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LOOP TORSORS. THEORY AND APPLICATIONS

VLADIMIR CHERNOUSOV, PHILIPPE GILLE, AND A. PIANZOLA

Abstract. Loop torsors over Laurent polynomial rings in characteristic 0 were
originally introduced in relation to infinite dimensional Lie theory. Applications to
other areas require a theory that can yields results in positive characteristic, and for
group schemes that are not of finite type. The relation between loop and so-called
toral torsors, is one of the central questions in the area. The present paper addresses
this question in full generality.
Keywords: Loop torsor, Locally algebraic group, Toral torsors, Semilinear descent
data

MSC 2000 17B67, 11E72, 14L30, 14E20.

1. Introduction

Kac-Moody Lie algebras, the affine ones in particular, are defined by generators
and relations. This begs the question of how do these algebras “look like”.1 The
concept of loop torsor traces its roots to this question, that is, the characterization
of affine Kac-Moody Lie algebras over the complex numbers. More precisely, the
following classes of Lie algebras “are the same”:

(i) A Lie algebra L obtained as the derived Lie algebra of an affine Kac-Moody Lie
algebra modulo its centre.2

V. Chernousov was partially supported by an NSERC research grant.
P. Gille was supported by the project ”Group schemes, root systems, and related representations”

founded by the European Union - NextGenerationEU through Romania’s National Recovery and
Resilience Plan (PNRR) call no. PNRR-III-C9-2023- I8, Project CF159/31.07.2023, and coordinated
by the Ministry of Research, Innovation and Digitalization (MCID) of Romania.

A. Pianzola wishes to thank NSERC and CONICET for their continuous support.
1One encounters this question already in the finite dimensional Lie theory. That the split Lie

algebra of type G2 exists is shown by considering generators and relations à la Serre. But this Lie
algebra has a very concrete realization: The Lie algebra of derivations of the octonions.

2 The full algebra is obtained from L by passing to the universal central extension L ⊕ Cc, and
adding a canonical one dimensional space of “degree derivations” that allows, among other things,
for the existence of an invariant non-degenerate bilinear form.
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(ii) A loop algebra L(g, σ) where g is a finite dimensional simple Lie algebra over
C and σ an automorphism of the Coxeter-Dynkin diagram of g (viewed as an auto-
morphism of g.)

(iii) A Lie algebra L over the Laurent polynomial ring R = C[t±1] that locally for
the fppf-topology (in fact, for the Fét-topology) looks like g⊗CR for some (necessarily
unique) g as in (ii).

The loop algebras were independently introduced by Kac [Kac] and Moody (unpub-
lished) as realization of the derived algebra of the affine Lie algebras with their centres
factored out. From the definition it is not difficult to see that the infinite dimensional
complex Lie algebra L(g, σ) is in fact an R−Lie algebra, free of rank = dim(g), such

that under the base change to S = C[t
±

1
n ] it becomes g ⊗C S ≃ (g⊗C R)⊗R S. It is

thus a twisted form of g⊗CR, hence corresponds to an Aut(g)−torsor over R. What
(iii) says is that the torsors arising from loop algebras are in fact up to isomorphism
all Aut(g)−torsors over R (see [P1] and [P2]).

The Aut(g)−torsors corresponding to the loop algebras are very special. First
of all, they are isotrivial, that is, they are trivialized by a finite étale extension of
the base. They thus come from cocycles involving the algebraic fundamental group of
Spec(R). The values of these cocycles are also special: They take values onAut(g)(C).
In [GP0] we introduced the general concept of a loop torsor E over a scheme X under
the action of an X−group scheme G defined over a base field k. We looked in detail
at how the concept of E being loop relates to the existence of maximal tori on the
twisted X−group EG, in which case we say that E is a toral torsor.

Loop torsors were used in [CGP2] to provide a classification of torsors over the ring
k[t±1

1 , · · · , t±1
n ] (k of characteristic 0) under the action of a reductive group scheme.

They were already singled out in [PZ] and in the work of Stavrova [St1], [St2]. Loop
torsors seem to be central to the current work of R. Parimala and one of the authors,
see [GiPa]. Their framework, however, requires that some of the key material of
[GP0], such as Borel-Mostow semilinear considerations and the relation between loop
and toral torsors, be done over fields of arbitrary characteristic and for group schemes
that are not of finite type. This is the purpose of the present work. We work with
group schemes that include the group of automorphisms of reductive groups. They
are extensions of twisted constant groups by reductive groups. The main results are
that, with natural assumptions, toral torsor are loop (Theorem 4.3), and loop torsors
are toral (Theorem 5.11). The crucial application to the case in which the base is a
Laurent polynomial ring is given in Theorem 6.1.

Finally, it is our believe that the techniques introduced to establish this much
broader base for the theory of loop torsors are of independent interest.
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2. Generalities on the algebraic fundamental group

Throughout this section X will denote a scheme, and G a group scheme over X.
We will do a quick review of the topics and concepts that are relevant for the present
work. Accordingly, we assume that X is connected and noetherian. In particular
X is quasi-compact and quasi-separated [SP, Tags 01OV,01OY]. Let K be a field.
Following [LF], by a quasi geometric point of X we will understand a morphism
x : Spec(K)→ X where K is a separably closed field.

Let Xfét be the category of finite étale covers of X, and F the covariant functor
from Xfét to the category of finite sets that assigns to a finite étale cover X ′ of X the
set

F (X ′) = {quasi geometric points of X ′(K) above x}.

That is, F (X ′) consists of all morphisms x′ : Spec (K)→ X ′ for which the diagram

X ′

x′

ր ↓
Spec (K) →

x
X

commutes. The group of automorphisms of the functor F is called the algebraic fun-
damental group of X at x, and is denoted by π1(X, x).

3 If X = Spec(R) is affine, then
x corresponds to a ring homomorphism R→ K, and we will denote the fundamental
group by π1(R, x).The functor F is pro-representable: There exists a directed set
I, objects (Xi)i∈I of Xfét, surjective morphisms ϕij ∈ HomX(Xj, Xi) for i ≤ j and
geometric points xi ∈ F (Xi) such that

xi = ϕij ◦ xj

(2.1) The canonical map f : lim−→ HomX(Xi, X
′)→ F (X ′) is bijective,

where the map f of (2.1) is as follows: Given ϕ : Xi → X ′ then f(ϕ) = ϕ(xi). The
elements of lim−→ HomX(Xi, X

′) appearing in (2.1) are by definition the morphisms in

the category of pro-objects over X (see [EGA IV, §8.13] for details). It is in this sense
that lim−→ Hom(Xi,−) pro-represents F.

Since the Xi are finite and étale over X the morphisms ϕij are affine. Thus the
inverse limit

Xsc = lim←− Xi

3 In Grothendieck’s definition of π1(X, x), x would be a geometric point. Just as in Galois
theory, where separable closures instead of algebraic closures are used, for the treatment of algebraic
fundamental groups it is more natural/convenient to use quasi geometric base points.
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exists in the category of schemes over X [EGA IV, §8.2]. For any finite étale scheme
X ′ over X we thus have a canonical map

HomPro−X(X
sc, X ′)

def
= lim−→ HomX(Xi, X

′) ≃ F (X ′)→ HomX(X
sc, X ′)

obtained by considering the canonical morphisms ϕi : X
sc → Xi. Because our X is

assumed to be noetherian, this last map is bijective. More precisely.

Proposition 2.1. F is represented by Xsc; that is, there exists a bijection

F (X ′) ≃ HomX(X
sc, X ′)

which is functorial on the objects X ′ of Xfét.

Proof. Because the Xi are affine over X and X is noetherian, each Xi is noetherian,
in particular, quasicompact and quasi-separated. Thus, for X ′/X locally of finite
presentation, in particular for X ′ in Xfét, the map

lim−→ HomX(Xi, X
′)→ HomX(lim←−Xi, X

′)

is bijective [EGA IV, prop 8.13.1]. The Proposition now follows from (2.1). �

In computing Xsc = lim←−Xi we may replace (Xi)i∈I by any cofinal family. This

allows us to assume that the Xi are (connected) Galois, i.e. the Xi are connected and
the (left) action of AutX(Xi) on F (Xi) is transitive. We then have

F (Xi) ≃ HomPro−X(X
sc, Xi) ≃ HomX(Xi, Xi) = AutX(Xi).

Thus π1(X, x) can be identified with the group lim←−AutX(Xi)
opp. Each AutX(Xi)

is finite, and this endows π1(X, x) with the structure of a profinite topological group.
The group π1(X, x) acts on the right on Xsc as the inverse limit of the finite

groups AutX(Xi). Thus, the group π1(X, x) acts on the left on each set F (X ′) =
HomPro−X(X

sc, X ′) for all X ′ ∈ Xfét. This action is continuous since the structure
morphism X ′ → X “factors at the finite level”, that is, there exists a morphism
Xi → X ′ of X–schemes for some i ∈ I. If u : X ′ → X ′′ is a morphism of Xfét,
then the map F (u) : F (X ′) → F (X ′′) clearly commutes with the action of π1(X, x).
This construction provides an equivalence between Xfét and the category of finite sets
equipped with a continuous π1(X, x)–action.

The right action of π1(X, x) on Xsc induces an action of π1(X, x) on G(Xsc) =
MorX(X

sc,G), namely
γf(z) = f(zγ) ∀γ ∈ π1(X, x), f ∈ G(Xsc), z ∈ Xsc.

Remark 2.2. Since X is connected, quasicompact and quasi-separated, the scheme
Xsc is connected and simply connected. See [VW, prop. 3.4].

Proposition 2.3. Assume that G is locally of finite presentation over X. Then
G(Xsc) is a discrete π1(X, x)–group and the canonical map

lim
−→

H1
(
AutX(Xi),G(Xi)

)
→ H1

(
π1(X, x),G(Xsc)

)
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is bijective.

Remark 2.4. Here and elsewhere when a profinite group A acts discretely on a
module M the corresponding cohomology H1(A,M) is the continuous cohomology as
defined in [Se1]. Similarly, if a group H acts in both A and M, then HomH(A,M)
stands for the continuous group homomorphism of A into M that commute with the
action of H.

Proof. To show that G(Xsc) is discrete amounts to showing that the stabilizer in
π1(X, x) of a point of f ∈ G(Xsc) is open. But if G is locally of finite presentation
then G(Xsc) = G(lim←−Xi) = lim−→G(Xi) ([EGA IV, prop. 8.13.1] ), so we may assume

that f ∈ G(Xi) for some i. The result is then clear, for the stabilizer we are after is
the inverse image under the continuous map π1(X, x) → AutX(Xi) of the stabilizer
of f in AutX(Xi) (which is then open since AutX(Xi) is given the discrete topology).

By definition

H1
(
π1(X, x),G(Xsc)

)
= lim−→

(
π1(X, x)/U,G(Xsc)U

)

where the limit is taken over all open normal subgroups U of π1(X, x). Since I is di-
rected, for each such U we can find Ui ⊂ U so that Ui = ker

(
π1(X, x)→ AutX(Xi)

)
.

Thus

H1
(
π1(X, x),G(Xsc)

)
= lim−→ H1

(
AutX(Xi),G(Xi)

)

as desired. �

We assume now that X is a k-scheme over a field k such that X(k) 6= ∅ and such
that X is geometrically connected. We fix an algebraic closure k̄ of k, and let ks the
separable closure of k in k.

Fix an element a0 ∈ X(k) and denote by a : Spec(ks) −→ Spec(k)
a0−→ X the

corresponding quasi geometric point of X. The point a will be our choice of base
point in the sequel.

Remark 2.5. (a) The scheme Xsc has a natural ks−scheme structure, as we now
outline. Let ℓ be a finite algebraic extension of k, and denote X ×k ℓ by Xℓ. There
exists a unique quasi geometric point aℓ : Spec(k) → Xℓ such that aℓ 7→ a (resp.
aℓ 7→ Spec(ℓ) ) under the projection Xℓ → X (resp. Xℓ → Spec(ℓ) ). Assume now ℓ
is Galois. Since X is geometrically connected, Xℓ is a (connected) Galois extension
of X with Galois group canonically isomorphic to that of ℓ/k.

The set Iℓ = {i ∈ I : HomX(Xi, Xℓ) 6= ∅} is not empty. If i ∈ Iℓ and fi ∈
HomX(Xi, Xℓ), then fi is surjective and, after following fi with an element of AutX(Xℓ)
if necessary, we may assume that fi(ai) = aℓ. Such an fi is unique.4 If i < j and

4 Because Xℓ/X is finite étale and Xi is connected, fi is determined by its value at any geometric
point of Xi. Indeed, let f, g ∈ HomX(Xi, Xℓ) be such that f(ai) = g(ai) = aℓ. Let pi : X

sc → Xi

be the canonical projection. Then if f ′ = f ◦ pi and g′ = g ◦ pi, we have f ′(a) = g′(a). From the
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ϕij : Xj → Xi is one of our transition morphisms, then fi ◦ ϕij ∈ HomX(Xj, Xℓ), so
j ∈ Iℓ. By uniqueness fj = fi ◦ ϕji.

After applying the projection Xℓ → Spec(ℓ) to the above considerations we obtain
the existence of pℓ ∈ Homk

(
Xsc, Spec(ℓ)

)
such that pℓ(a) = aℓ. This induces our

desired morphism ps : X
sc → lim←−Spec(ℓ) = Spec(ks).

By [LF, Prop. 3.2.14] π1
(
Spec(k), a

)
≃ Gal(k) = Gal(ks/k). The structure mor-

phism X → Spec(k) induces a group homomorphism p : π1(X, a) → Gal(ks/k).
One checks from the explicit construction given above that the structure morphism
ps : X

sc → Spec(ks) is π1(X, a)−equivariant.
(b) We claim that ps has a section. The geometric point ai corresponds to a

point xi of the underlying topological space of Xi. The residue field κ(xi) will for
convenience be denoted by ki. We thus have a k−scheme morphism ψi : Spec(ki) →
Xi. A transition morphism ϕij : Xj → Xi yields the local ring morphism ϕ∗

ji :
OXi,xi

→ OXj ,xj
. This yields a k−field extension ki → kj, hence a k−scheme morphism

ψji : Spec(kj)→ Spec(ki).
Since Xi is a finite étale extension ofX and xi 7→ x, ki is a finite separable extension

of k. Thus lim←−Spec(ki) = Spec(ks). Consider the projection πi : Spec(ks)→ Spec(ki),

and let gi = ψi◦πi : Spec(ks)→ Xi. From the above discussion we see that ϕij◦gj = gi.
We thus get an induced scheme morphism as : Spec(ks) → lim←−Xi = Xsc. It is clear

from the construction that as followed by the structure morphism ps : X
sc → Spec(ks)

is the identity.

We will denote X ×k ks by Xks. Our point a0 : Spec(k) → X gives rise by base
change to a quasi geometric point as : Spec(ks) → Xks. By [LF, Proposition 3.3.7]
the sequence

(2.2) 1→ π1(Xks, as)→ π1(X, a)
p
−→ Gal(k)→ 1

is exact, and in fact split exact. Indeed, the existence of the rational point a0 ∈ X(k)
yields a natural choice of a section of p that can be understood as follows. Our a0 :
Spec(k) → X induces by functoriality a group homomorphism q : π1

(
Spec(k), b

)
→

π1(X, a) where b : Spec(ks) → Spec(k) is the natural map. Because a was also
defined via a0, i.e. b is a followed by the structure map X → Spec(k), we see that
q ◦ p = Id . Finally π1

(
Spec(k), b

)
≃ Gal(ks/k). In concrete terms we are identifying

a finite Galois extension ℓ of k with Galois group Γ with the Galois cover X ×k ℓ of
X.

3. Loop and toral torsors

Throughout X denotes a scheme and G a group scheme over X.

bijection HomX(Xsc, Xℓ) ≃ F (Xℓ) we conclude that f ′ = g′. Since pi is surjective we conclude that
f = g.
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3.1. Generalities about torsors. Let E be an fppf sheaf on X equipped with a
right action of G. Recall that E is said to be a (right) G−sheaf torsor over X –or
simply a G–sheaf torsor if X is understood– if there exists a faithfully flat and locally
finitely presented morphism Y → X , such that E ×X Y ≃ G×X Y = GY , where GY

acts on itself by right translation.5 In the above situation we say that Y trivializes
E. In what follows we denote by H1(X,G) the pointed set of isomorphism classes of
G−sheaf torsors over X. The set H1(X,G) can be computed in terms of cocycles à
la Čech as we now briefly recall (see [G2, §2] for details).

Given a base change Y → X , we denote by H1(Y/X,G) the kernel of the base
change map H1(X,G) → H1(Y,GY ). Thus H

1(Y/X,G) can be thought as the set
of isomorphism classes of G−sheaf torsors over X that are trivialized by the base
change to Y. As it is customary, and when no confusion is possible, we will denote in
what follows H1(Y,GY ) simply by H1(Y,G).

If the base change Y/X is a an fppf cover of X , then H1(Y/X,G) can be computed

in terms of cocycles. More precisely H1(Y/X,G) = Ȟ
1

fppf(Y/X,G). The “set” of fppf
covers of X is directed and by passing to the limit over all such coverings Y , we have
a bijection of pointed sets

lim
−→

H1(Y/X,G)→ H1(X,G).

Recall that a sheaf torsor E over X under G is called isotrivial if it is trivialized
by some finite étale cover of X, that is,

[E] ∈ H1(X ′/X,G) ⊂ H1(X,G)

for some (surjective) X ′ → X inXfét.We denote byH1
iso(X,G) the subset ofH1(X,G)

consisting of classes of isotrivial torsors.

Proposition 3.1. Assume that X is connected and noetherian, and that G is locally
of finite presentation over X. Then

H1
iso(X,G) = ker

(
H1(X,G)→ H1(Xsc,G)

)
.

Proof. Assume E is trivialized by X ′ ∈ Xfét. By (2.1) there exists i ∈ I such that
HomX(Xi, X

′) 6= ∅. Then E ×X Xi = E ×X X ′ ×X′ Xi = GX′ ×X′ Xi = GXi
so that

E is trivialized by Xi. The image of [E] on H1(Xsc,G) is thus trivial.
Conversely assume [E] ∈ H1(X,G) vanishes under the base change Xsc → X. Since

the Xi are quasicompact and quasiseparated, and G is locally of finite presentation,
a theorem of Grothendieck-Margaux [Mg1] shows that the canonical map

lim−→ Ȟ
1

fppf(Xi,G)→ Ȟ
1

fppf(X
sc,G)

is bijective. Thus E ×X Xi ≃ GXi
for some i ∈ I. �

5 We are viewing the Y scheme GY as an fppf group sheaf on Y.
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The question of whether a given sheaf torsor E is representable by an X−scheme is
quite delicate. If this is the case, we say that E is a torsor. Representability holds if
G is ind quasi affine (see [SP, Tag 0AP6]). This covers all the cases we are interested
in. For future use, however, it is important to formulate this general material, and
the definition of loop torsors, at the level of sheaves.

3.2. Toral torsors. Let G be an X−group which is locally of finite type. If x ∈ X
the fibre of Gx is an algebraic group over κ(x). Following [SGA3] we say that a closed
subgroup T of G is a maximal torus if it is a torus (as a group scheme over X) and
Tx is a maximal torus of Gx for all x ∈ X.

Let [E] ∈ H1(X,G). We can then consider the twisted X−group sheaf EG =
E ∧G G. We will henceforth assume that EG is representable, that is, a group scheme
over X (for example if G is ind quasi affine over X). This X−group is fppf locally
isomorphic to G, hence locally of finite type. We say that E is a toral G−torsor if
the X−group EG admits a maximal torus.6

3.3. Loop torsors. Throughout this section k will denote a field, X a geometrically
connected noetherian scheme over k, and Xsc = lim←− Xi its simply connected cover of

X with respect to a geometric point a of X arising from a rational point a0 ∈ X(k) as
described in §2. By Remark 2.5 we have a structure morphism ps : X

sc → Spec(ks).
This yields a natural group homomorphism pGs : G(ks) → G(Xsc). By Remark 2.5,
pGs is π1(X, a)−equivariant. More precisely, the group π1(X, a) acts on ks, hence on
G(ks), via the group homomorphism π1(X, a) → Gal (k) of (2.2). This action is
continuous and together with pGs yields a map of pointed sets

H1
(
π1(X, a),G(ks)

)
→ H1

(
π1(X, a),G(Xsc)

)
.7

On the other hand, by Proposition 2.3 and basic properties of torsors trivialized by
Galois extensions, we have

H1
(
π1(X, a),G(Xsc)

)
= lim−→ H1

(
AutX(Xi),G(Xi)

)

= lim−→ H1(Xi/X,G) ⊂ H1(X,G).

By means of the foregoing observations we can make the following.

Definition 3.2. A G−sheaf torsor E over X is called a loop sheaf torsor if its
isomorphism class [E] in H1(X,G) belongs to the image of the composite map

H1
(
π1(X, a),G(ks)

)
→ H1

(
π1(X, a),G(Xsc)

)
⊂ H1(X,G).

If E is representable, then we say that it is a loop torsor.

6 If G = GX for some algebraic k−group G we recover the definition of toral G−torsor given in
[GP0].

7 We remind the reader that these H1 are defined in the “continuous” sense (see Remark 2.4).
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3.4. Variations of the fundamental group. For applications of loop torsors or
sheaf torsors, the fundamental group π1(X, a) is often too big and it suffices to work
with some of its quotients. Below we define two of the most useful cases.

As above, k is a field and ks the separable closure of k in a fixed algebraic closure
k of k. We let p be the characteristic exponent of k. Γk = Gal(ks/k) will denote the
absolute Galois group of k.

For a profinite group G, we denote by G(p
′) its maximal prime to p quotient: it

is the quotient of G by the closure of the (normal) subgroup G[p] generated by the
pro-p–Sylow subgroups of G. Applying this construction to π1(X, a) we then get the
profinite group π1(X, a)

(p′).
Another useful quotient of π1(X, a) is the following one. Since π1(Xks, a)

[p] is normal
and closed in π1(X, a), we can define the quotient π1(X, a)

(p′−geo) = π1(X, a)/π1(Xks, a)
[p].

Altogether we have a commutative diagram of exact sequences of profinite groups

1 // π1(Xks , a) //

��

π1(X, a)

��

// Gal(ks/k) //

=

��

1

1 // π1(Xks, a)
(p′)

=
��

// π1(X, a)
(p′−geo)

��

// Gal(ks/k)

��

// 1

1 // π1(Xks, a)
(p′) // π1(X, a)

(p′) // Gal(ks/k)
(p′) // 1

By Galois theory, we have the associated cover Xsc,p′−geo (resp. Xsc,p′) of X called
the universal geometrical p′-cover (resp. universal p′–cover). In particular ks admits
the maximal p′-Galois subextension k(p

′).
In what follows a Galois p′−geometric cover of X means a finite Galois cover of X

whose Galois group arises as a quotient of π1(X, x)
p′−geo.

Definition 3.3. A G−(sheaf) torsor E over X is called a p′-geometric loop torsor if
its isomorphism class [E] in H1(X,G) belongs to the image of the composite map

H1
(
π1(X, a)

(p′−geo),G(ks)
)
→ H1

(
π1(X, a),G(Xsc)

)
⊂ H1(X,G).

Definition 3.4. A G−(sheaf) torsor E over X is called a p′-loop torsor if its isomor-
phism class [E] in H1(X,G) belongs to the image of the composite map

H1
(
π1(X, a)

(p′),G(k(p
′))
)
→ H1

(
π1(X, a),G(Xsc)

)
⊂ H1(X,G).

According to the definitions we thus have the inclusions of pointed sets

H1
p′−loop(X,G) ⊆ H1

p′−geo−loop(X,G) ⊆ H1
loop(X,G).
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4. The loop nature of toral torsors for extensions of locally
constant k−groups by reductive groups

Throughout this section k is a field whose characteristic exponent will be denoted
by p, and X a geometrically connected noetherian scheme over k.

Let us begin by explaining the relevance of considering k−groups obtained by
extending a locally constant group by a reductive group. If G is a reductive k−group,
then Aut(G) is a smooth k−group that fits in the exact sequence

1→ Gad → Aut(G)→ Out(G)→ 1

where Gad = Aut(G)◦ = G/Z(G) is the adjoint group of G, and Out(G) is a
twisted constant group. Aut(G) is an algebraic group if G is semisimple, but in
general it is only locally algebraic. For example, if G is a two-dimensional split torus,
then Aut(G) = Out(G) is the constant k−group corresponding to the (abstract)
group GL2(Z).

Up to isomorphism, reductive X−groups which are twisted forms of GX are classi-
fied by H1

(
X,Aut(G)

)
. We may want to understand if a given reductive X−group

is loop, or if it has a maximal torus. This involves an X−torsor E under Aut(G).
In [G1] and [GiPa] it is shown that the right approach to the question is through

an H1(X, G̃) where, roughly speaking, G̃ plays the role of Aut(G) with the adjoint

group replaced by G itself. This H1(X, G̃) keeps track of both E and the twisted
X−group EG.

***
In what follows we will deal with an exact sequence of k−groups 8

(4.1) 1→ G→ G̃→ J→ 1

where
(a) G is reductive, and
(b) J is twisted constant.

Lemma 4.1. The k−group G̃ is locally algebraic, smooth and ind quasi affine.

Proof. We may assume without loss of generality that k is algebraically closed.9 We

claim that then G̃ is a disjoint union of copies of G, in particular locally algebraic,
étale and, by [SP, 37.66.1], ind quasi affine.

To establish the claim it will suffice to show that the map G̃(k)→ J(k) is surjective.

Let x ∈ J(k). There exists a k−ring of finite type R and an element gR ∈ G̃(R) such
that gR maps to the image xR of x in J(R). If m is a maximal ideal of R, then by

8 Throughout exact sequence is meant as an exact sequence of fppf sheaves of the base scheme.
9 That the property of being ind quasi affine is stable under base change is clear; that this

property descends is a result of Gabber [SP, Tag 0APK].
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functoriality we see that under the map G̃(R) → J(R/m) = J(k) the element gR
maps to x. �

Remark 4.2. It follows from the Lemma that all G̃−sheaf torsors over a k−scheme
X are representable, that is, they are torsors.

Since G is quasicompact (being affine) the morphism G→ G̃ is a closed immersion
([SGA3, VIA Prop. 2.5.2]). We will henceforth identify G with a closed subgroup of

G̃.
For details about the connected component of the identity G̃

◦

of G̃, see [SGA3,

VIA,B]. SinceG is connected and J is a discrete topological space, we see that G̃
◦

= G.

If S is a k−subgroup of G̃ that is a torus, then S is connected and therefore S ⊂ G.

Thus if T is a maximal torus of G, then T is a maximal torus of G̃ (see §3.2). If

follows that the k−functor Tor(G̃) of maximal tori of G̃ is a k−scheme isomorphic
to Tor(G) . Moreover, Tor(G) ≃ G/NG(T) (see [SGA3, XXII §5.8]).

Let Ẽ be a G̃−torsor over X and consider the reductive X−group ẼG := Ẽ(GX).
We fix a maximal torus T of G and recall that N = N

G̃
(T) is a closed k-subgroup

of G̃ (see [SGA3, VIB 6.2.5]), hence locally algebraic. Let Ẽ be a G̃−torsor over X

and consider the X−group ẼG̃ := Ẽ(G̃X) := Ẽ ∧G̃ G̃.10 It is a twisted form (fppf) of

G̃, hence locally of finite presentation over X. Since G is a normal subgroup of G̃ we

can also consider the X−group ẼG := Ẽ(GX) := Ẽ ∧G̃X GX . It is a twisted form of
GX , hence reductive.

Assume for the moment that [Ẽ] ∈ im[H1(X,N) → H1(X, G̃)]. We can then

consider the twisted X−torus ẼT := Ẽ ∧NX TX . The main result of this section is
the following.

Theorem 4.3. Assume that X = Spec(A) is affine, integral, normal, has a rational

point, i.e. X(k) 6= ∅. Let Ẽ be a G̃-torsor over X such that ẼG̃ admits a maximal

X–torus T′ (in other words Ẽ is toral). Let Y = Spec(B) be a (connected) Galois
cover of X satisfying the following three conditions:

(a) Pic(B) = 0;

(b) TB is split;

(c) Ẽ ×X Y is trivial.

Then:

(i) The G̃X-torsor Ẽ admits a reduction to an N-torsor Ê such that Ê is split by
Y/X and ÊT is isomorphic to T′.

10 A priori
Ẽ
G̃ is a group sheaf over X. That it is representable –i.e., that it is a group scheme

over X– follows from [G1, Lemma 2.7] and [SP, Tag 0APK], given that G̃X is an ind-affine scheme
over X (Lemma 4.1 and [SP, Tag 0AP7]).
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(ii) Assume furthermore that the X−torus T′ is split by a finite Galois extension

X ′ of X of p′-degree with trivial Picard group. Then Ẽ is a loop G̃−torsor.

(iii) Assume furthermore that Y/X is a p′-geometric cover and that the X−torus
T′ is split by a finite Galois extension X ′ of X of p′-degree with trivial Picard group.

Then Ẽ is a p′-geometric loop G̃−torsor.

The proof, which will be given at the end of the section, involves some preliminary
results and considerations.

4.1. Torsors under locally constant groups.

Lemma 4.4. Let K be a twisted contant k−group. Then K is étale and Ks = K×kks
is constant.

Proof. That Ks is constant is shown in [DG, I §4.6.2]. A constant group is clearly
étale. By fpqc descent K is étale. �

Lemma 4.5. Let J be a twisted constant k−group and E a J−torsor over X. If E is
isotrivial, then E is a loop torsor.

Proof. Let Js = J×k ks. By the last Lemma Js is constant. In particular J is locally
of finite presentation (by fpqc descent). Observe that:

(a) Since [E] is isotrivial and X is noetherian, we see by Proposition 3.1 that
[E] becomes trivial after passage to Xsc. We can thus view [E] as an element of
H1

(
π1(X, a),J(X

sc)
)
.

(b) The canonical map J(ks) → J(Xsc) is bijective and, because of (??), an iso-
morphism of π1(X)−modules.

It follows from (a) and (b) that [E] ∈ H1(π1(X),J(ks)). Thus E is by definition a
loop torsor. �

Corollary 4.6. Assume that X is normal. Every X−torsor under a twisted constant
k−group J is loop.

Proof. Indeed, any such torsor is isotrivial by [G1] Lemma 2.14. �

Lemma 4.7. Let 1 → F0
i
−→ F

h
−→ F1 be an exact sequence of locally algebraic

k−groups. Assume that F0 and F1 are twisted constant k−groups. Then F is a
twisted constant k−group.

Proof. We may assume without loss of generality that k is separably closed. Thus
F0 and F1 are constant by Lemma 4.4. Let F◦ (resp. F◦

0, F
◦

1) be the connected
component of the identity of F (resp. F0, F1), see [SGA3, VIA 2.3]. Since F◦

1 = {eF1
}

([DG, II §5.1.4]) and h is continuous, we have h(F◦) = F◦

1. It follows that F◦ is a
k−subgroup of ker h. The morphism j : F◦ → ker h ≃ F0 is in fact a monomorphism
([SGA3, VIB 1.4.2]), hence injective on points. But j maps F◦ into F◦

0 = {eF0
}. Thus

F◦ = {eF}. By [DG, II §5.1.4] F is étale, hence constant ([DG, I §4.6.2]). �
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4.2. Proof of Theorem 4.3. Let Ẽ be a G̃−torsor overX and consider the reductive
X−group ẼG := Ẽ(GX). Recall that T is a maximal torus of G which is fixed in
our discussion. By means of the above considerations we view T as a maximal torus

of G̃. As already shown the normalizer N
G̃
(T), which we denote by N, is a closed

k−subgroup of G̃.

Proposition 4.8. Under the assumptions of Theorem 4.3, the G̃X-torsor Ẽ admits

a reduction to an N-torsor Ê such that Ê is split by Y/X and ÊT is isomorphic to
T′.

Proof. We begin by establishing the following auxiliary statement.

Lemma 4.9. Let R be a ring satisfying Pic(R) = 0. Let H be a reductive R-group
scheme. Assume that H admits a maximal torus T which is split. Then H is split
with respect to a Killing couple (T,B). Furthermore split maximal tori (resp. Killing
couples) of H are H(R)–conjugate to T (resp. (T,B)).

Proof. In view of [SGA3, XXII.5.5.1], H admits a Borel subgroup B containing T.
The fact that H is split is [Co, Ex. 5.1.4]. For establishing the assertion regarding
conjugacy, it is enough to show H(R)-conjugacy for Borel subgroups of H and B(R)–
conjugacy for maximal tori of B. The last fact is general [SGA3, XXVI.1.8]. As for
the first, in view of [SGA3, XXII.5.8.3], the R-scheme H/B represents the R-functor
of Borel subgroup schemes of H. We have an exact sequence of pointed sets

H(R)→ (H/B)(R)→ H1(R,B)

According to [SGA3, XXVI.2.3], the map H1(R,T) → H1(R,B) is bijective; since
T ∼= Gr

m,R, we have H1(R,T) = Pic(R)r = 0. The map H(R) → (H/B)(R) is thus
onto and therefore Thus H(R) acts transitively on the set of Borel subgroups of H. �

We now return to the proof of Proposition 4.8. The fact that Ẽ admits reduction

Ê such that ÊT is isomorphic to T′ follows immediately from [G2, lemme 2.6.2]. But

we need a little bit more, namely that we can choose Ê such that it is split by Y/X .

By our condition there is an isomorphism of group schemes φ∗ : GY
∼
−→ ẼGY

.

Then TY and φ−1
∗

(
T′

Y ) are split maximal of GY . According to Lemma 4.9, TY and

φ−1
∗

(
T′

Y ) are G(Y )–conjugated, that is gTY = T′
Y for some g ∈ G(Y ). A fortiori

they are G̃(Y )-conjugated. Inspection of the proof of [G2, lemme 2.6.2] shows that g

defines a reduction of Ẽ to an N–torsor Ê which is split by Y and such that X-torus

ÊT is isomorphic to T′. �

The quotient N/T exists in the category of locally algebraic k−groups ([SGA3,
VIA 3.3.2 and 5.2]), and will be denoted by W. The kernel of the induced k−group
morphism N/T = W→ J is NG(T)/T, a finite étale, in particular twisted constant,
k−group that we will denote by W0 [SGA3].
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Lemma 4.10. The k−group W is twisted constant.

Proof. We have seen that W is locally algebraic. We have the exact sequence

1→W0
i
−→W

h
−→ J.

We can now conclude with the aid of Lemma 4.7. �

Remark 4.11. By [GiPa, Lemma 3.1] the map h : W→ J is surjective.

Recall that by Remark 2.5(a), Xsc comes equipped with ks−scheme structure.
This yields a natural homomorphism N(ks) → N(Xsc) which is π1(X)−equivariant
since the action of π1(X) on these two groups is given by precomposition with the
right action of π1(X) on ks and Xsc respectively. For example, if α ∈ π1(X) and
f ∈ N(Xsc) := HomSch/X(X

sc,NX), then (αf)(x) = f(xα) for all x ∈ Xsc. This

yields a map of distinguished sets δN : H1
(
π1(X),N(ks)

)
→ H1

(
π1(X),N(Xsc)

)
.

Similar considerations apply to T, and we have a map of pointed sets

δT : H1
(
π1(X),T(ks)

)
→ H1

(
π1(X),T(Xsc)

)
.

The foregoing discussion and the exact sequence of k−groups

1→ T→ N→W→ 1

yields the commutative diagram of pointed sets with exact rows

H1
(
π1(X),T(ks)

) ρ
−−−→ H1

(
π1(X),N(ks)

) µ
−−−→ H1

(
π1(X),W(ks)

)

δT

y δN

y ||

H1
(
π1(X),T(Xsc)

) ρ′

−−−→ H1
(
π1(X),N(Xsc)

) µ′

−−−→ H1
(
π1(X),W(Xsc)

)
.

The last vertical arrow is the equality/identification given by Corollary 4.6.

By Proposition 4.8, the torsor [Ê] is isotrivial. By Proposition 2.3 we henceforth

view [Ê] as an element of H1
(
π1(X),N(Xsc)

)
. To establish Theorem 4.3 (ii), it will

thus suffice to show that [Ê] is in the image of δN.

Consider the image [F ′] ∈ H1
(
π1(X),W(Xsc)

)
of [Ê] under µ′, and let [F ] ∈

H1(π1(X),W(ks)) be the element corresponding to [F ′] under the bijection/identification
H1

(
π1(X),W(ks)

)
≃ H1

(
π1(X),W

)
= H1

(
π1(X),W(Xsc)

)
.

We divide the proof into two pieces:

Step 1: [F ] has a preimage [E] ∈ H1(π1(X),N(ks)
)
.

Step 2: If [F ] has a preimage [E] ∈ H1(π1(X),N(ks)
)
the Theorem holds.

Proof of Step 1. By [Se1, Ch. I §5.6 Prop. 4 ] the obstacle to the existence
of [E] is an element [b] ∈ H2(π1(X), FT(ks)

)
. The structure map ps : Spec(Asc) →

Spec(ks) we have constructed in Remark 2.5(a) is a π1(X)−module map, hence the
natural group homomorphism FT(ks) → FT(Asc) induces a group homomorphism
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η : H2(π1(X), FT(ks)
)
→ H2(π1(X), FT(Asc)

)
. Since [F ′] has a lift, we see that [b]

belongs to the kernel of η. It will thus suffice to show that η is injective.
By Remark 2.5(b) ps admits a section σ that is π1(X)−equivariant. This yields a

group homomorphism

ρ : H2(π1(X), FT(Asc)
)
→ H2(π1(X), FT(ks)

)
.

Since τ◦σ = IdSpec(ks) we conclude that ρ◦η is the identity map ofH2(π1(X), FT(ks)
)
.

In particular, η is injective.

Proof of Step 2. Just like [Ê], the image [E ′] := δN([E]) ∈ H
1
(
π1(X),N(Xsc)

)

also maps to [F ′] under µ′. To take advantage of this situation we will twist our
relevant exact sequence of H1s by E and E ′ as we now explain.

In addition to the “constant” action of π1(X) on N(Xsc) described above, there
is also a twisted action by E ′ of π1(X) on N(Xsc) which, following Serre we denote
by α′f for α ∈ π1(X) and f ∈ N(Xsc). It is defined as follows: E ′ is a cocycle
in Z1

(
π1(X),N(Xsc)

)
and as usual we denote E ′(α) by E ′

α. Being a cocycle means
that E ′

αβ = E ′
α
αE ′

β for all α, β ∈ π1(X). The twisted action is then given by α′f =
E ′

α(
αf)E ′

α−1 . The group N(Xsc) viewed with this twisted action will be denoted by

E′N(Xsc). Thus E′N(Xsc) is the group N(Xsc) with a different π1(X)−action.11 The
twisted action is also continuous and one then defines H1

(
π1(X), E′N(Xsc)

)
in the

standard fashion.
Since T is a normal subgroup of N conjugation by an E ′

α leaves T(Xsc) stable.
This allows us to define on the group T(Xsc) a twisted action of π1(X) that is de-
noted by E′T(Xsc), and corresponding cohomology H1

(
π1(X), E′T(Xsc)

)
. Similarly

considerations apply to W and F ′.

All the above considerations apply to T, N and W if we replace E ′ by E, F ′ by F,
and Xsc by ks.

We thus get a twisted version of the above diagram, namely

H1
(
π1(X), ET(ks)

) ρE−−−→ H1
(
π1(X), EN(ks)

) µE−−−→ H1
(
π1(X), FW(ks)

)

δE
T

y δE
N

y ||

H1
(
π1(X), E′T(Xsc)

) ρE′

−−−→ H1
(
π1(X), E′N(Xsc)

) µE′

−−−→ H1
(
π1(X), F ′W(Xsc)

)
.

Remark 4.12. As maps of sets, the maps of this diagram are the same as before:
ρE = ρ, δE

T
= δT, ... . The subscript E is used to indicate that they are being applied

to classes of cocycles with respect to the twisted action of π1(X).

11There is a twisted X−group E′N defined by the contracted product E′ ∧N NX . Ignoring
π1(X)−actions, the Xsc points of this X−group is the (abstract) group N(Xsc). Our notation is
thus unambiguous.
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There exists a twisting bijection

τE′ : H1
(
π1(X),N(Xsc)

)
≃ H1

(
π1(X), E′N(Xsc)

)

defined as follows: let [Y ] ∈ H1
(
π1(X),N(Xsc)

)
, where Y ∈ Z1

(
π1(X),N(Xsc)

)
is

a cocycle. We define τE(Y ) := Y ′ : π1(X) → N(Xsc) by α 7→ Y ′
α := Yα(E

′
α)

−1. One
checks that this is a cocycle with respect to the twisted action, namely Y ′

αβ = Y ′
α
α′Y ′

β.

That τE′ is a bijection is easy to show. Note that τE′ : [E ′] 7→ [1].12 Similarly, we have
a twisting bijection τE : H1

(
π1(X),N(ks)

)
≃ H1

(
π1(X), EN(ks)

)
.

Since µE′(τE′([Ê])) = 1, there exists a class [Y ′] ∈ H1(π1(X), E′T(Xsc)
)
such that

ρE′([Y ′]) = τE′([Ê]). We claim that if there exists [Y ] ∈ H1
(
π1(X), ET(ks)

)
such

that δE
T
([Y ]) = [Y ′], then Theorem 4.3(ii) holds, that is, Ê is an N−loop torsor.

Indeed, we need to show that, up to equivalence, Êα ∈ N(ks) for all α ∈ π1(X). Let

[Z] = ρE([Y ]). Then [Ê] = τE′
−1
(
τE′(Ê)) = τE′

−1
(
δN([Z])

)
. Since ZαEα ∈ N(ks),

the claim holds.
We are thus reduced to showing that [Y ] as in the claim exists. By construction

[Y ′] ∈ H1(π1(X), E′T(Xsc)
)
. Recall that by assumption the X−torus ÊT is split by

a Galois extension X ′ of X of degree m not divisible by p. But then the same is true

for the X−torus E′T. Indeed for all α ∈ π1(X), E ′
α = Êαtα for some (unique) element

tα ∈ T(Xsc). Thus, conjugating T(Xsc) by E ′
α or Êα is the same.

Lemma 4.13. m[Y ′] = 0.

Proof (of the Lemma). Let π̃ be the kernel of the canonical group homomorphism
π1(X)→ Gal(X ′/X).13 We have the exact sequence of groups

H1(π1(X), E′T(Xsc)
) res
−→ H1(π̃, E′T(Xsc)

) cor
−→ H1(π1(X), E′T(Xsc)

)

with cor ◦ res being equal to scalar multiplication by m. The Lemma will follow
if we can show that [Y ′] is killed by the restriction map to X ′. To see that this
holds observe that the X−torus E′T is split by X ′, hence (E′T)X′ is the product of
n−copies of Gm,X′. But then since by assumption X ′ has trivial Picard group, we
have H1

(
π̃, E′T(Xsc)

)
⊂ H1

(
X ′, (E′T)

X′

)
= 0. �

Assume that X = Spec(A) and let Xsc = Spec(Asc). We make some relevant
observations:

(i) Since X is normal the finite Galois extensions Xi = Spec(Ai) used to define
Xsc, namely Asc = lim−→Ai, are integral domains. Thus Asc is an integral domain.

12 The nature of the twisting bijection τE′ : H1(X,N)→ H1(X,E′N) is given in [DG, Ch. III, §4,
3.4]) (where the inverse of our map is described is terms of contracted products). We are describing
explicitly how this bijection looks like, in term of cocycles, when restricted to isotrivial torsors.

13 Since X ′ is connected we can view Xsc as the simply connected cover of X ′. Then π̃ =
π1(X

′, a). See [SGA3, IX Rem.5.8].
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(ii) The m−th power map e : Asc× → Asc× is surjective. Indeed, if a ∈ Asc× then
B = Asc[t]/ < tm − a > is a finite étale extension of Asc, hence trivial (disjoint union
of a finite number of copies of Xsc). Thus a ∈ (Asc×)

m
.

(iii) Let K ⊂ Asc× be the kernel of e. Then K = µµµm(ks) since Asc is an integral
domain.

Recall that the π1(X)−module
E′
T(Xsc) is the group T(Xsc) with the twisted

action of π1(X). Since T×k X
sc is split, E′T(Xsc) = Asc× × · · · × Asc× ; the product

of n−copies of Asc× where n = dimk(T). We will denote this Galois module by N.
Let us denote also by e the m−power map of T(Xsc) (the m−th power in each

component). Since the twisted action of π1(X) on T(Xsc) is by group automorphisms,
we get an exact sequence of π1(X)−modules

1 −→ M −→ N
e
−→ N −→ 1.

where M is the π1(X)−module
E′mT(Xsc).

Passing to cohomology yields

H1
(
π1(X),M

)
−→ H1

(
π1(X), N

) e∗
−→ H1

(
π1(X), N

)
.

By the last Lemma [Y ′] is in the kernel of e∗, hence it comes from an element [Y ] ∈
H1

(
π1(X),M

)
. But M = µµµm(ks)

n and the group µµµm(ks)
n with the twisted action of

π1(X) is precisely them−torsion submodule of ET(ks).Thus [Y ] ∈ H
1
(
π1(X), ET(ks)

)

and δE
T
([Y ]) = [Y ′] as desired. This completes the proof of Step 2.

Proof of the Theorem 4.3 (iii). The argument is analogous to the one given
above if we replace the universal cover Xsc → X by its universal p′-geometric cover
Xsc,p′−geo → X .

Remark 4.14. The assumption on the degree of the Galois extension X ′/X cannot

be removed. We give two examples below. In the first example G̃ = G = T is a torus

and in the second one G̃ = G = PGLp is semisimple. Throughout X = Spec(k[t±1]).

Example 1. Assume char(k) = p and k admits a Galois extension ℓ of degree p whose
Galois group we denote by Γ. We fix a generator σ ∈ Γ. Let Tk = Rℓ/k(Gm)/Gm.

Claim 1: T ≃ R
(1)
ℓ/k(Gm). Indeed, the map Rℓ/k(Gm) → R

(1)
ℓ/k(Gm) given by x →

x1−σ is surjective by Hilbert’s Theorem 90 and its kernel is Gm.

Claim 2: One has H1(X,T) = k×/Nℓ/k(k
×) ⊕ Z/pZ. To prove the claim we first

observe that R
(1)
ℓ/k(Gm) (and hence T) is split over Xℓ = Spec(ℓ[t±1]), and that

Pic(Xℓ) = 1. It follows

H1(X,T) = H1(X,R
(1)
ℓ/k(Gm)) = H1(Γ,R

(1)
ℓ/k(Gm)(Xl))



18 VLADIMIR CHERNOUSOV, P. GILLE, AND A. PIANZOLA

and hence

H1(X,T) = H1(Γ, ℓ[t±1]× ⊗Z X(R
(1)
ℓ/k(Gm))∗)

= H1
(
Γ, (ℓ× ⊕ Z)⊗Z X(R

(1)
ℓ/k(Gm))∗

)

= H1
(
Γ, k× ⊗Z X(R

(1)
ℓ/k(Gm))∗)⊕H

1
(
Γ, X(R

(1)
ℓ/k(Gm))∗

)

= k×/Nℓ/k(k
×)⊕ Z/pZ

We let [E] be a generator of the second summand Z/pZ.

Claim 3: [E] is not a loop torsor. Indeed, the exact sequence

1 −→ Gm −→ Rℓ/k(Gm) −→ T −→ 1

gives rise to

1 = H1(X,Rℓ/k(Gm)) −→ H1(X,T)
δ
−→ H2(X,Gm) = Br(X).

Tracing through the construction of the connecting homomorphism δ one can easily
see that δ([E]) is the class of the cyclic algebra A = (ℓ/k, t). If K = k(t) and v is the
discrete valuation of K related to the variable t, one can see that AKv

has nontrivial
residue. In particular that [A] 6= 1.

On the other hand, assume that [E] is loop. Then it comes from an element

of H1(π1(X),T(ks)). Passing from k to k̃ = k−p∞ we can assume without loss of

generality that k and ks are perfect. This implies that the p-power map ks
p
−→ ks is

bijective, hence that H2
(
π1(X),T(ks)

)
has no elements of order p.

Consider next the commutative diagram

H1
(
π1(X),Rℓ/k(Gm)(ks)

)
−−−→ H1

(
π1(X),T(ks)

) δ′
−−−→ H2

(
π1(X),Gm(ks)

)
y µ

y ρ

y

H1
(
X,Rℓ/k(Gm)

)
−−−→ H1(X,T)

δ
−−−→ H2(X,Gm) .

Let α ∈ H1
(
π1(X),T(ks)

)
be such that µ(α) = [E]. Since [E] has order p and since

H1
(
π1(X),T(ks)

)
is a periodic group we may assume that α has order p. It follows

that ρ(δ′(α)) = 0. On the other hand,

ρ(δ′(α)) = δ(µ(α)) = δ([E]) = [A] 6= 1.

This contradiction completes the proof of Claim 3.

Example 2. We keep the same notation as in Example 1. Let G = PGLp. We have
a canonical embedding T →֒ G. Consider the above constructed class [E] ∈ H1(X,T)
and as usual we denote its image in H1(X,G) by [EG]. As above we have a connected
map

δ : H1(X,G)→ H2(X,Gm) = Br(X).

The image δ([EG]) of [EG] coincides with [A] 6= 1. Arguing as above we conclude
that EG is not a loop torsor.
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5. The toral nature of loop torsors for extensions of locally
constant k−groups by reductive groups

Throughout this section k is a field, and p its characteristic exponent. We let k′ be
a finite Galois extension of k. Its Galois group will be denoted by Γ.

5.1. Semilinear considerations. Let A be a k′−algebra (not necessarily associa-
tive, ...). A semilinear automorphism of A is an automorphism σ of the underlying
abelian group structure of A such that for all a, b ∈ A and λ ∈ k′

SL1: σ(ab) = σ(a)σ(b), and
SL2: there exists σ̃ ∈ Γ such that σ(λa) = σ̃λ σ(a).

If A is commutative associative and unital we also require that σ(1) = 1. In this
case A contains a canonical copy of k′. In view of SL2 we then have

SL2′ : σ(λ) = σ̃λ for all λ ∈ k′.

The element σ̃ of SL2 is unique and is called the type of σ. It is clear that the set
AutΓ(A) of semilinear automorphisms of A is a group under composition, and that
the type of a product is the product of the types.

Let H be an (abstract) group. A Γ−semilinear action of H on A is a group

homomorphism φ : H → AutΓ(A). If h ∈ H , we denote the type of φ(h) by h̃; it is

an element of Γ. The map h → h̃ is a group homomorphism φ̃ : H → Γ. We denote
the kernel of φ̃ by H̃. Thus h ∈ H̃ if and only if the action of φ(h) in A is k′−linear
or, what is equivalent, if φ(h) is an automorphism of the k′−algebra A.

The concept of semilinearity extends to coalgebras. We define it explicitly for the
case that matters to us. Let G an algebraic group over k′. We denote for convenience
the coordinate ring k′[G] ofG by A. Then A is endowed with a Hopf algebra structure
whose comultiplication we denote by ∆.

Let σ be a semilinear automorphism of the associative commutative unital k′−algebra
A. It is simple to verify that there is a unique additive map σ⊗σ : A⊗k′A→ A⊗k′A
satisfying σ ⊗ σ(a⊗ b) = σ(a)⊗ σ(b). Moreover, σ ⊗ σ is a semilinear automorphism
of type σ̃ of the k′−algebra A⊗k′ A. We say that σ is a semilinear automorphism of
A (as a Hopf-algebra) if

HSL: ∆ ◦ σ = σ ⊗ σ ◦∆.

We denote the group of such automorphisms by AutΓ(A). Let H be a group. A
Γ−semilinear action H by automorphisms of G is a group homomorphism H →
AutΓ(A).

Remark 5.1. If H acts Γ−semilinearly as automorphism of an algebra A, then the
action is by k−linear maps, so it is an action by automorphisms of A viewed as
a k−algebra. This observation does not work for semilinear actions on our Hopf
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algebras A : There is in general no natural k−Hopf algebra structure on A. Condition
HSL is the right assumption to use.

Remark 5.2. Let σ ∈ AutΓ(A), and let σ̃ be the type of σ. Recall that σ acts
on k′ ⊂ A like σ̃ (see SL2′). We extend this action naturally to the ring of dual
k′−numbers k′[ǫ] = k[ǫ] ⊗k k

′, ǫ2 = 0. Note that the natural maps k′[ǫ] → k′ and
k′ → k′[ǫ] commute with the action of σ.

Lemma 5.3. Let k′/k, Γ and G be as above. Let H be a group. A Γ−semilinear
action of H by automorphisms of G induces in a natural way a Γ−semilinear action
of H by automorphisms of the Lie algebra g of G.

Proof. We begin by recalling, not just for the proof of the Lemma but for future
reference, the definition of g in terms of dual numbers. Let ǫG : A = k′[G] → k′

denote the counit map. As k′-spaces we have A = k′ ⊕ IG where IG is the kernel of
ǫG.

An ǫG−derivation of A is an element of Derk′(A, k
′) where k′ is viewed as a A–

module via the counit map ǫG. In other words, an ǫG−derivation of A is a k′−linear
map δ : A→ k′ satisfying δ(ab) = ǫG(a)δ(b) + ǫG(b)δ(a) for all a, b ∈ A.

Consider the ring of dual k′−numbers k′[ǫ]. The ring homomorphism k′[ǫ] → k′

given by ǫ 7→ 0 induces a group epimorphism G(k′[ǫ]) → G(k′). The kernel of this
morphism is by definition g. It consists of all elements of G(k′[ǫ]) of the form

a 7→ ǫG(a) + δ(a)ǫ

where a ∈ A and δ is an ǫG−derivation of A. We denote by δx the ǫG−derivation
corresponding to x ∈ g, that is x = ǫG + δxǫ. The k

′−space structure is such that λx
corresponds to λδx.

The bracket of ǫG−derivations is defined by

[δ1, δ2] = µA ◦ (δ1 ⊗ δ2 − δ2 ⊗ δ1) ◦∆.

where µA is the multiplication of the k′−algebra A. In terms of groups, if xi = ǫG+δiǫi,
i = 1, 2, then in G(k′[ǫ1, ǫ2]) we have

x1x2x
−1
1 x−1

2 = ǫG + [δ1, δ2]ǫ1ǫ2.

We now turn to the proof of the Lemma. If δ is an ǫG−derivation and σ ∈ AutΓ(A),
it is straightforward to verify that σδ := σ̃ ◦ δ ◦ σ−1 is an ǫG−derivation. If x ∈ g we
let σx be the element of g that corresponds to σ(δx). Thus

σx = ǫG + σ(δx).
It is clear that σ(δ1 + δ2) =

σδ1+
σδ2, and that σ[δ1, δ2] = [σδ1,

σδ2]. Furthermore, if
λ ∈ k′, x ∈ g, we have

(
σ(λδ)

)
(a) = σ̃

(
λδ(σ−1(a))

)
= σ̃λ σδ(a).

This translates, under our identification of g with ǫG−derivations of A, into a semi-
linear action of Γ by automorphism of g.
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We have thus shown that the elements of AutΓ(A) can be naturally seen as elements
of AutΓ(g). Since this process is visibly a group homomorphism, the Lemma follows.

�

Remark 5.4. A slightly different proof of this Lemma is given in [GP0, Cor. 4.7].
The above argument is more direct and sufficient for our purposes. It also makes
some of the notation and argument in subsequent proofs easy to follow.

Let φ be a Γ−semilinear action of H (on an algebra or an algebraic group, as
described above). We say that φ (or H by abuse of language) is super solvable, or
simply of type (S), if there exists a finite family of subgroups Hs ⊃ Hs−1 ⊃ ... ⊃ H1 ⊃
H0 = 0 of H satisfying the following condition:

(S) ker(φ̃) = Hs = H̃. Furthermore, each Hi is normal in H and the quotients
Hi/Hi−1 are cyclic.

Remark 5.5. Recall that H̃ is the subgroup of H consisting of elements of trivial
type. The condition Hs = H̃ then says that, in the case of algebras, the elements of
Hs act as k′−linear transformations. In other words, they act as automorphisms of
the k′−algebra under consideration.

Remark 5.6. Let σ ∈ AutΓ(A). Let T be a k′−subgroup of G. Then k′[T] = A/I
for some (unique) Hopf ideal I of A. View σ as an automorphism of Spec(k′). By base
change we get a new k′−group σT.

By definition k′[σT] = k′[T] ⊗k′ k
′ = (A/I) ⊗k′ k

′ where k′ is viewed as a ring
extension of k′ via the ring (iso)morphism σ : k′ → k′; that is, (λa+I)⊗1 = (a+I)⊗σ̃λ
for all a ∈ A and λ ∈ k′.

One easily verifies that σ(I) is a Hopf ideal of A, and that the map (A/I)× k′ →
A/σ(I) given by (a+ I, λ) 7→ σ̃λσ(a) + σ(I) induces a k′−Hopf algebra isomorphism
k′[σT] ≃ A/σ(I). It follows that we can canonically identify σT with a k′−subgroup
of G. Furthermore, σ is a k′−group isomorphisms between T and σT. In particular,
if T is a maximal torus of G so is σT.

5.2. Semilinear version of a theorem of Borel-Mostow and Winter. If g is
a Lie algebra over a field extension K of k and d ∈ DerK(g), then dp (viewed as a
K-linear endomorphism of g) is, by Leibnitz rule, actually an element of DerK(g).
Following [W] we say that g is w-restricted if the p-th power of all inner derivations
is inner: if x ∈ g, there exists y ∈ g such that (adg x)

p = adg(y).
14

Theorem 5.7. (Semilinear Borel-Mostow-Winter)
Let g be a finite dimensional w−restricted k′-Lie algebra. Let φ be a Γ−semilinear

action of a group H by automorphisms of g. Assume that:

14 The terminology stands for weakly restricted. The concept of restricted Lie algebra over a field
of positive characteristic is due to Jacobson (see [Jac]). Restricted Lie algebras are w−restricted.
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(a) H is of type (S).
(b) The elements of Hs act semisimply on g.15

Then there exists a Cartan subalgebra of g which is stable under the action of H.

Proof. Observe for future reference that if f is a Lie subalgebra of g that is stable
under the action of H , then we have a natural induced semilinear action of H by
automorphisms of f with the desired properties, namely (a) and (b) above.

If s = 0 we can by mean of condition (S) identify H with a subgroup Γ0 of Γ via

the type: Γ0 = φ̃(H). Thus, if h ∈ H and φ(h) = γ, then

(5.1) h(λx) := γ(λx) = γλhx

for all x ∈ g, λ ∈ k′.
Let k0 = k′Γ0 . This yields a k′/k0−semilinear action of Γ0 by automorphisms of g.

By Galois descent the fixed point g0 := gΓ0 is a Lie algebra over k0 for which the
canonical map ρ : g0 ⊗k0 k

′ ≃ g is a k′–Lie algebra isomorphism. It is easy to see by
Galois descent that g0 is w−restricted (see also [Jac] pg. 192). By [W] §6 the k0−Lie
algebra g0 admits a Cartan subalgebra h0. Then ρ(h0 ⊗k0 k

′) is a Cartan subalgebra
of g which is H–stable as one can easily see from (5.1).

Assume henceforth that s ≥ 1. We will reason by induction on ℓ = dim(g). The
result holds if ℓ = 0. Assume ℓ ≥ 1 and that the result holds for all w−restricted Lie
algebras of dimension less than ℓ equipped with a semilinear action of H satisfying
conditions (a) and (b) of the Theorem.

If n is a nilpotent subalgebra of g we will denote by g0(n) the null-space of n acting
on g via the adjoint representation, that is

g0(n) = {y ∈ g : ∀x ∈ n, (adx)n(y) = 0 for n large enough}.

Consider a generator θ of the cyclic group H1. We may assume that θ 6= 1 (we can
delete all the Hi for which Hi = Hi−1 and produce a new SLD with smaller s). As
we have already observed, the action of θ on g is k′–linear. The fixed point k′− Lie
subalgebra g1 = gθ of g is w−restricted [W] §6, second Lemma following Cor. 4. Let
h1 be a Cartan subalgebra of g1 stable under H. Then g2 = g0(h1) is w−restricted
[W] Theorem 5. Moreover, g2 is a solvable Lie algebra by [W] Theorem 2. It is clear
that g2 is H−stable.

Case 1: g2 6= g. By induction there is an H− stable Cartan subalgebra h2 of g2.
Then h := g0(h2) is H− stable, and it is a Cartan subalgebra of g by [W] Theorem 5.

Case 2: g2 = g. Let a be the last non-zero term of the derived series of g. It is
an abelian ideal that is H−stable. Let g = g/a. Being a quotient of a w−restricted
Lie algebra, g is w−restricted. Since a is H−stable there is a naturally induced
semilinear action of H on g. Moreover, the canonical surjective Lie algebra morphism

15 Because Hi ⊂ Hs = H̃ (see Remark 5.5), the action of the elements of Hi on g is k′–linear.
The assumption is that this action is semisimple as a k′–linear endomorphisms of g.
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− : g→ g is H−equivariant. Since dim(g) < dim(g) there exists an H−stable Cartan
subalgebra b of g. Let b be the preimage of b in g. It is H−stable, hence has an
induced semilinear action.

Claim: b is w−restricted.
Proof (of the claim). Let x ∈ b and chose y ∈ g such that (adg x)

p = adg y. Then

[y , b] ⊂ b. Since b is a Cartan subalgebra of g it follows that y ∈ b, hence that y ∈ b.
Thus (adb x)

p = adb y.

Case 2(i): dim(b) < dim(g). Let h be an H−stable Cartan subalgebra b. We claim
that h is a Cartan subalgebra of g. By [Bbk] Ch. 7 §2 Cor. 4, h is a Cartan subalgebra
of b. But b is its own Cartan subalgebra, so h = b. We need to show that h is self-
normalized in g. Assume x ∈ g is such that [x, h] ⊂ h. Then [x, h] ⊂ h. Since h = b

and b is a Cartan subalgebra of g, we get that x ∈ b. Then x ∈ b and therefore x ∈ h
since h is a Cartan subalgebra of b.

Case 2(ii): b = g. This can only happen if b = g, so g is nilpotent. Let h be a
Cartan subalgebra of g. As we saw h is a Cartan subalgebra of g, hence equal to g
since g is nilpotent. It follows that g = h+ a.

View a as an h−module. By Engel’s Theorem there exists a non-zero element z ∈ a
such [x, z] = 0 for all x ∈ h. Since a is abelian we see that the centre z of g is not
trivial. Note that since z is H−stable, g/z and has an induced semilinear action of
H. By induction there exists an H−stable Cartan subalgebra h of g/z. The preimage
h of h in g is H−stable. It is also a Cartan subalgebra of g by the reasoning of Case
2(i). �

Remark 5.8. If H = Hs the Theorem reduces to the “Main result (B)” of Borel
and Mostow [BM] for g (in characteristic 0), and Theorem 6 of [W] (in arbitrary
characteristic).

5.3. An application to reductive k−groups. We want to use the last Theorem
to prove the existence of H−stable tori on reductive k′−groups. We maintain the
previous notation. Thus, G is an algebraic group over k′. As before we denote its
coordinate ring k′[G] by A, and the comultiplication of the Hopf algebra structure of
A by ∆.

Let φ : H → AutΓ(A) be a Γ−semilinear action of H on G. If T is a k′−subgroup
of G we say that T is H−invariant, or stable under H , if σT = T for all σ ∈ φ(H).

Lemma 5.9. Let T be a maximal k′−torus of G. Let σ ∈ AutΓ(A) and consider the
maximal torus σT of G defined in Remark 5.6. The map x 7→ σx := σ̃ ◦ x ◦ σ−1

is a group isomorphism between T(k′) and σT(k′). The analogous map applied to
ǫT−derivations yields an isomorphism between the Lie algebra of T and that of σT.

Proof. We have seen in Remark 5.6 that σ is a k′−group isomorphism between T
and σT. We look at the explicit nature of this isomorphism at the level of k′−points.
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Let x ∈ T(k′) = Hom(A, k′). Note that σ−1 induces a k−algebra isomorphism, also
denoted by σ−1, between A/σ(I) and A/I. Thus f := x ◦ σ−1 : A/σ(I)→ k′ is a ring

homomorphism satisfying f
(
(λa+ σ(I)

)
= σ̃−1

λf
(
a+ σ(I)

)
. Since the action of σ on

k′ ⊂ A is given by σ̃ (see SL2′), we see that σx ∈ Hom(A/σ(I), k′) = σT(k′).
Assume next that δ : A/I → k′ is an ǫT−derivation. One easily checks that

σδ := σ̃ ◦ δ ◦ σ−1 : A/σ(I) → k′ is an ǫσT−derivation (see Remark 5.2). The map
ǫT + δǫ 7→ σ̃ ◦ (ǫT + δǫ) ◦ σ−1 = ǫT + σδǫ is the desired Lie algebra isomorphism. �

Proposition 5.10. Let G be a reductive k′−group and A = k′[G] its ring of regular
functions. Let φ : H → AutΓ(A) be a Γ−semilinear action of H on G. Assume that
H is of type (S) and that under the induced action of H on the Lie algebra g of G
the elements of the kernel of φ act semisimply. Then there exists a maximal torus T
of G that is H−stable.

Proof. We denote the Lie algebra of G by g. We claim that g is a w−restricted Lie
algebra over k′. By definition, w−restricted means that the derivation (adg x)

p of g is
inner for all x ∈ g. Since g is a restricted Lie algebra ([DG] II §7.3.4), g has a p-map
x 7→ x[p] which satisfies (adg x)

p = adg x
[p].

By Theorem 5.7 there exists a Cartan subalgebra t of g that is H−stable.
Assume first that G is semisimple of adjoint type. By [SGA3] XIV Theo. 3.9 and

3.18 there exists a unique maximal torus T of G whose Lie algebra is t. Because
of the uniquenes, to show that T is H−invariant it will suffice to show that for all
σ ∈ AutΓ(A) the Lie algebra tσ of σT coincides with t. But this is clear from Lemma
5.9. Indeed, if y ∈ tσ ⊂ g, then y = σx for some x ∈ t. We have [y, t] = [σx, t] =
σ[x, σ

−1

t] = σ[x, t] ⊂ σt = t. Since since t ⊂ g is self-normalized we conclude that
y ∈ t.

Assume next that G is arbitrary. The centre Z of G is H−stable and we get an
induced H−semilinear action of H on G/Z. = G0. Since G0 is of adjoint type there
exists a maximal torus T0 ofG0 that isH−stable. Let T be the unique maximal torus
of G that maps to T0 under the quotient map q : G→ G0. Since q is H−equivariant
we conclude that T is H−stable. �

5.4. An application to extensions of constant k−groups by reductive k−groups.
As we have pointed out already, if k is a field of characteristic zero the ring R =
k[t±1

1 , · · · , t±1
n ] satisfies the following property: every finite étale covering Y → Spec(R)

has trivial Picard group. This fact combined with a (characteristic 0) Proposition 5.10
is used in [GP0] to show that loop reductive R−groups admit maximal tori. We will
now establish the analogue of that result in our present setting for more general base
schemes and groups.

We maintain all the notation of §4. In particular we have our exact sequence (4.1),

1→ G→ G̃→ J→ 1.
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Let X = Spec(R) be an affine geometrically connected k−scheme admitting a ra-

tional point. Let [Ẽ] ∈ H1(R, G̃) be a loop torsor, and consider the twisted R−group

ẼG̃. Since loop torsors are isotrivial there exists a (finite) Galois extensions R′ of R

that trivializes ẼG̃, that is ẼG̃ ×R R
′ ≃ G̃ ×k R

′. Since G is a normal subgroup of

G̃ we have a natural group homomorphisms G̃(ks) → Aut(G)(ks) which is visibly
π1(R)−equivariant. This yields a map of pointed sets

(5.2) H1
(
π1(R), G̃(ks)

)
→ H1

(
π1(R),Aut(G)(ks)

)
.

We denote by [E] ∈ H1
(
π1(R),Aut(G)(ks)

)
the image of [Ẽ] under this map, and

consider the reductive R−group EG. We observe for future reference that R′ also
trivializes the R−group EG.

Let u ∈ Z1
(
π1(R),Aut(G)(ks)

)
be a cocycle representing [E]. We know that u

factors through the Galois extension R′ of R, whose Galois group we will denote by
Γ′. The image of Γ′ on Gal(k) under the map p : π1(R)→ Gal(k) of (2.2) corresponds
to a finite Galois extension k′ of k whose Galois group we denote by Γ.

Let us denote by G′ the k′−group Gk′ = G ×k k
′. The cocycle u takes values

in Aut(G)(k′) and we will henceforth (anti)identify Aut(G)(k′) with the automor-
phisms of the k′−Hopf algebra k′[G′] of G′.

We denote the kernel of the induced map p : Γ′ → Γ by Γ. For convenience if γ′ ∈ Γ′

we denote p(γ′) simply by γ. This is the type of γ′. The group Γ′ will play the role of
the group H of Theorem 5.7 as we now explain.

Recall that G′ = G ×k k
′ and that k′[G′] = k[G] ⊗k k

′. Consider for each γ′ ∈ Γ′

the map φ(γ′) : k′[G′]→ k′[G′] defined by

φ(γ′) = uγ′ ◦ (id⊗ γ).

Since each uγ′ is an automorphism of the k′–Hopf algebra k′[G′], it follows that via
φ we obtain an action of Γ′ on k′[G′] by Γ−semilinear Hopf algebra automorphisms.
We thus get an induced Γ−semilinear action of Γ′ on the k′-Lie algebra g′ of G′.

Theorem 5.11. Let X = Spec(R) be an affine geometrically connected noetherian

k−scheme such that X(k) 6= ∅. Let [Ẽ] ∈ H1(X, G̃) be a loop torsor and Γ′ the Galois

group of a Galois extension R′ of R that trivializes [Ẽ], [E] and u. Assume that:
(i) The group Γ′ is of type (S).
(ii) The elements of Γ (the kernel of the type map) act on g′ as semisimple k′-linear

transformations.16

Then the R−group ẼG̃ admits a maximal torus that splits over R′ ⊗k ks.

Proof. The R−group ẼG̃ is a twisted from of G̃, hence locally of finite presentation.

The concept of maximal tori of G̃ is defined in §3.2. The R−group EG defined via

16 The elements of Γ act as elements of finite order, hence semisimply in characteristic 0.
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(5.2) is precisely the group ẼG. It follows that to establish the theorem it will suffice
to show that the reductive R−group EG admits a maximal torus.

Consider the reductive R′-group G = G×kR
′. The coordinate ring of the R−group

EG is obtained from that of R′[G] by Galois descent, namely

R[EG] = {x ∈ R′[G] : uγ′
γ′

x = x ∀ γ′ ∈ Γ′}.

Note that R′[G] = k[G]⊗k R
′ and that, under this identification, the action of Γ′ on

R′[G] is given by

(5.3) γ′

(a⊗ s) = uγ′(a⊗ 1)(1⊗ γ′

s)

for all γ′ ∈ Γ′, a ∈ k[G] and s ∈ R′. The right-hand-side of (5.3) is the product of
two elements of k[G] ⊗k R

′, and the equality holds because, since uγ′ is R′−linear,
uγ′(a⊗ γ′

s) = uγ′

(
(a⊗ 1)⊗ (1⊗ γ′

s)
)
= uγ′(a⊗ 1)(1⊗ γ′

s).
As we shall see, it is necessary for us to understand this action in terms of the

coordinate ring k′[G′] = k[G]⊗k k
′ of the k′−groupG′, that is, under the identification

(5.4) k[G]⊗k R
′ ≃ k[G]⊗k k

′ ⊗k′ R
′ = k′[G′]⊗k′ R

′.

Lemma 5.12. Under the identification (5.4) the action (5.3) is given by

γ′

(a′ ⊗ s) = φ(γ′)(a′)⊗ γ′

s

for all a′ ∈ k′[G′] and s ∈ R′.

Proof (of the Lemma). Since k′[G′] = k[G]⊗k k
′ the element a′ is a sum of elements

of the form a⊗ z with a ∈ k[G] and z ∈ k′. By definition φ(γ′)(x⊗ z) = uγ′(a⊗ γz) =
uγ′(a⊗ 1)(1⊗ γz). On the other hand if we view z as an element of R′, then γ′

z = γz
so that γzγ

′

s = γ′

zγ
′

s = γ′

(zs). The Lemma follows. �

By Proposition 5.10 there exists a maximal torus T′ of G′ that is stable under the
action of Γ′. The coordinate ring k′[T′] of T′ is of the form k′[G′]/I for some Hopf
ideal I of k′[G′] that is stable under the action of Γ′ (see Remark 5.6). It follows
that the reductive R′-group G′ ×k′ R

′ admits the maximal torus T = T′ ×k′ R
′. But

since G′ ×k′ R
′ = G ×k k

′ ×k′ R
′ = G ×k R

′ = G, we see that T is a maximal torus
of G. We show that EG has a maximal torus by showing that T descends, namely it
is stable under the action of Γ′. More precisely, T corresponds to the ideal I ⊗k′ R

′

of the R′−Hopf algebra k′[G′] ⊗k′ R
′, and we need to show that this ideal is stable

under the action of Γ′. That this is the case follows from Lemma 5.12 since I is stable
under the semilinear action of Γ′. It remains to note that since T′ is split over ks the
constructed maximal torus in EG is split over R′ ⊗k ks. This completes the proof of
the theorem. �

Remark 5.13. If Γ is a finite group of order prime to p then its elements automati-
cally act on g′ as semisimple k′-linear transformations.
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6. The Laurent polynomials case

In this section we consider the ring Rn = k[t±1
1 , . . . , t±1

n ] for n ≥ 1. We remind the
reader that the p′−geometric simply connected cover Rp′−geo

n of Rn is the inductive

limit of the l[t
±1/m
1 , . . . , t

±1/m
n ] for l/k running over the finite Galois subextensions of

ks and m coprime to p such that µm(l) = µm(ks)[G1, Remark 4.2]. Such an extension

is Galois and Gal(l[t
±1/m
1 , . . . , t

±1/m
n ]/Rn) = µm(l)

n ⋊Gal(l/k).

Theorem 6.1. Let 1→ G→ G̃→ J→ 1 be an exact sequence of k-groups where J
is twisted constant and G is reductive. Then.

(i) Let Ẽ be a p′−geometric loop G̃-torsor over Rn. Then the twisted Rn-group scheme

ẼG̃ admits a maximal torus which is split by a p′−geometric Galois cover of Rn.

(ii) Let Ẽ be a toral G̃-torsor over Rn which is split by Rp′−geo
n . Assume that the

twisted Rn-group scheme ẼG̃ admits a maximal torus which is split by a finite Galois

p′-extension of Rn. Then Ẽ is a p′−geometric loop torsor.

Proof. (i) Our assumption implies that the G̃-torsor Ẽ is split by a Galois exten-
sion R′/Rn whose Galois group is of the form Γ = Gal(R′/R) = µm(l)

n ⋊Gal(l/k).
Clearly, Γ is of type (S) and the kernel of the type map is µm(l)

n, a finite commutative
p′–group. Hence the assertion follows from Theorem 5.11 and Remark 5.13.

(ii) The strategy is to apply Theorem 4.3 (iii). Let T be a maximal k–torus of G̃ and

N = N
G̃
(T). There exists a Galois cover R′/R as above which splits the G̃–torsor

Ẽ and which splits the k–torus T. We have Pic(R′) = 0. Since all assumptions of

Theorem 4.3 (iii) are satisfied, we conclude that Ẽ is a p′−geometric loop torsor. �

To summarize, we have the following implications for a G̃-torsor Ẽ that is split by
a p′-geometric Galois cover of Rn

Ẽ is p′ − geometric loop +3 ẼG admits a maximal torus
that is split by a p′−geometric Galois cover

ẼG admits a maximal torus
that is split by a p′-Galois cover
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dl
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

Remark 6.2. Note that the converse of the top implication fails (see the counterex-
amples in Remark 4.14).

If the Galois group of k is a p′-profinite group, we have a necessary and sufficient
condition for characterizing p′-loop torsors.
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Corollary 6.3. Under the assumptions of Theorem 6.1, assume furthermore that

Gal(ks/k) is a profinite p′–group. Let Ẽ be a G̃-torsor over Rn which is split by
Rp′−geo

n . Then the following assertions are equivalent:

(a) Ẽ is a p′-loop torsor.

(b) The twisted Rn-group scheme ẼG̃ admits a maximal torus which is split by a
finite Galois p′-extension of Rn.

Proof. The assumption implies that Rp′−geo
n is a limit of Galois extensions of Rn of p′-

degree. In other words, p′−geometric Galois covers of Rn are also p′-covers. Theorem
6.1(i) yields the implication (a) =⇒ (b) and the converse is given by (ii). �
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