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Characterizing anomalous diffusion is crucial in order to understand the evolution of complex
stochastic systems, from molecular interactions to cellular dynamics. In this work, we characterize
the performances regarding such a task of Bi-Mamba, a novel state-space deep-learning architecture
articulated with a bidirectional scan mechanism. Our implementation is tested on the AnDi-2
challenge datasets among others. Designed for regression tasks, the Bi-Mamba architecture infers
efficiently the effective diffusion coefficient and anomalous exponent from single, short trajectories.
As such, our results indicate the potential practical use of the Bi-Mamba architecture for anomalous-
diffusion characterization.

Anomalous diffusion [1] is an ubiquitous phenomenon
in complex stochastic processes, and is in particular cen-
tral to the cell machinery, as classically witnessed by mi-
crorheology [2]. Its understanding provides insights on
the transport of microparticles in heterogeneous media,
like biomolecules in biological cells [3, 4]. Methods such
as microscopy combined with single-particle tracking al-
low for the detailed analysis of where and when single
events take place [5, 6]. Over the last few decades, single-
particle imaging methods have been steadily upgraded,
increasing the amount of experimental data available on
molecular interactions, cellular dynamics, and the be-
havior of microparticles [7, 8], and nanoparticles [9] in
various complex media. Other approaches, such as dy-
namic light scattering [10, 11] and differential dynamic
microscopy [12] provide valuable insights too when work-
ing with a larger number of objects.

However, in most practical cases relevant to biologi-
cal systems, trajectories are typically scarce, short and
noisy. As such, it is often hard – if not impossible –
to infer meaningful information. Deep-learning meth-
ods for advanced microscopy have thus emerged as a
promising change of paradigm [13]. In this context,
the work we present here results from the Anomalous
Diffusion (AnDi) challenge [14], and in particular from
our participation to its second edition [15]. The ap-
proach we chose was to evaluate the performances regard-
ing anomalous-diffusion characterization of Bi-Mamba, a
novel state-space deep-learning architecture (Mamba) ar-
ticulated with a bidirectional (Bi) scan mechanism. In-
deed, to the best of our knowledge, the Mamba archi-
tecture has not been used so far in the case of physical
studies, and anomalous data in particular. This way, we
took a step aside from the standard methods used by
the other participants, in order to improve the collec-
tive knowledge on advanced artificial-intelligence meth-
ods for complex particle tracking. Our results indicate
that the Bi-Mamba model infers efficiently the effective
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FIG. 1. a) Typical trajectories numerically simulated for a
Brownian particle (α = 1), a sub-diffusive particle with α =
0.2, and a super-diffusive particle with α = 1.98. b) Mean-
squared displacements of the trajectories in a).

diffusion coefficient and anomalous exponent from single,
short and noisy trajectories.
In a typical two-dimensional anomalous-diffusion pro-

cess, the mean-squared displacement (MSD) is deter-
mined over time t by:

MSD(t) = 4Ktα , (1)

where K is the effective diffusion coefficient and α is the
anomalous diffusion exponent. For Brownian particles,
α = 1. Besides, a particle is in a sub-diffusive regime
when 0 < α < 1, and in a super-diffusive regime when
1 < α < 2. In Fig. 1, typical samples of these different
types of diffusion are shown with their respective trajec-
tories and MSDs. In complex cell environments, a par-
ticle can exhibit anomalous diffusion due, for example,
to:

• Obstacles and crowding: In the presence of ob-
stacles, diffusion can be hindered, leading to sub-
diffusive behavior. Moderate concentrations of ob-
stacles can cause anomalous diffusion over short
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distances, and the effect becomes more pronounced
as the obstacle concentration approaches the per-
colation threshold [16];

• Binding and trapping: Temporary binding of par-
ticles to fixed sites [17] leads to a sub-diffusive be-
havior;

• Lipid rafts and membrane heterogeneity: Interac-
tions of particles with lipid rafts in cell membranes
have been shown to lead to complex diffusive be-
haviors [18];

• Chaos: Deterministic chaos and intermittency can
also lead to anomalous diffusion, as shown in [19].
Deterministic systems can produce a non-linear
growth of the MSD due to long-time correlations
and chaotic mechanisms.

The first AnDi Challenge took place in 2020 and aimed
at assessing the performances of various methods in
quantifying anomalous diffusion [14]. The main focus was
dedicated to the inference of K and α, for various simu-
lations of bio-mimetic cases. The second AnDi challenge
took place in 2024 and aimed at evaluating the perfor-
mances of various methods for detecting and quantifying
changes in single-particle motion [15]. As such, the focus
was not only on the inference of the effective diffusion
coefficient and exponent, but also on trajectory segmen-
tation, with the trajectory statistics being described by a
maximum of two K and two α values. One typical goal is
for example to measure at what rate a particle binds and
unbinds to/from a given cellular site. The AnDi datasets
involve five phenomenological models:

• Single-state: particles diffusing according to a sin-
gle diffusion state, as observed for some lipids in
the plasma membrane [20–22];

• Multi-state: particles diffusing according to two dif-
fusion states, and undergoing transient changes of
K and α, as observed for proteins due to allosteric
changes or ligand binding [23–26];

• Dimerization: particles diffusion according to two
diffusion states, and undergoing transient changes
ofK and α, induced by encountering other diffusing
particles, as observed in protein dimerization and
protein-protein interactions [27, 28];

• Transient confinement: particles undergoing tran-
sient diffusion changes when entering or leaving
given areas, as observed in the confinement induced
by clathrin-coated pits on cell membranes [29];

• Quenched trap: two-state model of diffusion repre-
senting proteins being transiently immobilized at
specific locations, induced by binding to immo-
bile structures, as observed in cytoskeleton-induced
molecular pinning [30, 31].
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FIG. 2. a) Bi-Mamba block implementation. b) Deeper Bi-
Mamba implementation.

Deep-learning models for time-series inference are gen-
erally based on Recurrent Neural Networks (RNNs) or
Convolutional Neural Networks (CNNs). RNNs pro-
cess the data sequence by updating a hidden state af-
ter each element. However, as the gradient also needs to
go through each element one by one, long-term informa-
tion may be lost. CNNs use convolutional kernels to give
more weight to local information, as they do not need to
process the sequence one by one. CNNs benefit from par-
allel computing and faster training speed but also limit
the retrieval of long-term global information. As a conse-
quence, the Mamba model [32], a state-space model, has
been recently developed to overcome the long-term loss of
information while being fast to train. The Mamba archi-
tecture is essentially a reformulation of RNNs and CNNs
as selective state-space models. The novelties brought by
this architecture consist in:

• A selection mechanism: allows the model to ignore
irrelevant information or focus on relevant informa-
tion in an input-dependent manner, which is com-
parable to the attention mechanism in Transform-
ers;

• A hardware-awareness: the model is optimized for
use on a GPU, allowing it to scale linearly with
sequence length.

By drawing inspiration from Bi-Mamba+ [33], we con-
structed a deep-learning model based on the Mamba
architecture with a bidirectional scan mechanism. As
shown in Fig. 2a), this scheme involves using the fea-
tures and their time-flipped counterparts within two dif-



3

ferent Mamba blocks. The outputs are then concate-
nated and sent to a feedforward layer. Such a bidi-
rectional approach ensures that the time dependencies
across the entire trajectory are captured more effectively.
As shown in Fig. 2b), our model architecture consists in-
stead of three blocks. First, the trajectories are passed
into a Bi-Mamba block for segmentation, where the diffu-
sion modes are hot-encoded. Then, the trajectories and
segmentation results are forwarded to the next Mamba
blocks, one dedicated to the K regression and the other
to the α regression. Therefore, each task is handled by
a dedicated block, allowing each block to specialize in
a single function. Segmentation is evaluated using the
Weighted Cross-Entropy Error (WCE) loss, while the K
regression is evaluated using the Mean-Squared Logarith-
mic Error (MSLE) loss, and the α regression is evaluated
using the Mean Absolute Error (MAE) loss. The losses
are then summed, and the total loss is back-propagated
using the Adam optimizer.

The data ensemble consists of sets of two-dimensional
trajectories with coordinates r(t) = [rx(t), ry(t)], with a
maximum length of 200 time steps. The features com-
puted using given trajectories are: the displacements for
the first lag time ∆t = 1, ∆ri(∆t = 1) = ri(t+∆t)−ri(t),
with i ∈ {x, y}, the one-dimensional MSDs ⟨∆r2i ⟩(∆t),
the displacement angle between two consecutive displace-
ments [34], and the total displacement from the origin

d =
√

x(t)2 + y(t)2. Trajectories smaller than 200 data
points are zero-padded. For fair benchmarking purposes,
we compare our model to a bidirectional RNN, as shown
in Fig. 3. The Bi-Mamba model shows promising per-
formances, scoring better overall and in each category of
the AnDi2 Challenge. Moreover, it shows its capabilities
to train for a larger number of epochs without overfitting
and with a smaller loss variance.

In this work, we implemented the structure and eval-
uated the performances of the Mamba architecture –
a novel application of state-space models – towards
the characterization of anomalous diffusion. Using fur-
ther a bidirectional scan mechanism, we demonstrated
a notable efficiency in diffusion-state segmentation, as
well as for effective-diffusion-coefficient and anomalous-
exponent regression tasks. Improvement could be
achieved through the use of specialized models, fine-
tuned using simulations generated near the predictions
of the generally-trained model presented in this work.
Our contribution to the AnDi-2 challenge was designed
in order to specifically evaluate the performances of
Bi-Mamba models for anomalous diffusion. Our latest
model ranked 7th in α inference (MAE of 0.27), 9th in K
inference (MSLE of 0.05), 3rd in diffusion-type measure-
ment [i.e. trapped with (α < 0.2), directed with α > 1.8,
or normal with α = 1 and with a F1 error of 0.91], and
10th on the change-point detection (Root-Mean-Squared
Error (RMSE) of 2.7). Moreover, we expect improve-
ments on the segmentation task by using Mamba-based
Unet methods [35]. All together, this work contributes to
the knowledge on, and continued development of, deep-
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FIG. 3. Loss values calculated on a test dataset consisting
of 104 trajectories, as functions of the number of epochs.
Specifically, we show: a) the Mean Absolute Error (MAE)
loss for α inference, b) the Mean-Squared Logarithmic Er-
ror (MSLE) loss for K inference, and c) the Weighted Cross-
Entropy (WCE) loss for diffusion-state segmentation.

learning methods for anomalous diffusion and physics in
general.

DATA AVAILABILITY

Our Bi-Mamba implementation for anomalous dif-
fusion is available at https://github.com/EMetBrown-
Lab/Mamba-EMetBrown-ANDI2.
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