
HAL Id: hal-04824022
https://hal.science/hal-04824022v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning graph representations for influence
maximization

George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, Jun Pang,
Fragkiskos D. Malliaros

To cite this version:
George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, Jun Pang, Fragkiskos D. Malliaros.
Learning graph representations for influence maximization. Social Network Analysis and Mining, 2024,
14 (1), pp.203. �10.1007/s13278-024-01311-z�. �hal-04824022�

https://hal.science/hal-04824022v1
https://hal.archives-ouvertes.fr

Learning Graph Representations for Influence

Maximization

George Panagopoulos1*, Nikolaos Tziortziotis2,
Michalis Vazirgiannis3, Jun Pang1, Fragkiskos D. Malliaros4

1University of Luxembourg, Department of Computer Science, 6 avenue
de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg.

2Jellyfish, Rue Henner, Paris, 75009, France.
3École Polytechnique, Institut Polytechnique de Paris, Rte de Saclay,

Palaiseau, 91120, France.
4Université Paris-Saclay, CentraleSupélec, Inria, 3 rue Joliot Curie,

Gif-sur-Yvette, 91192, France.

*Corresponding author(s). E-mail(s): georgios.panagopoulos@uni.lu;
Contributing authors: ntziorzi@gmail.com; mvazirg@lix.polytechnique.fr;

jun.pang@uni.lu; fragkiskos.malliaros@centralesupelec.fr;

Abstract

Finding the seed set that maximizes the influence spread over a network is a well-
known NP-hard problem. Though a greedy algorithm can provide near-optimal
solutions, the subproblem of influence estimation renders the solutions inefficient.
In this work, we propose Glie, a graph neural network that learns how to esti-
mate the influence spread of the independent cascade. Glie relies on a theoretical
upper bound that is tightened through supervised training. Experiments indi-
cate that it provides accurate influence estimation for real graphs up to 10 times
larger than the train set. Subsequently, we incorporate it into three influence
maximization techniques. We first utilize Cost Effective Lazy Forward optimiza-
tion substituting Monte Carlo simulations with Glie, surpassing the benchmarks
albeit with a computational overhead. To improve computational efficiency, we
develop Pun, a provably submodular influence spread based onGlie’s representa-
tions, to rank nodes while building the seed set adaptively. Furthermore, we take
a step towards an end-to-end learnable approach in Grim, a Q-learning model
that learns how to choose seeds sequentially using Glie’s predictions. The pro-
posed algorithms are inductive, meaning they are trained on graphs with a few
hundred nodes and tested on graphs with millions. Our methods exhibit the most

1

promising combination of time efficiency and influence quality, outperforming
several benchmarks.

Keywords: graph neural networks, influence maximization, combinatorial
optimization, social networks

1 Introduction

Several real-world problems can be cast as a combinatorial optimization problem over a
graph. From distributing packages [1] to vehicles’ management [2] and graph clustering
[3], optimization on graphs lies at the core of many real-world problems that are vital
to our way of living. Unfortunately, the majority of these problems are NP-hard, and
hence we can only approximate their solution in a satisfactory time limit that matches
the real-world requirements.

Recent machine learning methods have emerged as a promising solution to develop
heuristic methods that provide fast and accurate approximations. The general idea is
to train a supervised or unsupervised learning model to infer the solution given an
unseen graph and the problem constraints. The models tend to consist of Graph Neural
Networks (GNNs) to encode the graph and the nodes, a reinforcement learning (RL)
algorithm Q-learning [4] to produce sequential predictions, or a combination of both.
The practical motivation behind learning to solve combinatorial optimization problems
is that inference time is faster than running an exact combinatorial solver [5]. In that
regard, the field of neural algorithmic reasoning has made significant strides, includ-
ing solutions to standard problems [6] and recursive ones [7]. The Traveling Salesman
Problem (TSP) has been studied from multiple perspectives including attention-based
and meta-learning solutions with promising generalization [8–10]. That said, special-
ized combinatorial algorithms like Concordeß for the TSP or Gurobi in general,
cannot be consistently surpassed yet at scale.

Though many such methods have been proposed for a plethora of problems, influ-
ence maximization (IM) has not yet been addressed extensively. IM addresses the
problem of finding the set of nodes in a network that would maximize the number
of nodes reached by starting a diffusion from them [11]. This problem definition can
be formulated as argmaxSI(S) s.t. |S| < b, i.e. we need to find the set of seed nodes
S ⊂ V in the graph G = (E, V) such that the influence function I is maximized.
The problem is proved to be NP-hard, from a reduction to the set-cover problem.
Moreover, the influence estimation (IE) problem that is embedded in IM, i.e., esti-
mating the number of nodes influenced by a given seed set, is #P-hard and would
require 2|E| possible combinations to compute exactly, where |E| is the number of
network edges [12]. Typically, influence estimation is approximated using repetitive
Monte-Carlo (MC) simulations of the independent cascade (IC) diffusion model [13].
In general, the seed set is built greedily, taking advantage of the submodularity of the
influence function, which guarantees at least (1 − 1

e) approximation to the optimal.
However, the latter lacks efficiency as one still has to estimate the influence of every
candidate seed in every step of building the seed sets. Due to this, the complexity of

2

a greedy approach is lower, bounded by the complexity of the IE procedure and the
number of uninfluenced nodes. In this work, we address IM using a GNN-based IE
that is learned from small-scale examples and allows us to diminish this complexity
in real-life IM cases. The main idea is to develop an algorithm that uses the GNN
not only as a substitute for IE but also capitalizes on the learned representation to
accelerate the seed selection. Our contributions can be summarized as follows:

1. We propose Glie, a GNN that provides efficient IE for a given seed set and a graph
with influence probabilities. It can be used as a standalone influence predictor with
competitive results for graphs up to 10 times larger than the train set.

2. We further leverage Glie for IM, combining it with Celf [14], which typically does
not scale beyond networks with thousands of edges. The proposed method runs
in networks with millions of edges in seconds and exhibits better influence spread
than a state-of-the-art algorithm and previous GNN-RL methods for IM.

3. We devise Pun, a method that uses Glie’s representations to compute the number
of neighbors predicted to be uninfluenced and uses it as an approximation to the
marginal gain. We prove Pun’s influence spread is submodular and monotone, and
hence can be optimized greedily with a guarantee, in contrast to prior learning-
based methods.

4. Finally, we develop Grim, a Q-learning-based architecture that utilizes Glie’s
representations and predictions to obtain seeds sequentially while minimizing the
number of influence estimations throughout steps.

The paper is organized as follows.

• Section 2 reviews relevant approaches, briefly explains them, and clarifies the
proposed models’ advantages.

• Section 3 describes the proposed methods, starting with IE and advancing progres-
sively towards faster methods for IM.

• Section 4 presents the experimental results for IE and IM with a detailed comparison
between them and various methods from the literature.

• Section 5 summarizes the contribution and presents future steps.

It should be noted that this is an extended version of the paper introducing Glie
[15]. Grim is an alternative methodology to Pun that utilizes reinforcement learning
to recover the seed selection policy, instead of optimization. Sections 3 and 4 have
changed significantly to include Grim, with an updated schematic representation of
the pipeline in Fig. 1. Further experiments have been added to quantify the behavior
of all the models in smaller seed sets (50 and 100) in Section 4, and an analysis of
the effect of adaptive seed set selection on the influence set is added in Section 3.4.
In the Appendix, we added more details in the proofs, a thorough exploration of the
submodularity exhibited in practice by Glie, and a comparison of Glie’s results for
larger seed sets.

3

2 Related Work

IM is a well-known problem with numerous solutions of varying complexity [11]. A
simple graph degeneracy metric such as k-core [16], which ranks nodes based on their
core number, is widely used for identifying influencers. It is considered the most effec-
tive structural metric for this purpose because it accounts for influence overlap, unlike
degree or PageRank. DegreeDiscount [17] constructs a seed set using degree-based
rankings, which are recalculated based on the current seed set and its influence. An
even more effective heuristic for the IC diffusion model is PMIA [12]. This method relies
on the maximum influence in-arborescence (MIIA) and out-arborescence (MIOA) for
each node, representing the union of all maximum influence paths that end or start at
that node. The key aspect of this algorithm is the removal of paths with probabilities
below a certain threshold. Although providing a substantial speedup, those heuristic
methods do not retain theoretical guarantees, in contrast to sketch-based algorithms
[18]. The idea of sketch-based approaches is to create several instances of the network
that represent varying outcomes of the edge probabilities beforehand and use them to
estimate the influence spread of a seed set. The IMM algorithm [19] utilizes sketches
to compute influence spread through reverse reachable sets of a node, which include
other nodes that can influence it. By generating enough of these sets for random
nodes, the optimal seed set is determined by selecting nodes that cover the majority.
The frequency of a node’s appearance in these sets is proportional to its influence.
This method is considered state-of-the-art and surpasses various heuristics [20] while
retaining theoretical guarantees.

All aforementioned techniques are purely based on non-learning-based approaches.
The first approach to solving combinatorial optimization (CO) using neural networks
was based on attention neural networks for discrete structures, PointerNets [21],
followed by an architecture that combines PointerNets with an actor-critic training
to find the best route for TSP [22]. The first architecture that utilized graph-based
learning was S2v-Dqn [23], using Struct2Vec to encode the states of the nodes and
the graph, and training a Deep Q-network (Dqn) model that chooses the right node
to add in a solution given the current state. Although these models are some of the
first for solving CO using neural networks, they have been known to perform worse
than solvers specializing in a given problem such as IM.

Such specialized neural solvers have been developed for IM based on S2v-Dqn.
Specifically, the network dismantling problem, which is akin to IM, was solved with
two different variations [24, 25]. Focusing on the more recent and effective one, Finder
uses a deep Q-learning architecture where the representations are derived by three
GraphSage layers. The reward is based on the size of the giant connected component
size, i.e., every new node (seed) chosen aims to dismantle the network as much as
possible. The main advantage of Finder is that it is trained on small synthetic data,
which are easy to construct. On the other hand, it has not been tested with directed
graphs and weighted edges, which constitute the majority of real-life IM tasks. Another
supervised deep learning approach on IM, Gcomb [26], utilizes a probabilistic greedy
method to produce scores on graphs and trains a GNN to predict them. A Q-network
receives the scores along with an approximate calculation of the node’s neighborhood
correlation with the seed set to predict the next seed. This approach, though scalable

4

and comparable to SOTA in accuracy, has to be trained on a large random subset of
the graph (30% of it) and tested on the rest. This makes the model graph-specific,
i.e., it has to be retrained to perform well on a new graph. This imposes a serious
overhead, considering the time required for training, subsampling, and labeling these
samples using the probabilistic greedy method with traditional IE. As shown in [26]
App. G, it takes more than hundreds of minutes and is thus out of our scope. In that
sense, both of the IM methods based on neural learning have disadvantages pertaining
to either the nature of the evaluation or their generalizability.

Another line of work focuses on addressing the influence prediction as a standalone
problem with methods such as DeepIS [27]. DeepIS uses the power sequence of the
influence probability matrix and a two-layer GNN to regress the susceptibility of each
node. Subsequently the estimation propagates in the neighbors similarly to PPNP [28],
but based on the IC probability instead of a random walk. DeepIS is a different archi-
tecture than Glie, which receives only indications of the seed set. Moreover, DeepIS
is not tested extensively in influence maximization and as we will see in the experi-
mental section, its use of the powers of influence probability matrix is detrimental to
its scalability. Finally, recent work on learning contingency-aware IM [29] addresses
the possibility of unwilling seeds, which is a specific setting unrelated to our general
solution to IM. A different branch of learning-based IM relies on supplementary infor-
mation such as diffusion cascades [30–32] to derive more effective IM algorithms [33].
This is also diagonal to the current setting, which does not assume any further infor-
mation from the typical IM. Similarly, for RL-based methodologies that work with
non-conventional diffusion models [34], whose objectives are different. We further note
here that the majority of the relevant literature on deep learning for combinatorial
optimization address small graphs [8, 21, 23, 35], which makes them not applicable to
our task. More scalable, unsupervised methods [36] are tailored to specific problems
and are non-trivial to adjust for our problem, with the exception of [37], which was
found significantly worse than the SOTA algorithm we compare with in [26].

In this paper, we propose an approach that combines the advantages of the afore-
mentioned methods in that it is only trained on small simulated data once and
generalizes to larger graphs, and it addresses the problem of IM in weighted directed
networks. Furthermore, the approach can be broken down into a GNN for influence
estimation and three IM methods. The former can act alone as an influence predictor
and be competitive with relevant methods, such as Dmp [38] for graphs up to one scale
larger than the train set. Dmp achieves an accelerated computation of the influence
spread by estimating an upper bound through message passing that is exact for trees.
Dmp will be our primary baseline for IE experiments. In detail, our IE method Glie
is used to propose: (1) Celf-Glie, i.e., Celf [14] with Glie as influence estimator;
(2) Grim, a Q-network that learns how to choose seeds using Glie’s estimations and
hidden representations; (3) Pun, an adaptive IM method [39] that optimizes greedily
a submodular influence spread using Glie’s representations.

5

3 Proposed Methodology

3.1 Glie: Graph Learning-based Influence Estimation

In this section, we introduce Glie, a GNN model that aims to learn how to estimate
the influence of seed set S over a graph G = (V,E). Let A ∈ Rn×n be the adjacency
matrix and X ∈ Rn×d be the features of nodes, representing which nodes belong to
the seed set by 1 and 0 otherwise:

Xu =

{
{1}d, u ∈ S
{0}d, u /∈ S

. (1)

For the analysis that follows, we set d = 1. More dimensions will become meaningful
when we parameterize the problem. If we normalize A by each row, we form a row-
stochastic transition matrix, as

Auv = pvu =

{ 1
deg(u) , v ∈ N (u)

0, v /∈ N (u)
, (2)

where deg(u) is the in-degree of node u and N (u) is the set of neighbors of u. Based
on the weighted cascade model [11], each row u stores the probability of node u
being influenced by each of the other nodes that are connected to it by a directed
link v → u. Note that, in the case of directed influence graphs, A should correspond
to the transpose of the adjacency matrix. The influence probability p(u|S) resembles
the probability of a node u getting influenced if its neighbors belong in the seed set,
i.e., during the first step of the diffusion. We can use message passing to compute a
well-known upper bound p̂(u|S) of p(u|S) for u:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
= (3)

∑

v∈N (u)∩S

pvu ≥ 1−
∏

v∈N (u)∩S

(1− pvu) = p(u|S), (4)

where the second equality stems from the definition of the weighted cascade and the
inequality from the proof in [40], App. A. As the diffusion covers more than one
hop, the derivation requires repeating the multiplication to approximate the total
influence spread. To be specific, computing the influence probability of nodes that are
not adjacent to the seed set requires estimating recursively the probability of their
neighbors being influenced by the seeds. If we let H1 = A ·X, and we assume the new
seed set St to be the nodes influenced in the step t− 1, their probabilities are stored
in Ht, much like diffusion in discrete time. We can then recompute the new influence
probabilities with Ht+1 = A ·Ht.

Corollary 1. The repeated product Ht+1 = A ·Ht computes an upper bound to the
real influence probabilities of each infected node at step t+ 1.

6

The proof can be found in Appendix A.1. In reality, due to the existence of cycles, two
problems arise with this computation. Firstly, if the process is repeated, the influence
of the original seeds may increase again, which comes in contrast with the indepen-
dent cascade model. This can be controlled by minimizing the repetitions, e.g., four
repetitions cause the original seeds to be able to reinfect other nodes in a network with
triangles. To this end, we leverage up to three neural network layers. Another prob-
lem due to cycles pertains to the probability of neighbors influencing each other. In
this case, the product of the complementary probabilities in Eq. (4) does not factorize
for the non-independent neighbors. This effect was analyzed extensively in [38], App.
B, and proved that the influence probability computed by p(u|S) is itself an upper
bound on the real influence probability for graphs with cycles. Intuitively, the product
that represents non-independent probabilities is larger than the product of indepen-
dent ones. This renders the real influence probability, which is complementary to the
product, smaller than what we compute.

We can thus contend that the estimation p̂(u|S) provides an upper bound on the
real influence probability—and we can use it to compute an upper bound to the real
influence spread of a given seed set i.e., the total number of nodes influenced by the
diffusion. Since message passing can compute inherently an approximation of influence
estimation, we can parameterize it to learn a function that tightens this approximation
based on supervision. In our neural network architecture, each layer consists of a GNN
with batch norm and dropout omitted here, and starting from H0 = X ∈ Rn×d we
have:

Ht+1 = ReLU([Ht,AHt]Wt). (5)

The readout function that summarizes the graph representation based on all nodes’
representations is a summation with skip connections:

HG
S =

∑

v∈V

[Hv
0,H

v
1, . . . ,H

v
t]. (6)

This representation captures the probability of all nodes being active throughout each
layer. The output that represents the predicted influence spread is derived by:

σ̂(S) = ReLU(HG
SWo). (7)

Our loss function is MSE as in a standard regression problem. Note that, in the case
where Wt is an untrained positive semidefinite Gaussian random matrix in [0, 1], the
representations of each layer Hv

t would correspond to the upper bound of the influence
probability of seed set’s t-hop neighbors [38]. This upper bound is not retained once the
weightsWt are trained. In our approach, the parameters of the intermediate layersWt

are trained such that the upper bound is reduced and the final layer Wo can combine
the probabilities to derive a cumulative estimate for the total number of influenced
nodes. We empirically verify this by examining the layer activations which can be seen
in Fig. 1. The heatmaps indicate a difference between columns (nodes) expected to be
influenced, meaning we could potentially predict not only the number but also who
will be influenced. However, since σ̂ is derived by multiple layers, the relationships
and thresholds to determine the exact influenced set are not straightforward.

7

Influence set
representation

Set influence

Overlap

Seed influence

Action (new seed)

Candidate seeds

INFLUENCE ESTIMATION
Compute for every candidate seed before the Q-network

ReadOut

<latexit sha1_base64="bj5/PXvRWwwvKiEDd3D4l4386No=">AAACHnicbVDLSgNBEJyNr7i+ol4EL4sh4CnsSkCPQS/ejGIekIQwO+kkQ2YfzPRKwhK/xYNX/Qxv4lW/wl9wdhMkJjbMUFR1U93lhoIrtO0vI7Oyura+kd00t7Z3dvdy+wc1FUSSQZUFIpANlyoQ3IcqchTQCCVQzxVQd4dXiV5/AKl44N/jOIS2R/s+73FGUVOd3FELYYRx+isW3wHt3kQ4mZidXN4u2mlZy8CZgTyZVaWT+251AxZ54CMTVKmmY4fYjqlEzgRMzFakIKRsSPvQ1NCnHqh2nF4wsQqa6Vq9QOrno5Wy8xMx9ZQae67u9CgO1KKWkP9pzQh7F+2Y+2GE4LOpUS8SFgZWEofV5RIYirEGlEmud7XYgErKUIdmFuZtwlGym/q10Qk5i3ksg9pZ0SkVS7elfPlyllWWHJMTckocck7K5JpUSJUw8kieyQt5NZ6MN+Pd+Ji2ZozZzCH5U8bnD7tyoyY=</latexit>

Output

<latexit sha1_base64="zD9WQbVg7fQXtpMLWuzDCBfHyo4=">AAACHXicbVDLSsNAFJ3UV42vqAsXboKl4KokUtBl0Y07K9gHtKFMppN26OTBzI20hHyLC7f6Ge7ErfgV/oKTNEhtvTDD4Zx7OfceN+JMgmV9aaW19Y3NrfK2vrO7t39gHB61ZRgLQlsk5KHoulhSzgLaAgacdiNBse9y2nEnN5neeaRCsjB4gFlEHR+PAuYxgkFRA+OkD3QKSf5LktzFEMWQpvrAqFg1Ky9zFdgFqKCimgPjuz8MSezTAAjHUvZsKwInwQIY4TTV+7GkESYTPKI9BQPsU+kk+QGpWVXM0PRCoV4AZs4uTiTYl3Lmu6rTxzCWy1pG/qf1YvCunIQF6igakLmRF3MTQjNLwxwyQQnwmQKYCKZ2NckYC0xAZaZXF22iabab/LVRCdnLeayC9kXNrtfq9/VK47rIqoxO0Rk6Rza6RA10i5qohQhK0TN6Qa/ak/amvWsf89aSVswcoz+lff4AVRSi+Q==</latexit>

2nd Layer

<latexit sha1_base64="nJ+FhxIQcnK30jjjyxZ9+atp+cM=">AAACK3icbVDLSgNBEJz1GeNr1aOXwRDwFHYloMegFw8eIpgHJDHMTjo6ODu7zPRKwrJf4Ld48Kqf4Unx6tlfcJIs4qthmKKqm+quIJbCoOe9OHPzC4tLy4WV4ura+samu7XdNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVnBzMtFbt6CNiNQFjmPohexKiaHgDC3Vd8sHl2kXYYSpGmQZncHZZ3h6xsags6zYd0texZsW/Qv8HJRIXvW++9EdRDwJQSGXzJiO78XYS5lGwSVkxW5iIGb8hl1Bx0LFQjC9dHpORsuWGdBhpO1TSKfs94mUhcaMw8B2hgyvzW9tQv6ndRIcHvVSoeIEQfGZ0TCRFCM6yYYOhAaOcmwB41rYXSm/ZppxtAkWy99t4tFkN/NlYxPyf+fxFzQPKn61Uj2vlmrHeVYFskv2yD7xySGpkVNSJw3CyR15II/kybl3np1X523WOufkMzvkRznvn1aIqKQ=</latexit>

1st Layer

<latexit sha1_base64="+giw3PGcCZxNLb5ydEESwpYmiks=">AAACK3icbVDJSgNBEO1xjXEb9eilMQQ8hRkJ6DHoxYOHCGaBJIaeTiVp0rPQXSMJw3yB3+LBq36GJ8WrZ3/BzoLExIKmH+9V8aqeF0mh0XHerZXVtfWNzcxWdntnd2/fPjis6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emje4Guu1B1BahMEdjiJo+awXiK7gDA3VtvPufdJEGGKiMU3pFE4/zZMbNgKVptm2nXMKzqToMnBnIEdmVW7b381OyGMfAuSSad1wnQhbCVMouIQ024w1RIwPWA8aBgbMB91KJuekNG+YDu2GyrwA6YSdn0iYr/XI90ynz7CvF7Ux+Z/WiLF70UpEEMUIAZ8adWNJMaTjbGhHKOAoRwYwroTZlfI+U4yjSTCbn7eJhuPd9K+NSchdzGMZVM8KbrFQvC3mSpezrDLkmJyQU+KSc1Ii16RMKoSTR/JMXsir9WS9WR/W57R1xZrNHJE/ZX39AHkfqLg=</latexit>

+

<latexit sha1_base64="tk1uIw9vnvjBFUgOSZUbAwmLSgE=">AAACBXicbVDLSsNAFL3xWeur6tJNsBQEoSRS0GXRjcsW7APaUCbTm3boZBJmJmIpXbtwq5/hTtz6HX6Fv+CkDVJbLwwczrmXc+b4MWdKO86Xtba+sbm1ndvJ7+7tHxwWjo6bKkokxQaNeCTbPlHImcCGZppjO5ZIQp9jyx/dpnrrAaVikbjX4xi9kAwECxgl2lD1i16h6JSd2dirwM1AEbKp9Qrf3X5EkxCFppwo1XGdWHsTIjWjHKf5bqIwJnREBtgxUJAQlTeZBZ3aJcP07SCS5gltz9jFiwkJlRqHvtkMiR6qZS0l/9M6iQ6uvQkTcaJR0LlRkHBbR3b6a7vPJFLNxwYQKpnJatMhkYRq002+tGgTP6bZ1K+Nachd7mMVNC/LbqVcqVeK1ZusqxycwhmcgwtXUIU7qEEDKCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A87bmHQ=</latexit>

S

<latexit sha1_base64="E5/CRARnFBrRcL4C5ES9D1Sj8NQ=">AAACBnicbVDLSsNAFL3xWeOr6tLNYCm4KokUdFl047I++oA2lMl00g6dTMLMRCyhexdu9TPciVt/w6/wF5y0QWrrhYHDOfdyzhw/5kxpx/myVlbX1jc2C1v29s7u3n7x4LCpokQS2iARj2Tbx4pyJmhDM81pO5YUhz6nLX90lemtByoVi8S9HsfUC/FAsIARrA11e2f3iiWn4kwHLQM3ByXIp94rfnf7EUlCKjThWKmO68TaS7HUjHA6sbuJojEmIzygHQMFDqny0mnSCSobpo+CSJonNJqy8xcpDpUah77ZDLEeqkUtI//TOokOLryUiTjRVJCZUZBwpCOUfRv1maRE87EBmEhmsiIyxBITbcqxy/M28WOWTf3amIbcxT6WQfOs4lYr1ZtqqXaZd1WAYziBU3DhHGpwDXVoAIEAnuEFXq0n6816tz5mqytWfnMEf8b6/AFFsJiw</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

�̂(s)

<latexit sha1_base64="YCzKP8zTMuyZ/6I7z3yJbIUbg2M=">AAACFXicbVDLSsNAFJ3UV62PRl26GSyFuimJFHRZdOOygn1AE8pkOmmHzkzCzEQsod/hwq1+hjtx69qv8BectEFq64ULh3Pu5RxOEDOqtON8WYWNza3tneJuaW//4LBsHx13VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nefSBS0Ujc62lMfI5GgoYUI22ogV32xkinnqIjjmY1dT6wK07dmQ9cB24OKiCf1sD+9oYRTjgRGjOkVN91Yu2nSGqKGZmVvESRGOEJGpG+gQJxovx0HnwGq4YZwjCSZoWGc3b5I0VcqSkPzCVHeqxWtYz8T+snOrzyUyriRBOBF0ZhwqCOYNYCHFJJsGZTAxCW1GSFeIwkwtp0Vaou28SPWTb1a2Maclf7WAedi7rbqDfuGpXmdd5VEZyCM1ADLrgETXALWqANMEjAM3gBr9aT9Wa9Wx+L04KV/5yAP2N9/gCXJJ7I</latexit>

r = �̂(S [s0) � �̂(S)

<latexit sha1_base64="fZkAel85+LFs92T5/dbcL6b6WfM=">AAACM3icbVDLSgMxFM3UV62vUZdugqXYLlpmpKAboejGZUX7gM5QMmnahmYyQ5IRy9Cv8FtcuNWvEHfiVvwFM+0gtfVA4HDOvZyb44WMSmVZb0ZmZXVtfSO7mdva3tndM/cPmjKIBCYNHLBAtD0kCaOcNBRVjLRDQZDvMdLyRleJ37onQtKA36lxSFwfDTjtU4yUlrpmWcAL6AyRih1JBz6aFG+hg6MQypMSLC84pa6ZtyrWFHCZ2CnJgxT1rvnt9AIc+YQrzJCUHdsKlRsjoShmZJJzIklChEdoQDqacuQT6cbTb01gQSs92A+EflzBqTq/ESNfyrHv6UkfqaFc9BLxP68Tqf65G1MeRopwPAvqRwyqACYdwR4VBCs21gRhQfWtEA+RQFjpJnOF+ZjwIblN/sbohuzFPpZJ87RiVyvVm2q+dpl2lQVH4BgUgQ3OQA1cgzpoAAwewTN4Aa/Gk/FufBifs9GMke4cgj8wvn4AWkmpUA==</latexit>

O

<latexit sha1_base64="9dfh5jBTW4B+e1LcsOzgr24gdbk=">AAACD3icbVDLSsNAFL3xWeOr6tJNsBRclUQKuiy6cVnBPiANZTKdtEMnM2FmIpbQj3DhVj/Dnbj1E/wKf8FJG6S2Xhg4nHMv58wJE0aVdt0va219Y3Nru7Rj7+7tHxyWj47bSqQSkxYWTMhuiBRhlJOWppqRbiIJikNGOuH4Jtc7D0QqKvi9niQkiNGQ04hipA3l90I6FJrGRNn9csWtubNxVoFXgAoU0+yXv3sDgdOYcI0ZUsr33EQHGZKaYkamdi9VJEF4jIbEN5Aj4xJks8hTp2qYgRMJaR7XzoxdvMhQrNQkDs1mjPRILWs5+Z/mpzq6CjLKk1QTjudGUcocLZz8/86ASoI1mxiAsKQmq4NHSCKsTUt2ddEmecyzqV8b05C33McqaF/UvHqtflevNK6LrkpwCmdwDh5cQgNuoQktwCDgGV7g1Xqy3qx362O+umYVNyfwZ6zPH9ienNY=</latexit>

Store for
training

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

i = 1, . . . , n

<latexit sha1_base64="BBxCLSQbs0Bgi09BthHFKIh8KSI=">AAACEHicbVDLSsNAFJ3UV62vqks3g6XgopRECroRim5cVrAPaEKZTCbt0MlMmJmIJfQnXLjVz3Anbv0Dv8JfcNIGqa0XLhzOuZdzOH7MqNK2/WUV1tY3NreK26Wd3b39g/LhUUeJRGLSxoIJ2fORIoxy0tZUM9KLJUGRz0jXH99keveBSEUFv9eTmHgRGnIaUoy0oVx65dRcFgitanxQrth1ezZwFTg5qIB8WoPytxsInESEa8yQUn3HjrWXIqkpZmRachNFYoTHaEj6BnIUEeWls8xTWDVMAEMhzXINZ+ziR4oipSaRby4jpEdqWcvI/7R+osNLL6U8TjTheG4UJgxqAbMCYEAlwZpNDEBYUpMV4hGSCGtTU6m6aBM/ZtnUr41pyFnuYxV0zutOo964a1Sa13lXRXACTsEZcMAFaIJb0AJtgEEMnsELeLWerDfr3fqYnxas/OcY/Bnr8wfsaJzW</latexit>

s

<latexit sha1_base64="23SfVbqOtw1ZZiJvEHNjSo3deTc=">AAACBXicbVDLSsNAFL2pr1pfVZdugqXgqiRS0GXRjcsW7APaUCbTm3boZBJmJmIJXbtwq5/hTtz6HX6Fv+CkLVJbLwwczrmXc+b4MWdKO86XldvY3Nreye8W9vYPDo+KxyctFSWSYpNGPJIdnyjkTGBTM82xE0skoc+x7Y9vM739gFKxSNzrSYxeSIaCBYwSbaiG6hdLTsWZjb0O3AUowWLq/eJ3bxDRJEShKSdKdV0n1l5KpGaU47TQSxTGhI7JELsGChKi8tJZ0KldNszADiJpntD2jF2+SEmo1CT0zWZI9Eitahn5n9ZNdHDtpUzEiUZB50ZBwm0d2dmv7QGTSDWfGECoZCarTUdEEqpNN4Xysk38mGVTvzamIXe1j3XQuqy41Uq1US3VbhZd5eEMzuECXLiCGtxBHZpAAeEZXuDVerLerHfrY76asxY3p/BnrM8fRDKYvA==</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Q-Net

<latexit sha1_base64="w8LxOw29hEndwhN5v8L3YiSEZW0=">AAACG3icbVDLSgNBEJyNrxhfUfHkZTEEvBh2JaDHoBdPkoB5QLKE2UknGTL7YKZXEpZ8igev+hnexKsHv8JfcDZZJCY2zFBUdVNFuaHgCi3ry8isrW9sbmW3czu7e/sH+cOjhgoiyaDOAhHIlksVCO5DHTkKaIUSqOcKaLqj20RvPoJUPPAfcBKC49GBz/ucUdRUN39S6yCMMZ79isUX94DTaTdfsErWbMxVYKegQNKpdvPfnV7AIg98ZIIq1batEJ2YSuRMwDTXiRSElI3oANoa+tQD5cSz+FOzqJme2Q+kfj6aM3bxIqaeUhPP1ZsexaFa1hLyP60dYf/aibkfRgg+mxv1I2FiYCZdmD0ugaGYaECZ5DqryYZUUoa6sVxx0SYcJ9nUr41uyF7uYxU0Lkt2uVSulQuVm7SrLDklZ+Sc2OSKVMgdqZI6YSQmz+SFvBpPxpvxbnzMVzNGenNM/ozx+QNjS6Hv</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

Grim

<latexit sha1_base64="mkcTSQC2MCD3iLZEIWCWoydrYiA=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy91SKcdoslt+zOQVeJl5ESyVDrFr86vYgnISjkkhnT9twY/ZRpFFzCtNBJDMSMj9gA2pYqFoLx0/nRU3pmlR7tR9qWQjpXf0+kLDRmEga2M2Q4NMveTPzPayfYv/JToeIEQfHFon4iKUZ0lgDtCQ0c5cQSxrWwt1I+ZJpxtDkVbAje8surpHFR9irlyn2lVL3O4siTE3JKzolHLkmV3JEaqRNOHskzeSVvzth5cd6dj0VrzslmjskfOJ8/YgaSgQ==</latexit>

Pun

<latexit sha1_base64="8jtdPxKGxsiYPMAcv7UMbSO+b74=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8lUQKeix68VjBfkATyma7aZduNmF3Viyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLMsE1et63s7a+sbm1Xdop7+7tHxxWjo7bOjWKshZNRaq6EdFMcMlayFGwbqYYSSLBOtH4duZ3HpnSPJUPOMlYmJCh5DGnBK0UBMieUNO8aeS0X6l6NW8Od5X4BalCgWa/8hUMUmoSJpEKonXP9zIMc6KQU8Gm5cBolhE6JkPWs1SShOkwn988dc+tMnDjVNmS6M7V3xM5SbSeJJHtTAiO9LI3E//zegbj6zDnMjPIJF0sio1wMXVnAbgDrhhFMbGEUMXtrS4dEUUo2pjKNgR/+eVV0r6s+fVa/b5ebdwUcZTgFM7gAny4ggbcQRNaQCGDZ3iFN8c4L86787FoXXOKmRP4A+fzB6yykhs=</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Sum

<latexit sha1_base64="kFlaCuIQeTEczX6e5oHEet5TSTg=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqexKQY9FLx4r2g/oLiWbpm1okl2SiViW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvTgU34PvfXmFtfWNzq7hd2tnd2z8oHx61TGI1ZU2aiER3YmKY4Io1gYNgnVQzImPB2vH4Zua3H5k2PFEPMElZJMlQ8QGnBJwUhsCewNDs3sppr1zxq/4ceJUEOamgHI1e+SvsJ9RKpoAKYkw38FOIMqKBU8GmpdAalhI6JkPWdVQRyUyUzW+e4jOn9PEg0a4U4Ln6eyIj0piJjF2nJDAyy95M/M/rWhhcRRlXqQWm6GLRwAoMCZ4FgPtcMwpi4gihmrtbMR0RTSi4mEouhGD55VXSuqgGtWrtrlapX+dxFNEJOkXnKECXqI5uUQM1EUUpekav6M2z3ov37n0sWgtePnOM/sD7/AGvwpId</latexit>

A>

<latexit sha1_base64="oeEzO2upmY11zr1JHnQ9E9++kEU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPVi8cK9gPaWDbbTbu62Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x+0jEo1ZU2qhNKdkBgmuGRN5ChYJ9GMxKFg7fDxeuq3n5g2XMk7HCcsiMlQ8ohTglZqXd73UCX9csWrejO4y8TPSQVyNPrlr95A0TRmEqkgxnR9L8EgIxo5FWxS6qWGJYQ+kiHrWipJzEyQza6duCdWGbiR0rYkujP190RGYmPGcWg7Y4Ijs+hNxf+8borRRZBxmaTIJJ0vilLhonKnr7sDrhlFMbaEUM3trS4dEU0o2oBKNgR/8eVl0jqr+rVq7bZWqV/lcRThCI7hFHw4hzrcQAOaQOEBnuEV3hzlvDjvzse8teDkM4fwB87nD27Djws=</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

=

<latexit sha1_base64="XP9iErG+L6qrY8EDX+rDc8RxBHg=">AAACBXicbVDLSgNBEOz1GeMr6tHLYAh4CrsS0IsQ9OIxAfOAZAmzk95kyOyDmVkxhJw9eNXP8CZe/Q6/wl9wNlkkJjYMFFXdVE15seBK2/aXtba+sbm1ndvJ7+7tHxwWjo6bKkokwwaLRCTbHlUoeIgNzbXAdiyRBp7Alje6TfXWA0rFo/Bej2N0AzoIuc8Z1YaqX/cKRbtsz4asAicDRcim1it8d/sRSwIMNRNUqY5jx9qdUKk5EzjNdxOFMWUjOsCOgSENULmTWdApKRmmT/xImhdqMmMXLyY0UGoceGYzoHqolrWU/E/rJNq/cic8jBONIZsb+YkgOiLpr0mfS2RajA2gTHKTlbAhlZRp002+tGgTP6bZ1K+NachZ7mMVNC/KTqVcqVeK1ZusqxycwhmcgwOXUIU7qEEDGCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A+wtmIY=</latexit>

L̂S

<latexit sha1_base64="7zTrdAR4gsqi8D5fz/nDX5Zs1s0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYRCswp0EtAzaWFhENB+SHGFvs5cs2d07dueEcORX2FgoYuvPsfPfuEmu0MQHA4/3ZpiZFyaCG/S8b2dldW19Y7OwVdze2d3bLx0cNk2casoaNBaxbofEMMEVayBHwdqJZkSGgrXC0fXUbz0xbXisHnCcsECSgeIRpwSt9NgdEsxuJ737XqnsVbwZ3GXi56QMOeq90le3H9NUMoVUEGM6vpdgkBGNnAo2KXZTwxJCR2TAOpYqIpkJstnBE/fUKn03irUthe5M/T2REWnMWIa2UxIcmkVvKv7ndVKMLoOMqyRFpuh8UZQKF2N3+r3b55pRFGNLCNXc3urSIdGEos2oaEPwF19eJs3zil+tVO+q5dpVHkcBjuEEzsCHC6jBDdShARQkPMMrvDnaeXHenY9564qTzxzBHzifP814kGo=</latexit>

mS

<latexit sha1_base64="vx/z9SO37d1o65IRwHHfZ1wV0PE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jMQ9IljA7mU2GzGOZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyN/c7T1QbpuSjnSY0FHgkWcwItk5qikFzUK74VX8BtE6CnFQgR2NQ/uoPFUkFlZZwbEwv8BMbZlhbRjidlfqpoQkmEzyiPUclFtSE2eLUGbpwyhDFSruSFi3U3xMZFsZMReQ6BbZjs+rNxf+8XmrjmzBjMkktlWS5KE45sgrN/0ZDpimxfOoIJpq5WxEZY42JdemUXAjB6svrpH1VDWrV2kOtUr/N4yjCGZzDJQRwDXW4hwa0gMAInuEV3jzuvXjv3seyteDlM6fwB97nDzC8jb4=</latexit>

⊙

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

mS [v] = 1

<latexit sha1_base64="irN8HCigVzayJLyQjvL6vp5Ng2w=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgl6EohePFe2HbJeSTbNtaJJdkmyhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HN3O/PaYKs1i+WgmCQ0EHkgWMYKNlZ5E78EfB9ce6pUrbtWdA60SLycVyNHolb+6/ZikgkpDONba99zEBBlWhhFOp6VuqmmCyQgPqG+pxILqIJsfPEVnVumjKFa2pEFz9fdEhoXWExHaToHNUC97M/E/z09NdBVkTCapoZIsFkUpRyZGs+9RnylKDJ9Ygoli9lZEhlhhYmxGJRuCt/zyKmldVL1atXZfq9Rv8jiKcAKncA4eXEId7qABTSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gC7go+2</latexit>

mS [v] = 0

<latexit sha1_base64="w/5P7F8wU224ELNoNfxr0bEz9L0=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVgl6EohePFe0HbJeSTbNtaJJdk2yhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HN3O/PaYKs1i+WgmCQ0EHkgWMYKNlTqi9+CPg2u3V664VXcOtEq8nFQgR6NX/ur2Y5IKKg3hWGvfcxMTZFgZRjidlrqppgkmIzygvqUSC6qDbH7vFJ1ZpY+iWNmSBs3V3xMZFlpPRGg7BTZDvezNxP88PzXRVZAxmaSGSrJYFKUcmRjNnkd9pigxfGIJJorZWxEZYoWJsRGVbAje8surpHVR9WrV2n2tUr/J4yjCCZzCOXhwCXW4gwY0gQCHZ3iFN+fJeXHenY9Fa8HJZ47hD5zPH2HRj4s=</latexit>

...

<latexit sha1_base64="hcos2bqH5uv/vPkuNcZDISCoxKo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CokU9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUykMet63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwXXdfqXqud4cZJX4BalCgUa/8tUbJCyLuUImqTFd30sxyKlGwSSflnuZ4SllYzrkXUsVjbkJ8vmpU3JulQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nTKNgR/+eVV0rp0/Zpbu69V6zdFHCU4hTO4AB+uoA530IAmMBjCM7zCmyOdF+fd+Vi0rjnFzAn8gfP5A04qjSk=</latexit>

LS

<latexit sha1_base64="JyUCdaLoKQwfN3QRxFxal05CL3o=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWFhEYj4gOcLeZi5Zsrd37O4J4chPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbmt59QaR7LRzNJ0I/oUPKQM2qs1LjvN/qlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzU6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2naINwVt+eZW0LitetVJ9qJZrN3kcBTiFM7gAD66gBndQhyYwGMIzvMKbI5wX5935WLSuOfnMCfyB8/kD/meNnQ==</latexit>

{LS , �̂(S)}

<latexit sha1_base64="j8JGgR9d/eMOIZnIfhKu+qjG9zs=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJpKDLohsXLiq1D2hCmEwn7dCZSZiZCCXUjb/ixoUibv0Ld/6N0zYLrR64cDjnXu69J0wYVdpxvqzC0vLK6lpxvbSxubW9Y+/utVWcSkxaOGax7IZIEUYFaWmqGekmkiAeMtIJR1dTv3NPpKKxuNPjhPgcDQSNKEbaSIF94GU3QfMUekOkM0/RAUeTSvPEmwR22ak6M8C/xM1JGeRoBPan149xyonQmCGleq6TaD9DUlPMyKTkpYokCI/QgPQMFYgT5WezDybw2Ch9GMXSlNBwpv6cyBBXasxD08mRHqpFbyr+5/VSHV34GRVJqonA80VRyqCO4TQO2KeSYM3GhiAsqbkV4iGSCGsTWsmE4C6+/Je0z6purVq7rZXrl3kcRXAIjkAFuOAc1ME1aIAWwOABPIEX8Go9Ws/Wm/U+by1Y+cw++AXr4xttUZY+</latexit>

{Lsi
, �̂(si)}

<latexit sha1_base64="3ltARH2jlLatV8KIglOpT1eXl94=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQQUoiBV0W3bhwUcE+oAlhMp20Q2cmYWYilJCdG3/FjQtF3PoL7vwbp20WWj1w4XDOvdx7T5gwqrTjfFmlpeWV1bXyemVjc2t7x97d66g4lZi0ccxi2QuRIowK0tZUM9JLJEE8ZKQbjq+mfveeSEVjcacnCfE5GgoaUYy0kQL70MtugkwFND+F3gjpzFN0yFFeM9KJlwd21ak7M8C/xC1IFRRoBfanN4hxyonQmCGl+q6TaD9DUlPMSF7xUkUShMdoSPqGCsSJ8rPZHzk8NsoARrE0JTScqT8nMsSVmvDQdHKkR2rRm4r/ef1URxd+RkWSaiLwfFGUMqhjOA0FDqgkWLOJIQhLam6FeIQkwtpEVzEhuIsv/yWds7rbqDduG9XmZRFHGRyAI1ADLjgHTXANWqANMHgAT+AFvFqP1rP1Zr3PW0tWMbMPfsH6+AbIX5lC</latexit>

{�̂(S), �̂(s0), O(LS , L0
s)}

<latexit sha1_base64="SE9o3XWOBk8ZJeepFbQiadv44wE=">AAACHHicbZDLSgMxFIYz9VbrbdSlm2ARK5QyowVdFt24KFipvUBnGDJppg3NXEgyQhnmQdz4Km5cKOLGheDbmLazsK0/BP585xyS87sRo0Iaxo+WW1ldW9/Ibxa2tnd29/T9g7YIY45JC4cs5F0XCcJoQFqSSka6ESfIdxnpuKObSb3zSLigYfAgxxGxfTQIqEcxkgo5+oWVWEMkE0vQgY/SUvOsDOeAOFXkrlR3mmVYd9TNSh29aFSMqeCyMTNTBJkajv5l9UMc+ySQmCEheqYRSTtBXFLMSFqwYkEihEdoQHrKBsgnwk6my6XwRJE+9EKuTiDhlP6dSJAvxNh3VaeP5FAs1ibwv1ovlt6VndAgiiUJ8OwhL2ZQhnCSFOxTTrBkY2UQ5lT9FeIh4ghLlWdBhWAurrxs2ucVs1qp3leLtessjjw4AsegBExwCWrgFjRAC2DwBF7AG3jXnrVX7UP7nLXmtGzmEMxJ+/4FfvSfsg==</latexit>

(S [v, G)

<latexit sha1_base64="QBYy0hJcCGhd6ey3B86mjeNPezo=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoMQQcKuBPQY9KDHiOYB2SXMTmaTIbO7wzwCIeQ3vHhQxKs/482/cZLsQRMLGoqqbrq7QsGZ0q777eTW1jc2t/LbhZ3dvf2D4uFRU6VGEtogKU9lO8SKcpbQhmaa07aQFMchp61weDvzWyMqFUuTJz0WNIhxP2ERI1hbyS8/+sQINLpAd+fdYsmtuHOgVeJlpAQZ6t3il99LiYlpognHSnU8V+hggqVmhNNpwTeKCkyGuE87liY4piqYzG+eojOr9FCUSluJRnP198QEx0qN49B2xlgP1LI3E//zOkZH18GEJcJompDFoshwpFM0CwD1mKRE87ElmEhmb0VkgCUm2sZUsCF4yy+vkuZlxatWqg/VUu0miyMPJ3AKZfDgCmpwD3VoAAEBz/AKb45xXpx352PRmnOymWP4A+fzBxUmkGo=</latexit>

argmaxv2G\S mS [v]

<latexit sha1_base64="Hq2FkOTYn0FfM19J2f5XONWKY7g=">AAACFXicbVA9SwNBEN3zM8avqKXNYhAsJNxJQEvRQsuIRoXccextJnFxd+/YnQuGI/4IG/+KjYUitoKd/8ZNTOHXg4HHezPMzEsyKSz6/oc3MTk1PTNbmivPLywuLVdWVs9tmhsOTZ7K1FwmzIIUGpooUMJlZoCpRMJFcn049C96YKxI9Rn2M4gU62rREZyhk+LKdohwgwUzXcVuBnHRC4WmR5SGFlAJnVt6OrilKj5t9SIaV6p+zR+B/iXBmFTJGI248h62U54r0Mgls7YV+BlGbhsKLmFQDnMLGePXrAstRzVTYKNi9NWAbjqlTTupcaWRjtTvEwVT1vZV4joVwyv72xuK/3mtHDt7USF0liNo/rWok0uKKR1GRNvCAEfZd4RxI9ytlF8xwzi6IMsuhOD3y3/J+U4tqNfqJ/Xq/sE4jhJZJxtkiwRkl+yTY9IgTcLJHXkgT+TZu/cevRfv9at1whvPrJEf8N4+AXuOnvw=</latexit>

Fig. 1 A visual depiction of the pipeline for Grim and Pun. The layers of Glie are depicted by
a heatmap of an actual seed during inference time, showing how the values vary through different
nodes (columns). The pipeline is broken in two sides, representing Pun on the left and Grim on the
right. Left: Pun utilizes the first hop neighborhood to come up with the proxy for the marginal gain
and recomputes the new influence with Glie(S ∪ v,G). Right: The influence set LS and influence
prediction σ̂(S) is used as a state for the Q-learning model of Grim that ranks nodes as next actions.

3.2 Celf-Glie: Cost Effective Lazy Forward with Glie

Cost Effective Lazy Forward (Celf) [14] is an acceleration to the original greedy
algorithm that is based on the constraint that a seed’s spread will never get bigger in
subsequent steps. The influence spread is computed for every node in the first iteration
and kept in a sorted list. In each step, the marginal gain is computed for the node with
the best influence spread in the previous round. If it is better than the previous second
node, it is chosen as the next seed because it is necessarily bigger than the rest. This
property stems from submodularity, i.e., the marginal gain can never increase with the
size of the seed set. If the first node’s current gain is smaller than the second previous
gain, the list is resorted and the process is repeated until the best node is found. The
worst-case complexity is similar to greedy but in practice, it can be hundreds of times
faster, while retaining greedy’s original guarantee.

In our case, we propose a straightforward adaptation where we substitute the
original Celf IE based on MC IC with the output of Glie. We redirect the reader
to Appendix D, where we show that the estimations of Glie are monotonous and
submodular in practice, and hence σ̂ is suitable for optimizing with Celf. Since we do
not prove the submodularity of σ̂, we can not contend that the theoretical guarantee
is retained. Celf-Glie has two main computational bottlenecks. First, although it
alleviates the need to test every node in every step, in practice, it still requires IE for
more than one node in each step. Second, it requires computing the initial IE for every
node in the first step. We will try to alleviate both with the two subsequent methods.

3.3 The influence set representation

Before moving to the algorithms, we first utilize the activations mentioned above to
define the influence set representation LS ∈ {0, 1}n, which can be computed by adding

8

the activations of each layer Ht, summing along the axis of the hidden layer size, which
following suit with the input is dt for layer t, and thresholding to get a binary vector:

LS = 1

{
T∑

t=0

∑dt

i=0 H
i
t

dt
≥ 0

}
, (8)

where T is the number of layers, and Hi
t ∈ Rn×1 is a column from Ht. Note that,

although the representations H are a result of ReLU transformation, the batchnorm
layer that is used to stabilize the training, normalizes them and creates negative
representations, which is why the thresholding is in 0.

This vector contains a label for each node whose sign indicates if it is predicted as
influenced or not. We compute the average representation because dt varies throughout
layers, and since we add all layer’s outputs, we need an equal contribution from each
layer’s dimension to the final output. We utilize this to compute the difference between
the influence of the current seed set and the initial influence of each other node.

3.4 Pun: Potentially Uninfluenced Neighbors

Computing the influence spread of every node in the first step is computationally
demanding. We thus seek a method that can surpass this hindrance and provide ade-
quate performance. We first need to redefine a simpler influence set representation
than in Eq. (8). Let L̂S , L

′
S ∈ {0, 1}n be the binary vectors with 1s in nodes predicted

to be uninfluenced and nodes predicted to be influenced respectively:

L̂S = 1

{
d1∑

i=0

Hi
1 ≤ 0

}
L′
S = 1

{
d1∑

i=0

Hi
1 > 0

}
. (9)

L′
S is simpler than LS defined in Eq. (8) and provides a more rough estimate, but it

allows for a simpler influence spread which we can optimize greedily:

σm(S) = |L′
S |. (10)

We can use L̂S and message passing to predict the amount of a node’s neighbor-
hood that remains uninfluenced, i.e., the Potentially Uninfluenced Neighbors (Pun),
weighted by the respective probability of influence for a node u,

mS [u] =
∑

v∈N(u)

Au,vL̂v = A⊤
u · L̂S ∈ Rn×1. (11)

For efficiency, we can compute mS = A⊤L̂ which can be considered an approximation
to all nodes’ marginal gain on their immediate neighbors. We can thus optimize this
using argmax(mS), as shown in Fig. (1). In order to establish that σm can be optimized
greedily with a theoretical guarantee of (1 − 1

e)OPT, we prove its monotonicity and
submodularity in Appendix A.2.

9

Theorem 1. The influence spread σm is submodular and monotone.

(a) Crime (b) Crime – adaptive

(c) GR (d) GR – adaptive

Fig. 2 Difference between Dmp influence estimate and σm in standard IM and adaptive IM with
full feedback every 10 seeds in two datasets (Crime and GR). It is obvious that as the seed set size
increases, the difference between the two methods is diminishing in the adaptive setting, justifying
the use of σm as a faster alternative in the adaptive setting.

Pun can be seen in the left part of Fig. 1. We start by setting the first seed as the
node with the highest degree, which can be considered a safe assumption as in practice
it is always part of seed sets. We use Glie(S,G) to retrieve L̂S , which we use to find
the next node based on argmaxv∈G\S mS [v] and the new L̂S∪{v}. One disadvantage of
Pun is that σm is an underestimation of the predicted influence. Contrasted with the
upper bound, Dmp, σm is not as accurate as σ̂, but allows us to compute efficiently a
submodular proxy for the marginal gain. This underestimation means that a part of
the network considered uninfluenced in L̂S is measured as a potential gain for their
neighbors, hence the ranking based on mS can be affected negatively. For this purpose,
we will use adaptive full-feedback selection (AFF), where after selecting a new seed
node, we remove it from the network along with nodes predicted to be influenced.
It has been proven in the seminal work of [41] that an AFF greedy algorithm for a
submodular and monotonic function is guaranteed to have a competitive performance
with the optimal policy. In our case, we will use an AFF update every k seed, as it
adds a small computational overhead if we do it in every step. The benefit of Pun
is twofold. Firstly, as we remove the influenced node and truncate the seed set, Glie
produces an increasingly more valid estimate because it performs better when the
graph and seed set are smaller. Secondly, as the neighborhood size decreases, the
effect of missed influenced nodes is diminished in mS . These can be observed in the

10

“Adaptive” plots of Fig. 2 (b), (d) where we employ an AFF every 10 seed and we
contrast the aforementioned gap between the upper bound Dmp and σm(S). The plots
underline that removing the chosen seeds in an AFF manner is not only theoretically
grounded but also addresses the inherent disadvantage of the proposed model that
has a diminished scope due to the number of Glie’s layers. This is shown by the
diminishing gap Dmp and σm(S) as the seed set increases. We add a corresponding
complexity analysis for Pun in Appendix B.

3.5 Grim: Graph Reinforcement Learning for Influence
Maximization

Our effort to make an end-to-end learning approach requires a model that learns how
to pick seeds sequentially. The model needs to receive information fromGlie regarding
the state (graph and seed set) and decide on the next action (seed). Note thatGlie can
not provide a direct estimate of a new candidate’s s marginal gain without rerunning
Glie(S ∪ s,G), which is what we try to avoid. To this end, we utilize a double Q-
network [42], and the model is depicted in Fig. 1 (middle and right part). During the
first step, Glie provides an IE for all candidate seeds and the node with the highest is
added to the seed set, similar to Glie-Celf. We also keep a list of each node’s initial
influence set Ls. Subsequently, the Q-network produces a Q-value for each node s
using as input the estimated influence of the current seed set σ̂(S), the initial influence
of the node σ̂(s), and the interaction between them. The interaction is defined as the
difference between their corresponding influence sets O(S, s) =

∑n
i=0 1{Li

S −Li
s ≥ 0},

as predicted by Glie. The latter aims to measure how different is the candidate node
from the seed set, in order to quantify the potential gain of adding it. The Q-network
is called Grim, and its architecture is composed of two layers:

Q(s, S,G) = ReLU(ReLU([σ̂S , σ̂s, O(S, s)]Wk)Wq), (12)

where Wq ∈ Rhid×1, and hid is the hidden layer size. We utilize a greedy policy
to choose the next seed, similar to [23]: π(u|S) = argmaxs∈S Q(s, S,G). Given the
chosen action s, the reward is computed based on the marginal gain, i.e., the estimated
influence of the new seed set minus the influence of the seed set before the action, as
computed by Glie: r = σ̂(S ∪ s)− σ̂(S).

During training, we use ϵ-greedy to simulate an IM “game” and balance between
exploration and exploitation. We store as a train tuple the current state-action embed-
ding {σ̂(S), σ̂(s′), O(S, s′)}, the new state embedding along with all next possible
actions {σ̂(S ∪ s), σ̂(s), O(S, s)}, s ∈ V and the reward r. Throughout the IM, we ran-
domly sample from the memory and train the parameters of Grim. Glie is frozen,
because apart from providing graph and node embeddings, it is solely used for the
computation of the reward—thus, it is not updated. The strategy to pre-train a graph
encoding layer on a supervised task and use it as part of the Q-network has proven
beneficial in similar works [43]. In our case, though, we found that without the overlap
O and with simpler features (i.e., degree), the model performs rather poorly, which
means that we can not refrain from computing IE for every node in the first step.

11

4 Experimental Evaluation

All the experiments are performed in a PC with an NVIDIA GPU TITAN V (12GB
RAM), 256GB RAM, and an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz. The source
code of the proposed model and baselines can be found in github1.

4.1 Influence Estimation

For training in the influence estimation task, we create a set of labeled samples, each
consisting of the seed set S and the corresponding influence spread σ(S). We create
100 Barabási-Albert [44] and Holme-Kim [45] undirected graphs ranging from 100 to
200 nodes and 30 graphs from 300 to 500 nodes. 60% are used for training, 20% for
validation, and 20% for testing. We have used these network models because the degree
distribution resembles the one of real-world networks. The influence probabilities are
assigned based on the weighted cascade model, i.e., a node u has an equal probability
1/deg(u) to be influenced by each of her N (u) nodes. This model requires a directed
graph, hence we turn all undirected graphs into directed ones by appending reverse
edges. Though estimating influence probabilities is a problem on its own [31], in the
absence of extra data, the weighted cascade is considered more realistic than pure
random assignments [11].

To label the samples, we run the Celf algorithm using 1, 000 Monte Carlo (MC)
ICs for influence estimation, for up to 5 seeds. Note that, we expect running 10, 000
simulations would provide a more qualitative supervision. However, on the one hand,
the training time would increase exponentially, and on the other, due to the training
graphs being relatively small, the difference is minuscule. The optimum seed set for
size 1 to 5 is stored, along with 30 random negative samples for each seed set size.
This amounts to a total of 20, 150 training samples. Each training sample for Glie
corresponds to a triple of a graph G, a seed set S, and a ground truth influence spread
σ(S) that serves as a label to regress on. The random seed sets are used to capture
the average influence spread expected for a seed set of about that size. This creates
“average samples” which would constitute the whole dataset in other problems. In
IM however, the difference in σ between an average seed set and the optimal can be
significant, hence training solely on the random sets would render our model unable
to predict larger values that correspond to the optimum. That is why we added the
aforementioned samples of the optimum seed set computed using Celf. We deem the
combination of 30 random and 1 optimum a more balanced form of supervision, as we
expect the crucial majority of the seed sets to have an average σ.

Regarding model training, we have used a small-scale grid search using the vali-
dation set to find the optimum batch size 64, dropout 0.4, number of layers 2, hidden
layer size 64, and feature dimension 50. More importantly, we observed that it is ben-
eficial to decrease the hidden layer size (by a factor of 2) as the depth increases, i.e.,
moving from 32 to 16. This means that the 1-hop node representations are more use-
ful compared to the 2-hop ones and so on—validating the aforementioned conclusion
that the approximation to the influence estimation in Eq. (4) diverges more as the

1https://github.com/geopanag/learn im

12

https://github.com/geopanag/learn_im

message passing depth increases. The training then proceeds for 100 epochs with an
early stopping of 50 and a learning rate of 0.01.

Table 1 Graph datasets.

Graph # Nodes # Edges

S
im

Test/Train 100− 500 950− 4, 810
Large 1, 000− 2, 000 11, 066− 19, 076

S
m
a
ll

Crime (CR) 829 2, 946
HI-II-14 (HI) 4, 165 26, 172
GR Colab (GR) 5, 242 28, 980

L
a
rg
e Enron (EN) 33, 697 361, 622

Facebook (FB) 63, 393 1, 633, 660
Youtube (YT) 1, 134, 891 5, 975, 246

We evaluate the models in three different types of graphs. The first is the test
set of the dataset mentioned above. The second is a set of 10 power-law large graphs
(1, 000 – 2, 000 nodes) to evaluate the capability of the model to generalize in networks
that are larger by one factor. The third is a set of three real-world graphs, namely
the Crime (CR), HI-II-14 (HI), and GR collaborations (GR). More information about
the datasets is given in Table 1, which includes also the large-scale datasets that we
will use to evaluate influence maximization, namely Enron (EN), Facebook (FB), and
Youtube (YT). The datasets come from open repositories [46] and have been used in
similar studies [24, 26].

The real graphs are evaluated for varying seed set sizes, from 2 to 10, to test our
model’s capacity to extrapolate to larger seed set sizes. Due to the size of the latter two
graphs (HI and GR), we take for each seed set size the top nodes based on the degree as
the optimum seed set along with a 30 random seed sets for the large simulated graphs
and 3 for the real graphs, to validate the accuracy of the model in non-significant sets
of nodes. We have compared the accuracy of influence estimation with Dmp [38]. We
could not utilize the influence estimation of Ublf [40] because its central condition
is violated by the weighted cascade model and the computed influence is exaggerated
to the point it surpasses the nodes of the network. The average error throughout all
datasets and the average influence can be seen in Table 2, along with the average time.

We evaluate the retrieved seed set using the independent cascade, and the results
are shown in Table 3. We should underline here that this task would require more than
3 hours for the Crime dataset and days for GR using the traditional approach with
1, 000 MC IC. As we can see in Table 3,Glie-Celf allows for a significant acceleration
in computational time, while the retrieved seeds are more effective. Moreover, in Celf,
the majority of time is consumed in the initial computation of the influence spread,
i.e., the overhead to compute 100 instead of the 20 seeds shown in Table 3, amounts to
0.11, 0.22 and 0.19 seconds for the three datasets respectively. Finally, we have added
a relative error analysis for large seed sets of Glie in Appendix C.

13

Table 2 Average MAE divided by the average influence
and time (in seconds) throughout all seed set sizes and
samples, along with the real average influence spread.

Graph
(seeds)

Dmp Glie

MAE Time MAE Time

Test (1 – 5) 0.076 0.05 0.046 0.0042
Large (1 – 5) 0.086 0.44 0.102 0.0034
CR (1 – 10) 0.009 0.11 0.044 0.0029
HI (1 – 10) 0.041 2.84 0.056 0.0034
GR (1 – 10) 0.122 4.32 0.084 0.0042

Table 3 IM for 20 seeds with CELF, using the proposed
(Glie) substitute for influence estimation and evaluating
with 10, 000 MC independent cascades (IC).

Graph
(seeds)

Seed
overlap

Dmp-Celf Glie-Celf

Infl Time Infl Time

CR (20) 14 221 83 229 1.0
HI (20) 13 1, 235 8, 362 1,281 5.49
GR (20) 12 295 16, 533 393 7.01

4.2 Influence Maximization

Grim is trained on a dataset that consists of 50 random Barabasi-Albert graphs of
500 – 2, 000 nodes. It is trained by choosing 100 seeds sequentially, to maximize the
reward (delay = 2 steps) for each network. Since the immediate reward corresponds to
the marginal gain, the sum of these rewards at the end of the “game” corresponds to
the total influence of the seed set. An episode corresponds to completing the game for
all 50 graphs; we play 500 episodes, taking roughly 40 seconds each. The exploration is
set to 0.3 and declines with a factor of 0.99. The model is optimized using ADAM, as
in Glie. We store the model that has the best average influence over all train graphs
in a training episode. To diminish the computational time of the first step in Glie-
Celf and Grim, we focus on candidate seeds that surpass a certain degree threshold
based on the distribution, a common practice in the literature [17, 26].

For comparison, we use a varying set of IM methods described in detail in Section
2, specifically Imm [19], Finder [24], Pmia [12], DegreeDiscount [17] and K-cores
[16].

The results for the influence spread of 50, 100, and 200 seeds as computed by
simulations of MC ICs can be seen in Tables 4, 5 and 6, while the time costs are shown
in Tables 7 and 8. The best result is in bold and the second best is underlined. One can
see that Glie-Celf exhibits overall superior influence quality compared to the rest
of the methods, but is quite slower. Pun is the second best followed by Imm, which
exhibited better performance in smaller seed sets but deteriorates as the seed set size
increases. Grim surpasses significantly the previous reinforcement learning approach,
FINDER. On the other hand, while Grim is faster than Glie-Celf it is still slower
than the Pun. This quantifies the substantial overhead caused by computing the

14

Table 4 Influence spread computed by 10,000 MC ICs for 50 seeds.

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm DeepIC-Celf FINDER

CR 381 371 378 263 378 368 375 171 367
GR 738 553 700 303 654 556 725 204 635
HI 1, 914 1, 905 1, 908 1, 407 1, 899 1, 824 1, 589 578 1, 904
EN 11, 819 11, 114 11, 757 9, 796 11, 686 11, 183 10, 698 − 7, 133
FB 6, 631 5, 879 6, 329 2, 974 6, 574 4, 489 6, 724 − 5, 649
YT 147, 631 148, 250 145, 796 78, 575 145, 863 143, 161 148, 597 − 9, 152

Table 5 Influence spread computed by 10,000 MC ICs for 100 seeds.

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm DeepIC-Celf FINDER

CR 522 509 521 455 520 512 516 306 502
GR 1, 102 997 1, 076 421 1, 013 919 1, 085 418 897
HI 2, 307 1, 302 2, 308 2, 024 2, 291 2, 229 2, 290 1, 020 2, 274
EN 14, 920 14, 022 14, 912 10, 918 14, 855 13, 808 14, 848 - 12, 596
FB 8, 710 7, 418 8, 409 4, 174 5, 613 8, 247 8, 625 - 5, 746
YT 189, 515 187, 808 187, 808 89, 546 189, 746 194, 834 194, 521 - 34, 941

Table 6 Influence spread computed by 10,000 MC ICs for 200 seeds.

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm DeepIC-Celf FINDER

CR 661 650 657 647 656 644 650 501 642
GR 1, 617 1, 502 1, 626 701 1, 566 1, 415 1, 617 835 1, 286
HI 2, 685 2, 631 2, 688 2, 540 2, 685 2, 614 2, 668 1, 602 2, 625
EN 17, 601 16, 642 17, 614 13, 015 17, 534 16, 500 17, 497 - 17, 244
FB 10, 981 9, 406 10, 626 6, 434 7, 688 10, 309 11, 007 - 10, 801
YT 246, 439 241, 000 244, 579 110, 409 242, 057 236, 726 247, 178 - 50, 435

influence spread of all candidate seeds in the first step. Their time difference amounts
to how many more influence estimations Glie-Celf performs in every step compared
to Grim, which performs only one. This is more obvious with Pun, which requires
only one influence estimation in every step and no initial computation. It is from 3
to 60 times faster than Imm while its computational overhead moving from smaller to
larger graphs is sublinear to the number of nodes. In terms of influence quality, Pun
is either first or second in the majority of the datasets and this effect becomes more
clear as the seed set size increases. Imm is clearly not the fastest method, but it is
very accurate, especially for smaller seed set sizes. Finder exhibits the least accurate
performance, which is understandable given that it solves a relevant problem and is
not exactly IM for IC. The computational time presented is the time required to solve
the node percolation, in which case it may retrieve a bigger seed set than 100 nodes.
Thus, we can hypothesize it is quite faster for a limited seed set, but the quality of
the retrieved seeds is the least accurate among all methods.

15

Table 7 Computational time in seconds.

100 seeds 200 seeds

Graph Glie-Celf Grim Pun Imm FINDER Glie-Celf Grim Pun Imm FINDER

CR 1.25 0.91 0.15 0.13 0.41 2.00 2.03 0.25 0.19 0.41
GR 3.41 0.69 0.17 0.57 2.36 4.55 1.79 0.26 0.95 2.36
HI 1.20 2.59 0.17 0.56 1.01 2.19 0.60 0.27 1.29 1.01
EN 5.89 4.85 0.52 4.78 9.30 15.49 5.49 0.97 10.47 9.30
FB 120.6 100.00 1.42 69.90 56.8 287.7 123.95 3.1 171.25 56.80
YT 119.00 48.00 13.20 55.40 191.00 151.33 100.00 28.92 82.13 191.00

Table 8 Computational time of heuristic approaches compared to Pun.

100 seeds 200 seeds

Graph PMIA DegDisc K-core Pun PMIA DegDisc K-core Pun

CR 0.13 0.04 0.04 0.15 0.21 0.06 0.04 0.25
GR 0.70 0.12 1.5 0.17 0.80 0.13 1.5 0.26
HI 1.24 0.13 0.12 0.17 1.36 0.14 0.12 0.27
EN 24.83 1.96 2.17 0.52 26.74 2.06 2.17 0.97
FB 21.2 8.86 10.62 1.42 22.77 9.29 10.62 3.1
YT 3838.5 52.39 74.91 13.2 4006.29 54.38 74.91 28.92

Table 9 Pun CPU vs. GPU time (sec).

Graph Pun GPU Pun CPU IMM

CR 0.15 0.17 0.13
GR 0.17 0.27 0.57
HT 0.17 0.20 0.56
EN 0.52 2.44 4.78
FB 1.42 17.5 69.9
YT 13.2 97.5 55.4

Compared to the heuristics, DegDisc’s seed set quality is significantly worse, and
it is faster than Pun in smaller graphs but slower in larger ones because of the over-
lap between high degree nodes. Pmia provides medium seed set quality but is very
computationally inefficient, especially in large graphs where the in-arborescence trees
become too costly. K-core is worse than DegDisc as it requires the whole decompo-
sition to take place in order to rank the nodes accordingly. Hence the computational
time is independent of the seed set size because the whole ranking already exists and
the seed set is retrieved by subsetting list.

DeepIS, as analyzed in related work, resembles Glie, in that it computes influence
estimation using a neural network. We follow the authors’ methodology and train
the model using their code on the proposed Cora ML [27]. We use it as an influence
estimation oracle in Celf, similar to Glie-Celf. Unfortunately, it is infeasible to
scale in the larger datasets due to the need for explicit powers of the influence matrices
that require more than 24 GB of GPU RAM. We thus report only the experiments
with the smaller networks, where it is not competitive.

16

20 50 100 200
0

50

100

150

200

In
fl
u
e
n
ce

sp
re
a
d

CR

Imm Pun

20 50 100 200
0

50

100

150

200

GR

Imm Pun

20 50 100 200
0

50

100

150

200

250

HT

Imm Pun

20 50 100 200
0

200

400

600

800

1,000

In
fl
u
e
n
ce

sp
re
a
d

EN

Imm Pun

20 50 100 200
0

500

1,000

1,500

2,000

2,500
FB

Imm Pun

20 50 100 200
0

0.2

0.4

0.6

0.8

1
·104 YT
Imm Pun

Fig. 3 Pun vs. Imm for IC with uniform p = 0.01. This contrasts the two best methods in a setting
with fixed influence probabilities instead of the weighted cascade assignment used in the rest of the
experiments. This is a common evaluation method in IM literature, and we see that Pun overall
outperforms Imm in the majority of datasets and seed set sizes

.

In an effort to generalize the results, we compare Imm and Pun on the same
graphs with uniform influence probabilities p = 0.01 in Figure 3, as a substitute to the
weighted cascade assignment. We observe that Pun outperforms Imm in the majority
of the datasets and seed set sizes. Finally, we performed an experiment to compare Pun
without the use of GPU for 100 seeds. The results are reported in Table 9. It is visible
that GPU provides a substantial acceleration, but Pun remains the faster option even
without it. From this we can conclude that overall Pun can be considered a solid,
learning-based alternative to Imm. However, it should be noted that this evaluation
is limited as it is specially tailored to compare Pun and Imm because these are the
top-performing methods in terms of efficiency and seed set quality in our main results.
Hence this ablation study is based on the current findings but could be extended to
other IM methods.

Overall, from the above, we can contend that Pun provides the best accuracy-
efficiency tradeoff from the examined methods. Grim provides promising results for
larger networks and seed set sizes, and it could improve with further training or deeper
architectures, given that it outperforms previously proposed RL-based solutions.

5 Conclusion

We have proposed Glie, a GNN-based model for influence estimation. We showcase
its accuracy in that task and further utilize it to address the problem of IM. We
developed three methods based on the representations and the predictions of Glie:
Glie-Celf, an adaptation of a classical algorithm that surpasses SOTA but with
significant computational overhead; Pun, a submodular function that acts as proxy

17

for the marginal gain and can be optimized adaptively, and Grim, a Q-learning model
that learns to retrieve seeds sequentially using Glie’s predictions and representations.

One of the most important takeaways of the current paper is that decomposing the
problem of IE and IM allows us to utilize more modular techniques and learning-based
methods. We see that Glie is a fast alternative to Dmp, although it does not scale well
when the test networks are numerous magnitudes larger in terms of size compared to
the train set. However, this does not limit its applicability to IM since the influence
spread of a seed set in real-world graphs can be limited to the extended neighborhood
of the seed. On the other hand, its significant acceleration allows for methods such as
Celf, which can take days or weeks to run on a large-scale network, to finish in less
than 2 minutes. It should also be noted that Glie assumes a rather simple training
procedure that requires small simulated graphs (hundreds of nodes) with few seeds
(up to 5) in order to be easily reproducible and manageable. A larger training dataset
could indeed increase the model’s effectiveness, but it requires a significant amount
of time to run thousands of Monte Carlo computations to find the training label for
each combination of graph and seed set in the training set.

The best IM method can change depending on the task at hand. For instance, if the
goal is to maximize seed set quality, it suffices for a method to be simply feasible (i.e.,
not the fastest and quite interpretable), then Glie-Celf has clearly outperformed the
rest. However, if the aim is to strike the best balance between acceleration and seed
set quality, Pun seems to be the best method, followed by the current state-of-the-art
Imm. All the methods are dataset-agnostic, meaning they only require training once
and can be utilized in any dataset afterward, rendering them efficient for real-world
scenarios.

In terms of future work, our overall target is to expand this work with both tech-
nical and methodological advancements. On the one hand, we plan to examine the
effectiveness of the methods when they are trained with larger networks. On the other
hand, we aim to focus on using extraneous information to make the approach more
realistic. Specifically for a typical IM algorithm, it is not straightforward to consider
the topic of the information shared or the user’s characteristics [47]. A significant
practical advantage of a neural network approach is the easy incorporation of such
complementary data by adding the corresponding embeddings in the input, as has
been done in similar settings [48]. We thus deem an experiment with contextual infor-
mation a natural next step, given a proper dataset. Moreover, we plan to develop
techniques that rely on attention-based architectures, similar to [8], which have been
shown to outperform RL-based methods in numerous experiments. Finally, we also
plan to examine the potential of training online the reinforcement learning module,
i.e., receiving real feedback from each step of the diffusion that could update both the
Q-Net and Glie. This would allow the model to adjust its decisions based on the
partial feedback received during the diffusion.

Acknowledgements. Supported in part by ANR (French National Research Agency)
under the JCJC project GraphIA (ANR-20-CE23-0009-01).

18

References

[1] Mathew, N., Smith, S.L., Waslander, S.L.: Planning paths for package delivery in
heterogeneous multirobot teams. IEEE Transactions on Automation Science and
Engineering 12(4), 1298–1308 (2015)

[2] Touati-Moungla, N., Jost, V.: Combinatorial optimization for electric vehicles
management. Journal of Energy and Power Engineering 6(5), 738–743 (2012)

[3] Duval, A., Malliaros, F.: Higher-order clustering and pooling for graph neu-
ral networks. In: ACM International Conference on Information & Knowledge
Management (CIKM), pp. 426–435 (2022)

[4] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, (2018)

[5] Joshi, C.K., Laurent, T., Bresson, X.: On learning paradigms for the travelling
salesman problem. CoRR (2019)

[6] Veličković, P., Badia, A.P., Budden, D., Pascanu, R., Banino, A., Dashevskiy,
M., Hadsell, R., Blundell, C.: The clrs algorithmic reasoning benchmark. In:
International Conference on Machine Learning (ICML), pp. 22084–22102 (2022).
PMLR

[7] Jayalath, D., Jürß, J., Veličković, P.: Recursive algorithmic reasoning. arXiv
preprint arXiv:2307.00337 (2023)

[8] Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (ICLR) (2019)

[9] Seyfi, M., Banitalebi-Dehkordi, A., Zhou, Z., Zhang, Y.: Exact combinatorial
optimization with temporo-attentional graph neural networks. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML-
PKDD), pp. 268–283 (2023). Springer

[10] Manchanda, S., Michel, S., Drakulic, D., Andreoli, J.-M.: On the generalization
of neural combinatorial optimization heuristics. In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD),
pp. 426–442 (2022). Springer

[11] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: ACM Conference on Knowledge Discovery and Data Mining
(SIGKDD) (2003)

[12] Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for indepen-
dent cascade model in large-scale social networks. Data Mining and Knowledge
Discovery 25(3), 545–576 (2012)

[13] Tian, Y., Lambiotte, R.: Unifying information propagation models on networks

19

and influence maximization. Physical Review E 106(3), 034316 (2022)

[14] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD) (2007)

[15] Panagopoulos, G., Tziortziotis, N., Malliaros, F.D., Vazirgiannis, M.: Maximizing
influence with graph neural networks. In: IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM) (2023)

[16] Malliaros, F.D., Giatsidis, C., Papadopoulos, A.N., Vazirgiannis, M.: The core
decomposition of networks: Theory, algorithms and applications. The VLDB
Journal 29(1), 61–92 (2020)

[17] Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD) (2009)

[18] Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: SIAM Symposium on Discrete Algorithms (SODA), pp.
946–957 (2014). SIAM

[19] Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A mar-
tingale approach. In: ACM International Conference on Management of Data
(SIGMOD) (2015)

[20] Jung, K., Heo, W., Chen, W.: Irie: Scalable and robust influence maximization
in social networks. In: IEEE International Conference on Data Mining (ICDM)
(2012)

[21] Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems (NeurIPS) (2015)

[22] Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial
optimization with reinforcement learning. CoRR (2016)

[23] Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. arXiv preprint arXiv:1704.01665 (2017)

[24] Fan, C., Zeng, L., Sun, Y., Liu, Y.-Y.: Finding key players in complex networks
through deep reinforcement learning. Nature Machine Intelligence, 1–8 (2020)

[25] Li, H., Xu, M., Bhowmick, S.S., Sun, C., Jiang, Z., Cui, J.: Disco: Influ-
ence maximization meets network embedding and deep learning. arXiv preprint
arXiv:1906.07378 (2019)

[26] Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S., Singh, A.: Gcomb:
Learning budget-constrained combinatorial algorithms over billion-sized graphs.

20

Advances in Neural Information Processing Systems (NeurIPS) 33 (2020)

[27] Xia, W., Li, Y., Wu, J., Li, S.: Deepis: Susceptibility estimation on social networks.
In: ACM International Conference on Web Search and Data Mining (WSDM)
(2021)

[28] Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: Graph
neural networks meet personalized pagerank. In: International Conference on
Learning Representations (ICLR) (2019)

[29] Chen, H., Qiu, W., Ou, H.-C., An, B., Tambe, M.: Contingency-aware influence
maximization: A reinforcement learning approach. In: Internationbal Conference
on Uncertainty in Artificial Intelligence (UAI) (2021)

[30] Ling, C., Jiang, J., Wang, J., Thai, M.T., Xue, R., Song, J., Qiu, M., Zhao,
L.: Deep graph representation learning and optimization for influence maximiza-
tion. In: International Conference on Machine Learning (ICML), pp. 21350–21361
(2023). PMLR

[31] Panagopoulos, G., Malliaros, F., Vazirgiannis, M.: Multi-task learning for influ-
ence estimation and maximization. IEEE Transactions on Knowledge and Data
Engineering (2020)

[32] Panagopoulos, G., Malliaros, F.D., Vazirgiannis, M.: Diffugreedy: An influence
maximization algorithm based on diffusion cascades. In: International Confer-
ence on Complex Networks and Their Applications (CNA), pp. 392–404 (2018).
Springer

[33] Panagopoulos, G., Malliaros, F.D., Vazirgianis, M.: Influence maximization using
influence and susceptibility embeddings. In: International AAAI Conference on
Web and Social Media (ICWSM), pp. 511–521 (2020)

[34] Chen, H., Wilder, B., Qiu, W., An, B., Rice, E., Tambe, M.: Complex contagion
influence maximization: a reinforcement learning approach. In: International Joint
Conference on Artificial Intelligence (IJCAI), pp. 5531–5540 (2023)

[35] Prates, M., Avelar, P.H., Lemos, H., Lamb, L.C., Vardi, M.Y.: Learning to
solve np-complete problems: A graph neural network for decision tsp. In: AAAI
Conference on Artificial Intelligence (AAAI) (2019)

[36] Karalias, N., Loukas, A.: Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. In: Advances in Neural Information
Processing Systems (NeurIPS) (2020)

[37] Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. arXiv preprint arXiv:1810.10659 (2018)

21

[38] Lokhov, A.Y., Saad, D.: Scalable influence estimation without sampling. CoRR
(2019)

[39] Cautis, B., Maniu, S., Tziortziotis, N.: Adaptive influence maximization. In: ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD)
(2019)

[40] Zhou, C., Zhang, P., Zang, W., Guo, L.: On the upper bounds of spread for
greedy algorithms in social network influence maximization. IEEE Transactions
on Knowledge and Data Engineering 27(10), 2770–2783 (2015)

[41] Golovin, D., Krause, A.: Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence
Research 42, 427–486 (2011)

[42] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: AAAI Conference on Artificial Intelligence (AAAI) (2016)

[43] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang, S., Lee,
Y.-J., Johnson, E., Pathak, O., Nazi, A., et al.: A graph placement methodology
for fast chip design. Nature 594(7862), 207–212 (2021)

[44] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

[45] Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering.
Physical Review E 65(2), 026107 (2002)

[46] Leskovec, J., Sosič, R.: Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology 8(1),
1–20 (2016)

[47] Chen, W., Lin, T., Yang, C.: Real-time topic-aware influence maximization using
preprocessing. Computational Social Networks 3(1), 1–19 (2016)

[48] Tian, S., Mo, S., Wang, L., Peng, Z.: Deep reinforcement learning-based approach
to tackle topic-aware influence maximization. Data Science and Engineering 5(1),
1–11 (2020)

[49] James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning, (2013)

[50] Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization, (2004)

[51] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems 32(1), 4–24 (2020)

22

A. Proofs

Corollary 1. The repeated product Ht+1 = A ·Ht computes an upper bound to the
real influence probabilities of each infected node at step t+ 1.

Proof.

p̂t(u|St) = Au ·Ht =
∑

v∈N (u)∩St

p̂vpvu ≥ (A1)

∑

v∈N (u)∩St

pvpvu ≥ 1−
∏

v∈N (u)∩St

(1− pvpvu) = pt(u|St) (A2)

• (A1) stems from (4) in the manuscript:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
=

∑

v∈N (u)∩S

pvu

≥ 1−
∏

v∈N (u)∩S

(1− pvu) = p(u|S).

• (A2) can be proved by induction similar to [40]. For every pv ≤ 1, the base case∑
v∈X pvpvu ≥ 1−∏

v∈X (1− pvpvu) is obvious for |X | = 1. For |X | > 1, we have:

1−
∏

v∈X
(1− pvpvu) = 1− (1− pxpxu)

∏

v∈X\x
(1− pvpvu)

= 1−
∏

v∈X\x
(1− pvpvu) + pxpxu

∏

v∈X\x
(1− pvpvu) (A3)

≤
∑

v∈X\x
pvpvu + pxpxu

∏

v∈X\x
(1− pvpvu)

≤
∑

v∈X\x
pvpvu + pxpxu =

∑

v∈X
pvpvu. (A4)

• In (A2) we have p(u|v) = pvpvu per definition of the IC, and thus p(u|S) = 1 −∏
v∈N (u)∩S(1 − pvpvu), where pv = 1 for v ∈ S1, which are the initial seed set

that are activated deterministically. Thus, (A2) stands, and these probabilities are
the upper bound of the real influence probabilities. Hence, the influence spread
σ̂(S) =

∑
(u,v)∈E puv is an upper bound to the real σ(S).

Theorem 1. The influence spread σm is submodular and monotone.
For the proof, P ∈ {1}hd×1 and we define the support function sup(v) = {i ∈

[1, n], vi ̸= 0} [49] as the set of indices of non zero rows in a matrix such as Xi, of layer
i. Let R represent ReLU and btr, sttr the mean and standard deviation computed by
the batchnorm.

23

Proof. Monotonocity, ∀i < j, Si ⊂ Sj :

sup(Xj) ⊃ sup(Xi) (A5)

sup(XjW) ⊇ sup(XiW) (A6)

sup(AXjW) ⊇ sup(AXiW) (A7)

sup(R(AXjW)) ⊇ sup(R(AXiW)) (A8)

sup

(
R(AXjW)− btr

sttr

)
⊇ sup

(
(R(AXiW)− btr)

sttr

)
(A9)

sup(Hj) ⊇ sup(H(Si)) (A10)

sup(HjP) ⊇ sup(HiP) (A11)

|1>0 {HjP} | ≥ |1>0 {HiP} | (A12)

|L′
j | ≥ |L′

i| (A13)

σm(Sj) ≥ σm(Si) (A14)

(A15)

1. (A5) stems by the definition of X in Eq. (1).
2. (A6) Xj is a convex hull that contains Xi [50]. We multiply both sides

by a real matrix W ∈ Rd×hd which can equally dilate both convex
hulls in terms of direction and norm. This equal transformation cannot
change the sign of the difference between the elements of Xi and Xj and
hence cannot interfere with the support of Xj over Xi. The statement
becomes more obvious for X ∈ {0, 1}n×1 and W ∈ R1×1. Note that
both can result in zero matrices so we use subset or equal.

3. (A7) A is a non-negative matrix.
4. (A8) ReLU is a nonnegative monotonically increasing function.
5. (A9) Subtract by the same number and divide by the same positive

number.
6. (A10) Definition in Eq. (5).
7. (A11) P is positive.
8. (A12) By definition of the support.
9. (A13) By definition of L′

S .

For the proof of submodularity we have to define Xiu = XSi∪u, u ∈ V and note
by the definition of the input that |Xju −Xj | = |Xiu −Xi| for the l1 norm (sum of
all elements):

Proof. Submodularity ∀i < j, Si ⊂ Sj , ,:

|Xju −Xj | = |Xiu −Xi| (A16)

A|Xju −Xj | = A|Xiu −Xi| (A17)

|A(Xju −Xj)| = |A(Xiu −Xi)| (A18)

24

|AXju −AXj | = |AXiu −AXi| (A19)

|AXjuW−AXjW| = |AXiuW−AXiW| (A20)

R(|AXjuW−AXjW|)− 2btr = R(|AXiuW−AXiW| − 2btr)
(A21)

|R(AXjuW)−R(AXjW)− 2btr| = |R(AXiuW)−R(AXiW)− 2btr|
(A22)

sup(R(AXjuW)−R(AXjW)− 2btr) = sup(R(AXiuW)−R(AXiW)− 2btr)
(A23)

sup(R(AXjuW− btr))− sup(R(AXjW)− btr) ⊆ sup(R(AXiuW− btr))− sup(R(AXiW)− btr)
(A24)

sup(Hju)− sup(Hj) ⊆ sup(Hiu)− sup(Hi) (A25)

σm(Sj ∪ {u})− σm(Sj) ≤ σm(Si ∪ {u})− σm(Si) (A26)

(A27)

1. (A19) Distributive property
2. (A20) Similar to multiplication by A.
3. (A24) The norm of the difference is distributed equally, but the right-

hand difference has at least the same or more positive elements because
the norm of A, which is stochastic, is bounded by V hence Xu can
give up to the same gain to AXj and AXi, the same number btr is
subtracted, and more elements are activated by Xj then Xi as shown
in Eq. A13.

4. (A25) We skipped dividing by sttr for brevity.
5. (A26) Arrive with similar steps as A11 - A14.

Regarding the approximation of the marginal gain we first show that choosing
the node corresponding to the maximum mS will give the maximum L′

ju: A
′
uL̂j ≥

A′
v L̂i ⇒ L′

ju ≥ L′
iv.

A′
uL̂j =

∑

v∈N(u)

A′
uvL̂j [v] =

∑

v∈N(u)

AuvL
′
j [u] =

∑

v∈N(u)

AuvXju.

This means that mS gives the node u that improves the biggest number of rows in
AXju that is not already considered influenced. Since we know from Eq. (A14) that
AXiu ≥ AXiv ⇒ |L′

iu| ≥ |L′
iv|, the claim concludes. Hence, choosing the best node

using the marginal gain approximation is as good as the real influence spread. Now
we prove the submodularity of the proposed marginal gain.

Proof. Submodularity for the approximation of the marginal gain, ∀i < j, Si ⊂ Sj ,
starting from (A14):

|1>0 {HjP} | ≥ |1>0 {HiP} |

25

|1≤0 {HjP} | ≤ |1≤0 {HiP} | (A28)

A′
uL̂j ≤ A′

uL̂i (A29)

mSj
[u] ≤ mSi

[u] (A30)

(|L′
j |+mSj

[u])− |L′
j | ≤ (|L′

i|+mSi
[u])− |L′

i| (A31)

σm(Sj ∪ {u})− σm(Sj) ≤ σm(Si ∪ {u})− σm(Si) (A32)

1. (A14) Complementarity between elements that are ≤ 0 and elements
> 0.

2. (A16) Definition in Eq. (9) and multiply with non-negative row u from
matrix A′.

3. (A17) Definition in Eq. (11).
4. (A18) Adding and subtracting |Lj | and |Li|.
5. (A19) By definition of σm in Eq. (10) and the marginal gain of u, we

arrive at submodularity in Eq. (A19).

B. Complexity of Pun

In order to estimate the theoretical complexity of Pun, we can break it down into three
modules. The complexity of influence estimation (Glie), the complexity of seed choice,
and the complexity of adaptive full-feedback greedy algorithm [41]. Following the
notation of the paper, the complexity analysis of Glie is similar to other graph neural
networks and corresponds to O(|E|) [51]. The complexity of choosing the next seed,
which contains the sum in Eq. (9) (O(d)), the message passing to compute mS in Eq.
(11) (O(|E|)), and the complexity of argmax which is O(|V |) in the worst case which
is the first seed. Putting the above together, each iteration will have O(d+ |E|+ |V |).
Given that the adaptive full-feedback greedy algorithm has the same complexity as
greedy, we finally get O(|S|(d+ |E|+ |V |).

C. Relative error of Glie for larger seed sets

To quantify the potential of Glie for larger seed sets, we sample 9 random seed sets
and 1 with the highest degree nodes and compute the error of Dmp and Glie, with the
ground truth influence divided by the average influence in Table D1. We see that the
error increases differently depending on the dataset, with Glie outperforming Dmp
in GR while the reverse happens in CR and HT.

D. Glie submodularity and monotonicity

In this section, we empirically prove that Glie’s output is submodular and
monotonous. For our datasets, we use the seed set retrieved by Glie-Celf and a
random seed set to quantify the differences between subsequent estimations. To be
specific, we have a sequence S that represents the seed set and a sequence R that rep-
resents the random nodes, with Sj being the seed set up to jth element and sj being

26

Graph Seeds Dmp Glie

CR 20 0.005 0.031
CR 50 0.006 0.059
CR 100 0.017 0.152

GR 20 0.161 0.029
GR 50 0.125 0.042
GR 100 0.093 0.082

HT 20 0.010 0.105
HT 50 0.004 0.062
HT 100 0.002 0.113

Table D1 Relative error for diffusion prediction of larger seed sets.

the jth element, and similarly rj for R. We compute the marginal gain to check for
monotonicity:

mss = σ̂(Sj ∪ sj+1)− σ̂(Sj) (C33)

msr = σ̂(Sj ∪ rj+1)− σ̂(Sj), (C34)

and for submodularity, we have, with i = j − 1:

sss = (σ̂(Si ∪ sj+1)− σ̂(Si))− (σ̂(Sj ∪ sj+1)− σ̂(Sj))

ssr = (σ̂(Si ∪ rj+1)− σ̂(Si))− (σ̂(Sj ∪ rj+1)− σ̂(Sj)).

In Figure C1, we plot m and s for some of our datasets. Regarding s, since we
require a constant node, we randomly sample one of the seeds sj and a random node
rj and visualize the sequences of both s with regard to adding them in every step.
The values of these functions correspond to nodes, and range from tens to thousands,
depending on the datasets. For monotonicity and submodularity, we verify that m
and s are always more than zero. Moreover, we see that they decrease with the size
of the seed set and that adding a random seed provides worse marginal gains (in
monotonicity plots) than adding the chosen seed.

27

0 20 40 60 80
Seed set size

0

5

10

15

20

No

de
s

Monotonicity CR
mss

msr

20 40 60 80
Seed set size

0

2

4

6

8

No

de
s

Submodularity CR
sss

ssr

0 20 40 60 80
Seed set size

0

20

40

60

80

100

120

140

160

No

de
s

Monotonicity HI
mss

msr

20 40 60 80
Seed set size

0

10

20

30

40

No

de
s

Submodularity HI
sss

ssr

0 20 40 60 80
Seed set size

0

50

100

150

200

250

No

de
s

Monotonicity EN
mss

msr

20 40 60 80
Seed set size

0

50

100

150

200

250

300

No

de
s

Submodularity EN
sss

ssr

0 20 40 60 80
Seed set size

0

50

100

150

200

250

No

de
s

Monotonicity FB
mss

msr

20 40 60 80
Seed set size

0

10

20

30

40

50

60

70

No

de
s

Submodularity FB
sss

ssr

Fig. C1 Monotonicity and submodularity for the examined datasets.

28

	Introduction
	Related Work
	Proposed Methodology
	Glie: Graph Learning-based Influence Estimation
	Celf-Glie: Cost Effective Lazy Forward with Glie
	The influence set representation
	Pun: Potentially Uninfluenced Neighbors
	Grim: Graph Reinforcement Learning for Influence Maximization

	Experimental Evaluation
	Influence Estimation
	Influence Maximization

	Conclusion

