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ABSTRACT

We propose the use of a periodic set of dielectric rods considered in the high frequency regime as a reservoir for
computing. We show that such a system presents a chaotic behavior that can be analyzed within the K.A.M.
approach, with the formation of tori in phase space. The conditions for which the system can be used to encode
information is then addressed. Finally, we try to extend these ideas to quantum metamaterials and investigate
the possibility of using these structures for quantum reservoir computing.
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1. INTRODUCTION

The idea of reservoir computing is a type of machine learning technique where the main ingredient is a ?reservoir?
which is a system with a large system of states. Several physical reservoirs have been used in practice. One
of the most surprising being surely the surface of a bucket of water1! Recently, it was proposed to use optical
reservoir such as a scattering medium.2 In the present work, we propose the use of a periodic set of dielectric
rods considered in the high frequency regime. We show that such a system presents a chaotic behavior that can
be analyzed within the K.A.M. approach, with the formation of tori in phase space. The conditions for which the
system can be used to encode information is then addressed. Finally, we try to extend these ideas to quantum
metamaterials and investigate the possibility of using these structures for quantum reservoir computing.

Figure 1. Modulus of the Fourier coefficients of the density σ.

2. RESERVOIR COMPUTING

The idea of reservoir computing is to consider an untrained Recurrent Neural Network as a system hosting a
very large number of modes and that can be used as a memory to encode and store an outpout signal.3 Once the
input signal is encoded, an output can be produced and a layer of articificial neurons can be trained to link the
input signal to the encoded signal, see fig. 1 for a schematic representation of the system. Several systems, from
Recurrent Neural Networks to all-optical systems or even skyrmions have been proposed to work as a reservoir1,2
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3. CHAOS IN A PHOTONIC CRYSTAL

A possible physical system for designing a physical reservoir is a set of scatterers. This was considered in,2 where
a strongly scattering medium is used. We propose instead to use a perfectly periodic medium: a 2D photonic
crystal. When such a structure is considered in the very frequency regime, it displays chaotic properties that
were analyzed in the framework of ray optics in6 and also from the point of view of quantum chaos in.7 The rayEmmanuel Rousseau and Didier Felbacq

Fig. 1: (Color online) (a) A small portion of the photonic crys-
tal. T is the period of the photonic crystal in both vertical and
horizontal directions. R is the radius of the cylinders. (b) No-
tations used in the text. “Ap” refers to the p-th point defined as
the intersection between the light ray and the cylinder surface
at the p-th step, “Bp” is the p-th point at the cylinder surface
after refraction inside the cylinder. α denotes the angle be-
tween the ray and the horizontal axis. θAp (respectively, θBp)
is the angle between the normal at the point Ap (respectively,
Bp) and the horizontal axis. θ1

Ap
(respectively, θ1

Bp
) is the an-

gle between the normal at the point Ap (respectively, Bp) and
the incoming light ray (respectively, outcoming light ray).

of the cylinders. If the cylinders are perfectly reflecting
instead of transparent then the system is nothing but a
periodic Lorentz gas. It has an extensive bibliography
both in the physical and mathematical literatures (see,
e.g., [19] and references therein). It consists in an ensemble
of noninteracting point particles moving freely with elastic
collisions on fixed scatterers (the cylinders). The photonic
billiard can be seen as the refractive extension of the peri-
odic Lorentz gas. Upon this analogy a light ray represents
a particle trajectory and, instead of having infinite walls,
the repulsive potential is finite with a value given by the
optical index of the cylinders. An important difference
with the periodic Lorentz gas is that now rays carry en-
ergy that is split between the refracted and the reflected
ray. For moderate values of the cylinder optical index, the
reflection coefficient in energy (4% for one single glass/air
interface) is small. In such a case, energy is predominantly
carried through the rays that are transmitted through the
cylinder. See the Supplementary Material (I A) in [18]
for more details. Whereas there exists a huge literature
about the periodic Lorentz gas with hard-wall scatterers,
we have not been able to find references on the “refractive
periodic Lorentz gas”1. The Lorentz gas is an unfolding
of the Sinai Billiard [20] for which the dynamics is always
chaotic, whatever the photonic crystal parameters, making
impossible long-range precision concerning a single trajec-
tory. So, despite its deterministic character, this system

1We use the terminology “photonic billiard” or “refractive
Lorentz gas” as synonyms throughout the letter.

can only be studied from a statistical point of view. Trans-
port is diffusive and the square geometry is known [21,22]
to exhibit superdiffusion processes (also called anomalous
diffusion), i.e., diffusion for which the mean-square dis-
placement ⟨r2⟩ grows faster than linearly with time t like
⟨r2⟩ ∝ t ln t [23]. In the past few years, superdiffusion
gained an increasing interest in optics [24] with the obser-
vation of weak localization [25] in disordered samples de-
signed to exhibit anomalous diffusion [26]. Our photonic
billiard, or refractive Lorentz gas, shows a richer dynamics
as compared to the Lorentz gas and the main result here
is that the geometry studied in this paper also exhibits
diffusion processes that can be tuned from nearly ballistic
to Brownian, including anomalous diffusion. The letter is
organized as followed. First the dynamics of the refractive
Lorentz gas is discussed through Poincaré surfaces of sec-
tion. The structure exhibits soft chaos, i.e., regular paths
(also called ballistic paths), as well as chaotic motion as a
consequence of its quasi-integrable dynamics [27]. Above a
threshold value of the normalized period t⋆ = T/R where
T is the crystal period and R the cylinder radius, the
dynamics becomes completely chaotic. Chaos strength is
quantified through the computation of Lyapunov expo-
nents. Diffusive properties are computed, showing that
the refractive Lorentz gas exhibits superdiffusion due to
the existence of Levy flights.

The rays dynamics. – The dynamical properties of
rays in the crystal are now described. Numerical com-
putations were performed with an optical index of the
cylinders equal to n = 1.5, which leads to a coefficient
of reflection of the order of 4% per air/glass interface. In
fig. S1 of the Supplementary Material (I B) in [18], we
show the propagation of a laser beam computed by solving
rigorously the Maxwell equations into the photonic crys-
tal. Because of the low optical-index contrast between
the cylinder and the surrounding medium, light propa-
gation is dominated by the transmitted rays. Thus, the
field intensity distribution can be predicted from the dis-
tribution of the transmitted rays. So we focus only on
rays which are refracted and thus transmitted through
the cylinders. Within the assumption of a low index-
contrast, a geometrical ray that undergoes a reflection can
be considered as a new ray with new initial conditions.
For the next steps, it will be preferentially transmitted
through the cylinders and its motion will be described by
the dynamical properties of the transmitted rays. The
ray dynamics has a Hamiltonian formulation in terms of
the eikonal equation: d

ds (ndγ⃗
ds ) = ∇⃗n [28], where γ⃗ is the

ray trajectory and s is the parametric distance along the
ray (curvilinear abscissa). As a consequence, the phase
space is four-dimensional. Because n is constant inside
the cylinder, the solutions to this equation, i.e., the ray
trajectories, are piecewise linear. In order to characterize
them, we compute the Poincaré surface of section. The
Poincaré surfaces of section are a convenient way to rep-
resent as a 2D graph a higher-dimensionality phase space
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Figure 2. Scheme of the structure (a) and ray tracing analysis of a 2D photonic crystal (b).

tracing analysis is displayed in fig. 2 together with the structure into consideration. Inside the chaotic sea, it is
possible to identify the tori as predicted by KAM theory.

Figure 3. Phase space of the 2D photonic crystal. The stability regions can be identified inside the sea of chaos.

In fig 4, we give the map of the field for an incident beam. The point is to demonstrate the mechanism
leading to the regions of chaos and stability in phase space. When entering a scatterer, the beam is split into
several beams, both refracted and reflected. The beams that remain in the direction of the original beam are
slightly deviated but the other ones are rapidly diverging from the original direction indicates the sensibility to
initial conditions.

In fig. 5, we give the map of the field inside the photonic crystal for an incident plane wave, in the high
frequency regime. It turns out that the repartition of the field presents elaborate structures that are quite
sensitive to the angle of incidence resulting in a high dimensional space of modes. This allows the encoding of a
signal into the modes of the system.



Figure 4. Map of the field for an incident gaussian beam.

Figure 5. Map of the field inside the photonic crystal, when illuminated in the high frequency domain by a plane wave.

4. CONCLUSION

We have proposed to use a periodic 2D photonic crystal as a reservoir for the implementation of classical reservoir
computing. The extension to optical quantum reservoir computing is now studied, in the framework of the QRC-
4-ESP research network https://www.qrc-4-esp.eu. It could be implemented by inserting quantum point
defects (under the guise of substitutional centers or quantum dots), in order to create a quantum superlattice,
within the photonic crystal.
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