x ·y = w corresponds to mult x y w. A more complex expression, such as ∀x∀y. (x ·s y = (x ·y+x)),
can similarly be written as either

∀x∀y∀u. mult x (s y) u ⊃ ∀v. mult x y v ⊃ ∀w.plus v x w ⊃ u = w

or as

∀x∀y∃u. mult x (s y) u ∧ ∃v. mult x y v ∧ ∃w.plus v x w ∧ u = w.

A general approach to making such an adjustment to the syntax of expressions using functions symbols

to expressions using relations is discussed from a proof-theoretic perspective in [29].

16 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

Proofs in Peano arithmetic can be specified using the following six axioms.

∀x. (s x) 6= 0 ∀x∀y. (x+ s x) = s(x+ y)

∀x∀y. (s x = s y) ⊃ (x = y) ∀x. (x · 0 = 0)

∀x. (x+ 0 = x) ∀x∀y. (x · s y = (x · y + x))

and the axiom scheme (which we write using the predicate variable A)

(A0 ∧ ∀x. (Ax ⊃ A(s x))) ⊃ ∀x.Ax.

We also admit the usual inference rules of modus ponens and universal generalization.

Theorem 6.2. (¯̄µLK+
p contains Peano arithmetic)

Let Q be any unpolarized formula, and let Q̂ be a polarized version of Q. If Q is provable in Peano

arithmetic then Q̂ is provable in ¯̄µLK+
p .

Proof:

It is easy to prove that mult and plus describe precisely the multiplication and addition operations on

natural numbers. Furthermore, the translations of the Peano Axioms can all be proved in ¯̄µLK+
p . The

translation of the first two Peano Axioms yields the formulas

∀x.nat x ` (s x) 6= 0 and ∀x.nat x ` ∀y.nat y ` (s x = s y) ⊃ (x = y).

Given that induction is not needed to prove these formulas and that the weakening rule is admissible

for N1-formulas (as observed in Section sec:mumall and proved in [1, 3]), the proof of these two

formulas are essentially the same as the proofs given for their untranslated forms in Section 3.2. The

proofs of the next four axioms use induction in the usual way. Thus, consider the final axiom—the

induction scheme—and it polarized translation

(

A0 ⊗ ∀x. (nat x ` Ax ` A(s x))
)

` ∀x. (nat x ` Ax)

An application of the ν rule to the second occurrence of nat x can provide an immediate proof of this

axiom. Finally, the cut rule in ¯̄µLK+
p allows us to encode modus ponens. ⊓⊔

7. Conservativity results for linearized arithmetic

A well-known result in the study of arithmetic is the following.

Peano arithmetic is Π2-conservative over Heyting arithmetic: if Peano arithmetic proves

a Π2-formula A, then A is already provable in Heyting arithmetic [30].

We present two conservativity theorems in this section that relate the stronger logic ¯̄µLKp to the

weaker logic ¯̄µMALL.

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 17

The strongest set of theorems we explore in this section are based on N2-formulas, and the richest

sequents we consider contain only N1, P1, and N2-formulas: such sequents are called reduced. Note

that the sequent ⊢ B1, . . . , Bn (n ≥ 2) is reduced if and only if the formula B1 ` · · · ` Bn is N2.

A N2-formula is pointed if every occurrence of B1 ` B2 in it is such that either B1 or B2 is N1

and every occurrence of νB in it is such that B is N1. This notion of pointed has been used in game-

theoretic semantics for linear logic [31] (in the form of simple expressions) and model checking [19]

(where it was called switchable). In the context of ¯̄µMALL, focusing on a pointed formula results in

additive synthetic rules even when that formula contains multiplicative connectives [19]. The formulas

in N1 and P1 are pointed. Also, if B0 is in P1 then the formula ∀~x.B1 ⊸ · · · ⊸ Bn ⊸ B0 (n ≥ 1)

is a pointed formula if and only if the formulas B1, . . . , Bn are all in P1. The formulas stating the

totality and determinacy of the plus relation in Section 4 and the totality of Ackermann’s relation in

Section 5 are pointed formulas. We say that a reduced sequent ⊢ B1, . . . , Bn is pointed if n = 1 and

B1 is pointed or n ≥ 2 and B1 ` · · · ` Bn is pointed. Put in an equivalent way: the reduced sequent

⊢ B1, . . . , Bn is pointed if and only if it contains at most one pointed formula that is not N1.

7.1. ¯̄µLKp is conservative over ¯̄µMALL for P1-formulas

A positive region is a (cut-free) ¯̄µLKp proof that contains only the inference rules µν, contraction,

weakening, and the introduction rules for the positive connectives: i.e., there are no introduction rules

for the negative connectives. If ⊢ Γ1 and ⊢ Γ2 are sequents, we say that ⊢ Γ1 is a subsequent of ⊢ Γ2

if Γ1 is a sub-multiset of Γ2.

Lemma 7.1. Let ⊢ Γ be a reduced sequent that has a positive region proof. There exists a pointed

subsequent ⊢ Γ′ of ⊢ Γ such that ⊢ Γ′ has a ¯̄µMALL proof.

Proof:

Let Ξ be a positive region proof of ⊢ Γ. We proceed by induction on the structure of Ξ.

If Ξ is the µν rule, then Γ contains exactly two occurrences of formulas that are complementary:

since this sequent is reduced, one of these formulas is positive and, hence, must be P1 and the other

formula is N1. Therefore, ⊢ Γ is pointed and has Ξ is a ¯̄µMALL proof.

Next, consider the case where the last inference rule of Ξ is either the following contraction or

weakening (where Γ is {B} ∪ Γ0).

⊢ Γ0

⊢ Γ0, B
W

⊢ Γ0, B,B

⊢ Γ0, B
C

If the structural rule is applied to a positive formula, the inductive assumption yields the conclusion

immediately. If that structural rule is applied to an N1-formula, then the result follows from the

inductive assumption and the admissibility in ¯̄µMALL of these structural rules for N1-formulas.

Finally, consider the case where the last rule of Ξ is an introduction rule for one of the positive

connectives ⊗, 1, ⊕, =, ∃, or µ. The most involved of these cases is when the last inference rule of Ξ
introduces ⊗. Thus, Γ can be written as {B1 ⊗ B2} ∪ Γ0 (note that B1 and B2 are P1-formulas) and

18 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

Ξ is of the form
Ξ1

⊢ Γ1, B1

Ξ2

⊢ Γ2, B2

⊢ Γ0, B1 ⊗ B2

⊗,

where Γ0 equals Γ1 ∪ Γ2. By the inductive hypothesis, there are pointed subsequents ⊢ ∆1 and ⊢ ∆2

of the left and right premises, respectively, such that ⊢ ∆1 and ⊢ ∆2 have ¯̄µMALL proofs Ξ′

1 and

Ξ′

2, respectively. If ∆1 is a subsequent of Γ1 then we can take Γ′ to be ∆1. If ∆2 is a subsequent

of Γ2 then we can take Γ′ to be ∆2. The only remaining case is when ∆1 is {B1} ∪ ∆′

1 and ∆2 is

{B2} ∪∆′
2 for multisets ∆′

1 and ∆′
2. Note that ∆′

1 and ∆′
2 contain only N1-formulas. The sequent

⊢ ∆1,∆2, B1 ⊗ B2 is then a pointed subsequent of ⊢ Γ with the ¯̄µMALL proof that results from

applying the ⊗ rule to Ξ′
1 and Ξ′

2. ⊓⊔

Theorem 7.2. ¯̄µLKp is conservative over ¯̄µMALL for P1-formulas. That is, if B is a P1-formula and

⊢ B has a ¯̄µLKp proof then ⊢ B has a ¯̄µMALL proof.

Proof:

Let B be a P1-formula. If the sequent ⊢ B has a ¯̄µLKp proof, that proof must be a positive region

since it contains no negative subformulas. Thus, by Lemma 7.1, we know that that sequent contains a

pointed sequent that is provable in ¯̄µMALL proof. However, the only such sequent is ⊢ B. ⊓⊔

7.2. ¯̄µLKp(N1) is conservative over ¯̄µMALL for N1-formulas

Our next conservativity result requires restricting the complexity of coinvariants used in the ν rule. We

say that a sequent has a ¯̄µLKp(N1) proof if it has a ¯̄µLKp proof in which all coinvariants of the proof

are N1. This restriction on proofs is similar to the restriction that yields the IΣ1 fragment of Peano

Arithmetic [32]. Note that the proof of the totality of the Ackermann function discussed in Section 5

is an example of a proof that is not in ¯̄µLKp(N1) since it uses complex coinvariants (involving the

encoding of an exponential) that are much richer than N1.

Lemma 7.3. If the conclusion of a ¯̄µLKp(N1) inference rule that introduces a negative connective is

a pointed sequent then all of the premises of that rule are pointed.

Proof:

We illustrate this proof for three of the rules introducing negative connectives. The remaining cases

are similar and simpler.

Assume that in the following inference rule, the sequent ⊢ Γ, B ` C is pointed.

⊢ Γ, B,C

⊢ Γ, B ` C
`

We have three cases to consider. (i) All members of Γ ∪ {B ` C} are N1-formulas. In that case,

the premise contains only N1-formulas and is, thus, pointed. (ii) B ` C is not N1. Thus, it is N2.

Since it is a pointed formula, either B is N1 and C is N2 or C is N1 and B is N2. In either case, the

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 19

premise is pointed. (iii) There is a formula in Γ that is not N1. Thus, B ` C is N1 and so are B and

C . The premise is again pointed.

Assume that in the following inference rule, the sequent ⊢ Γ, B & C is pointed.

⊢ Γ, B ⊢ Γ, C

⊢ Γ, B & C
&

We again have three cases to consider. (i) All members of Γ ∪ {B & C} are N1-formulas. In that

case, the premises contain only N1-formulas and are, thus, pointed. (ii) B ` C is not N1. Thus, it is

N2. Since it is a pointed formula, either B is N1 and C is N2 or C is N1 and B is N2. In either case,

the premises are pointed. (iii) There is a formula in Γ that is not N1. Thus, B & C is N1 and so are

B and C . The premises are again pointed.

Assume that in the following inference rule, the sequent ⊢ Γ, νB~t is pointed.

⊢ Γ, S~t ⊢ BS~x, (S~x)

⊢ Γ, νB~t
ν

Since we are in ¯̄µLKp(N1), both B and S are in N1. Hence, the right premise is pointed. The left

premise is also pointed since both S~t and νB~t are both N1-formulas. ⊓⊔

Theorem 7.4. ¯̄µLKp(N1) is conservative over ¯̄µMALL for N1-formulas. That is, if B is a N1-

formula and ⊢ B has a ¯̄µLKp proof, then ⊢ B has a ¯̄µMALL proof.

Proof:

Let Γ be a multiset of N1-formulas and let Ξ be an ¯̄µLKp(N1) proof of Γ. Note that all occurrences

of formulas in all sequents in Ξ are in N1. We proceed by induction on the number of structural rules

(weakening and contraction) that occur in Ξ. If this number is zero, then Ξ is the desired ¯̄µMALL

proof. Otherwise, assume that there is a structural rule and choose one uppermost occurrence. For

example, if this structural rule is the contraction

⊢ N,N,∆

⊢ N,∆
,

then the premise has a ¯̄µMALL proof. By the admissibility of contraction in ¯̄µMALL for N1-formulas

[3, Proposition 2.12], we know that ⊢ N,∆ has a ¯̄µMALL proof. A similar argument holds if the

uppermost structural rule is weakening since weakening is similarly admissible for N1 formulas in
¯̄µMALL. As a result, we can build a new ¯̄µLKp(N1) proof Ξ′ where this uppermost structural rule is

replaced with a ¯̄µMALL proof, thus reducing the number of structural rules from those in Ξ. ⊓⊔

7.3. ¯̄µLKp(N1) is conservative over ¯̄µMALL for pointed formulas

We can conclude from the two preceding theorems that ¯̄µLKp(N1) is conservative over ¯̄µMALL for

both P1 and N1-formulas. We can generalize these two conservativity results to N2-formulas if we

restrict such formulas to be pointed.

20 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

Theorem 7.5. ¯̄µLKp(N1) is conservative over ¯̄µMALL for pointed N2-formulas. That is, if B is a

pointed formula such that ⊢ B has a ¯̄µLKp(N1) proof, then ⊢ B has a ¯̄µMALL proof.

The proof of this theorem would be greatly aided if we had a focusing theorem for ¯̄µLKp. If we

take the focused proof system for ¯̄µMALL given in [1, 3] and add contraction (in the decide rule)

and weakening (in the initial rule), we have a natural candidate for a focused proof system for ¯̄µLKp.

(The focused proof systems LKF and MALLF in [33] have exactly these differences.) However,

the completeness of that focused proof system is currently open. As Girard points out in [34], the

completeness of such a focused (cut-free) proof system would allow the extraction of the constructive

content of classical Π0
2 theorems, and we should not expect such a result to follow from the usual ways

that we prove cut elimination and the completeness of focusing. As a result of not possessing such a

focused proof system for ¯̄µLKp, we must now reproduce aspects of focusing to prove Theorem 7.5.

We shall return to prove this theorem at the end of this section.

Lemma 7.6. Let ⊢ Γ be a sequent containing only pointed formulas. Every formula occurrence in a

sequent occurring in a ¯̄µLKp(N1) proof of ⊢ Γ is pointed.

Proof:

Let ⊢ Γ be a sequent in which every formula is pointed, and let Ξ be a ¯̄µLKp(N1) proof of this sequent.

We now prove by induction on the structure of Ξ that every formula occurrence in every sequent in

that proof is pointed. Since subformulas of a pointed formula are pointed, the only inference rules

we need to check for this property explicitly are the rules for fixed points since they do not obey the

subformula property. In particular, consider the derivation

⊢ Γ, S~t ⊢ BS~x, (S~x)

⊢ Γ, νB~t
ν and

⊢ Γ, B(µB)~t

⊢ Γ, µB~t
µ.

In the ν rule, both B and S are N1 and, hence, BS~x is N1 and (S~x) is P1. As a result, the right

premise of the ν rule contains only pointed formulas. The inductive assumption yields the same

conclusion for the left premise. In the µ rule, the occurrence of µB~t is P1 hence so is B(µB)~t. This

case follows from the inductive hypothesis. ⊓⊔

Let ⊢ P,N,Γ be a sequent where P is a positive formula, and N is a negative formula. Assume

that we have a proof of this sequent where the P formula is introduced at the root and the N formula is

introduced on one of the premises of that rule. As is known from ¯̄µMALL (see [1,3]), all occurrences

of a positive connective introduced immediately below the introduction of a negative connective can be

permuted so that the negative connectives are introduced immediately below the positive connective.

As a result, we shall introduce the following normal forms of proofs: an ¯̄µLKp proof is a P/N-proofs

is a ¯̄µLKp(N1) proof in which there is no occurrence of a negative introduction rule above a positive

introduction rule. By permuting inference rules in (cut-free) proofs, it is easy to prove the following

lemma.

Lemma 7.7. If a sequent has an ¯̄µLKp proof, it was a P/N-proof.

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 21

Given the structure of P/N-proofs, the following lemma has a direct proof.

Lemma 7.8. If a reduced sequent has a ¯̄µLKp(N1) proof in which the last inference rule is the intro-

duction of a positive connective, then it has a positive region proof.

Ketonen [35] used cut admissibility in Gentzen’s LK proof system to provide elegant proofs of

the invertibility for some introduction rules. His arguments can be used to show the invertibility of

the introduction rules for the (negative) connectives ⊥, `, ⊤, &, and ∀ in ¯̄µMALL. Since we do not

have a cut-admissibility result for ¯̄µLKp, we will need to make a simple variation on his proof to prove

similar statements for ¯̄µLKp.

Lemma 7.9. Let ⊢ N,Γ be a sequent and let N be a formula whose top-level connective is one of the

following (negative) connectives: 6=, ⊥, `, ⊤, &, and ∀. If this sequent has a ¯̄µLKp proof, it has a
¯̄µLKp proof in which the last inference rule introduces N .

Proof:

Assume that the ⊢ B1&B2,Γ sequent has a ¯̄µLKp proof Ξ. We want to prove that it has a ¯̄µLKp proof

in which the last inference rule introduces B1 &B2. Consider the following ¯̄µLK+
p proof.

Ξ

⊢ Γ, B1 &B2

⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B1

cut

Ξ

⊢ Γ, B1 &B2

⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B2

cut

⊢ Γ, B1 &B2
&

Since init is admissible in ¯̄µMALL, it is admissible in ¯̄µLKp. If we can eliminate the cut rules from

this proof, we will have a ¯̄µLKp proof in which the last inference rule introduces B1 & B2. We can

move the cut rule upwards to eliminate it in the usual fashion. In this case, the only issue arrives when

the last inference rule of Ξ is a contraction on B1&B2. That is, the left premises of the &-introduction

rule above is of the form

Ξ′

⊢ Γ, B1 &B2, B1 &B2

⊢ Γ, B1 &B2
C

⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B1

cut .

This derivation can be transformed into the following derivation.

Ξ′

⊢ Γ, B1 &B2, B1 &B2

⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B1, B1 &B2

cut
⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B1, B1

cut

⊢ Γ, B1
C

22 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

This way, the contraction applied to B1 &B2 is transformed into contractions on the subformulas B1

and B2. If we replace contraction with weakening, a similar transformation can be done.

Ξ′

⊢ Γ
⊢ Γ, B1 &B2

W
⊢ B1, B1

init

⊢ B1, B1 &B2

⊕

⊢ Γ, B1

cut
=⇒

Ξ′

⊢ Γ
⊢ Γ, B1

W

In this way, the weakening applied to B1&B2 is transformed into weakenings on the subformulas B1

and B2.

Similarly, assume that the ⊢ B1 ` B2,Γ sequent has a ¯̄µLKp proof Ξ and that Ξ ends in a

contraction.
Ξ′

Γ, B1 ` B2, B1 ` B2

⊢ Γ, B1 ` B2
C

⊢ B1, B1

init
⊢ B2, B2

init

⊢ B1, B2, B1 ` B2

⊗

⊢ Γ, B1, B2

cut

⊢ Γ, B1 ` B2
`

This derivation can be transformed into the following derivation in which contraction and cut have

been switched.

Ξ′

Γ, B1 ` B2, B1 ` B2

⊢ B1, B1

init
⊢ B2, B2

init

⊢ B1, B2, B1 ` B2

⊗

Γ, B1, B2, B1 ` B2

cut
⊢ B1, B1

init
⊢ B2, B2

init

⊢ B1, B2, B1 ` B2

⊗

⊢ Γ, B1, B1, B2, B2

cut

⊢ Γ, B1, B2

C × 2

⊢ Γ, B1 ` B2
`

Again, the contraction applied to B1 ` B2 is transformed into contractions on the subformulas B1

and B2.

The remaining cases involving 6=, ⊥, ⊤, and ∀ are similar and simpler. In this way, we prove the

invertibility of the introduction for all negative connectives except those for ν. ⊓⊔

Note that the invertibility of these negative connectives implies that the contraction and weaken-

ing rule does not need to be applied to formulas with such negative connectives at their top level.

In this way, Lemma 7.9 allows us to replace contractions on negative formulas by contractions on

their subformulas that are either ν-expressions (which we shall deal with next) or on their positive

subformulas.

For the purposes of the rest of this section, we generalize the ν rule to incorporate instances of the

structural rules applied to a ν-formula.

⊢ Γ, S1
~t, . . . , Sn

~t ⊢ BS1~x, S1~x · · · ⊢ BSn~x, Sn~x

⊢ Γ, νB~t
Cνn n ≥ 0

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 23

Since we are working within ¯̄µLKp(N1), the coinvariants S1, . . . , Sn are N1. This rule has n + 1
premises. If n = 0 this rule is the weakening rule for ν-expression; if n = 1 this rule is the ν rule;

and if n ≥ 2, it can be justified using n − 1 contractions. For example, when n = 2 the following

combination of ν and contraction rules justify the inference rule Cν2.

⊢ Γ, S~t, U~t ⊢ BU~x,U~x

⊢ Γ, νB~t, S~t
ν

⊢ BS~x, S~x

⊢ Γ, νB~t, νB~t
ν

⊢ Γ, νB~t
C

Let ¯̄µLK∗
p(N1) be the proof system that results from formally removing the ν rule and adding the

rule Cνi for every natural number i. Every ¯̄µLKp(N1) proof can be converted to a ¯̄µLK∗
p(N1) proof

by simply renaming the ν rule as Cν1.

Given that the side formulas Γ in the Cν rule appear in only one premise, it is easy to show that

this rule permute down over any introduction rule for positive connectives. For this reason, we shall

assume that the definition (and completeness) of P/N-proofs can be extended to include the Cν rule as

a negative rule.

Lemma 7.10. If B is an N2-formula with a ¯̄µLK∗
p(N1) proof then it has a ¯̄µLK∗

p(N1) proof in which

the contraction rule is used only with positive formulas.

Proof:

As Lemma 7.9 shows, if one of the negative connectives other than ν appears in a sequent, we can

assume that that connective is immediately applied: in particular, a contraction is not used. As the

proof of Lemma 7.9 illustrated, contractions on negative formulas can be permuted to be contractions

on positive subformulas or integrated into the Cν rule. ⊓⊔

We now return to Theorem 7.5 and provide it with a proof. Let B be a pointed formula such that

⊢ B has a ¯̄µLK∗
p(N1) proof. We need to show that ⊢ B has a ¯̄µMALL proof, and we do that by

transforming the ¯̄µLK∗
p(N1) proof into a proof without contractions and weakenings. We have shown

that we can eliminate the use of these two rules with negative formulas, and when they are used with

positive formulas, we can move them into a positive region where we know their use is superfluous.

More specifically, assume that there is a ¯̄µLK∗
p(N1) proof of ⊢ B that is a P/N-proof (by Lemma 7.7)

in which contraction and weakening are not applied to negative formulas (by Lemma 7.10). Let Ξ
be a ¯̄µLK∗

p(N1) proof satisfying these restrictions. Since the conclusion of Ξ, namely ⊢ B, is a

pointed sequent, Lemma 7.3 implies that the premise and conclusion of all introductions of negative

connectives are pointed. Now consider a (pointed) sequent ⊢ Γ that is the premise of the introduction

of a negative connective while also being the conclusion of a positive region proof. By Lemma 7.1,

we know that there is a pointed subsequent ⊢ Γ′ of ⊢ Γ that has a ¯̄µMALL proof. The only difference

between Γ and Γ′ is that the former can have N1-formulas, not in the latter. We can then take the
¯̄µMALL proof for ⊢ Γ′ and used the admissibility in ¯̄µMALL of weakening for N1 formulas to

provide a ¯̄µMALL proof of ⊢ Γ. The only remaining detail is to prove that the instances of Cν used

in ¯̄µLK∗
p(N1) proofs are admissible in ¯̄µMALL: this is easy to show by using the admissibility in

¯̄µMALL of the weakening and contraction of N1-formulas.

24 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

8. Related and future work

The main difference between the hierarchy of Pn/Nn-formulas used in this paper and the familiar

classes of formulas in the arithmetic hierarchy (based on quantifier alternations) is the occurrences of

fixed points within formulas. In that regard, ¯̄µMALL and ¯̄µLKp are probably more easily compared

to the extension of Peano Arithmetic based on general inductive definitions found in [36].

Circular proof systems for logics with fixed points have received much attention in recent years,

especially within the context of linear logic [12, 37, 38] and intuitionistic logic [39]. Such proof

systems generally eschew all first-order term structures (along with first-order quantification). They

also eschew the use of explicit invariants and use cycles within proofs as an implicit approach to

discovering invariants.

Historically speaking, the logic ¯̄µMALL was developed along with the construction of the Bedwyr

model checker [40]. Although that model checker was designed to prove judgments in classical logic,

it became clear that only linear logic principles were needed to describe most of its behaviors. The

paper [19] illustrates how ¯̄µMALL and its (partial) implementation in Bedwyr can be used to determine

standard model-checking problems such as reachability and simulation. A small theorem-proving

implementation based on the focused proof system ¯̄µMALL is described in [41]: that prover was

capable of proving automatically many of the theorems related to establishing determinacy and totality

of P1 relational specifications.

As mentioned above, whether or not ¯̄µLKp satisfies a cut-elimination theorem or has a (relatively)

complete focused proof system are open questions. Resolving both of these questions is an important

research problem to consider next.

When we know that the rules for contraction and induction are not involved (as in Section 4), then

proof search in ¯̄µMALL resembles computation in the logic programming setting (i.e., involving uni-

fication and nondeterministic search). In ¯̄µMALL (in contrast to ¯̄µLKp), contraction is not available,

leaving the generation of coinvariants as the key feature to concentrate on for automation. A possibly

fruitful application of our work on ¯̄µMALL would be to organize a theorem prover in such a way that

the cleverness involved with discovering induction coinvariants could be organized differently: one

could always choose to use the “obvious coinvariant” when attempting a coinductive proof, much as

was done in the prover described in [41]. The cleverness that proofs need could be left to the discovery

of applicable lemmas: initially, this discovery would be left to the user of the prover. If appropriately

organized, such a proof would only require the user to supply a sequence of lemmas; all the remaining

details, such as case analysis and coinvariant generation, would be automated.

Many of the results in this paper are based on Chapter 3 of the first author’s Ph.D. dissertation [42]

and the technical report [43].

9. Conclusions

In this paper, we have started exploring ¯̄µMALL as a linearized version of arithmetic in a way similar

to using Heyting Arithmetic as a constructive version of arithmetic. In particular, we have considered

three different proof systems. The first is ¯̄µMALL, for which a cut-admissibility theorem is known.

The other two are natural variants of ¯̄µMALL that introduce into ¯̄µMALL the rules of contraction

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 25

and weakening, yielding ¯̄µLKp, as well as cut, yielding ¯̄µLK+
p . We demonstrate that the third proof

system is consistent and powerful enough to encompass all Peano Arithmetic. While it is known

that ¯̄µMALL can prove the totality of primitive recursive function specifications, we demonstrate

that the non-primitive recursive Ackermann function can also be proved total in ¯̄µMALL. We have

also demonstrated that if we can prove in ¯̄µLKp that a certain P1 relational specification defines

a function; then a simple proof search algorithm can compute that function using unification and

backtracking search. This approach differs from the proof-as-program interpretation of a constructive

proof of the totality of a relational specification. We have also shown a few simple cases when ¯̄µLKp

is conservative over ¯̄µMALL.

Acknowledgment: We thank the anonymous reviewers of an earlier draft of this paper for their valu-

able comments. We also thank Anupam Das for several conversations and suggestions that helped

shape this paper’s overall structure and results.

References

[1] Baelde D, Miller D. Least and greatest fixed points in linear logic. In: Dershowitz N, Voronkov A (eds.),

International Conference on Logic for Programming and Automated Reasoning (LPAR), volume 4790 of

LNCS. 2007 pp. 92–106. doi:10.1007/978-3-540-75560-9 9.

[2] Baelde D. A linear approach to the proof-theory of least and greatest fixed points. Ph.D. thesis, Ecole

Polytechnique, 2008. URL https://arxiv.org/abs/0910.3383.

[3] Baelde D. Least and greatest fixed points in linear logic. ACM Trans. on Computational Logic, 2012.

13(1):2:1–2:44. doi:10.1145/2071368.2071370.

[4] Das A, De A, Saurin A. Decision problems for linear logic with least and greatest fixed points. In: 7th

International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2022 pp. 20:1–20:20. doi:10.4230/LIPIcs.FSCD.2022.20.

[5] Horne R, Padovani L. A Logical Account of Subtyping for Session Types. In: Castellani I, Scalas A

(eds.), Proc. 14th Workshop on Programming Language Approaches to Concurrency and Communication-

cEntric Software, PLACES 2023, volume 378 of EPTCS. 2023 pp. 26–37. doi:10.4204/EPTCS.378.3.

[6] Banâtre JP, Métayer DL. Programming by Multiset Transformation. Communications of the ACM, 1993.

36(1):98–111.

[7] Gehlot V, Gunter C. Normal Process Representatives. In: 5th Symp. on Logic in Computer Science. IEEE

Computer Society Press, Philadelphia, Pennsylvania, 1990 pp. 200–207. doi:10.1109/LICS.1990.113746.

[8] Kobayashi N, Yonezawa A. Asynchronous communication model based on linear logic. Formal Aspects

of Computing, 1995. 7(2):113–149. doi:10.1007/BF01211602.

[9] Miller D. The π-calculus as a theory in linear logic: Preliminary results. In: Lamma E, Mello P (eds.), 3rd

Workshop on Extensions to Logic Programming, number 660 in LNCS. Springer, Bologna, Italy, 1993 pp.

242–265. doi:10.1007/3-540-56454-3 13.

[10] Hodas J, Miller D. Logic Programming in a Fragment of Intuitionistic Linear Logic. Information and

Computation, 1994. 110(2):327–365. doi:10.1006/inco.1994.1036.

[11] Miller D. Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer Science, 1996.

165(1):201–232. doi:10.1016/0304-3975(96)00045-X.

https://arxiv.org/abs/0910.3383

26 M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL

[12] Ehrhard T, Jafarrahmani F. Categorical models of Linear Logic with fixed points of formulas. In: 36th

ACM/IEEE Symposium on Logic in Computer Science (LICS 2021), Jun 2021, Rome, Italy. IEEE, 2021

pp. 1–13. doi:10.1109/LICS52264.2021.9470664.

[13] Brotherston J, Simpson A. Sequent calculi for induction and infinite descent. J. of Logic and Computation,

2011. 21(6):1177–1216. doi:10.1093/logcom/exq052.

[14] Simpson A. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In: Esparza J, Murawski AS (eds.),

Foundations of Software Science and Computation Structures - 20th International Conference, FoSSaCS,

volume 10203 of LNCS. 2017 pp. 283–300. doi:10.1007/978-3-662-54458-7 17.

[15] Das A. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci, 2020. 16(1). doi:

10.4230/LIPIcs.FSCD.2021.29.

[16] Church A. A Formulation of the Simple Theory of Types. J. of Symbolic Logic, 1940. 5:56–68. doi:

10.2307/2266170.

[17] Gentzen G. Investigations into Logical Deduction. In: Szabo ME (ed.), The Collected Papers of Gerhard

Gentzen, pp. 68–131. North-Holland, Amsterdam, 1935. doi:10.1007/BF01201353. Translation of articles

that appeared in 1934-35. Collected papers appeared in 1969.

[18] Tärnlund SA. Horn Clause Computability. BIT, 1977. 17:215–226. doi:10.1007/BF01932293.

[19] Heath Q, Miller D. A proof theory for model checking. J. of Automated Reasoning, 2019. 63(4):857–885.

doi:10.1007/s10817-018-9475-3.

[20] Clark KL. Negation as failure. In: Gallaire J, Minker J (eds.), Logic and Data Bases, pp. 293–322. Plenum

Press, New York, 1978. doi:10.1007/978-1-4684-3384-5 11.

[21] Miller D, Viel A. Proof search when equality is a logical connective. Annals of Mathematics and Artificial

Intelligence, 2022. 90(5):523–535. doi:10.1007/s10472-021-09764-0. Special Issue on Theoretical and

Practical Aspects of Unification.

[22] Howard WA. The formulae-as-type notion of construction, 1969. In: Seldin JP, Hindley R (eds.), To H. B.

Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp. 479–490. Academic Press,

New York, 1980.

[23] Stickel M. A PROLOG Technology Theorem Prover: Implementation by an extended PROLOG compiler.

Journal of Automated Reasoning, 1988. 4(4):353–380.

[24] Aı̈t-Kaci H. Warren’s Abstract Machine: A Tutorial Reconstruction. Logic Programming Research Re-

ports and Notes. MIT Press, Cambridge, MA, 1991. URL https://wambook.sourceforge.net/.

[25] Baelde D, Chaudhuri K, Gacek A, Miller D, Nadathur G, Tiu A, Wang Y. Abella: A System for

Reasoning about Relational Specifications. J. of Formalized Reasoning, 2014. 7(2):1–89. doi:

10.6092/issn.1972-5787/4650.

[26] Girard JY. A Fixpoint Theorem in Linear Logic, 1992. An email posting to linear@cs.stanford.edu

archived at https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html.

[27] Schroeder-Heister P. Rules of Definitional Reflection. In: Vardi M (ed.), 8th Symp. on Logic in Computer

Science. IEEE Computer Society Press, IEEE, 1993 pp. 222–232. doi:10.1109/LICS.1993.287585.

[28] Grishin VN. Predicate and set-theoretic calculi based on logic without contractions. Izvestiya Rossiiskoi

Akademii Nauk. Seriya Matematicheskaya, 1981. 45(1):47–68.

https://wambook.sourceforge.net/
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html

M. Manighetti, D. Miller / Peano Arithmetic and ¯̄µMALL 27

[29] Gérard U, Miller D. Separating Functional Computation from Relations. In: Goranko V, Dam M (eds.),

26th EACSL Annual Conference on Computer Science Logic (CSL 2017), volume 82 of LIPIcs. 2017 pp.

23:1–23:17. doi:10.4230/LIPIcs.CSL.2017.23.

[30] Friedman HM. Classically and Intuitionistically Provably Recursive Functions. In: Müller GH, Scott DS

(eds.), Higher Order Set Theory, pp. 21–27. Springer Verlag, Berlin, 1978. doi:10.1007/BFb0103100.

[31] Delande O, Miller D, Saurin A. Proof and refutation in MALL as a game. Annals of Pure and Applied

Logic, 2010. 161(5):654–672. doi:10.1016/j.apal.2009.07.017.

[32] Paris JB, Kerby LAS. Σn-Collection Schemas in Arithmetic. In: Macintyre A, Pacholski L, Paris J (eds.),

Logic Colloquium ’77, volume 96 of Studies in logic and the foundations of mathematics. North-Holland,

1978 pp. 199–209.

[33] Liang C, Miller D. Focusing Gentzen’s LK proof system. In: Piecha T, Wehmeier

K (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics, Outstanding Contribu-

tions to Logic, pp. 275–313. Springer, 2024. doi:10.1007/978-3-031-50981-0. URL

https://hal.archives-ouvertes.fr/hal-03457379.

[34] Girard JY. A new constructive logic: classical logic. Math. Structures in Comp. Science, 1991. 1:255–296.

doi:10.1017/S0960129500001328.

[35] Ketonen O. Investigations into the Predicate Calculus. College Publications, 2022. Ed. by S. Negri and J.

von Plato.

[36] Möllerfeld M. Generalized inductive definitions. Ph.D. thesis, University of Münster, 2002. URL

https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572.

[37] Baelde D, Doumane A, Kuperberg D, Saurin A. Bouncing Threads for Circular and Non-Wellfounded

Proofs: Towards Compositionality with Circular Proofs. In: Baier C, Fisman D (eds.), LICS ’22: 37th

Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. ACM,

2022 pp. 63:1–63:13. doi:10.1145/3531130.3533375.

[38] De A, Jafarrahmani F, Saurin A. Phase Semantics for Linear Logic with Least and Greatest Fixed Points.

In: Dawar A, Guruswami V (eds.), 42nd IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai,

India, volume 250 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022 pp. 35:1–35:23.

doi:10.4230/LIPICS.FSTTCS.2022.35.

[39] Curzi G, Das A. Computational expressivity of (circular) proofs with fixed points. In: 38th Symp. on

Logic in Computer Science. 2023 pp. 1–13. doi:10.1109/LICS56636.2023.10175772.

[40] Baelde D, Gacek A, Miller D, Nadathur G, Tiu A. The Bedwyr system for model checking over

syntactic expressions. In: Pfenning F (ed.), 21th Conf. on Automated Deduction (CADE), number

4603 in LNAI. Springer, New York, 2007 pp. 391–397. doi:10.1007/978-3-540-73595-3 28. URL

https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cade2007.pdf.

[41] Baelde D, Miller D, Snow Z. Focused Inductive Theorem Proving. In: Giesl J, Hähnle R (eds.), Fifth

International Joint Conference on Automated Reasoning, number 6173 in LNCS. 2010 pp. 278–292. doi:

10.1007/978-3-642-14203-1 24.

[42] Manighetti M. Developing proof theory for proof exchange. Ph.D. thesis, Institut Polytechnique de Paris,

2022. URL https://theses.hal.science/tel-04289251.

[43] Manighetti M, Miller D. Peano Arithmetic and muMALL. Technical Report arXiv:2312.13634, arXiv,

2023. URL https://arxiv.org/abs/2312.13634.

https://hal.archives-ouvertes.fr/hal-03457379
https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cade2007.pdf
https://theses.hal.science/tel-04289251
https://arxiv.org/abs/2312.13634

	Introduction
	Terms and formulas
	Logical connectives involving type
	Propositional connectives of linear logic
	Polarized and unpolarized formulas
	The polarization hierarchy

	Linear and classical proof systems for polarized formulas
	The MALL and LKp+ proof systems
	Examples
	Some known results concerning MALL
	Definable exponentials

	Using proof search to compute functions
	The totality of the Ackermann function
	LKp+ contains Peano Arithmetic
	Conservativity results for linearized arithmetic
	LKp is conservative over MALL for P1-formulas
	LKp(N1) is conservative over MALL for N1-formulas
	LKp(N1) is conservative over MALL for pointed formulas

	Related and future work
	Conclusions

