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Abstract

This article investigates how the word embeddings at the heart of large language 
models are shaped into acceptable meanings. We show how such shaping follows 
two educational logics. The use of benchmarks to discover the capabilities of large 
language models exhibit similar features to Foucault’s disciplining school 
enclosures, while the process of reinforcement learning is framed as a modulation 
made explicit in Deleuze’s control societies. The consequences of this shaping into 
acceptable meaning is argued to result in semantic subspaces. These semantic 
subspaces are presented as the restricted lexical possibilities of human-machine 
dialogic interaction, and their consequences are discussed.
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Introduction
When following the direction from man towards programmer in a space 
composed of word vectors, computational linguists Bolukbasi et al. encountered a 
problem -- the resulting value when starting from woman was homemaker 
(Bolukbasi et. al., 2016). In order to correct this mistake (programmer should be to 
woman as programmer is to man), they developed algorithms to “de-bias” word 
embeddings—the vector representation of text—and thus provide a different 
configuration of words that would be considered less sexist.
Word embeddings are ways to organize words in space such that their proximity 
or distance to other words holds semantic information. However, an unwanted 
proximity or distance might be interpreted as bias by researchers and users alike 
(Noble, 2018; Bender et. al., 2021; Steyerl, 2023), and can be understood as a 
sense-making problem, in which a given semantic output does not correspond to 
the expectation. And yet, as Bolukbasi and their colleagues show, it is possible to 
reconfigure semantic fields such that they make more acceptable sense. This 
article investigates how word embeddings, as used in large language models 
(LLMs), are the result of shaping processes, and how these shaping processes are 
akin to educational processes.
We define shaping processes as the different steps in the development of a 
technical artefact, in order to modify both its function and user perceptions. This 
article focuses on two specific processes, benchmarking and reinforcement 
learning, to highlight the overall tendency in which such shaping processes 
inscribe themselves. As such, the central question we address is: under which 
logic do shaping processes take place? How are technical processes implementing 
such logics in order to discover meaning-making capabilities in LLMs? And who 
determines the kind of sense that is being made by a large language model? We 
hypothesize that these processes can be productively analyzed through the dual 
lens of discipline and control, as put forth, respectively, by Michel Foucault 
(Foucault, 1993) and Gilles Deleuze (Deleuze, 1992), particularly in their 
discussion of education; through this, we show that shaping logics, when it comes 
to generative cognitive technologies, influence the development and assessment 
of meaning-making abilities both in the machine and the human.
We begin by exploring how meaning can be encoded digitally by making the 
relationship between syntax and semantics in computer environments explicit. 
By comparing binary encoding and vector encoding, we highlight the 
complexities of the latter, particularly when assessing meaningfulness. We then 
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trace how those vectors are being shaped — that, is being rendered operationally 
meaningful — within LLMs. Specifically, we pay attention to two particular steps 
in the creation process of an LLM: benchmarking and reinforcement learning. 
We highlight how these techniques, a combination of discipline and control, 
contribute to normalization and standardization of meaning, but also from its 
modulation and adaptation, and result in semantic subspaces.
Discussing Alan Turing’s proposal of machine intelligence as an educational 
problem, we conclude by turning to theories of co-construction of intelligence 
(Bachimont, 2004; Stiegler, 2010) to sketch out, through examples of linguistic 
normalization, hallucinations, and prompting, how such word embeddings can 
operate logics of control themselves.

1. From a bit to a vector
The question of discursive communication in technical systems is inseparable 
from the question of encoding. Whether as frequency-modulated hertzian waves, 
pixel arrays, or smoke clouds, different encodings enable different discourses 
(Postman, 1985). This section focuses on the shift from one encoding to the other 
and its semantic implications, looking at both the bit and the vector as a means to 
represent information in digital environments and highlighting how sense-
making shifts from one to the other.

1.1 External reference in the bit
Before the electrification of computers, the use of binary distinction greatly 
facilitated automation, from the programming of textile patterns in jacquard 
looms to the processing of punch cards in census exercises (Ceruzzi, 2003). In the 
context of mechanical work, the binary sign’s only significant property is that it 
has two mutually exclusive states; from these states, it becomes possible to 
encode representation (in the form of binary digits) and action (in the form of 
Boolean logic). Binary  is entirely decontextualized, and it does not matter 
whether the binary sign is represented as a pair of 0/1, red/blue, low/high, 
cold/hot, as long as it is  a disjointed pair1.
While enabling flexible representation, this lack of context requires additional 
cognitive apparatuses, such as references and conventions against which a 
particular configuration of binary can be checked. Like all codes, there is a need 
for a cipher to access the meaning encoded in the binary representation (Kittler, 

1In practice, the representation of binary digits as a pair of 0 and 1 is the most convenient.
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2008). From 01001010 as input, the convention of 4-delimited base 2 encoding 
allows us to retrieve decimal numbers, here the number 74. Once such number 
has been decoded, we can further decode it into a letter, following here the 
reference table of the American Standard Code for Information Interchange 
(ASCII), in which case the number 74 will be interpreted as the upper case letter J. 
An equivalent for actions encoded in binary are truth tables, establishing the 
results of particular combinations of Boolean logic operations.
This decontextualized binary sign was contemporary with another 
decontextualization: that of the message. Claude Shannon’s theory of 
communication famously proposed that meaning was irrelevant when 
calculating the means of communication and that one should, therefore, focus on 
maximally faithful recreation of the input signal, avoiding any kind of noise 
interference (understood as the corruption of the initial value of the transmitting 
medium) (Shannon, 1948). Encoding information through specific signs, whether 
Morse code or binary code, lent itself particularly well to this paradigm of 
information transmission. However, such a system holds a second assumption:  it 
assumes the meaningfulness of the source. Indeed, in order to decode a message 
under Shannon’s theory at all, one  must presuppose there is sensical message to 
decode.
While binary encoding might be first seen as a decontextualized sign, as a 
technical object, it also exists in a network of relations, involving at least 
reference documents, transmission media and human agents that are all 
necessary for it be productively operationalized. Such productivity is achieved 
specifically by setting aside meaning to focus on syntax.

1.2 Internal reference in the vector
From the 1950s until the 2010s, the binary digit remained the dominant form of 
encoding information in digital systems. Throughout the 1970s, though, another 
form appeared, known as Vector Space Models (VSM). Originally proposed by 
Gerald Salton, this technique for information retrieval relied on the key insight, 
proposed by linguist John Firth in 1957 that “[we] shall know words by the 
company they keep” (Firth 12), hence departing from an essentialist view of 
language, towards a pragmatic one, in which the context of a given word should 
be part of its encoding (Salton et. al., 1975). Such encoding became particularly 
popular in broader digital information system after Yoshua Bengio and his team 
combined it with neural network algorithms at the dawn of the twentieth century 
(Cardon, 2018).
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A vector is a mathematical entity that consists of a series of numbers grouped 
together to represent another entity. Often, vectors are associated with spatial 
operations: the entities they represent can be either a point or a direction. In 
computer science, vectors are used to represent entities known as features, 
measurable properties of an object (for instance, a human can be said to have 
features such as age, height, skin pigmentation, credit score, and political 
leaning). Today, such representations are at the core of contemporary machine 
learning models, allowing a new kind of translation between the world and the 
computer (Rieder, 2020).
In machine learning, a vector represents the current values of a given object, 
such that a human would have a value of 0 for the property “melting point”, 
while water would have a value of non-0 for the property “melting point”. 
Conversely, water would have a value of 0 for the property “gender”, while a 
human would have a non-0 value for that same property. However, this implies 
that each feature in this space is related to all the other dimensions of the space: a 
human could potentially have a non-0 value for the property “melting point”. 
Vectors are thus always containing the potential features of the whole space in 
which they exist and are more or less relatively tightly defined in terms of each 
other.
If binary enabled a syntactic exchange (everything can be encoded as a series of 
0s and 1s), vectors enable a semantic exchange (everything can be described in 
terms of everything else). Combining vectors entails a more malleable 
manipulation of meaning throughout lexical fields. As a vector goes from Berlin 
to Germany, it represents the concept capital city (Guo et. al., 2023).
Because features exist in relation to one another, and meaning is constructed 
through the local similarity of vectors, semantic space both flexibly stores 
meaning (each number in a vector can subtly change without affecting overall 
meaning) and systematically retrieves it  (all vectors exist in the same 
dimensions).

1.3 Expected meaning, unexpected meaning
The nature of meaning differs depending on encoding – but this is by not 
exclusive  to digital inscription systems. For instance, Jack Goody’s work on lists 
and Bruno Latour’s on perspective, both suggest epistemological consequences 
inherent in the choice of one particular syntactic system over another (Goody, 
1986; Latour, 2013). While binary encoding allows a translation between physical 
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phenomena and concepts, between electricity and numbers, and while Boolean 
logic facilitates the implementation of symbolic processing, vectors open up a 
new perspective on at least one particular level: the spatial dimension of their 
semantics.
The breadth of the data encoded, packaged in online corpora such as Common 
Crawl, is valuable insofar as it is mostly syntactically correct natural language. 
However, it does not follow that its recombination by way of large language 
model generation will be sensical because the source of such recombination 
cannot be attributed to a meaningful agent. The problem with language 
generation based on vector encoding is, therefore, that meaning is ontologically 
uncertain because it is statistical (software engineers tried to wrangle uncertainty 
out of the electrical circuits by forcing the continuous voltage into the discrete 
binary). Such uncertainty brings the acceptability of meaning into question — 
which can have either potentially boring or dramatic consequences. While binary 
encoding limits the acceptability of meaning  to faithful signal reconstitution, 
vector encoding gives it a more complicated dimension. 

Reconstituting meaning from binary encoding has always been a clearly defined 
problem, involving only mathematical reconstitution of the original message. 
Correctness of meaning, on the other hand, began as a computer-syntactic 
problem, but shifted with vectors to become a human-semantic problem.

2. Shaping vectors
We now turn our attention to techniques deployed by producers of LLMs to shape 
word embeddings of LLMs into models capable of meaningful output. After 
looking at the use of benchmarks for capability discovery, we argue that these 
processes operate as a form of discipline, as theorized by Michel Foucault. Then, 
we turn to reinforcement learning as an example of such shaping, but this time 
through the lens of a form of control, following Gilles Deleuze. We then conclude 
this section by reframing training in terms of education, drawing on Alan Turing’s 
seminal paper, “Computing Machinery and Intelligence”.

2.1 Benchmarks and the disciplining of vectors
Originally, a digitally encoded message was considered intelligible when it 
successfully compiled and behaved according to specification.  But as 
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programming became an engineering discipline (Campbell-Kelly, 2003), 
engineers’ focus on metrics, such as efficiency and reliability, ushered in new 
ways of qualifying the value of a program as a productive object. From the 1970s 
on, benchmarks emerged as reproducible tests to signal entities’ comparative 
productivity. Through standardized procedures, they measure and rank, for 
instance, the time taken to sort lists of items, the number of triangles that can be 
drawn at a given frame rate, or the temperature of a CPU chip when processing a 
certain set of tasks.
Conventional  engineering metrics, such as speed, play only a minor role in 
determining the quality of today’s large language models. While contemporary 
benchmarks are still centered around the concept of performance, it is no longer 
measured on discrete machine tasks, but rather on subjective human ones -- 
focusing on content rather than form.
Engineering benchmarks for LLMs thus take on a different dimension, involving 
conceptual assessments, rather than technical efficiency. For instance, the 
General Language Understanding Evaluation (GLUE) (Wang et. al., 2019) 
benchmark is a test for machines that assesses performance in domains such as 
lexical semantics, predicate-argument structure, logic, as well as knowledge and 
common-sense. These tests have a normative power, deciding the extent to which 
something is correct or not, and are thus part of disciplinary technologies, i.e., 
technologies that rely on the creation, supervision, and maintenance of norms 
(Galloway, 2004). Here, benchmarks enable engineers and other users to 
determine the relative performance of one LLM compared with others.
The recent application of LLMs to other kinds of benchmarking tests, namely 
standardized tests designed for humans,suggests a parallel between the logic of 
benchmarking and that of education. In the past years, LLMs have successfully 
passed the Chartered Financial Analyst exam (I & II), the Bar exam, the SAT, the 
GRE , the Biology Olympiad Semifinal Exam, the Certified and Advanced 
Sommelier Exam, and the United States Medical Licensing Exam (Varanasi, 2023). 
As well as assessing LLMs’ capabilities, such tests allow for the adjustment and 
regulation of cognitive processes, and act as value judgments for the 
meaningfulness of an output produced by an agent whose capabilities are to be 
asserted, whether human or machine-simulated. Referring to the educational 
system of the 20th century, Foucault writes:

These ‘regulated and concerted systems’ fuse together the human 
capacity  to  manipulate  words,  things  and  people,  adjusting 
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abilities  and  inculcating  behaviour  via  ‘regulated 
communications’  and  ‘power  processes’,  and  in  the  process 
structuring how teaching and learning take place. (218-219)

At the heart of the practice of teaching is a defined and regulated relation of 
surveillance that acts to improve the efficiency of its subject. The power process 
here is that of the standardized test, as it measures and compares 
decontextualized performance (Ryan, 1991). This happens through 
normalization, the shaping of entities in order to make them comparable and 
rankable, an operation already at play in engineering benchmarks (Heaven, 
2023). One key difference, however, is that the discipline that Foucault describes 
in the school primarily aims at disciplining bodies, particularly in terms of 
sexuality, whereas the disciplining of vectors happens on the other side of the 
cartesian distinction which underpins mainstream artificial intelligence research.
Adherence to standardized benchmarks is not the only way that researchers 
shape acceptable meaning in LLMs. Once a certain kind of technical performance 
is confirmed, its social performance must also be assessed and eventually 
modified. To do that, there is a feedback mechanism, involving both negative and 
positive signals.

2.2 Reinforcement and the spaces of control
Word embeddings underpinning LLMs are malleable: LLMs can propose different 
semantic outputs based on the different weights and attentions (Guo et. al., 2023). 
A notorious example of such malleability is that of Microsoft’s chatbot, Tay, who 
remodelled itself to generate more discriminatory and offensive content after just 
one day interacting with social media users (Glance, 2016). While benchmarks 
assess generic capabilities and output quantitative information about the 
performance of an LLM, they only assess acceptability on a factual and 
syntactical level, and not on a social or moral level. Additionally, as a commercial 
product, its outputs must comply with particular legal frameworks that specify 
what can and cannot be said. Beyond standardization, this then requires LLMS to 
adapt the semantic space they encoded to ad hoc requirements.
Such modulation happens through processes known as reinforcement learning, 
whether with human or AI feedback. Reinforcement learning judges each output 
against standards to support subsequent optimization. It involves having a 
trusted authority (such as a human who has been told what to expect from an 
ideal LLM output) provide feedback to the training model to reinforce certain 
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semantic features (e.g., preventing any output that is deemed discriminatory, 
copyright infringement, or harmful to the user) (Kaelbling, 1996).
While benchmarking focused on abstract comparability through normative 
testing, reinforcement learning involves more subjective normalization of 
meaning through feedback and iteration in order to align the model with what is 
considered a legally, morally, and socially acceptable meaning.
Such logic updates a disciplinary approach to undetermined behaviour and 
enters the realm of control. In his 1992 essay, Gilles Deleuze describes a new kind 
of era, ushered by a new kind of machines—computers—that would also suggest 
new mechanisms to govern individuals. This era of the society of control relies on 
adaptability, modulation, and deformation in order to best match the desired 
situation. Deleuze writes:

[...] the different control mechanisms are inseparable variations, 
forming a system of variable geometry the language of which is 
numerical (which doesn’t  necessarily mean binary).  Enclosures 
are molds, distinct castings, but controls are a modulation, like a 
self-deforming  cast  that  will  continuously  change  from  one 
moment to the other, or like a sieve whose mesh will transmute 
from point to point. (3)

During reinforcement learning, the word embeddings of a LLM are shaped into a 
particular meaning through ad hoc interfaced actions such as “thumbs-up” or 
“thumbs-down”, which are subsequently backpropagated through the weights of 
the network, slightly re-arranging embeddings into a semantic space whose 
landscape better matches the expectations of the judging entity. Furthermore, 
such a process can be conducted iteratively, blurring the distinction between 
what is in training and what has been trained—Deleuze identifies a similar 
change in the human educational process, wherein education is replaced by 
continuing education and the educated subject can become a uniquely shaped 
object -- an objectile (Savat, 2005). The objectile is the result of a unbounded 
modulation, rather than the singular structural shaping of a sculpture. Instead of 
the standard formatting of foucaldian educational institutions, Deleuze suggests 
the dawn of a new mode of education which involves personalized frames of 
action for each subject, an individualized, yet clearly controlled subject.

2.3 Educating intelligences
The question of education has been asked since the beginning of contemporary 
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history of AI research, considering that education was a crucial step in 
establishing the intelligence of a subject.
In Alan Turing’s seminal “Computing Machinery and Intelligence” (1956), he 
concludes his investigation into whether machines can think by focusing on how 
to make them do so. Drawing parallels from the development of human 
cognition, he identifies three components: the initial conditions (genome for 
humans, model architecture for LLMs), the formal education (schooling for 
humans, training for LLMs), and epiphenomenal events (interactions for humans, 
reinforcements for LLMs).
Such formal education for LLMs stresses learning by example (Campolo, 2023) 
and capability discovery through human-context benchmarks, either in the form 
of specialized machine learning tests (e.g., GLUE, BLUE, LMSYS) or broader “real-
world” knowledge tests (e.g., the SAT, MCAT, or LSAT). 
However, the educational process within an institutional setting does not, as 
Foucault has shown, limit itself to the transfer of knowledge, but involves also the 
normalizing of bodies and minds. Since LLMs do not have a corporeal 
incarnation beyond matrices of weights written to files and globally-networked 
data and compute centers, it is on the “mind” of the LLM that the educational 
process of benchmarking and reinforcement learning operates.
Critically inspecting the two educational logics at play in the shaping of vectors—
benchmarking as discipline, reinforcement learning as control—highlights two 
concerns. First, the harmonization of acceptability standards through 
benchmarks determines the narrow kinds of intelligence which can be expected 
when interacting with models (i.e. scholarly, academic, bookwormish, test-
oriented, to the extent that some researchers have started to look into ways to 
prevent LLMs from cheating on tests (Zhou et. al., 2023)). For instance, as of 2024, 
LLMs tend to perform relatively poorly on non-verbal reasoning (Potter, 2024). 
Since the passing of those assessments operate as a sort of test, we can 
subsequently anticipate the kind of intelligence that those models display based 
on their assessment techniques. Second, the fine-tuning of acceptability through 
reinforcement learning takes a performing academic model resulting from the 
passing of benchmarks, and presents to the end-user a refined version with 
particular values embedded in them. Due to the limited amount of companies 
being able to deploy such reinforcement learning, these values then have similar 
consideration across the globe (Awad et. al., 2018). Not only is the factual 
intelligence standardized, but the values ascribed to those facts is equally 
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controlled.

3. Shaping users
Deleuze’s conception of continuous education as the on-going shaping of 
intelligences and abilities implies that the structural distinction between what is 
inside the enclosure and what remains outside is blurry at best. According to the 
logic of control, the shaping of LLMs does not stop before release to the public. 
Continuous, user-provided feedback and software updates constantly re-shape 
their word embeddings (Gao, 2024). This last section investigates the potentially 
shifting positions of tested and tester once LLMs are deployed to -- and 
interacting with -- a broader audience.

3.1 Cognitive technologies and semantic spaces
We take the position here that all intelligence is, to a certain extent, artificial, 
insofar as it embedded in technical artifacts and symbol systems, as suggested by 
historians and philosophers of technics (Leroi-Gourhan, 2009; Stiegler, 2008 
Bachimont, 2004). Technical apparatuses help us think through problems aided 
by the use of specific cognitive organizational devices, such as lists, tables, or 
formulas, as shown by Jack Goody on his work on graphical reason. While Goody 
interprets these techniques as a means of organizing representations of the 
world, Stiegler conceptualizes these technologies as tertiary retentions in which 
the memories of things and practices are externalized and reified into technical 
artefacts. In both cases, the technical written artefact is co-constructive of 
thought.
Digital technology is no exception. Its flagship artefact, the digital computer, 
exhibits properties such as modularity, translation, computation, connection, and 
simulation (Lev Manovich, 2001), cognitive operations that, by reorganizing the 
formalities of the concepts they manipulate, also change our understanding of 
these concepts (e.g.. digital technologies allow us, for the first time in the history 
of humankind, to copy a text without reading it). Electric-symbolic encoding of 
meaning thus has an influence on how we understand and make sense of the 
world.
Attending specifically to texts that exist first and foremost within a digital eco-
system, such as websites, digital documents (either in plaintext or in formats such 
as .PDF, .DOCX, .ODT or .MD), or social media messaging, we can follow Alexandra 
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Saemmer to consider the computext, which is a kind of text that includes “both 
the algorithms operating weights and calculus on the traces left by the users, as 
well as the traces themselves, organised in databases” (Saemmer, 2020).  
Programming, considered as a technique providing the background for the 
dynamic evolution of meaning, already hints at the fact that software code is a 
writing of writing. Similarly, “computexts frame and guide the writing process; 
however, the user no longer writes in these tools, but literally writes with them” 
(Saemmer, 2020).
We understand technologies, whether physical or cognitive, to be points of 
integration in a broader environment and means of interaction within such 
environments (Hayles, 1999). In the case of LLMs, the environment is not just that 
of academic research, corporate investment, material infrastructure, raw 
datasets, and mainstream rhetorical discourses whose networked interaction 
have brought into being this specific technology, but also the (semantic) 
environment created within such kind of technology.

3.2 Subspaces and prompt engineering
The post-processing of lexical fields in computational systems has been 
thoroughly researched in the context of search engines (Sack, 2017), social media 
(Saemmer, 2020), and word-processing (Kirschenbaum, 2016). Nonetheless, the 
way vector-encoded LLMs affect our linguistic and discursive practices is still 
under developed, and we sketch out here some threads of how they might do so.
As LLMs retrieve information from their word embeddings, they navigate 
semantic spaces. However, such a retrieval of information is only useful if it is 
meaningful to us, the users; and in order to be meaningful, it navigates across 
vectors that are in close proximity to each other, focusing on re-configurable, 
(hyper-)local coherence to suggest meaningful structuring of content (i.e., 
guessing the next word that is the closest to the current word based on the path 
already travelled). The proximity (or distance) of vectors to each other is 
therefore essential to how the LLM output is perceived as intelligible to us. 
Meaning is no longer created through symbolic-logical combinations, but by 
spatial proximity in a specific semantic space. Because proximity of certain 
tokens involves distance to others, this implied process of exclusion can be 
described as a subspace, one in which some statements are more likely to be 
output than others.
To illustrate one of the features of such spatial organization of meaning, we can 
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pay attention to the phenomenon of so-called “hallucinations”, textual or visual 
propositions that are considered by the user to be inacceptable with respect to 
the “ground truth” (the concept in machine learning referring to the base of facts 
from which reasoning should start). This occurs whenever LLMs suggest 
something that is considered slightly too remote from such truth, or reality, and 
yet still adjacent to it. The hallucination is an approximation, in the sense that it is 
only a proximity to the syntactic configuration that would yield a semantic load 
grounded in reality. User interactions with hallucinating models thus redraws the 
line between fact and fiction, as text becomes a version of itself, moving from 
mechanical print to quantum spatialization. While the content seems realistic, 
and its syntax may well be semantically correct and convincing, the trust users 
have in the output of the system can only be superficial (Förster, 2023).
Second, the restitution of training data and processes contributes to highlighting 
(or hiding) particular pieces of information. Models trained by corporations that 
are particularly attuned to a restrictive notion of copyright (e.g., Google, 
Microsoft, OpenAI) prevent any replication of styles or creations by artists (or 
their descendants) who might be able to initiate a lawsuit. LLMs are also 
prevented from, for instance, providing any expression of personal preference. 
Previous models based on reinforcement learning, like Microsoft’s Tay, have 
shown that they are not restrained by contextual social cues such as moral and 
legal standards. No longer treating text as a value-less mass, such examples of 
socially-embedded models, insofar as they are consumer products, are explicitly 
refusing to enter certain semantic spaces. Here, the reinforcement learning’s 
disciplining of embeddings is made clear, with LLMs beginning answers to 
inappropriate or unacceptable queries with “as a large language model, …”, 
which explicitly enacts a techno-political framing akin to a political aesthetics, in 
which what is visible and what is hidden are determined by their political nature 
(Rancière, 2000).
Things become somewhat murkier when the LLM does not acknowledge this 
shaping of the semantic space. In the case of the image generation model RuDall-
E, developed and trained by Russian software engineers, it is impossible to 
prompt the model to generating images of a pro-European revolution in Ukraine 
or any visual references to the on-going war in Ukraine (Dubow, 2023). Here, it is 
no longer merely forbidden to be express these outputs in a straightforward 
manner, but rather pre-emptively forcelosed. We can qualify these different 
shapings, some through reinforcement learning, some through initial training 
data, as the creation of subspaces, specific configurations of word embeddings, 
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one in which attention is forced towards particular centers of gravity. The 
emerging practice of “prompt engineering” consists of providing LLMs with an 
initial semantic configuration through written instructions. This “prompt 
engineering” can be conceived as explicitly directing the LLM’s attention towards 
specific subspaces (e.g., providing a prompt like “Drawing on your expertise as 
a…” or “You are great pedagogue. Explain to me…”). In this case, end-users 
harness the malleability of subspaces by deploying technologically-adapted 
language to shape the navigable space of embeddings into a configuration that 
best meets their needs.  However, prompts can also be entered at the system level, 
either by the technology company itself, a corporate re-brander of a white-label 
system, or even by individual power users on local machines. These system 
prompts exert another shaping of the semantic space that occurs in-between the 
user’s final prompt and the model’s ultimate output,. Such a practice means that 
institutions or superusers are using access to the model re-orient answers, and 
whose experience in training it grounds their perceived ability to decide on the 
semantic subspaces from which a linear answer should be drawn. End uses 
assume that an LLM draws on all of its training to produce an answer, and yet it 
only operates on a partly visible subset.

Conclusion
Vector embeddings as a new form of encoding enables new ways of shaping the 
content of language. Particularly, they add a layer of self-reference to digitally-
encoded language (since words and tokens make sense in the context of other 
words and tokens) and of uncertainty (since the origin of a given output is no 
longer a given in the process of decoding meaning). In order to reconstruct 
semantics from syntax generation, two main processes are involved in the 
shaping of semantic spaces.
We have shown how this shaping operates through two logics. The disciplinary 
logic, in a slide from engineering benchmarks towards educational benchmark, 
uses external standards to assess the productive performance of the language 
models. Such a disciplining process takes on modular features through the 
controlling process of reinforcement learning. By providing feedback and 
examples to reach a configuration that yields acceptable outputs. The control 
logic, drawing on the malleability of software, uses fine-tuned continuous 
adjustments to validate what is acceptable or not at a value-level. Both of these 
logics are akin to how standardised test in human education establish normalized 
knowledge practices, and how continuous education ensures a new kind of 
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framing in computer-powered societies. Ultimately, these processes ultimately 
narrow down the frame of expressivity and semantic combination of the LLM. 
Finally, we sketched out how such combination of discipline and control in 
shaping word embeddings can affect users, by suggesting that linguistic 
interaction only takes place in semantic subspaces. Through dialogue, the user 
probes the spatial configurations of meaning, but the exact topology of these 
configurations nonetheless remains elusive, and can thus impact what can be 
said, and – for the first time in the era of computation --  even what can be 
imagined.
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