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Abstract: Accurate crop type mapping using satellite imagery is crucial for food security, yet ac-
curately distinguishing between crops with similar spectral signatures is challenging. This study
assessed the performance of Sentinel-2 (S2) time series (spectral bands and vegetation indices),
Sentinel-1 (S1) time series (backscattering coefficients and polarimetric parameters), alongside pheno-
logical features derived from both S1 and S2 time series (harmonic coefficients and median features),
for classifying sunflower, soybean, and maize. Random Forest (RF), Multi-Layer Perceptron (MLP),
and XGBoost classifiers were applied across various dataset configurations and train-test splits over
two study sites and years in France. Additionally, the InceptionTime classifier, specifically designed
for time series data, was tested exclusively with time series datasets to compare its performance
against the three general machine learning algorithms (RF, XGBoost, and MLP). The results showed
that XGBoost outperformed RF and MLP in classifying the three crops. The optimal dataset for
mapping all three crops combined S1 backscattering coefficients with S2 vegetation indices, with
comparable results between phenological features and time series data (mean F1 scores of 89.9%
for sunflower, 76.6% for soybean, and 91.1% for maize). However, when using individual satellite
sensors, S1 phenological features and time series outperformed S2 for sunflower, while S2 was supe-
rior for soybean and maize. Both phenological features and time series data produced close mean
F1 scores across spatial, temporal, and spatiotemporal transfer scenarios, though median features
dataset was the best choice for spatiotemporal transfer. Polarimetric S1 data did not yield effective
results. The InceptionTime classifier further improved classification accuracy over XGBoost for all
crops, with the degree of improvement varying by crop and dataset (the highest mean F1 scores of
90.6% for sunflower, 86.0% for soybean, and 93.5% for maize).

Keywords: Random Forest; Multi-Layer Perceptron; XGBoost; InceptionTime; S1 backscattering
coefficient; S1 polarimetric parameters; S2 vegetation indices

1. Introduction

Monitoring agricultural systems has become increasingly crucial in addressing global
challenges such as climate change, biodiversity loss, population growth, and the growing
demand for agricultural products [1–3]. Accurate mapping of summer crops is essential
not only for ensuring food security but also for managing water resources, as many of
these crops rely on irrigation. With climate change intensifying pressure on water avail-
ability, precise agricultural maps are vital for optimizing water usage and tracking water
consumption [4].
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Remote sensing data serves as a key tool for large-scale monitoring of land surfaces
and crop mapping. Optical imagery is particularly valuable for crop mapping because
it captures detailed information about crop growth and health through multiple spectral
bands that are sensitive to different stages of plant development [5–10]. However, optical
data have limitations, particularly in regions with frequent cloud cover or haze, which
can disrupt continuous data collection over time. In addition, since optical imagery often
targets key stages of crop growth, it is more susceptible to weather-related disruptions
during these stages [1,11]. In contrast, radar data are particularly advantageous in regions
with frequent cloud cover, where optical sensors face significant challenges. Radar data
can also penetrate vegetation and provide structural details that are especially useful for
mapping crops like sunflowers [12]. However, studies have shown that, in general, radar
data tends to provide lower classification accuracy compared to optical data [5,13,14]. Most
studies using radar data focus on backscattering coefficients (VV, VH, and the VV/VH
ratio), which offer valuable information for crop classification [15–17]. However, few
studies have explored the use of radar polarimetric parameters. This is largely due to
the fact that Sentinel-1 (S1) images, which are free accessible radar images, are not fully
polarimetric, and the polarimetric parameters derived from dual-polarization data are less
informative compared to those obtained from fully polarimetric synthetic aperture radar
(SAR). Additionally, calculating polarimetric parameters can be time consuming, especially
when dealing with time series data across multiple study sites or phenological cycles.
However, certain polarimetric parameters, which capture backscattering mechanisms and
wave interactions, may be highly sensitive to changes in crop phenology, offering valuable
insights into crop growth stages [18,19].

Despite the strengths of both optical and radar imagery, crop type mapping remains
challenging due to the high spectral, spatial, and temporal variability observed throughout
the growing season [20]. Different crops often exhibit similar spectral and spatial charac-
teristics, as seen in the case of mapping soybean, maize, and sunflower [21]. Additionally,
the same crop can display varying traits under different environmental conditions [22].
These similarities between different crops, combined with the variability of a single crop
in diverse conditions, result in high inter-class similarity and low intra-class distinction,
making accurate crop classification a complex task [23]. To address this complexity, numer-
ous studies tended to enhance classification accuracy while minimizing data redundancy
and processing time in crop mapping research [22,24,25]. Several approaches have been
applied to improve crop mapping. One approach is the combination of optical and radar
data, which has proven effective in enhancing crop classification [5,25,26]. For example,
Valero et al. [8] achieved a 6% higher accuracy in mapping five crops—sunflower, maize,
rapeseed, sorghum, and straw—by combining S1 and Sentinel-2 (S2) images, compared
to using S2 images alone. Demarez et al. [27] demonstrated that the combined use of S1,
Landsat, and SRTM data resulted in a 5% improvement in classification accuracy of the irri-
gated crops compared to using each type of data separately. Another approach to improve
crop mapping involves the use of phenological features, such as harmonic coefficients
and median features derived from satellite data, which have also shown promise [17,28].
Qadir et al. [12] achieved an F1 score of 97% in detecting sunflower by using a training and
testing dataset from the same site in Ukraine, based on median features extracted from S1
images. Wang et al. [28] reported an R2 value greater than 0.85 for mapping maize and
soybean across several states in the USA. Furthermore, to improve crop mapping, Artificial
Intelligence (AI) algorithms have gained more interest in recent years [13,29,30], offering
significant improvements in crop classification. With their capacity to handle complex and
large datasets, these algorithms have proven effective in addressing challenges such as
high inter-class similarity and low intra-class distinction, enabling accurate mapping of
multiple crop types across large and diverse regions [31–33]. Furthermore, their ability to
assess the importance of inputs makes them particularly valuable in time series analysis
using multiple features [29]. Among AI algorithms, machine learning algorithms such as
XGBoost, Random Forest (RF), and Support Vector Machines (SVMs) are widely used in
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crop mapping due to their user-friendly nature, low computational requirements and high
accuracy in classifying crops with similar spectral and spatial characteristics, especially
among summer crops [24,25]. On the other hand, deep learning (DL) methods are gaining
significant interest in satellite image classification, as they can learn to perform image
classification in an end-to-end manner directly from raw input data [31–33]. However,
given this diversity of remote sensing products and algorithms, users of remote sensing
data are often faced with the challenge of selecting the most appropriate dataset approaches
and algorithms, while decision makers are primarily concerned with comparing the results
of these approaches and algorithms.

This paper aims to discover both effective datasets and classifiers for mapping summer
crops with similar spectral and spatial characteristics. It compares the effectiveness of
various classifiers and satellite sensors in mapping sunflower, maize, and soybean—three
key summer crops. Maize is one of the world’s major crops, with the European Union
being the fourth-largest producer [34]. France is the leading producer of maize in Europe,
accounting for nearly 20% of the continent’s maize production in 2023 [35]. Sunflower and
soybean are also major oilseed crops globally, contributing 60% and 20%, respectively, to
the world’s oilseed consumption [36]. Previous studies have shown that achieving high-
accuracy maps for soybean, maize, and sunflower crops is challenging due to their similar
spectral characteristics, especially in their early growth stages [37,38]. This similarity makes
it hard to distinguish between them [6,39]. Additionally, summer crops are sensitive to
environmental stressors, such as drought, which can alter their optical spectral or radar
backscatter responses [40]. These variations further complicate classification, as stressed
crops may resemble other crops. So, we will identify which dataset and classifiers can
efficiently address these challenges to produce reliable maps. Furthermore, since limitations
in ground data availability across regions and times pose challenges in crop mapping [41,42],
we conducted classifications using training data from one study site and year to create maps
for different study sites and years across three types of transfer scenarios: spatial, temporal,
and spatiotemporal. This comprehensive approach can guide future users in selecting the
most suitable datasets and algorithms for accurate crop mapping across varying conditions.

To achieve the aforementioned objectives through a comprehensive assessment of
different satellite products, we present mapping approaches of sunflower, maize, and
soybean using time series data from S2 spectral bands, S2 vegetation indices, S1 radar
backscattering coefficients, and S1 polarimetric parameters, alongside phenological features
such as harmonic coefficients and median features extracted from S1 and S2 time series
data. RF, Multi-Layer Perceptron (MLP), and XGBoost classifiers were used to classify
datasets across six combinations of study sites and years from Tarbes 2020, Tarbes 2021,
and Dijon 2020, all located in France. Additionally, the InceptionTime classifier, specifically
designed for time series data, was tested exclusively with time series datasets to compare
its performance against the three general machine learning algorithms (RF, XGBoost, and
MLP). The main contribution of this paper is its comprehensive comparison of different
data configurations (S1 and S2) and high-performing classifiers (RF, XGBoost, MLP, and
InceptionTime) for crop classification. Our study analyzes both optical and radar time
series data—including reflectance, vegetation indices, radar backscatter, and S1 polarimetric
parameters—using timeseries and phenological metrics like median features and harmonic
coefficients as inputs for the classifiers. Additionally, this paper explores the use of S1
polarimetric data for crop classification. Since there is limited research on how well S1
polarimetric data can distinguish crops with similar spectral features, our study provides
important insights into its potential.

2. Materials and Methods
2.1. Study Site

The study is carried out in Tarbes in the southwest and Dijon in the northeast of
France. This choice was made to consider possible differences in crop growth cycles
between the north and south of France. Dijon is located in the Côte-d’Or department of the
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Bourgogne-Franche-Comté region. Tarbes is located in the Hautes-Pyrénées department
of the Midi-Pyrénées region. Dijon has an annual average temperature of 12.5 ◦C and
annual rainfall of about 743 mm, while Tarbes has a higher annual average temperature of
13.7 ◦C and an annual rainfall of about 1081 mm [43], making it both wetter and warmer
than Dijon. The study focuses on the mapping of maize fields, a major agricultural crop
in France, along with sunflower and soybean, both important oilseed sources. Figure 1a
shows the location of our study sites and the proportion of these three summer crops
within the total cultivated area in Tarbes (2020 and 2021) and Dijon (2020). In France, maize
planting begins in April and is harvested in October, soybean planting starts in May and is
harvested in October, and sunflower planting begins in April and is harvested in September
(Figure 1b) [44].
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2.2. Data
2.2.1. Ground Data

We extracted ground data from the French Graphic Parcel Registry (RPG), which
provides detailed information on the boundaries, crop types, and sizes of agricultural
fields declared by farmers across France. The complete database is publicly accessible
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at https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-
des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire, (accessed on 3
February 2024). Table 1 shows the number of reference fields in each dataset that were used
as ground data for the three summer crops (sunflower, soybean, and maize).

Table 1. Number of fields for the three selected summer crops in Dijon (2020) and Tarbes (2020
and 2021).

Study Site/Year Crop Type Number of Reference Fields

Dijon 2020

Sunflower 853

Soybean 4630

Maize 8344

Tarbes 2020

Sunflower 4807

Soybean 5293

Maize 47,015

Tarbes 2021

Sunflower 5124

Soybean 5554

Maize 53,256

2.2.2. Sentinel-2 Data

In this study, we used Sentinel-2 (S2) Level-2A (L2A) products from the Sentinel-2A
and Sentinel-2B satellites, available through the Google Earth Engine (GEE) [45]. The
L2A products represent bottom-of-atmosphere (BOA) reflectance, which has undergone
atmospheric correction to remove the effects of gasses and aerosols in the atmosphere,
using ESA’s Sen2Cor processor [25]. This correction ensures that the reflectance values
more accurately represent surface conditions. Additionally, terrain correction was applied
to minimize topographic effects on reflectance. For cloud masking, we used the quality
assessment band (QA60) to filter out cloudy and shadowed pixels, ensuring that only clear
observations contributed to the analysis. This step is crucial to enhance the reliability of
the time series and prevent cloud contamination in vegetation indices and other analyses.
The potential gaps resulting from clouds were consequently mitigated using a gap-filling
technique consisting of fitting and resampling the data. The Sav-Gol function was used
for fitting with a window length of 3 [17]. The data were resampled to one point every
10 days, ensuring that there was enough repeatability to follow the rapid development of
the summer crop, especially during its vegetative growth stage. We created the S2 time
series for Tarbes (2020 and 2021) and Dijon (2020), covering the entire growth period of
the three selected summer crops: sunflower, soybean, and maize (1 April to 1 December).
Our S2 dataset contained 41 images in 12 bands for each study site/year. This study was
conducted at the field level, so for each band, the mean pixel value was calculated for
each field.

In addition to spectral bands, thirteen vegetation indices commonly cited in crop map-
ping studies were derived from S2 datasets for each study site and year. Table 2 provides a
summary of these indices along with their respective equations, utilizing S2 bands.

https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire
https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire
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Table 2. List of vegetation indices calculated from S2 datasets. NIR: Near-infrared, SWIR: Short-
wave infrared.

Vegetation Index Equation Applications Reference

Normalized Difference
Vegetation Index (NDVI) (NIR − R)/(NIR + R)

Biomass, yield, disease,
soil moisture, water stress [46]

Land Surface Water Index
(LSWI) (NIR − SWIR1)/(NIR + SWIR1)

Monitoring crop water
stress [47]

Normalized Difference Red
Edge Index (NDRE) (Rededge2 − Rededge1)/(Rededge2 + Rededge1)

Crop yield, biomass,
disease [48]

Red-Edge Spectral Indices
(RESI)

(Rededge3 + Rededge2 − Rededge1)/(Rededge3
+Rededge2 + Rededge1)

Discriminating between
different types of

vegetation, monitoring
crop stress, chlorophyll

content, senescence

[49]

Normalized Difference
Senescent Vegetation Index

(NDSVI)
(SWIR1 − Red)/(SWIR1 + Red)

Monitor crop aging or
stress [50]

Modified Crop Residue Cover
(MODCRC) (SWIR1 − Green)/(SWIR1 + Green)

Crop residue, classify
crops based on the level of

residue cover
[51]

Chlorophyll Index Green
(CIgreen) (NIR/Green)− 1 Crop stress, growth

anomalies [49]

Chlorophyll Index Red Edge
(CI red_edge) (NIR/Rededge3)− 1 Crop stress, growth

anomalies [49]

Normalized Difference Water
Index (NDWI) (Green − NIR)/(Green + NIR) Vegetation water content [52]

Red Edge Normalized
Difference Vegetation Index

(RENDVI)
(NIR − Rededge2)/(NIR + Rededge2)

Yield, irrigation
management, disease [53]

Green Normalized Difference
Vegetation Index (GNDVI) (NIR − Green)/(NIR + Green)

Water stress, yield, biomas,
disease [48]

Enhanced Vegetation Index
(EVI) 2.5((NIR − Red)/((NIR + 6Red − 7.5Blue) + 1)) Disease, biomass [54]

Modified Soil Adjusted
Vegetation Index (MSAVI)

((2NIR+1)−√((2NIR+1)2−8(NIR−Red)) )
2

Biomass, crop yield,
chlorophyll content [55]

2.2.3. Sentinel-1 Data

In this study, Sentinel-1A (S1A) and Sentinel-1B (S1B) satellite images, with a combined
6-day revisit interval, were used in two types: Single Look Complex (S1_SLC) in Inter-
ferometric Wide Swath (IW) mode for polarimetric analysis and Ground Range Detected
(S1-GRD) for backscatter analysis using sigma values. Both products were downloaded in
dual polarization (VV and VH). One ascending and one descending orbit were selected for
each study site and year. The incidence angle of S1 images across our study sites varied for
Tarbes from 30◦ to 41◦ for the ascending orbit and from 34◦ to 44◦ for descending orbit. For
Dijon, it varies from 35◦ to 44◦ for ascending orbit and from 30◦ to 39◦ for descending orbit.
Our study sites have minimal elevation variation, resulting in a reduced influence of local
incidence angle effects on backscatter values.

Sentinel-1 Backscattering Coefficients

We extracted the mean backscatter coefficients (VV and VH) for each field from
Sentinel-1 Ground Range Detected (S1-GRD) images using the Google Earth Engine (GEE).
These images had already undergone preprocessing, including thermal noise removal,
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multi-looking, co-registration, radiometric calibration, and terrain correction [56]. Thermal
noise removal was applied to reduce sensor-related noise; multi-looking was used to
decrease speckle and improve image quality; and co-registration was performed to align
images for accurate temporal analysis. Additionally, radiometric calibration converted raw
data into backscatter values, and terrain correction was applied to adjust for topographic
distortions, ensuring accurate spatial representation of surface backscatter properties.

In addition to the VV and VH polarizations, the ratio of VV and VH polarizations
(VV/VH) was calculated as well as the difference between ascending and descending orbits
for each polarization and for VV/VH ratio. As a result, three datasets were generated for
the S1 backscattering coefficient:

• For the ascending orbit (asc), containing time series for VVasc, VHasc, and VV/VHasc;
• For the descending orbit (des), containing time series for VVdes, VHdes, and VV/VHdes;
• Both orbits, containing the two datasets mentioned above in addition to the differences

between them: VVasc-VVdes, VHasc-VHdes, and VV/VHasc-VV/VHdes.

Sentinel-1 Polarimetric Data

Polarimetric SAR data capture detailed information about the polarization amplitude
and phase of the radar signal which can be useful for crop detection. As crops develop,
there is not only an increase in radar backscatter but also a greater variability in scattering
patterns, along with increased contributions from multiple or volume scattering [18]. This
variability suggests that certain polarimetric parameters, which capture backscattering
mechanisms and wave interactions, may be particularly sensitive to changes in crop phenol-
ogy, offering valuable insights into crop growth stages. Therefore, we calculated several po-
larimetric parameters for this study. S1_SLC images were downloaded from NASA’s Earth
Observing System Data and Information System (EOSDIS, https://search.asf.alaska.edu,
accessed on 11 April 2024). All preprocessing steps to derive polarimetric parameters were
conducted using ESA’s Sentinel Application Platform (SNAP) v.7.0.0 and PolSARpro v.6.0.
These steps included applying orbit files, performing Terrain Observation with Progressive
Scans (TOPS) splitting, radiometric calibration, TOPS debursting, polarimetric speckle
filtering, and terrain correction. Five polarimetric parameters were used in this study,
including two Stokes parameters including g0 and g1 and three Shannon entropy-based
polarimetric decomposition parameters: Shannon_I, Shannon_P and Shannon. The Stokes
parameters describe the scattering from a partially polarized electromagnetic field and
capture all the polarimetric information [19]. The first Stokes parameter (g0) represents the
total intensity of the radar backscatter, while g1 indicates the polarized part of the electro-
magnetic field [18]. Shannon entropy parameters measure the randomness of the scattering
process [18]. Shannon entropy is computed using the covariance matrix (Equation (1)).
This polarimetric parameter can be expressed as the sum of two components including
Shannon_I and Shannon_P, representing randomness associated with changes in signal
intensity and phase, respectively [18] (Equations (2) and (3)).

Shannon = log (π2 e2 det [C2]) = Shannon_I + Shannon_P (1)

Shannon_I = 2log ((πeTr[C2])/2) (2)

Shannon_P = log((4det[C2])/(Tr [C2]2)) (3)

where “[C2]” refers to the 2 × 2 covariance matrix, “Tr” and “det” refer to the trace and
determinant of the covariance matrix, respectively.

Three S1 polarimetric time series datasets were generated:

• For the ascending orbit, containing five polarimetric parameters: g0, g1, Shannon_I,
Shannon_P, and Shannon

• For the descending orbit with the same polarimetric parameters
• For both ascending and descending orbits as well as the differences between them (for

example: g0asc-g0des, g1asc-g1des, etc.).

https://search.asf.alaska.edu
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To generate each S1 backscattering coefficients and S1 polarimetric time series at the
field level, the mean value using all pixels in each field was used. Each time series covered
the entire growth period of the summer crops in the study site, aligned with the same
period as the S2 time series, from 1 April to 1 December each year. For each orbit, the S1
polarimetric parameter and S1 backscattering coefficients time series contained 41 images
per study site and year. The S1 backscattering coefficients time series was generated for
Tarbes in 2020 and 2021 and for Dijon in 2020 (Table 3). Given that the time required
to generate polarimetric data are very high (one month per site), we chose to use the
polarimetric data for the S1 polarimetric time series for Tarbes in 2021 and Dijon in 2020
(Table 3).

Table 3. S1 and S2 data used in the study, including study sites, years, and study periods.

Satellite Time Series Study Site/Year Study Period (per Year)

S2
S2 bands time series

S2 vegetation indices time series
S1 backscattering coefficients time series

Dijon 2020, Tarbes 2020,Tarbes 2021
From 1 April to 1 December

S1 S1 polarimetric parameters time series Dijon 2020, Tarbes 2021

2.3. Methodology
2.3.1. Features

The study evaluated the effectiveness of free and open-access S1 radar and S2 optical
data for mapping sunflower, soybean, and maize. This involved analyzing spectral bands
and indices from S2, along with backscattering coefficients and polarimetric parameters
from the S1 dataset (as detailed in Sections 2.2.2 and 2.2.3), as summarized in Table 4. In
addition, several features were calculated from S1 and S2 time series using harmonic re-
gression [28] and median values calculated for each phenological stage and across different
seasons [12]. The flowchart of study has been presented in Figure 2.

Table 4. The time series (TS) and features employed in this study. Sh = Shannon, Sh_I = Shannon_I,
Sh_P = Shannon_P.

Satellite Time Series Details Features

S2

S2 spectral bands

12 time series B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series

P1 June

P2 July

P3 August

P4 September

S1 April + May

S2 June + July + August

S3 September + October + November

S2 vegetation indices

13 time series LSWI, NDRE, RESI, NDSVI, MODCRC, CIgreen, CI_red_edge,
NDWI, RENDVI, GNDVI, EVI, MSAVI, NDVI

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3
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Table 4. Cont.

Satellite Time Series Details Features

S1

S1
backscattering
coefficients

S1 ascending orbit

3 time series VVasc, VHasc, VV/VHasc

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3

S1 descending orbit

3 time series VVdes, VHdes, VV/VHdes

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3

S1 both orbits

9 time series
VVasc, VHasc, VV/VHasc,
VVdes, VHdes, VV/VHdes,

VVasc-VVdes, VHasc-VHdes, VV/VHasc-VV/VHdes

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3

S1 polarimetric
parameters

S1 ascending orbit

5 time series g0asc, g1asc, Shasc, Sh_I asc, Sh_Pasc

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3

S1 descending orbit

5 time series g0des, g1des, Shdes, Sh_Ides, Sh_Pdec

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3

S1 both orbits

15 time series

g0asc, g1asc, Shasc, Sh_I asc, Sh_Pasc,
g0des, g1des, Shdes, Sh_Ides, Sh_Pdec,

g0asc-g0des, g1asc-g1des, Shasc- Shdes, Sh_I asc- Sh_Ides, Sh_Pasc-
Sh_Pdec

5 harmonic coefficients
for each time series a1, a2, b1, b2, c (Equation (4))

7 median features for
each time series P1, P2, P3, P4, S1, S2, S3
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Harmonic Coefficients

We applied the Fourier transform, also known as harmonic regression, to model and
capture variations in the satellite time series data for each field. This technique effectively
characterizes changes in phenology across different crops such as sunflower, maize, and
soybean [28,57,58]. Harmonic regression breaks down a time series into a series of simple
cosine waves, along with an added constant term [59]. Harmonic regression allows us to
capture the unique temporal patterns of each crop, enhancing our ability to differentiate
between species based on their phenological behaviors. This approach aligns with our
study’s objective to accurately map crop types by leveraging these seasonal variations.
Each time series of our datasets (Sections 2.2.2 and 2.2.3) is modeled as a time-dependent
function f(t) with a harmonic regression expressed as:

f(t) = c + ∑n
k=1[akcos(2πωkt) + bksin(2πωkt)] (4)

where ak and bk represent, respectively, the cosine and sine coefficients, c is the intercept
term, n is the harmonic regression order, and ω defines the function’s period. The variable t
corresponds to the day of the year that an image was taken, scaled between 0 (1 April) and 1
(1 December). To select the best regression, we tested different ω values and compared the
R2 between the fitted function and the time series. So, we used a second-order harmonic
regression (n = 2) with ω = 0.8. The application of this regression yielded a total of five
features for each field and each S1 and S2 time series.

Monthly and Seasonal Medians

We used the methodology outlined by Qadir et al. [12] to compute monthly and
seasonal medians for each field, considering both our S1 and S2 time series (Table 4). For
each field and time series, we determined the median of all values during the four critical
months of the phenological cycle for our selected summer crops (June, July, August and
September). Additionally, three seasonal medians were calculated based on crop growth
stages in our study sites: 1 April to 1 June, 1 June to 1 September, and 1 September to
1 December. As a result, we derived seven features from each S1 and S2 time series for
each field based on these median calculations (hereafter referred to as median features).
These features act as statistical representations of the satellite image time series throughout
key periods of crop growth, effectively capturing the seasonal dynamics of crop devel-
opment [38]. By focusing on monthly and seasonal medians, we capture the essential
statistical characteristics of crop development throughout key growth stages, offering a
robust summary of the time series that enhances the model’s ability to differentiate crops
based on seasonal or monthly dynamics.

2.3.2. Classification Algorithms

Three machine learning classifiers, namely Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and Multi-Layer Perceptron (MLP), were applied for mapping our
three summer crops by evaluating different input data scenarios among our S1 and S2
data. RF is a popular machine learning method, making it a strong reference point for
comparing the accuracy of other models. XGBoost is a more advanced machine learning
technique that has shown high accuracy for crop mapping in previous studies [60–62].
MLP is a basic type of neural network that represents a simple form of artificial neural
networks (ANNs). Additionally, the InceptionTime neural network, a specialized algo-
rithm for time series classification, was used to classify the S1 and S2 time series data.
The InceptionTime classifier is underexplored but has demonstrated high performance in
previous studies on crop type mapping [63,64]. In our previous research, InceptionTime
consistently outperformed other models, including RF, MLP, and LSTM_FCN, particularly
in transfer scenarios [64]. It achieved the highest accuracy for crop mapping tasks and
demonstrated remarkable stability, with the smallest range between minimum and maxi-
mum accuracy metrics. However, InceptionTime requires significantly more computation
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time for the training stage compared to the other three classifiers. Employing these four
algorithms enables us to evaluate the performance of a time series-specific algorithm that
relies solely on non-tabular data (sequential data, such as time series) against general
machine learning algorithms that utilize both tabular (structured data organized in rows
and columns) and non-tabular data. In many cases, tune model hyperparameters can
improve performance. However, in this study on model transferability, where the training
and test datasets exhibit different distributions, optimizing hyperparameters based on a
validation set that includes only held-out training data may not lead to robust results on
the test set. For this reason, we chose to use default parameter settings, which are typically
designed to perform adequately across a variety of general scenarios. The classification
was conducted using Python 3.11. Our Python implementation codes for classification can
be found at https://github.com/cassiofragadantas/Colza_Classif, accessed on 30 April
2024 and https://github.com/Saeideh-Maleki, accessed on 30 April 2024.

Random Forest (RF)

RF algorithm is an ensemble learning method that consists of multiple decision trees,
where the output from each tree is aggregated to form the final prediction. Each decision
tree operates on a different subset of the dataset, allowing RF to reduce variance and
improve accuracy while mitigating overfitting tendencies. As a meta-estimator, RF builds
these decision trees on various parts of the dataset and combines their outputs through
majority voting for classification [65]. In this study, the number of trees was set to 100, and
all other parameters were kept at their default values.

Multi-Layer Perceptron (MLP)

MLP is a deep learning model with a fully connected neural network architecture.
In an MLP, neurons in one layer are connected to all neurons in the neighboring layers,
forming a dense structure that allows the network to learn complex patterns in the data [66].
The MLP consists of multiple layers of nodes (neurons), each with associated weights
and biases that are learned through backpropagation to minimize the difference between
predicted and actual outcomes [30]. In this study, the MLP architecture used contained
two hidden layers, each with 256 neurons, followed by batch normalization and a rectified
linear unit (ReLU) activation function. To prevent overfitting, a dropout rate of 0.5 was
applied during training.

Extreme Gradient Boosting (XGBoost)

XGBoost is an advanced machine learning algorithm that builds on the principles of
gradient boosting to create highly accurate and efficient models. Unlike traditional gradient
boosting, XGBoost incorporates various optimizations, such as regularization to prevent
overfitting, parallel processing, and handling of missing data, making it well-suited for
large-scale datasets [67]. XGBoost sequentially builds decision trees, where each subsequent
tree attempts to correct the errors of the previous trees by focusing on the misclassified
samples [68]. The algorithm minimizes a loss function through gradient descent, adjusting
the weights of the trees iteratively to improve accuracy. In this study, the hyperparameters
for XGBoost were set to their default values.

InceptionTime

IT, introduced by Fawaz et al. [69], is designed for multivariate time series analysis.
It consists of an ensemble of five deep learning models, each containing two residual
blocks, which in turn are composed of inception modules. These inception modules apply
one-dimensional convolutional filters of varying lengths to the input time series data,
allowing the model to capture patterns at multiple scales simultaneously. A key feature
of InceptionTime is the use of shortcut connections between residual blocks, which miti-
gate the vanishing gradient problem often encountered in deep networks. By leveraging
this architecture, InceptionTime achieves high accuracy in time series classification, while

https://github.com/cassiofragadantas/Colza_Classif
https://github.com/Saeideh-Maleki
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reducing the risk of overfitting through its ensemble approach. As the default hyperpa-
rameters generally perform well, this study maintained the default configuration during
deployment [69].

2.3.3. Summer Crop Types Mapping

To evaluate the potential of S1 and S2 images and their extracted features in mapping
three summer crops—maize, sunflower, and soybean—we employed RF, MLP, and XGBoost
to classify our datasets across several dataset scenarios and train-test combinations. The
classification categories included four classes: maize, sunflower, soybean, and other crops.

Classification was performed using one of the following dataset scenarios (only the
main tested configurations are listed):

S2 images

• Spectral bands time series
• Vegetation indices time series
• Both spectral bands and vegetation indices
• Harmonic coefficients extracted from S2 vegetation indices
• Median features extracted from S2 vegetation indices
• Both harmonic coefficients and median features from S2 vegetation indices

S1 images

For S1 data, we also assessed the impact of orbit type by testing the following scenarios
with separate ascending and descending orbits, as well as their combination:

Backscattering coefficients

• S1 backscattering coefficients time series (separate orbits and combined orbits)
• Harmonic coefficients extracted from S1 backscattering coefficients time series (sepa-

rate orbits and combined orbits)
• Median features extracted from S1 backscattering coefficients time series (separate

orbits and combined orbits)
• Both harmonic coefficients and median features from S1 backscattering coefficients

time series (combined orbits)

Polarimetric parameters

• S1 polarimetric parameters time series (separate orbits and combined orbits)
• Harmonic coefficients extracted from S1 polarimetric parameters time series (separate

orbits and combined orbits)
• Median features extracted from S1 polarimetric parameters time series (separate orbits

and combined orbits)
• Both harmonic coefficients and median features from S1 polarimetric parameters time

series (combined orbits)
• A combined dataset of S1 backscattering coefficients and polarimetric parameters

time series

S1 and S2 images

• S1 backscattering coefficients and S2 vegetation indices time series
• Harmonic coefficients and median features extracted from S1 backscattering coeffi-

cients and S2 vegetation indices
• Harmonic coefficients and median features extracted from S1 polarimetric parameters

and S2 vegetation indices
• Harmonic coefficients and median features extracted from S1 backscattering coeffi-

cients, S1 polarimetric parameters, and S2 vegetation indices

In addition to scenarios used for RF, XGBoost, and MLP classifiers, some scenarios
were tested for the InceptionTime classifier in order to classify the S2 and S1 time series. This
approach allowed us to compare the performance of a time series-specific algorithm, which
processes sequential data, with general machine learning algorithms that process both
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structured (tabular) and sequential (non-tabular) data (RF, XGBoost, MLP). The datasets
classified by InceptionTime included:

• S2 vegetation indices time series
• S1 backscattering coefficients time series (separate orbits, and combined orbits)
• S1 polarimetric parameters time series (separate orbits and combined orbits)
• A combined dataset of S1 backscattering coefficients and S2 vegetation indices time series
• A combined dataset of S1 backscattering coefficients and polarimetric parameters

time series

For each dataset scenario, different configurations of study sites and years were
used for training and testing (Table 5). These configurations enable to analyze the spa-
tial transferability, the temporal transferability, and the spatiotemporal transferability of
tested classifiers:

• Spatial transferability: Different study sites were used for training and testing within
the same year (e.g., Tarbes 2020 for training and Dijon 2020 for testing, or Dijon 2020
for training and Tarbes 2020 for testing).

• Temporal transferability: The same study site was used for training and testing, but
across different years (e.g., Tarbes 2020 for training and Tarbes 2021 for testing, or
Tarbes 2021 for training and Tarbes 2020 for testing).

• Spatiotemporal transferability: Different study sites and years were used for training
and testing (e.g., Tarbes 2021 for training and Dijon 2020 for testing, or Dijon 2020 for
training and Tarbes 2021 for testing).

Table 5. Summary of transferability scenarios for spatial, temporal, and spatiotemporal analyses,
along with the number of agricultural plots used in each dataset.

Transfer Scenario Train
Site/Year

Test
Site/Year

Number of Agricultural
Plots in Train Dataset

Number of Agricultural
Plots in Test Dataset

Spatial transferability Tarbes 2020 Dijon 2020 76,153 43,670
Dijon 2020 Tarbes 2020 43,670 76,153

Temporal
transferability

Tarbes 2020 Tarbes 2021 76,153 93,654
Tarbes 2021 Tarbes 2020 93,654 76,153

Spatiotemporal
transferability

Tarbes 2021 Dijon 2020 93,654 43,670
Dijon 2020 Tarbes 2021 43,670 93,654

2.4. Evaluation Metrics

To assess the performance of the classification approaches, we first evaluated the
F1-score per class across all scenarios to identify the best-performing results. Once the best
scenarios were selected, we further analyzed them using Precision, Recall, and F1-Score
(per class). It should be noted that in this article, primarily the F1-Scores will be provided.
The equations for the accuracy metrics are provided in Appendix A.

3. Results
3.1. Trends in S2 Vegetation Indices and S1 Data for Three Summer Crops Mapping
3.1.1. RENDVI and NDVI Trends for Sunflower, Soybean, and Maize

The temporal dynamics of RENVDI and NDVI for our three summer crops—sunflower,
soybean, and maize—in Tarbes 2021 are presented in Figure 3a,b. The RENDVI and NDVI
were chosen as two examples to highlight the trends in the S2 vegetation indices for the
three crops because these indices appeared to be the two most important indices according
to the RF feature importance analysis. Additional details on the RF feature importance can
be found in the Appendix B (Figure A1).
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Figure 3. Temporal behavior of RENVDI (a) and NDVI (b) for sunflower, soybean, and maize in
Tarbes 2021. The graphs display the mean values of all fields for each crop, while the shaded areas
represent the standard deviation.

RENVDI and NDVI show a gradual increase for all three crops starting in May, which
corresponds to the emergence stage. As the plants grow, both indices rise. RENVDI peaks
in August for sunflower, soybean, and maize, with peak values of 0.08 for sunflower,
0.12 for soybean, and 0.18 for maize. For NDVI, sunflower reaches a peak of 0.7 in mid-
July, whereas soybean and maize peak at 0.9 in mid-August. After reaching their peaks,
both indices decline for all three crops, continuing until the beginning of September for
sunflower and until October for soybean and maize. The decline in RENVDI from the
peak is 0.02 for sunflower, 0.04 for soybean, and 0.08 for maize. For NDVI, the decline
from the peak is 0.2 for sunflower and 0.4 for soybean and maize, indicating the end of the
growth period. The shorter growth period of sunflower and the differences in RENVDI
levels among the three crops serve as valuable indicators for mapping sunflower, soybean,
and maize.

3.1.2. S1 Backscattering and Polarimetric Trends for Sunflower, Soybean, and Maize

Figure 4 presents the temporal variation in the top four important S1 backscattering
coefficients channels for mapping sunflower, soybean, and maize in Tarbes 2021, ranked by
RF feature importance (Appendix B, Figure A2a).

The variability in both VV and VH polarizations is seen just after sowing (April–May)
due to the interaction of the microwave signal with the bare soil before this period (radar
signal increases as soil moisture increases). From May onwards, due to the development of
vegetation, VV and VH increase sharply. In VV, this increase is significant for sunflower,
with the signal increasing from −12 dB in May to around −6 dB in July. The increase is
smaller between May and July for soybean and maize, with the VV signal rising from
−12 dB to −8 dB for soybean and from −12 dB to −10 dB for maize. VV then begins to
decrease sharply from August for sunflower and from September for soybean and maize
(vegetation drying out). For VH, a similar pattern is observed for summer crops, with a
sharp increase between April/May and July/August, followed by a decrease from early
October. Analysis of VV and VH shows better discrimination potential with VV than with
VH, as shown by the variable importance analysis (Appendix B, Figure A2a).
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Figure 4. Temporal variation in the most important S1 backscattering coefficients channels (ranked
by RF feature importance) for sunflower, soybean, and maize in Tarbes 2021: (a) VVdes, (b) VHdes,
(c) VV/VHdes (the most significant), (d) VV/VHasc. The graphs display the mean values of all fields
for each crop, while the shaded areas represent the standard deviation.

The VV/VH ratio for both descending and ascending orbits decreases as the vegetation
grows. In the descending orbit, maize shows the sharpest drop, decreasing from 10 dB in
May to 6 dB from July onwards, remaining approximately stable until October. Soybean’s
ratio decreases from 10 dB in May to 8 dB by mid-July, remaining constant until late August,
before further dropping to 6 dB in September. Sunflower shows a steady decline from
10 dB in May to 7 dB by September. A similar behavior is observed in the ascending orbit,
though the trends are more pronounced in the descending orbit, with greater differentiation
between the three crops.

Figure 5 presents the temporal behavior of the six most important S1 polarimetric
parameters across both orbits for sunflower, soybean, and maize in Tarbes 2021, based on
RF feature importance (details in the Appendix B, Figure A2b). The two most significant
parameters are Shannon_P for both ascending and descending orbits. Shannon_P increases
with the vegetation development for all three crops, but at different rates for each crop.
Maize shows the highest rate of change over a shorter period, with values increasing from
−0.75 in May to −0.4 in early July. Soybean values increase more gradually, from −0.75 in
May to −0.4 in the beginning of October. Sunflower shows a very slow increase over time,
from −0.75 in May to just −0.7 in early August, then peaking at −0.45 in mid-September.
The remaining four polarimetric parameters (g1asc, Shannonasc, Shannon_Iasc, g0asc) show
similar patterns to those observed for the VV and VH polarizations.
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3.2. Summer Crops Mapping
3.2.1. Using S2 Images

We evaluated three algorithms—RF, XGBoost, and MLP—for mapping sunflower,
soybean, and maize using S2 images. On one hand, we used time series of spectral bands,
vegetation indices, and their combination; on the other hand, we utilized phenological
features (harmonic coefficients and median features) derived from each S2 time series.
Figure 6 illustrates the best results obtained from the S2 datasets, all of which were related
to vegetation indices. Among the three classifiers, XGBoost and MLP produced similar
F1 scores, both outperforming RF. Specifically, when using vegetation indices time series
with the XGBoost classifier, the average F1 scores across six combinations of study sites and
years were 75.4% for sunflower, 67.9% for soybean, and 90.1% for maize. MLP achieved
F1 scores of 74.9% for sunflower, 71.1% for soybean, and 89.4% for maize. In contrast,
RF’s F1 scores were 69.5% for sunflower, 60.5% for soybean, and 88.0% for maize. When
using S2 spectral bands, the mean F1 scores across all six combinations of study sites and
years were approximately 5% lower than those derived from S2 vegetation indices. The
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combination of S2 indices and spectral bands produced F1 scores comparable to those
obtained from vegetation indices alone. Specifically, when using the combined vegetation
indices and spectral bands, XGBoost achieved mean F1 scores of 76.3% for sunflower, 68.4%
for soybean, and 90.1% for maize across the six combinations of study sites and years.
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Figure 6. F1 scores obtained using (a) S2 vegetation indices time series, (b) harmonic coefficients,
and (c) median features with RF, XGBoost, and MLP classifiers across six combinations of study sites
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Med = median features. T21 = Tarbes 2021, T20 = Tarbes 2020, D20 = Dijon 2020.

As shown in Figure 6, median features derived from S2 vegetation indices produced
similar F1 scores to harmonic coefficients, particularly for XGBoost and MLP. For the
harmonic coefficients extracted from the S2 vegetation indices time series, XGBoost and
MLP again outperformed RF. The average F1 score for XGBoost was 76.9% for sunflower,
70.9% for soybean, and 91.1% for maize. MLP achieved mean F1 scores of 79.1% for
sunflower, 74.0% for soybean, and 91.3% for maize. In contrast, RF had lower mean
F1 scores: 57.2% for sunflower, 58.2% for soybean, and 88.9% for maize. Classification
results using median features extracted from vegetation indices time series revealed similar
performance to that of harmonic features. XGBoost and MLP performed similarly, with
XGBoost achieving an average F1 score of 77.1% for sunflower, 72.8% for soybean, and
90.1% for maize. MLP’s mean F1 scores were 75.9% for sunflower, 69.4% for soybean, and
88.4% for maize, while RF achieved scores of 70.0% for sunflower, 63.1% for soybean, and
87.1% for maize. The combination of both harmonic and median features derived from S2
vegetation indices yielded results similar to those from median features alone.

3.2.2. Using S1 Images

We evaluated the potential of S1 images to map maize, sunflower, and soybean using
different sets of input data: time series data (backscattering coefficients and polarimetric
parameters) and features calculated using these time series, including harmonic coefficients
and median features. Figures 7–12 show the results obtained with backscattering coeffi-
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cients and polarimetric data, respectively. In each case, we assessed the impact of S1 orbit
type (ascending, descending).
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Figure 7. F1 scores obtained using S1 backscattering coefficients time series for (a) ascending
orbit (Asc), (b) descending orbit (Des), and (c) their combination. These were evaluated with
RF, XGBoost, and MLP classifiers across six train-test combinations of study sites and years. Key
terms: Back = backscattering coefficients, TS = time series, T21 = Tarbes 2021, T20 = Tarbes 2020,
D20 = Dijon 2020.
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evaluated with RF, XGBoost, and MLP classifiers across six train-test combinations of study sites and
years. Key terms: Back = backscattering coefficients, Har = harmonic coefficients, T21 = Tarbes 2021,
T20 = Tarbes 2020, D20 = Dijon 2020.
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Figure 10. F1 scores obtained using S1 polarimetric parameters time series for (a) ascending orbit
(Asc), (b) descending orbit (Des), and (c) their combination. These were evaluated with RF, XG-
Boost, and MLP classifiers across six train-test combinations of study sites and years. Key terms:
Polar = Polarimetric parameters, TS = time series, T21 = Tarbes 2021, D20 = Dijon 2020.
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Figure 11. F1 scores were obtained using harmonic coefficients derived from S1 polarimetric parame-
ters time series for (a) ascending orbit (Asc), (b) descending orbit (Des), and (c) their combination.
These were evaluated with RF, XGBoost, and MLP classifiers across six train-test combinations of
study sites and years. Key terms: Polar = Polarimetric parameters, Har = harmonic coefficients,
T21 = Tarbes 2021, D20 = Dijon 2020.
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2021, D20 = Dijon 2020.

Using Backscattering Coefficients

Using the S1 backscattering coefficients time series for sunflower mapping, the best
results were obtained either with the descending orbit alone or with both ascending and
descending orbits together (Figure 7). Among the three classifiers tested, XGBoost appeared
slightly better, though its performance was quite close to RF and MLP. Results with the
ascending orbit were about 20% lower than the descending orbit. For example, the XGBoost
classifier achieved an average F1 score of 77.7% for sunflower with both orbits combined,
73.4% with the descending orbit, and 53.7% with the ascending orbit. Figure 7 also shows
that F1 scores for soybean mapping are relatively low across all S1 orbit configurations and
classifiers, with the highest mean F1 score being 45.3% using XGBoost and the ascending
orbit. For maize, the best result was obtained with the ascending orbit and MLP classifier
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(74.7%), although XGBoost and RF also provided good results (67.9% with XGBoost and
67.5% with RF). The lowest performance for maize was obtained with the descending orbit.
The best classification of the three summer crops using backscattering coefficients was
achieved with XGBoost and the combination of ascending and descending orbits, yielding
F1 scores of 77.7% for sunflower, 39.2% for soybean, and 61.1% for maize.

The use of the harmonic coefficients did not improve the mapping of the three summer
crops compared to the use of the backscattering coefficients time series (Figure 8). While
the performance of the three classifiers was different using backscattering coefficients
time series, the performance of our three classifiers was similar when using harmonic
coefficients. The optimal dataset for mapping the three summer crops was the combination
of ascending and descending orbits with the XGBoost classifier, achieving an F1 score
of 76.5% for sunflower, 39.0% for soybean, and 66.4% for maize. However, focusing on
each crop, sunflower mapping performs the best with descending alone or with ascending
and descending together, soybean mapping does not vary across orbit configurations, and
maize mapping achieves the best results with the ascending orbit.

Using median features for classifying summer crops yielded better results than S1
backscattering coefficients time series (Figure 9). For sunflower, the best accuracy was
achieved with either the descending orbit alone or the combination of ascending and
descending orbits, with the highest mean F1 score of 85.6% using XGBoost. Soybean
mapping showed lower accuracy across all orbit configurations, with the highest F1 scores
for the combination of ascending and descending orbits using MLP (62.7%) or XGBoost
(58.3%). Maize was best classified with the ascending orbit, followed by the combined
orbits, with all three classifiers performing similarly (75.7% for RF, 78.6% for XGBoost, and
79.7% for MLP). Therefore, for effective mapping of all three summer crops using median
features, the best configuration is the combination of both orbits with XGBoost, achieving
F1 scores of 85.6% for sunflower, 58.3% for soybean, and 71.2% for maize.

Compared to the best results obtained with S1 backscattering coefficients, the use
of median features with XGBoost provided higher F1 scores. For sunflower, median
features of S1 backscattering improved the F1 score by approximately 8% compared to
using backscattering coefficients time series alone. For soybean, the improvement was
about 19%, and for maize, it was around 11%.

Using Polarimetric Parameters

Figure 10 presents the classification results using S1 polarimetric time series for sun-
flower, soybean, and maize. Due to the high computational time required for the generation
of polarimetric parameters, we calculated these parameters only for a spatio-temporal trans-
fer scenario. The results indicate that the S1 polarimetric time series were less effective
compared to the backscattering coefficients time series. Among the polarimetric time series
of ascending, descending and their combination, the maximum F1 score for sunflower
was around 63.0% using both orbits and MLP. For soybean, the results were low, with a
maximum F1 score of 24.0% using both orbits and MLP. Maize classification achieved a
maximum F1 score of 63.7% with MLP and 60.5% with XGBoost in the ascending orbit.

Using harmonic coefficients derived from the time series of polarimetric parameters
(Figure 11), the classification performance improved compared to the polarimetric time
series results. The best F1 scores for sunflower were obtained from descending orbit
alone or from both orbits (68.3% for XGBoost, 69.2% for RF, and 71.8% for MLP). Soybean
classification accuracy remained low, with a maximum of 21.1% using XGBoost in the
descending orbit. For maize, the best mean F1 score using harmonic coefficients was 67.4%
using MLP and the ascending orbit.
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Within the median features derived from each orbit configurations of polarimetric
time series, the combination of both orbits showed the best classification for sunflower with
a mean F1 score of almost 74.0% for RF and XGBoost and 67.2% for MLP (Figure 12). The
mean F1 score for soybean reached 30.9% using XGBoost and both orbits, which seemed
ineffective for classification. For maize, the best results within the median features were
again obtained from the ascending orbit, with mean F1 score between 65.0% and 67.0%
for all three algorithms. The combination of medians and harmonic coefficients did not
improve the F1 scores for any crop across all algorithms.

When comparing the results using polarimetric parameters (time series, harmonic
coefficients, median features), the median results were higher but still significantly lower
than those obtained with median features calculated from the backscattering coefficients.

Using S1 Backscattering Coefficients and Polarimetric Parameters

Combining time series of backscattering coefficients and polarimetric parameters did
not yield better results for classifying the three summer crops. The accuracy obtained was
lower than that achieved with the backscattering coefficients time series alone. Similarly,
the combination of harmonic coefficients and median features did not provide better
classification.

3.2.3. Using S1 and S2 Images

We evaluated four combinations using S1 and S2 data, including time series of S2 vege-
tation indices and S1 backscattering coefficients, harmonic coefficients and median features
calculated from the S2 vegetation indices and S1 backscattering coefficients time series,
harmonic coefficients and median features of S2 vegetation indices and S1 polarimetric
parameters, and finally a combination of harmonic coefficients and median features of S2
vegetation indices, S1 backscattering coefficients, and S1 polarimetric parameters. Figure 13
shows the classification results for these scenarios. The best results were obtained using the
combination of harmonic coefficients and median features of S2 vegetation indices and S1
backscattering coefficients with XGBoost, which slightly outperformed RF and MLP (mean
F1 scores: 89.9% for sunflower, 76.0% for soybean, and 91.1% for maize). This represents an
improvement of 12.5% and 4% for sunflower and soybean, respectively, but the same value
for maize classification compared to the use of the median or harmonic features extracted
from S2 indices alone, which gave the best results among all S1 and S2 datasets separately.
In addition, the combination of S2 indices and S1 backscattering coefficients time series
performed well in all three classifiers with slightly better results using XGBoost, achieving
mean F1 scores of 87.4% for sunflower, 72.0% for soybean, and 89.7% for maize.

3.2.4. Using Time Series Dataset with the IT Classifier

In addition to the previous evaluations of our three crops mapping using tabular
and non-tabular data with RF, XGBoost, and MLP, we also tested the use of the Incep-
tionTime classifier for time series classification (as detailed in Section 2.3.3). Our previous
studies [63,64] demonstrated that the InceptionTime classifier achieved higher accuracy in
crop mapping compared to RF and MLP classifiers. However, the InceptionTime classifier
requires considerable computation time. For instance, using a standard machine with no
graphics processing unit (GPU) (8 core CPU, 64 GB RAM), training on the S2 vegetation
indices time series dataset for Tarbes 2021 (comprising 200,029 fields, 41 time steps, and
13 features) and classifying the S2 vegetation indices time series dataset for Dijon 2020
(comprising 96,815 fields, 41 time steps, and 13 features) took 35.57 h. In contrast, RF
required 15 min, XGBoost 5 min, and MLP 20 min with the same datasets.
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Figure 13. F1 scores obtained using various combinations of S1 and S2 data including: (a) time
series of S2 vegetation indices and S1 backscattering coefficients, (b) harmonic coefficients and
median features calculated from S2 vegetation indices and S1 backscattering coefficients, (c) har-
monic coefficients and median features of S2 vegetation indices and S1 polarimetric parameters,
and (d) a combination of harmonic coefficients and median features of S2 vegetation indices, S1
backscattering coefficients, and S1 polarimetric parameters. These combinations were evaluated
using RF, XGBoost, and MLP classifiers across different combinations of study sites and years as train
and test. Ind = vegetation indices, Back = backscattering coefficients, Polar = polarimetric parame-
ters, TS = time series, Des = descending orbit, Asc = ascending orbit, Har = harmonic coefficients,
Med = median features. T21 = Tarbes 2021, T20 = Tarbes 2020, D20 = Dijon 2020.

Figure 14 illustrates the performance of the InceptionTime classifier using the top three
configurations tested with RF, XGBoost, and MLP including the S2 vegetation indices time
series, S1 backscattering coefficients time series, and the combination of both S2 vegetation
indices and S1 backscattering coefficients time series. Using the S2 vegetation indices
time series, the InceptionTime classifier yielded F1 scores of 85.4% for mapping sunflower,
84.6% for soybean, and 93.1% for maize. The use of S1 backscattering coefficients from
both orbits resulted in F1 scores of 87.2% for sunflower, 63.6% for soybean, and 81.7%
for maize. Combining both S2 vegetation indices and S1 backscattering coefficients time
series provided the best performance, with F1 scores close to 90% for all three crops
(90.6% for sunflower, 86.1% for soybean, and 93.5% for maize). Conversely, using the
InceptionTime classifier with S1 polarimetric parameters time series or with a combination
of S1 backscattering coefficients and S1 polarimetric parameters time series resulted in
lower accuracy compared to the three configurations mentioned above.
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this figure with InceptionTime are to be compared with the performances obtained with the other
three classifiers (RF, XGBoost, and MLP) in Figure 6a, Figure 7c, and Figure 13a, respectively.

4. Discussion
4.1. Classification Performance Analysis

The classification experiments of sunflower, maize and soybean using RF, XGBoost,
and MLP revealed that XGBoost consistently achieved the highest F1 scores across all
cases, with MLP performing closely behind (Table 6). Conversely, RF exhibited the lowest
performance. While both RF and XGBoost are decision tree-based algorithms [70], XGBoost
outperformed RF due to its greater flexibility and ability to correct residual errors by
generating new trees complementary to the previous ones, whereas RF’s trees are generated
independently from each other [71]. Previous studies have also shown that XGBoost
demonstrates high performance in crop detection, even across large study sites [30,72–74],
as it effectively captures complex nonlinear relationships in extensive datasets and delivers
stable prediction results [47]. A literature review also revealed that XGBoost outperforms
traditional classifiers such as SVM. For example, studies by Sun et al. [75], Prins and
Niekerk [61], He et al. [62] found that XGBoost achieved higher accuracy than SVM.
Furthermore, Saini and Ghosh [76] showed that XGBoost outperformed both RF and SVM
when using spectral features. Given the superior performance of the XGBoost classifier
over RF, and MLP, we now focus our discussion on the results of the XGBoost classifier.

To identify the most effective dataset for classifying sunflower, soybean, and maize,
we compared the classification accuracy of three primary satellite data sources: optical
images, radar backscattering, and polarimetric parameters. We evaluated both time series
datasets (including S2 spectral bands, S2 vegetation indices, S1 backscattering coefficients,
and polarimetric parameters) and extracted phenological features (harmonic coefficients
and median features).

Our results showed that the highest mean F1 score across all algorithms for classifying
the three crops was achieved using S2 vegetation indices, with close results between time
series data and phenological features. Polarimetric data, however, produced the lowest
results. Analysis of RF feature importance (details in the Appendix B, Figure A3) also
highlighted the S2 vegetation indices as the most important features, as these indices
capture detailed information about crop growth and health through multiple spectral
bands that are sensitive to various plant developmental stages. The lower performance
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of polarimetric parameters prompted an analysis of precision and recall for classifications
based on median features from polarimetric data (the best-performing polarimetric dataset).
Results showed both low precision and recall for soybean, along with low recall for maize
and sunflower. For example, with the XGBoost classifier, precision for sunflower, soybean,
and maize was 80.3%, 62.9%, and 82.6%, respectively, while recall was 60.2%, 25.1%,
and 47.2%. The low precision for soybean suggests confusion with other crops, while
the overall low recall across all three crops indicates many true instances were missed,
limiting the reliability of comprehensive crop mapping. Additionally, we calculated the
Jeffries–Matusita distance for separability analysis of S1 backscattering coefficients and
polarimetric parameters. The results showed slightly higher separability between crops
with backscattering coefficients than with polarimetric data, suggesting that backscattering
coefficients better distinguish crop types. This greater separability likely contributed to
the better classification results using backscattering data. These findings about the lower
outputs of polarimetric parameters may be explained by the limitations of S1, which is
not fully polarimetric and therefore less capable of capturing both surface and volumetric
scattering from crop canopies [77]. Furthermore, the similar canopy structures of maize,
soybean, and sunflower reduce the discriminative power of polarimetric data, presenting
additional challenges for accurate crop classification [78].

Table 6. Comparison of the mean F1 scores all six combinations of study sites and years for clas-
sifying (a) sunflower, (b) soybean, and (c) maize using four algorithms (RF, XGBoost, MLP, In-
ceptionTime) with the best features from S2 images, S1 backscattering coefficients, and S1 polari-
metric parameters. Ind = vegetation indices, TS = time series, Back = backscattering coefficients,
Polar = polarimetric parameters, Des = descending orbit, Asc = ascending orbit, Har = harmonic co-
efficients, Med = median features. The best algorithm/dataset combination for each crop is shown in
bold case. Note: ‘---’ indicates that the InceptionTime algorithm was not applied to the corresponding
dataset (tabular datasets).

Crop Type Classifier S2_Ind
TS

S2_Ind
Med

S1_Back
TS

S1_Back
Med

S1_Polar
Med

S2_Ind
TS
&

S1_Back
TS

S2_Ind
Med

&
S1_Back

Med

S2_Ind
Med

&
S1_Polar

Med

Sunflower

RF 69.4 70.0 82.7 84.7 73.6 85.7 87.1 82.9

XGBoost 75.3 77.1 83.2 85.6 74.1 87.4 89.9 83.7

MLP 74.9 75.9 82.3 82.7 67.2 84.9 89.2 78.6

InceptionTime 82.7 --- 87.2 --- --- 90.6 --- ---

Soybean

RF 60.4 63.1 46.3 51.6 25.3 61.6 65.1 52.3

XGBoost 67.8 72.8 46.9 58.3 30.9 72.0 69.8 65.0

MLP 71.1 69.4 49.3 62.7 28.7 71.2 75.0 66.0

InceptionTime 83.5 --- 63.6 --- --- 86.1 --- ---

Maize

RF 87.9 87.1 69.0 65.4 65.7 88.0 88.1 81.6

XGBoost 90.0 90.1 66.0 71.2 65.0 89.7 91.1 87.6

MLP 89.4 88.4 58.3 68.8 56.7 89.6 89.7 81.8

InceptionTime 91.9 --- 81.7 --- --- 93.5 --- ---

S2 vegetation indices and S1 backscattering coefficients were chosen for further discus-
sion due to their superior performance over S2 spectral bands and polarimetric parameters,
respectively. As shown in Table 6, the quality of the mapping of each crop depends on the
sensor type (optical or SAR). For sunflower, S1 data alone (both backscattering coefficients
time series and phenological features), outperformed the S2 data. However, the combi-
nation of S1 and S2 data yielded the best results for sunflower mapping. In contrast, for
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soybean and maize, S2 data alone (both vegetation indices time series and phenological
features) performed better than the corresponding S1 data alone—a finding consistent
with previous studies [5,21]. For these two crops, the combination of S1 and S2 data also
outperformed individual data sources. The superior performance of S1 for sunflower
is linked to its directional behavior during peak flowering in July and August, unlike
maize and soybean [17,79]. This behavior improves sunflower detection, particularly in the
descending orbit (morning pass in France). During peak flowering, the vertical stem and
horizontal leaf structure of young sunflowers face east in the morning, aligning with the
descending pass, and westward in the evening, aligning with the ascending pass (in France).
Once flowering is complete, sunflower heads permanently face east, enhancing detection
with descending orbit data [12,17]. Regarding soybean and maize, Huang et al. [37] suggest
that the lower water content in soybean during the growing season increases separability
using optical data, as several optical bands and vegetation indices are sensitive to canopy
water content. Meanwhile, Yin et al. [80] attribute this separability to maize maturing
earlier than soybean.

In addition, the use of median features and harmonic coefficients alone, calculated
from S2 vegetation indices, yielded similar classification results (Figure 6). Combining
both harmonic coefficients and median features did not lead to any improvement. For
sunflower and maize, no significant differences were observed between S2 time series
and the extracted features. However, for soybean, using median features resulted in a 5%
increase in the F1 score. Comparing the classification results using S2 vegetation indices
time series with the extracted phenological features, the most successful set for mapping
all three crops (sunflower, soybean, and maize) was the median features using XGBoost,
with mean F1 scores of 77.1% for sunflower, 72.8% for soybean, and 90.1% for maize. When
using S1 data, median features consistently outperformed harmonic coefficients across all
three crops (Figures 8 and 9). Combining harmonic coefficients with median features did
not improve results for sunflower and soybean, but for maize, this combination actually
decreased the F1 score by 6.2%. Comparing the classification result using S1 backscattering
coefficients time series with the extracted phenological features, the most successful set
for mapping sunflower, soybean, and maize was the median features using XGBoost,
with mean F1 scores of 85.6% for sunflower, 58.3% for soybean, and 71.2% for maize. S2’s
classification is therefore more accurate than S1’s if our aim is to map all three crops together.
For individual crops, the best performance for sunflower was achieved using the median
features extracted from S1 backscattering coefficients (F1 score of 85.6%), for soybean using
the median features extracted from S2 vegetation indices (72.8%), and for maize, both S2
vegetation indices time series and median features proved effective (both close to 90%).
Based on Scharlemann et al. [81] and Qadir et al. [17], the classification performance using
phenological features such as median features and harmonic coefficients is attributed to the
ability of these features to capture the different phenological stages of summer crops.

However, the best approach for mapping sunflower, maize, and soybean involved
using both S1 and S2 images (Table 6), with close F1 scores between median features and
time series datasets (mean F1 scores of 89.9% for sunflower, 76.6% for soybean, and 91.1%
for maize using median features). Within the three crops, this combination provided the
greatest improvement for sunflower compared to using S2 median features alone. Previous
studies have also reported higher accuracy using both S1 and S2 data, as this leverages
the strengths of both sensors [5,8,10,32,39,56,82,83]. However, some studies noted varying
levels of improvement depending on the crop type [84]. These findings suggest that when
satellite image availability is not a concern, the choice between combined optical-SAR data
or single-sensor data should depend on the crops being mapped. While combining data
from both sensors can enhance classification performance across a broad range of crops, it
also requires significantly more computational resources and knowledge efforts. Thus, the
benefits of improved classification must be weighed against the added complexity and cost
of processing [84].



Remote Sens. 2024, 16, 4548 27 of 39

The InceptionTime classifier demonstrated significant improvement over RF, XGBoost
and MLP algorithms when applied to time series data. Using InceptionTime to classify
the combination of S1 backscattering coefficients and S2 vegetation indices time series, the
highest F1 scores were achieved for all three crops: a mean F1 score of 90.6% for sunflower,
86.1% for soybean, and 93.5% for maize. However, the degree of improvement compared
to XGBoost varied depending on the crop and input data. For sunflower, InceptionTime
provided a modest improvement of about 5%. In contrast, the most significant increase was
obtained for soybean (around 14%) using S2 vegetation indices alone, S1 backscattering
coefficients alone, or a combination of both S1 and S2. For maize, using InceptionTime with
S2 vegetation indices time series alone or both S2 and S1 resulted in a small improvement
of around 3%, but when using S1 backscattering coefficients alone, the F1 score saw
an important increase of about 13%. Since SAR data are particularly valuable for crop
classification in regions with frequent cloud cover [85], using InceptionTime to improve S1
images classification is beneficial for enhanced crop monitoring.

However, as XGBoost using combined S2 vegetation indices and S1 backscattering
coefficients time series achieved mean F1 scores of 87.4% for sunflower, 72.0% for soy-bean,
and 89.7% for maize (Figure 13). XGBoost with time series data remains a viable option
for crop classification when data availability is not a concern, particularly considering the
shorter training time with XGBoost compared to InceptionTime and the lower processing
time for time series creation than for phenological features. While InceptionTime achieves
high accuracy for time series classification, its high computational needs make it hard to
use in situations with limited resources. In contrast, XGBoost provides competitive per-
formance with substantially shorter training times, making it a viable alternative for crop
classification, especially when combining S2 vegetation indices and S1 backscattering coef-
ficients. This computational advantage is particularly relevant when fast classification and
lower processing times for time series creation are prioritized over marginal accuracy gains.

An analysis of precision and recall for each crop using our four classifiers (RF, XG-
Boost, MLP, and InceptionTime) was performed using some optimal datasets—namely,
a combination of S1 backscattering coefficients and S2 vegetation indices time series, as
well as median features derived from this combination (Table 7). For sunflower, precision
remained high across classifiers when using combination of S1 backscattering coefficients
and S2 vegetation indices time series, with InceptionTime, XGBoost and RF achieving pre-
cision around 95%, indicating a low false positives rate. Precision for MLP was lower with
87.7%. However, recall scores for all four algorithms were lower than precision, with values
between 80.2% and 87.9%, suggesting that some sunflower fields were misclassified, likely
due to spectral similarity with other crops. For maize, both high precision and recall were
achieved, particularly with InceptionTime (91.6% precision and 92.8% recall), indicating
reliable classification with minimal false positives or false negatives. XGBoost and MLP
also performed well, with precision and recall around 90%, demonstrating their robust-
ness in identifying maize accurately. However, RF showed slightly lower precision and
recall, with values close to 88%. Soybean represented the greatest classification challenge,
with generally lower recall across classifiers compared to sunflower and maize. Although
InceptionTime achieved the highest precision for soybean (91.8%), recall was lower than
precision (79.0%), indicating the frequent misclassification of soybean fields. XGBoost also
showed high precision (88.7%) but comparatively low recall (61.4%), while RF and MLP
demonstrated moderate precision (75.9% and 78.5%) with low recall (53.4% and 66.7%),
highlighting the difficulty in accurately distinguishing soybean.
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Table 7. Mean precision and recall values for each crop type (sunflower, soybean, maize) and classifier
(RF, XGBoost, MLP, InceptionTime) using the best two datasets: a combination of S1 backscattering
coefficients and S2 vegetation indices time series, and median features derived from these datasets.

Precision Recall

Crop Type Classifier
S2_Ind TS

&
S1_Back TS

S2_Ind Med
&

S1_Back Med

S2_Ind TS
&

S1_Back TS

S2_Ind Med
&

S1_Back Med

Sunflower

RF 93.84 92.97 80.17 83.18

XGBoost 95.05 93.32 81.71 87.10

MLP 87.72 90.92 82.64 87.87

InceptionTime 95.10 --- 84.18 ---

Soybean

RF 75.90 78.79 53.35 57.52

XGBoost 88.68 82.52 61.37 61.69

MLP 78.49 83.80 66.67 70.18

InceptionTime 91.80 --- 79.02 ---

Maize

RF 88.16 88.88 88.97 88.35

XGBoost 91.29 94.65 87.58 88.29

MLP 93.88 92.29 86.18 88.03

InceptionTime 91.60 --- 92.80 ---

When using median features extracted from the combined S1 and S2 data, the precision
and recall scores remained close to those achieved with the time series data. However,
median features generally resulted in slightly higher recall values for all three crops. This
approach helps increase recall while keeping precision nearly the same.

In an additional experiment, we smoothed our S2 vegetation indices and S1 backscat-
tering time series datasets using the Savitzky–Golay (SG) method to reduce noise by
removing high-frequency components [17,86]. For SG smoothing the degree of the fitted
polynomial function was set to three and the window-size parameter was set to seven [17].
The use of smoothed time series for classifying three crops resulted in only a slight improve-
ment in the F1 score for S2 vegetation indices (around 2%). Conversely, the improvement
was higher for S1 backscattering time series, with an average F1 score increase of 7% for the
RF, XGBoost, and MLP classifiers. However, when the InceptionTime classifier was used,
the improvement remained minimal (around 2%). This indicates that noise reduction is es-
sential for enhancing the performance of RF, XGBoost, and MLP classifiers, particularly for
S1 backscattering time series. Given that the S1 signal is influenced not only by vegetation
characteristics but also by soil properties such as moisture and roughness [87], smoothing
helps mitigate these interfering factors, leading to more reliable classification outcomes.

4.2. Classifiers Transferability Analysis

In this study, we evaluated the transferability performance of our classifiers across
three types of transfer scenarios: spatial, temporal, and spatiotemporal domains. Transfer-
ability is crucial in crop classification due to the challenges in obtaining training data for
each region and year. Unlike other land cover types, crops undergo rapid and dynamic
changes, with sowing dates and growth cycle durations varying from year to year and
across regions, making transfer scenarios more complex [88,89]. To further assess these
challenges, we examined the classification accuracy for sunflower, soybean, and maize
using different combinations of train and test datasets. Here, we focus on datasets with the
highest F1 score (Figures 6–14), including S2 vegetation indices time series, a combination
of S2 vegetation indices and S1 backscattering coefficients time series, median features
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extracted from both S2 vegetation indices and S1 backscattering coefficients, and median
features from S1 backscattering coefficients alone.

For sunflower, when using S2 vegetation indices time series alone (Figures 6 and 14),
InceptionTime achieved F1 scores above 80% across all three types of transferability (spatial,
temporal, and spatiotemporal). XGBoost also performed well, with F1 scores close to
80% for spatial and temporal transferability, although its performance dropped to around
65% for spatiotemporal transferability. The MLP consistently produced F1 scores around
75% across all three types of transferability, while RF achieved an F1 score close to 80%
only for temporal transferability, proving ineffective for sunflower classification with
spatial and spatiotemporal transfer scenarios. For soybean, InceptionTime maintained
strong transferability performance, with F1 scores near 80% across all transferability types.
XGBoost showed more variability, with F1 scores of around 75% and 70% for temporal
and spatial transferability, respectively, but lower results for spatiotemporal transferability
(60%). MLP demonstrated consistent but a slightly lower performance around 70% across
all transferability types, while RF was only effective in temporal transferability, achieving
near 80%. For maize, InceptionTime delivered excellent results, with F1 scores between
85% and 95% for all transferability types. Temporal transferability using RF, XGBoost, and
MLP resulted in F1 scores above 90%, while other transferability types were slightly lower
than temporal transferability but still close to 90%.

The combination of S2 vegetation indices and S1 backscattering coefficients time
series significantly enhanced classification performance for sunflower. The F1 scores for
InceptionTime and XGBoost exceeded 85% across all transferability types, and the MLP
achieved scores of up to 87%. Notably, RF demonstrated the greatest improvement due
to the inclusion of S1 data (the F1 score higher than 77%). For soybean, the addition of S1
backscattering did not significantly improve InceptionTime and MLP performance, though
InceptionTime still maintained an F1 score near 80% same as its achievement using S2
vegetation indices time series. However, RF and XGBoost saw improvements in temporal
transferability. For maize, the inclusion of S1 data did not significantly enhance transfer
scenarios accuracy using all four algorithms, as S2 data alone yielded consistently high F1
scores across all transferability types.

Although the combination of S1 and S2 data improved transfer results, the added value
of S1 backscattering coefficients is crop-dependent, with sunflower benefiting the most due
to its distinct directional behavior [17]. When comparing the transferability of classifiers,
InceptionTime consistently delivered stable and high results across all transferability types
for all three crops, making it a strong candidate for diverse transferability scenarios. For
example, in spatiotemporal transferability—the most complex type—IT achieved F1 scores
close to 90% for sunflower, 80% for soybean, and 95% for maize. The robustness of
InceptionTime in crop transfer scenarios has been confirmed in previous studies [63,64].
These F1 scores closely align with the results of Pandžić et al. [90], who reported F1
scores of approximately 92% for sunflower, 85% for soybean, and 90% for maize using
a convolutional neural network (CNN). However, lower results have also been reported
with deep learning models; for example, Che et al. [24] reported F1 scores below 90%
for maize, sunflower, and soybean in spatiotemporal transferability when using a deep
learning method, which comprises three modules, DeepLabV3+, channel self-attention,
and histogram matching (DSH) with S2 time series data. Zhao et al. [91] evaluated the
accuracy of mapping seven crop types—greenhouse vegetables, summer maize, cotton,
chili, common yam rhizome, fruit trees, and forests—using S2 data. They compared the
performance of five models: 1D CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN. While 1D
CNN achieved high overall accuracy (exceeding 85%) and outperformed LSTM and GRU
individually, the hybrid models (LSTM-CNN and GRU-CNN) produced similar accuracy
to the 1D CNN. In another study, Rusňák et al. [92] examined temporal transferability by
applying SVM and Neural Network (NN) algorithms to map seven crops—barley, rapeseed,
maize, wheat, sugar beet, sunflower, and soybean. They reported overall accuracies ranging
from 84.4% to 88.9% for SVM and from 81.1% to 91.9% for NN.
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Unlike the previous time series dataset, where InceptionTime was applied, the transfer
scenarios using median features derived from the combination of S2 vegetation indices and
S1 backscattering coefficients involved only tabular classifiers (RF, XGBoost, and MLP). All
three algorithms achieved F1 scores exceeding 85% for sunflower across all transferability
types, with temporal transferability showing slightly better results. Notably, these median
features significantly enhanced spatiotemporal transferability for sunflower mapping,
outperforming the results obtained from the time series data discussed earlier. For soybean,
all classifiers achieved an F1 score of approximately 80% for temporal transferability. In
spatial and spatiotemporal transferability, XGBoost and MLP gave the maximum F1 scores
close to 75%, representing an improvement over time series data, although RF continued
to underperform in these contexts. For maize, all classifiers consistently produced high
F1 scores (above 90%) across all transferability types. However, for maize, the results
did not surpass those achieved using S2 time series alone or in combination with S1 time
series data.

Using median features from S1 backscattering coefficients alone, all three types of
transfer scenarios for sunflower yielded F1 scores above 85% across all classifiers. For
soybean, temporal transfer scenario was the only scenario that produced acceptable results
across all classifiers, with F1 scores ranging from 75% to 85%. However, spatial and spa-
tiotemporal transfer scenarios did not perform well. For maize, temporal transfer scenarios
yielded strong results across all classifiers (90–95%), but spatial and spatiotemporal transfer
scenarios showed lower results.

4.3. Misclassification in Crop Mapping

Misclassification in crop mapping can arise from various sources, potentially affecting
the accuracy of classification. Key factors contributing to misclassification include the
classifiers used [24,39], and spectral similarities between crops in satellite imagery [17,93].
In addition, environmental variation between the training and test study sites, which can
result in different crop growth cycles, is critical for transfer scenarios [12,25,39]. Field size
also plays a significant role in misclassification [12,64].

Concerning model-based misclassification, we evaluated four algorithms: two neural
networks and two decision tree models. Among these, InceptionTime consistently showed
the highest performance and stability across all three types of transfer scenarios. Incep-
tionTime is a time series classification algorithm based on convolutional neural networks
(CNN), designed to effectively handle sequential data. By using convolutional layers,
InceptionTime extracts meaningful features through sliding filters, allowing it to capture
temporal patterns, transitions, and dependencies within the time series data [69]. This
makes InceptionTime particularly robust to temporal shifts, a key advantage in time series
classification [69].

Another source of misclassification in crop identification is the spectral similarity
between summer crops [94]. Figure 15a,b show the confusion matrices for the classifi-
cation of S2 vegetation indices and S1 backscattering coefficients, using InceptionTime
and XGBoost. These models were trained on Dijon 2020 data and tested on Tarbes 2021
data. In the confusion matrices, the rows represent the true classes while the columns
indicate the predicted classes. Comparing the misclassifications among the three crops,
InceptionTime results show that 21.0% of sunflower was misclassified as other crops, but
only about 1% was misclassified as soybean or maize. With XGBoost, 25.1% of sunflower
was misclassified as “Other crops”, while 4.2% was misclassified as soybean and 0.8%
as maize. For soybean, InceptionTime misclassified 18.9% as “Other crops”, and around
2% as either sunflower or maize. XGBoost showed 24.2% misclassification as other crops,
1.2% as sunflower, and 2.7% as maize. For maize also, misclassifications as “Other crops”
were higher than with sunflower or soybean, with 7.9% in InceptionTime and 5.4% in
XGBoost. The misclassification of maize with soybean and sunflower was close to 1% and
0%, respectively. The misclassification due to the spectral similarity among summer crops
can be attributed to overlapping spectral signatures before maturation [5,17,21].
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The shift in crop growth cycles due to environmental variations between training
and test datasets also plays a crucial role in misclassification [25]. Analyzing the NDVI
behavior for the three crops across the study sites and years (Figure 16a–c) revealed that
all crops experienced a shorter growth period in Dijon compared to Tarbes. This shorter
growth period, particularly for soybeans, was particularly evident in the VH polarization
(Figure 16d–f), which is sensitive to vegetation cover, biomass, and geometric structure [95].
In our spatial transferability results, the classification of soybeans yielded lower F1 scores
(Figures 6–14), which can be attributed to these differences between the study sites. Also,
the peak NDVI for all three crops in Tarbes occurs about a month later than in Dijon. This
delay further complicates spatial transferability between the two locations.

Field size emerged as another significant factor contributing to misclassification. Our
analysis of false negatives from the classification of S2 vegetation indices and S1 backscatter
coefficients to map Tarbes 2020, using the Tarbes 2021 training data with InceptionTime
and XGBoost, showed that about 50% of the misclassified sunflower and soybean fields
and 60% of the maize fields were smaller than 1 ha. Similarly, for XGBoost, around 40% of
sunflower and soybean fields and 50% of maize fields were smaller than 1 ha. This suggests
that a significant proportion of the misclassification is due to the small size of the fields,
which is related to the spatial resolution limitations of the Sentinel imagery [12].

4.4. Implications and Constraints

Our results on the effectiveness of S1 and S2 data, combined with robust classifiers like
XGBoost and InceptionTime, demonstrate significant applications in precision agriculture,
environmental monitoring, and food security. These tools enable timely and accurate
crop type mapping and monitoring. The necessity of such findings has been proven by
previous studies [7,27]. Additionally, integrating SAR and optical data improves monitoring
reliability, especially in regions with frequent cloud cover. This combination is useful for
large-scale agricultural activities. Our findings are relevant not only for the France area but
they also have potential scalability to other regions. As our results and previous studies
have demonstrated, transfer generalization between different study sites is possible [90,92].
Applying classifier transferability across regions and time frames offers a scalable and cost-
effective solution for crop monitoring, addressing the limitations of ground data availability.
Furthermore, the adaptable framework of integrating S1 and S2 data with machine learning
classifiers could be extended to other crops.
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The limitations of this study include some challenges with machine learning models
like InceptionTime, which can be sensitive to data imbalances and may favor more repre-
sented classes, leading to potential biases in predictions. Deep learning models are also
“black boxes”, making them hard to explain and to understand which features drive the
final decision. Additionally, InceptionTime requires substantial computational resources,
especially for training on large satellite datasets, which could be a challenge for scaling
or using the model in low-resource settings. The satellite data itself also presents chal-
lenges. For example, S2 images can be affected by cloud cover, limiting image availability
in some areas or seasons. On the other hand, S1 images, which are less weather-dependent,
generally have lower accuracy than S2.
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5. Conclusions

To identify the effective dataset for mapping sunflower, soybean, and maize, we
compared the classification accuracy using S2 and S1 time series datasets alongside the
extracted phenological features, specifically harmonic coefficients and temporal medians.
We employed RF, MLP, and XGBoost classifiers across various dataset scenarios, training
and testing them on different combinations of study sites and years. Additionally, the
InceptionTime classifier, specifically designed for time series data, was tested exclusively
with time series datasets to compare its performance against the three general machine
learning algorithms (RF, XGBoost, and MLP).

Our results indicated that XGBoost outperformed RF and MLP, demonstrating its su-
periority due to its ability to correct residual errors and incorporate regularization. The best
dataset for mapping sunflower, maize, and soybean was a combination of S1 backscattering
coefficients and S2 vegetation indices, yielding similar results for phenological features and
time series data (with mean F1 scores of 89.9% for sunflower, 76.6% for soybean, and 91.1%
for maize). Using this combined dataset (S1 and S2), the mean F1 scores for all three types
of transferability (spatial, temporal, and spatiotemporal) were comparable between the
median features and time series datasets, except for the spatiotemporal transfer scenario of
soybean, where the time series dataset had an F1 score 5% lower than the median features.
The best individual datasets for each crop were: for sunflower, median features extracted
from S1 backscattering coefficients (mean F1 score of 85.6%); for soybean, median features
extracted from S2 vegetation indices (mean F1 score of 72.8%); and for maize, both S2
vegetation indices time series and median features provided an F1 score close to 90%. The
choice between single-sensor and multi-sensor data should depend on the study’s goal,
crop, and available computational resources. While combining S1 and S2 data improves
classification accuracy, it also makes the process more complicated and requires more
computational resources.

The InceptionTime classifier improved classification results over XGBoost for all crops
using time series data, with varying degrees of enhancement depending on the crop and
input data. The highest mean F1 scores of 90.6% for sunflower, 86.0% for soybean, and
93.5% for maize were obtained using both S1 backscattering coefficients and S2 vegetation
indices. For sunflower, the improvement of the mean F1 score was about 5%, while
for soybean, InceptionTime boosted the mean F1 scores about 14% when classifying the
optimal datasets (using S2 vegetation indices alone or S1 backscattering coefficients alone
or a combination of both). For maize, improvement was 13% using S1 backscattering
coefficients. These findings highlight the value of advanced time series classifiers for crop
mapping, particularly in regions with frequent cloud cover.

The key findings from this study can be summarized as follows:
Classifier performance: XGBoost consistently outperformed RF and MLP in classifica-

tion accuracy across various scenarios. The InceptionTime classifier, which is specifically
designed for time series data, further improved classification accuracy beyond that of
XGBoost. However, InceptionTime requires substantial computation time.

Optimal datasets: Using InceptionTime, the combination of S1 backscattering coef-
ficients and S2 vegetation indices time series produced the best results. With XGBoost,
median features derived from a combination of S1 backscattering coefficients and S2 vege-
tation indices provided slightly better results than time series data for mapping the three
summer crops.

Single-sensor vs. multi-sensor data: For each crop, certain single-sensor datasets also
proved effective, such as S1 median features for sunflower, S2 median features for soybean,
and S2 vegetation indices time series for maize. Therefore, using multi-sensor data are not
essential when the objective is to identify each class separately. However, multi-sensor data
are necessary to achieve high-quality classification across all three crops together.

Comparison of S2 bands, indices, and S1 backscattering and polarimetric data: S2
indices provided the best results, while polarimetric parameters yielded lower accuracy.
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Efficient mapping with limited ground data: The study demonstrated that tempo-
ral, spatial and spatiotemporal transferability approaches can be effectively applied in
crop classification.

This research enhances the understanding of how different satellite data sources (S1
and S2) and machine learning classifiers can improve the mapping and monitoring of
important summer crops. This has significant implications for agriculture, particularly in
areas with frequent cloud cover, where large-scale, real-time crop monitoring is crucial for
precision agriculture, crop yield forecasting, and food security. Future studies could explore
the integration of other deep learning algorithms to further boost classification accuracy for
challenging crops such as soybean and maize. In addition, conducting more detailed case
studies across diverse agricultural landscapes would provide valuable insights into the
transferability of classifiers, assessing how well the models generalize across regions with
varying climatic conditions and crop management practices. Investigating the scalability
of these findings across various regions and with reduced training data will be crucial for
broadening the general applicability of this approach.
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Appendix A. The Equations for the Accuracy Metrics

• Precision (P) measures the accuracy of positive predictions, indicating how many of
the predicted positive cases are actually correct:

P =
TP

TP + FP

• Recall evaluates how well the model identifies positive cases, showing the proportion
of actual positives that were correctly classified:

R =
TP

TP + FN

• F1-Score is the harmonic mean of Precision and Recall. It provides a single score that
balances the two metrics. A high F1-Score suggests both high Precision and Recall:

F1 =
2 × P × R

P + R

True Positives (TP) is the number of positive samples correctly classified as positive.
False Positives (FP) is the number of negative samples incorrectly classified as positive.
False Negatives (FN) is the number of positive samples incorrectly classified as negative.
True Negatives (TN) is the number of negative samples correctly classified as negative.
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