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ABSTRACT Clostridioides difficile is the leading cause of healthcare-associated diarrhea 
in industrialized countries. Many questions remain to be answered about the mech
anisms governing its interaction with the host during infection. Non-coding RNAs 
(ncRNAs) contribute to shape virulence in many pathogens and modulate host 
responses; however, their role in C. difficile infection (CDI) has not been explored. 
To better understand the dynamics of ncRNA expression contributing to C. difficile 
infectious cycle and host response, we used a dual RNA-seq approach in a conven
tional murine model. From the pathogen side, this transcriptomic analysis revealed the 
upregulation of virulence factors, metabolism, and sporulation genes, as well as the 
identification of 61 ncRNAs differentially expressed during infection that correlated with 
the analysis of available raw RNA-seq data sets from two independent studies. From 
these data, we identified 118 potential new transcripts in C. difficile, including 106 new 
ncRNA genes. From the host side, we observed the induction of several pro-inflamma-
tory pathways, and among the 185 differentially expressed ncRNAs, the overexpression 
of microRNAs (miRNAs) previously associated to inflammatory responses or unknown 
long ncRNAs and miRNAs. A particular host gene expression profile could be associated 
to the symptomatic infection. In accordance, the metatranscriptomic analysis revealed 
specific microbiota changes accompanying CDI and specific species associated with 
symptomatic infection in mice. This first adaptation of in vivo dual RNA-seq to C. difficile 
contributes to unravelling the regulatory networks involved in C. difficile infectious cycle 
and host response and provides valuable resources for further studies of RNA-based 
mechanisms during CDI.

IMPORTANCE Clostridioides difficile is a major cause of nosocomial infections associated 
with antibiotic therapy classified as an urgent antibiotic resistance threat. This pathogen 
interacts with host and gut microbial communities during infection, but the mechanisms 
of these interactions remain largely to be uncovered. Noncoding RNAs contribute to 
bacterial virulence and host responses, but their expression has not been explored 
during C. difficile infection. We took advantage of the conventional mouse model of C. 
difficile infection to look simultaneously to the dynamics of gene expression in pathogen, 
its host, and gut microbiota composition, providing valuable resources for future studies. 
We identified a number of ncRNAs that could mediate the adaptation of C. difficile inside 
the host and the crosstalk with the host immune response. Promising inflammation 
markers and potential therapeutic targets emerged from this work open new directions 
for RNA-based and microbiota-modulatory strategies to improve the efficiency of C. 
difficile infection treatments.
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C lostridioides difficile is an anaerobic spore-forming bacterium and the major cause of 
nosocomial infections associated with antibiotic therapy (1). The major risk factors 

to contract C. difficile infections (CDIs) are advanced age, the use of broad-spectrum 
antibiotics, and immune system deficiencies. The disruption of the colonic microbiota 
by antimicrobial treatments precipitates colonization of the intestinal tract by C. difficile 
and ultimately leads to infection. Increasing severe forms and high recurrence rates 
favored by persistent dysbiosis motivate the studies of C. difficile pathogenesis to 
develop synergistic and alternative treatments of CDI. Several C. difficile virulence factors 
have been identified, the toxins mainly responsible for epithelium lesions and clinical 
signs, as well as colonization factors like flagella and surface proteins. However, many 
aspects of C. difficile pathogenesis control remain poorly understood (2). Several bacterial 
factors, in particular, C. difficile toxins and flagella, have been described to activate the 
inflammatory response (3, 4), which aims to clear the pathogen but can also contrib
ute to the severity of intestinal lesions through an uncontrolled inflammatory process. 
Better understanding the regulations of both host response and the bacterial virulence 
factor expression during the infection is essential to improve our understanding of this 
important human pathogen.

During infection, bacteria reprogram the expression of their genes in response to 
diverse environmental constraints. Intensive studies of bacterial transcriptomes have 
shown the presence of a large number of non-coding RNAs (ncRNAs) (5) participating 
in the regulation of adaptive and pathogenic processes (6, 7). Like in other patho
gens, regulatory RNAs may shape virulence of C. difficile. Bioinformatics, RNA-seq, 
and genome-wide promoter mapping identified more than 200 ncRNAs of different 
functional classes in C. difficile, suggesting the diversity of RNA-based mechanisms for 
successful development of C. difficile inside the host (8–10).

Among them, several riboswitches responding to the signaling molecule c-di-GMP, 
coordinately control motility and biofilm formation, while multiple CRISPR (clustered 
regularly interspaced short palindromic repeats) RNAs are expressed to provide efficient 
defence against foreign genetic invaders for C. difficile survival in phage-rich gut 
communities (9, 11–13). Antisense RNAs act as antitoxins within type I toxin–antitoxin 
modules contributing to prophage stability (14–16) and trans-acting ncRNAs work in 
concert with the RNA chaperone protein Hfq to control the metabolic adaptations, 
biofilm formation, stress responses and sporulation (17–19).

From the host side, ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs 
(lncRNAs), have been largely involved in the regulation of host inflammatory response 
and outcome of the infectious diseases (20). In general, ncRNAs and, in particular, the 
miRNAs, operate in a complex network. A global view of differentially expressed ncRNAs 
in the host during CDI is currently missing. Since the modulation of the host response 
dramatically impacts the clinical outcome (4), deciphering the role of the host ncRNAs 
will provide new perspectives to control severe forms and recurrences of CDI.

We used here a dual RNA-seq (21) for simultaneous monitoring of the host respon
ses to infection and bacterial riboregulators involved in host–pathogen interactions, 
successfully adapted to various infection models (22–25). In vivo transcriptomics have 
been analyzed separately from pathogen or host side in several studies using microarrays 
or RNA-seq during CDI (26–29). The first in vivo C. difficile transcriptomic studies have 
been performed in a mono-associated mouse model of CDI (26, 29, 30), and the use of 
microarrays excluded the ncRNAs from this analysis. We explore here for the first time 
the dual transcriptome in a conventional in vivo model of CDI that better mimics the 
human infection to identify novel ncRNAs shaping C. difficile virulence and host response. 
As expected, several C. difficile virulence markers and host inflammatory response genes 
were induced during infection. Our dual RNA-seq analysis identified 61 ncRNAs among 
differentially expressed genes in C. difficile in vivo that could mediate the adaptation of 
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C. difficile inside the host. From the host side, 185 ncRNAs were differentially expressed 
during infection, including numerous lncRNAs and miRNAs, enriching the regulatory 
network governing host response to pathogen infection. A particular gene expression 
profile from the host was associated with symptomatic CDI, paving the way for a better 
understanding of the process leading from colonization to symptomatic infection.

MATERIALS AND METHODS

Bacterial strains, growth conditions and preparation of spores

This work was performed with the C. difficile strain 630Δerm (31), derived from the 
clinical 630 strain isolated from a patient suffering pseudomembranous colitis, widely 
used for ncRNA studies and mouse model experiments (27, 30, 32). This strain belongs 
to the PCR ribotype 012 that is considered by hospital-based survey as the eighth most 
common in Europe and also found among clinical strains in USA (33). For the in vitro 
culture, vegetative C. difficile cells were grown in brain heart infusion (BHI) at 37°C in an 
anaerobic chamber (5% H2, 5% CO2, 90% N2, Jacomex, France) during 8 h to reach late 
exponential growth phase (OD600 around 1.5). For the mouse challenge, C. difficile spores 
were prepared as previously described (34). Vegetative cells were eliminated by heating 
at 70°C during 25 min, and spores were numerated on BHI solid medium supplemented 
with taurocholate (0.1%) incubated 48 h at 37°C under anaerobic conditions.

Animal model and treatment

All animal assays were conducted in accordance with the institutional guidelines that 
follow the European Union guidelines for the handling of laboratory animals. All 
procedures of the protocol were approved by the Committee on the Ethics of Ani
mal Experiments C2EA-26 (n° APAFIS#4617–2016032118119771v1) of the Paris-Saclay 
University and the French Ministry of Research. All efforts were made to minimize animal 
suffering.

Twelve 6- to 7-week-old conventional C57BL/6 female mice were acquired from 
Charles River Laboratories (France) and were housed at the animal facility of the Faculty 
of Pharmacy, Paris-Saclay University (agreement number 92-019-01), with ad libitum 
access to irradiated food and autoclaved water. To induce an intestinal dysbiosis allowing 
their infection by C. difficile, mice received an antibiotic pre-treatment (35) (Fig. 1A) 
(Supplementary methods). Mice were infected by oral gavage with 105 spores each, 
whereas mice from the control group received water and were co-housed by treatment 
groups of three animals (Supplementary methods). Three mice from the infected groups 
were euthanized 8, 28, and 32 h post-infection, and the three uninfected mice were 
euthanized at 8 h. Following sacrifice, entire ceca were collected, and cecal content 
was sampled to determine the burden of C. difficile (Fig. 1B). The rest of the ceca and 
their contents were placed in RNAprotect solution (Qiagen) for further RNA extraction 
(Supplementary methods).

RNA extraction, library preparation, and RNA sequencing

For in vivo RNA isolation, eukaryotic and prokaryotic cells were lysed separately in Fast-
prep apparatus (lysing matrix D and B, respectively, two cycles of 30 s at speed 6.5). Total 
RNA isolation was then performed using Trizol (Sigma) as described previously (36) (Fig. 
1B). The quality of eukaryotic and prokaryotic total RNAs was tested with Agilent RNA 
6000 Pico kit and quantified before sequencing. For library preparation, eukaryotic and 
prokaryotic RNAs were mixed in a 2:1 proportion to ensure sufficient genome coverage 
and maximize the prokaryotic RNA sequencing. Ribosomal RNA depletion and library 
preparation were done using an Illumina TruSeq Stranded Total RNA kit with 1:1 mixture 
of human/mouse/rat and bacterial rRNA removal solutions for rRNA depletion. The 
resulting libraries were multiplexed and sequenced on an Illumina NextSeq 500 system 
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as a paired end (PE) 50–35 nucleotide run using a NextSeq 500/550 High Output 75 
cycles v2 reagent kit (Illumina).

Reads alignment and differential expression analysis

The sequencing data were processed as described in Supplementary methods. 
Differential  expression analysis was performed using the DESeq2 (37) based script 
SARTools (38), and genes were considered differentially  expressed with at least 1 
log2  fold change and an adjusted P  < 0.05. All  analysis for mouse transcriptome 
data were performed using R (39) and RStudio (40). Genes with count mean lower 
than 10 were discarded for downstream analyses (39,719 to 21,085 genes).  Trimmed 
mean of M values (TMM) normalization was done using edgeR (41), and data were 
linearized with voom function from limma with quantile normalization (42, 43).  Then, 
we applied a one-way analysis of variance for TREATMENT factor for each gene 
and made pairwise Tukey’s post hoc  tests between groups. Significant  gene with 
P  < 0.05 and fold-change >2 (or <−2) in at least one comparison were selected 
for downstream analysis (2,297 genes).  For functional enrichment analysis,  we used 
MSigDB v7.5 (43) and applied Fisher exact test with false discovery rate (FDR) 
correction for multiple testing to find  significant  overlaps.

FIG 1 Description of dual RNA-seq experiment workflow. (A) The mouse model for C. difficile infection 

used for dual RNA-seq experiment has been described previously by Chen et al. (35). All the mice, 

including the control mice, received the same antibiotic treatment prior to the infection. Nine mice were 

infected with a suspension of 105 spores of the C. difficile 630Δerm strain, and three control mice received 

sterile water. Three infected mice were euthanized at each time point 8, 28, and 32 h post-infection for 

RNA extraction. The three uninfected control mice were euthanized 8 h after the administration of water. 

(B) All the mice (infected and uninfected) were treated according to the same protocol. For each mouse, 

the RNAs from the cecum and its content were extracted and purified separately before being assembled 

in one tube and then sequenced together. RNAs from the in vitro culture cells were purified with the same 

protocol (TRIzol) and sequenced with the same method (Illumina).
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Functional classification with MA2HTML

Gene-set enrichment was assessed using functional gene classification from 
the Ma2HTML database (44) (https://mmonot.eu/MA2HTML/, extraction number 
1652263129), and the log2 fold change values between in vivo (MI) versus in vitro (IV) 
conditions of each of the 2,855 genes with an associated functional class. For the 20 
classes, gene-set enrichment was measured with the blitzGSEA software (45).

Taxonomic classification of shotgun sequencing reads

Relative bacterial cell abundances were evaluated using mOTUs2 (46). Briefly, mOTUs2 
performs taxonomic classification of shotgun metagenomics and metatranscriptomics 
sequencing reads using a single-copy, non-16s rRNA marker gene approach. The 10 
marker genes used are highly conserved and can serve as good proxies to assess the 
relative abundances of active cells in the community. Prior to classification, mouse reads 
were removed from the data set by two consecutive alignments to the mouse genome 
(RefSeqs accession GCF_000001635.27) using STAR (47) and Bowtie2 (48). mOTUs2 was 
run on each sample read data set using the following parameters: $ motus profile 
-s R1_001.fastq -t 10k taxonomic_level -B -q -o output_file_ABOND.motus. Intergroup 
differences at the species level were assessed using the linear discriminant-analysis 
effect size (LEfSe) method (49). LEfSe uses Kruskal–Wallis test (two-tailed nonparametric) 
and Wilcoxon rank-sum test to determine the level of significance of differences in 
features (bacterial taxa) between two conditions. Clades/taxa with an LDA score ≥2 and 
alpha value for the Wilcoxon test ≤0.05 were considered significantly different between 
compared groups.

Analysis of available in vivo transcriptomics data for differential ncRNA 
expression

For comparative analysis with available in vivo raw transcriptomics data from previ
ously reported data sets, we chose the conditions that most closely approximated the 
comparison we realized during the present study: in vivo conditions in infected mice vs in 
vitro conditions. We used the in vivo WT_RNA 3-days post-C. difficile infection (European 
Nucleotide Archive, ENA identifier: PRJNA666929) vs in vitro base media (ENA identifier: 
PRJNA667108) data reported by Pruss et al. (32) and day 2 post-C. difficile infection vs 
in vitro overnight culture in TY medium (ENA identifier: PRJNA612095) in Fletcher et al. 
(27). All RNA-seq replicates of each condition were downloaded from ENA (see Table 
S5) and processed separately for the two experiments with a snakemake script (50) on 
the high-throughput computing resources of the French Institute of Bioinformatics (IFB) 
(Supplementary methods). Final tests and Fig. S9 were produced from differential gene 
analysis tables using a dedicated R script (with the Eulerr package [51]). The convergence 
of differential expression experiments was assessed using χ2 tests on differential gene 
lists. Heatmaps of differential genes in all experiments were drawn (Complex Heatmap 
R package [52]) in log2 fold change unit, with values set to 0 in case of the absence 
of differential expression. All codes are available on github [https://github.com/i2bc/
Dual_Seq_Cdiff_Mouse].

NcRNA detection from RNA-seq data using DETR’PROK

The prediction of new RNAs was carried out using shell version 2.1.3 of the DETR'PROK 
pipeline (53) for two conditions of the three experiments with 630 C. difficile: in vitro and 
infected mice samples kIV, kMI from the present Kreis et al. study, in vitro base media 
(pBase), and in vivo WT_RNA 3-day post-infection (pWT) samples from Pruss et al. (32), 
and in vitro TY (fwtTY) and 2-day post-infection (fwtd2) samples from Fletcher et al. (27) 
(Supplementary methods and Table S6). DETR'PROK predictions for ncRNA for the six 
conditions were combined (clusterize.py, S-MART tools [54]), and candidates overlapping 
in sense or antisense (CompareOverlapping.py, S-MART tools) with previously annotated 
rRNAs or tRNAs were removed, yielding 118 potential new transcript candidates.
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RESULTS AND DISCUSSION

Animal model and protocol optimization

Although several in vivo transcriptomic studies have already been carried out on C. 
difficile and mice separately (26–29, 32, 55), none have so far looked by RNA-seq in 
animal model at the expression dynamics of RNAs including ncRNAs simultaneously 
in the pathogen and the host. We have chosen the conventional mouse model that 
mimics the conditions of human infection associated with antibiotic pre-treatment in 
animals (35). To determine optimum sampling time points after infection to both recover 
sufficient cecal content for bacterial RNA extraction and to observe the onset of clinical 
signs for host response, we first set up a clinical follow-up assay on six conventional 
mice that were infected with 630Δerm spores. In this validated model, the clinical 
signs of CDI appear between 24 and 36 h post-infection. After the oral challenge, mice 
were monitored during 40 h to check the occurrence and evolution of the symptoms 
induced by CDI, the colonization rate, and weight of the infected mice. The animals were 
observed regularly for signs of disease, including the consistency of their stools and 
their behavior, and weighed once a day to account for normal fluctuations, and a clinical 
sickness score (CSS) has been established (Supplementary methods and Fig. S1). The first 
symptoms appeared at 32 h with soft stools in all mice, reduced activity, and hunched 
posture in half of the mice. The peak of symptoms was observed at 40 h post-infection, 
with a CSS score of 6–7; all mice had a marked weight loss, and ceca showed a hemor
rhagic appearance indicating inflammation. The C. difficile colonic colonization plateau 
was reached at 8 h post-infection with approximately 108 vegetative forms/g of feces 
and starts to decrease with the appearance of diarrhea leading to the loss of almost 
all the cecal content at 40 h post-infection. We then selected three time points in the 
infection kinetics for RNA extraction: an early 8 h post-infection point associated to the 
colonization plateau, and two late 28 and 32 h post-infection points where the first 
symptoms appear associated with an immune response engaged, but when there is still 
sufficient quantity of cecal content for sampling before excessive diarrhea.

For dual RNA-seq, three groups of mice (8, 28, and 32 h post-challenge) (Fig. 1A) 
were infected with C. difficile spores, and the control mice received saline water solution. 
At each sampling time point, mice were euthanized, and their ceca were sampled. 
Quantification of C. difficile cecal burden confirmed the host colonization by an average 
of 108 CFU/g of feces of C. difficile vegetative cells at the three time points tested 
(Table S1). We observed diarrhea and a lack of activity for three infected mice in two 
different groups: one mouse after 28 h of infection and two mice after 32 h. These mice 
also had a smaller, less filled, and inflamed cecum compared with the other mice. The 
mouse ceca and contents were lysed separately followed by RNA extraction, yielding two 
RNA samples for each mouse, predominantly eukaryotic or predominantly prokaryotic 
RNA (averaging 1,200 ng/µL and 120 ng/µL, respectively). Samples were mixed for 
each mouse prior to sequencing in controlled proportions to maximize the amount of 
prokaryotic RNA sequenced.

Dual RNA-seq analysis of C. difficile infected mouse cecum

The distribution of reads mapped on reference genomes for each group are illustrated 
in Fig. S2. The total RNAs for host cecal tissue and microbial cecal content containing 
pathogen were isolated from infected mice at 8, 28, and 32 h post-infection and 
then analyzed by Illumina deep sequencing. The number (n = 3) of C. difficile and 
mouse PE reads from 8, 28, and 32 h post-infection mapped on the reference genomes 
(GCF_000009205.2 and GCF_000001635.27) are indicated in Fig. S2A and B, respectively. 
The remaining PE reads were kept for gut microbiota composition analysis (Fig. S2C). 
Finally, total RNAs were also extracted from three independent 8 h in vitro cultures of C. 
difficile 630Δerm strain and sequenced (Fig. S2A). Given the large gap of reads number 
between the C. difficile in vitro and in vivo samples, a representative subsampling of 
0.5% of in vitro reads has been performed to allow their normalization with the in vivo 
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samples for further differential gene expression analysis. Due to the low number of reads 
in the samples extracted at 8 h post-infection, only the data obtained at 28 and 32 h 
were retained for differential C. difficile gene expression analysis. We decided to combine 
these samples together for the comparison with the in vitro condition since no significant 
difference between these two data sets was observed. The principal component analysis 
(PCA) also revealed similarity between these samples, which are 78% separated from the 
in vitro samples by the PC1 axis (Fig. S3).

Microbial community abundance profiling from dual RNA-seq data using 
mOTUs2

Microbiota composition constitutes a key parameter affecting the development of C. 
difficile inside the gut and individual outcome of infection. Here, we took advantage 
of conventional mouse model to look at the microbiota composition during CDI using 
dual RNA-seq data. We applied mOTUs2 program well-adapted for taxonomic profiling 
of microbial community on housekeeping marker genes from transcriptomic data (46). 
As for differential analysis of C. difficile gene expression, 8 h post-infection samples 
have been excluded from these microbiota analyses. The PCA of bacterial species 
in mouse gut revealed a cluster of uninfected mice samples clearly separated from 
infected samples (Fig. 2A). In the group of infected mice, two clusters could be distin
guished corresponding to the groups of C. difficile-infected mice presenting or not 
visible symptoms, clearly seen in three-dimensional PCA graph (Fig. 2A). On loading PCA 
plot (Fig. S4A), C. difficile appears as a discriminant bacterium in infected conditions, 
contributing as expected to the sample separation. Indeed C. difficile modulates the 
composition of microbiota, either directly via production of p-cresol (56) or in an indirect 
way by inducing indole production by E. coli (57).

The relative community composition at different taxonomic levels is shown in Fig. S5. 
This metatranscriptomic analysis revealed profound alterations in the structure of mouse 
gut microbiota associated with C. difficile colonization and inflammatory symptoms in 
infected mice, as previously described in other mouse models of CDI (58, 59). In humans, 
some common features of dysbiosis have been found in microbiota studies of patients 
suffering from CDI (58–61). To search for additional discriminating taxa at species mOTUs 
level as biomarkers associated with CDI symptoms in our study, we used linear discrimi
nant analysis (LDA) effect size (LEfSe) method (49). The histograms presented in Fig. 2B 
show the clades identified as significantly different between compared conditions that 
explain the greatest differences between analyzed microbial communities. All pairwise 
comparisons identified as expected C. difficile as overabundant species in the infected 
mice community (Fig. 2B). Lactobacillus species including Lactobacillus gasseri and 
Lactobacillus johnsonii were enriched both in uninfected and symptom-free mice as 
compared to symptomatic mice and identified as discriminating between non-sympto
matic and uninfected samples, suggesting a potential positive role of L. gasseri and L. 
johnsonii in inhibition of CDI symptom development (Fig. 2B; Fig. S4B). Lactobacillus 
reuteri was greatly depleted in two symptomatic mice samples 32 h post-infection (Fig. 
S4B). Several strains of L. reuteri have been previously shown to inhibit C. difficile growth 
in vitro (59, 62) but also in vivo (63). In contrast, L. johnsonii does not seem to have an 
effect on the growth of C. difficile (63), but its protective effect highlighted in our study 
could be related to its anti-inflammatory properties (64). Our analysis also revealed a 
significant association of Clostridium saccharogumia with non-symptomatic infected 
mice as compared with symptomatic mice, and a significant association of Alistipes 
indistinctus with uninfected mice as compared with infected mice (Fig. 2B; Fig. S4B and 
S5A). The Alistipes genus was already associated with a protective effect against CDI in a 
mouse model (65), being an important post-fecal microbiota transplantation (FMT) 
genus in humans (66). Relevant to previous observations (27, 67–69), in our study, several 
Bacteroidales species (Bacteroides dorei/vulgaris and B. fragilis) have been enriched in 
non-symptomatic infected mice (Fig. S4B). In contrast, a group of Anaerotruncus, 
Enterorhabdus, and Brevundimonas species was identified as positively associated with C. 
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difficile in infected samples, in particular, in symptomatic mice and as depleted in 
uninfected samples (Fig. 2B; Fig. S4B). To our knowledge, these genera have not been 
previously associated, positively or negatively, to C. difficile, except for Anaerotruncus 
colihominis. Surprisingly, this Gram-positive rod-shaped bacterium is known to have anti-
inflammatory effects, probably by butyric acid production and was long-term increased 
after FMT in one patient suffering from CDI (70). Thus, this species deserved more studies 
to understand the nature of its potential interaction with C. difficile.

This microbiota composition profiling allowed clustering the samples into three 
groups (uninfected mice, symptomatic, and non-symptomatic infected mice) to consider 
during the course of this study exploring the correlation between microbiota structure, 
C. difficile gene expression and mice transcriptomic data.

Comparative C. difficile transcriptomic analysis between in vitro culture and 
infectious conditions

For C. difficile, our transcriptomic analysis revealed a total of 1,309 genes (559 upregula
ted and 750 downregulated) (Table S2) exhibiting differential expression between in vitro 
and a 28–32h post-infection condition (Fig. 3A), including 61 ncRNA genes (Table 1). 
All differentially expressed genes were then assigned to functional categories with the 

FIG 2 Principal component analysis of the bacterial species identified in the mouse gut (A) and analysis of biomarkers between conditions using LEfSe 

(B). (A) Each symbol on the three-dimensional PCA score plot represents a sequenced mouse gut sample. Symbols are colored according to experimental 

conditions (blue pyramids = NOT_INF: mice not infected with C. difficile, yellow spheres = SYMPTOMS: mice infected with C. difficile showing visible symptoms, 

green cubes = NO_SYMPTOMS: mice infected with C. difficile showing no visible symptoms). The three main principal components and the corresponding 

variance proportion are shown. (B) Histogram of the LDA scores computed for features differentially abundant between the different conditions being compared. 

LEfSe score indicates the consistent difference in relative abundance between the features (taxonomic groups) in the microbial communities. The histogram 

shows which clades/taxons among all those detected are statistically significant between the conditions compared. Only clades/taxa with an LDA score ≥2 and 

reaching significance are shown (alpha value for the Wilcoxon test ≤0.05).
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MA2HTML database classification (Fig. 3B). Gene-set enrichment analysis was performed 
to compare C. difficile gene expression profiles in infected mice and in vitro growth 
conditions. Eleven classes out of 20 have an adjusted P-value < 0.05 associated with an 
FDR <25% (Table S3). The two classes showing the best normalized enrichment score 
are associated with sporulation as upregulated gene set and regulations as commonly 
downregulated class (Fig. 3B; Fig. S6).

Among the genes induced during infection (Table S2) were numerous ribosomal 
genes reflecting high cellular activity in vivo with constant nutrient turnover. The 
induction of virulence factors, such as the toxins TcdA and TcdB (Fig. 4A) as well as 
the adhesin CwpV, promoting self-aggregation and phage resistance of C. difficile (71, 
72) was in accordance to previous in vivo transcriptomics in mice (26, 29, 73) or in 
pigs (74). We validated the overexpression of tcdA gene in C. difficile-infected mice as 
compared with the control by independent qRT-PCR experiment (Fig. S7A). In accordance 
with different expressions of flagellar operons in a clinically relevant heat stress (75), 
some genes from the flagellar assembly F3 operon were induced, but several F1 flagellar 
operon genes were repressed in vivo compared with in vitro culture. The expression 
of most of the type IV pilus synthesis genes is decreased in vivo in accordance with 
inverse regulation of flagellum and pilus expression by antagonistic type I and type II 
c-di-GMP-dependent riboswitches (8, 9, 76, 77).

The adaptive metabolic capabilities of C. difficile are a fundamental part of the 
infectious process (30). One of the main sources of energy for C. difficile comes from the 
fermentation of carbohydrates and amino acids as an important asset to colonize its 
niche. Many genes dedicated to carbohydrate transport and metabolism are differen-
tially expressed during infection, including the induction of 10 genes of phosphoenol
pyruvate-dependent phosphotransferase system (PTS) for the acquisition and 
phosphorylation of sorbitol, fructose, mannitol, and galactitol, and the repression of 
about 20 genes for the transport of other sugars, such as mannose, lactose, but also 

FIG 3 Genes of C. difficile differentially expressed between groups of mice infected at 28 and 32 h post-infection (MI) and in vitro cultures (IV). (A) Volcano plot 

representing the logarithm of the P-value adjusted according to the logarithmic ratio (log2 fold change; FC) of the genes differentially expressed between the 

two conditions. The colored dots correspond to the genes significantly differentially expressed (the genes induced or repressed under the MI conditions in red 

and blue, respectively). (B) Enrichment analysis of Ma2HTML classes with C. difficile expression profiles in infected mice versus in vitro growth conditions. The 

enrichment score reflects the concentration on one side of the genes belonging to the class (left side, red for upregulated differentially expressed genes; right 

side, blue for downregulated differentially expressed genes) as the genes are ordered according to their decreasing log2FC (gray curve at the bottom). NES: 

normalized enrichment score; SET: class name; p-val: adjusted P-value.
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TABLE 1 List of C. difficile ncRNAs differentially expressed during infection compared with in vitro culture

Gene Log2 fold change Padj Product name

CD630_SQ1296 8.185 6.45E-10 ncRNA IGR
CD630_SQ995 7.037 4.98E-07 ncRNA IGR
CD630_SQ1076 6.37 6.52E-17 Antisense 3'UTR
CD630_s0040 5.405 1.82E-05 5'UTR glmS
CD630_s0460 5.316 0.00028877 Lysine riboswitch
CD630_n00930 5.16 2.55E-05 ncRNA IGR
CD630_RNA_11 4.808 0.01105347 SCARNA14
CD630_s0631 4.767 2.90E-14 T-box CD630_32560
CD630_s0280 3.676 0.00066216 T-box leader
CD630_n00640 3.584 3.42E-08 ncRNA IGR
CD630_SQ2503 3.536 0.01479877 ncRNA IGR
CD630_SQ2429 3.075 0.01139522 ncRNA IGR
CD630_SQ1038 2.956 0.02238772 ncRNA IGR
CD630_Cdi1_11 2.952 0.00567505 GEMM RNA motif
CD630_s0281 2.89 0.00984163 5'UTR hisZ
CD630_n00680 2.871 5.75E-06 ncRNA IGR
CD630_Cdi1_6 2.855 6.85E-06 GEMM RNA motif RCd5
CD630_s0210 2.755 0.02952147 T-box (Leu)
CD630_s0590 2.571 0.00182813 Lysine riboswitch
CD630_s0540 2.527 3.21E-05 T-box (Trp)
CD630_SQ808 2.524 0.0006825 Antisense 3'UTR
CD630_n00430 2.466 0.00163311 Antisense CDS
CD630_s0660 2.458 0.00262189 T-box (Met)
CD630_s0610 2.318 0.00032484 Lysine riboswitch
CD630_s0642 2.222 0.01345762 5'UTR putative zinc finger protein 

gene
CD630_n00620 2.135 1.43E-05 ncRNA IGR
CD630_s0070 2.058 1.41E-08 Purine riboswitch
CD630_s0270 2.053 0.00117689 T-box leader
CD630_SQ1005 2.053 0.00117689 ncRNA IGR
CD630_n00410 2.039 6.63E-07 ncRNA RCd3
CD630_n00350 1.978 1.46E-06 ncRNA IGR
CD630_s0550 1.911 0.00677355 T-box (Ile)
CD630_s0010 1.871 0.00183516 T-box (Ser)
CD630_n00560 1.652 0.02091479 ncRNA IGR
CD630_s0190 1.648 9.57E-05 T-box
CD630_SQ408 1.629 0.00017077 ncRNA IGR
CD630_Cdi1_8 1.537 0.0122029 GEMM RNA motif
CD630_s0480 1.253 0.04976858 T-box (Thr)
CD630_n00900 1.194 0.00107517 Antisense CDS
CD630_s0570 0.655 0.03940458 RNase P
CD630_n00990 −1.075 0.02099668 ncRNA IGR
CD630_n00380 −1.166 0.02571729 ncRNA IGR
CD630_n00290 −1.681 0.03236452 ncRNA IGR
CD630_n00450 −2.429 0.00184353 Antisense CDS
CD630_Cdi1_12 −2.695 2.84E-08 GEMM RNA motif
CD630_RNA_8 −2.904 0.0122029 PreQ1
CD630_n01080 −3.111 0.04001284 Antisense CDS
CD630_n00590 −3.483 0.04467695 ncRNA IGR
CD630_n00890 −3.592 0.03720248 Antisense CDS
CD630_n00950 −3.656 0.01282977 Antisense CDS
CD630_n00080 −3.679 0.02703932 Antisense CDS

(Continued on next page)
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FIG 4 Visualization of dual RNA-seq data for C. difficile differentially expressed genes with IGV. Representative examples are 

presented in (A) for protein encoding genes including virulence factors TcdA and TcdB, in (B) for ncRNAs. The results for in 

vivo samples 28 and 32 h post-infection are compared with the data from in vitro sample. The genomic regions for ncRNAs 

are presented in a green box. Genes from MaGe annotation are shown at the bottom of each panel. In the IGV visualization 

profiles, “+” strand reads are shown in red, and “-“ strand reads are shown in blue. IGV visualization is presented with adjusted 

read threshold for each window to compare the data from different samples (scale is indicated as a read threshold range).

TABLE 1 List of C. difficile ncRNAs differentially expressed during infection compared with in vitro culture 
(Continued)

Gene Log2 fold change Padj Product name

CD630_n01100 −3.697 0.00204175 ncRNA IGR
CD630_s0220 −3.786 0.00221948 SAM riboswitch (S_box leader)
CD630_n00770 −3.821 6.82E-05 ncRNA IGR
CD630_n00170 −3.828 0.01565047 ncRNA RCd6
CD630_Cdi2_4 −3.891 9.79E-07 c-di-GMP-II
CD630_RNA_1 −4.191 0.00449118 PyrR
CD630_s0670 −4.278 0.00041904 5'UTR luxS
CD630_Cdi1_2 −4.294 0.000513 GEMM RNA motif
CD630_SQ367 −4.867 0.00037504 ncRNA IGR
CD630_n00830 −6.55 7.04E-19 Antisense CDS
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glucose and glucosides. These sugars are probably absent in the cecum of mice, implying 
the preferential use of other carbon sources. For example, glucose is totally absorbed in 
the upper part of the intestine and the dysbiosis induced by antibiotics must considera
bly limit the degradation of complex fibers contained in the mice’s diet into monosac
charides.

The final stage of glycolysis leads to the production of pyruvate, which is then 
metabolized by several fermentative pathways for energy production or anabolic 
reactions. Some of these pathways, which lead to the production of butyrate, ethanol, 
or butanol, pass through a major intermediary product of bacterial carbon and energy 
metabolism, acetyl-CoA. Acetyl-CoA is the final degradation product of ethanolamine, 
an abundant compound in vivo that can be derived either from the degradation of cell 
membranes because of disease or directly from the diet. Remarkably, all genes of the 
eut operon involved in ethanolamine metabolism were strongly overexpressed in mice 
compared with the in vitro condition (Fig. S8A). Ethanolamine is a source of carbon and 
nitrogen for the bacteria. The expression of eut operon is repressed by glucose, and the 
observed overexpression is relevant with the repression of glucose transport systems.

C. difficile uses amino acids as an energy source through Stickland reactions for 
coupled fermentation of two amino acids acting as an electron donor and acceptor, 
respectively. Several amino acids can be used in the oxidative branch, the only accept
ors are glycine and proline. We observed a strong overexpression of both selenoen
zyme operons, the proline reductase prd (Fig. S8A) and the glycine reductase operon. 
Availability of proline in the host has been shown to modulate the bacterial capacity to 
infect the mouse (78), and proline and hydroxyproline are major components of collagen 
that can be released by its degradation to further sustain the growth of C. difficile (79).

The acquisition of iron from the environment is vital for most prokaryotes. We 
observed an overexpression of one of the three feo operons (feo2) (Fig. S8A) involved 
in the uptake of ferrous iron in many pathogenic bacteria. However, in C. difficile, this 
feo operon is neither under the regulation by the iron level nor the global regulator 
Fur (80, 81). In Porphyromonas gingivalis, an homologous Feo system is involved in 
manganese import, suggesting that this system could allow the uptake of Mn also in 
C. difficile, with a possible modulation for bacterial virulence since Mn is a cofactor 
of the toxins A and B. The other genes involved in iron acquisition, notably the ABC 
transporters capable of transporting ferric iron (CD630_29970–29990) are repressed in 
vivo. A recent study identified a particular iron storage ferrosome system in C. difficile 
to combat iron sequestration by the host in the inflamed gut during infection (82), the 
fezAB CD630_05910–05920 genes are also downregulated in vivo in the present study 
(Table S2).

As observed in previous in vivo transcriptomics (26, 29), many sporulation genes 
(about 100) were induced in vivo, including several σK-dependent genes associated with 
the synthesis of the outer layers of the spore (cortex, spore coat, and exosporium) (83–
85) (Fig. S8A). These results confirm that sporulation is rapidly induced during infection, 
allowing C. difficile to persist in the host gut and disseminate in the environment, despite 
the host immune response.

Overall, our results are fully consistent with previous in vivo transcriptomic analyses in 
monoxenic or conventional mice (26, 29, 30), which perfectly validate our model.

Differential expression of C. difficile ncRNAs between in vitro culture and 
infectious conditions

Among the 61 differentially expressed ncRNAs (40 induced and 21 repressed) (Table 
1), several have been previously identified in a RNA-immunoprecipitation sequencing 
(RIP-seq) experiment as being associated with the Hfq protein (18). For example, RCd6 
is repressed, while CD630_n00930 and CD630_n00620 are induced during infection 
(Fig. S8B). Another Hfq-associated RNA RCd5 upregulated in vivo is a type I ribos
witch binding to c-di-GMP induced during the stationary phase of growth. Inversely, 
a type II riboswitch CD630_Cdi2_4 and associated pilA gene encoding type IV pilus 
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component are downregulated in vivo. A number of cis-acting RNA regulatory elements 
related to amino acid metabolism have been identified as differentially expressed in 
vivo as compared with in vitro conditions. For example, 10 T-boxes responding to 
tRNA aminoacylation level associated with corresponding aminoacyl-tRNA synthetase 
or amino acid transporter genes and three lysine riboswitches upstream of lysine 
metabolism genes were upregulated in vivo, reflecting translational machinery and 
metabolic adaptations during infection (Table 1). Among antisense RNAs with highest 
differential ratio of expression between in vitro and in vivo conditions, we identified 
CD630_SQ1076, a putative antisense RNA of the map2 gene encoding a methionine 
aminopeptidase that was upregulated during infection (Fig. S8B). The antisense RNA 
most highly repressed during infection was CD630_n00830, an antisense RNA of the grdB 
gene coding for a subunit of glycine reductase (Fig. S8B). Interestingly, the grdB gene and 
associated CD630_n00830 antisense RNA are inversely co-regulated in vivo as compared 
with in vitro conditions (Fig. S8B). Similar inverse regulation was also observed for the 
proline reductase operon induced in vivo and the antisense RNA overlapping the 3′-end 
expressed in vitro (Fig. S8B), consistent with the importance of the use of these amino 
acids in vivo for Stickland reaction. Our analysis revealed several previously uncharac
terized ncRNAs as highly upregulated during infection. Among them CD630_SQ995 is 
located in intergenic region (IGR) between CD630_15111 and cotB gene for a spore outer 
membrane protein, CotB (Fig. 4B), that were also induced in vivo; and CD630_SQ1296 is 
located in IGR between CD630_18800 gene encoding ketopantoate reductase and pyrE 
gene encoding orotate phosphoribosyltransferase in the vicinity of the sequence coding 
for a fragment of an ABC transporter (Fig. 4B). The overexpression in vivo of these two 
previously uncharacterized ncRNAs has been validated by independent qRT-PCR analysis 
(Fig. S7B and C). CD630_n00640 is also induced in vivo and found between conjugative 
transposon Tn1549-like CD630_18782 and CD630_18780 genes. Altogether, these in vivo 
transcriptomic data represent invaluable resources for further detailed characterization 
of RNA-based regulatory mechanisms during CDI.

Comparison with available C. difficile in vivo transcriptomic data

Several studies previously explored the in vivo transcriptomics of C. difficile in mouse 
model of infection, but the ncRNA genes have not been included into these analyses. 
We thus selected representative raw RNA-seq data sets from two independent studies 
(27, 32) for further comparative analysis with the present study (Table S4). This analysis 
revealed a total of 2,258 and 2,319 C. difficile genes differentially expressed in vivo as 
compared with in vitro conditions, respectively (1,180 and 1,046 genes upregulated, 
while 1,078 and 1,273 genes downregulated, respectively). Despite the differences 
in the experimental conditions and post-infection time points, χ2 tests for pairwise 
comparisons of the three experiments revealed significant overlap for up- and down
regulated genes (Fig. S9A and B; Table S5) encoding virulence factors, sporulation, 
stress response, and metabolism-related proteins in accordance with previous reports 
(26–28, 32). The functional gene-set enrichment revealed two classes associated with 
sporulation and lipid metabolism as upregulated in all three studies, while regulations 
and stress-related genes were downregulated in the present study and in Fletcher et 
al. or in Pruss et al.’s report, respectively (Fig. S9D and S3B). The differences observed 
in membrane transport and amino acid metabolism groups between the present study 
and two previously reported data sets could be explained by differences in experimen
tal conditions, including later post-infection time points (2 and 3 days post-infection), 
different antibiotic treatment and infection mode in mouse models used and different 
in vitro culture conditions (overnight culture in TY or defined medium) in Fletcher et 
al. and in Pruss et al.’s reports (27, 32). Importantly, the analysis of raw sequencing 
data from three independent studies identified a number of ncRNA genes that were 
differentially expressed during infection in vivo as compared with in vitro conditions (Fig. 
S9B and C; Table S5). Among them, 38, 54, and 24 were upregulated and 19, 36, and 59 
were downregulated in the present study and Fletcher et al. and Pruss et al.’s data sets, 
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respectively (27, 32). Strikingly, pairwise comparison revealed a significant overlap with 
22 and 13 upregulated ncRNAs in the present study as compared with Fletcher and Pruss’ 
data, respectively (Fig. S9B). Importantly, CD630_SQ1296 and CD630_SQ995 ncRNAs 
expression was highly induced, while the expression of CD630_n00830 antisense RNA 
was highly reduced in vivo in all three independent studies (Fig. S9C). This comparative 
analysis strengthens the results of present study identifying several ncRNAs as potential 
key regulators for C. difficile adaptation inside the host.

Prediction of small transcripts from RNA-seq data

We then took advantage of transcriptomics data from the present study combined 
with raw data sets from Fletcher and Pruss (27, 32) to search for new transcripts in C. 
difficile using DETR'PROK pipeline (53). By combining the three independent data sets 
for in vivo and in vitro conditions, this analysis revealed 118 potential new transcript 
candidates in C. difficile, including 12 transcripts overlapping annotated CDS and 106 
potential new ncRNA genes. Among them, 83 potential ncRNAs were predicted in 
antisense orientation to annotated genes and 23 without overlap with annotated genes 
(Table S6). Fifty-six of new ncRNAs were identified in antisense orientation to CDS, 
while 20 corresponded to antisense RNAs for previously identified ncRNAs, and seven 
were identified in antisense orientation to both CDS and ncRNAs. A number of these 
potential antisense RNAs have been detected in our Hfq RIP-seq analysis (18). Among 
them, an antisense RNA for CD630_32360 prdF proline reductase gene was repressed 
during infection (Fig. S8B). Interestingly, 12 antisense transcripts have been detected 
for riboswitches, three for CRISPR RNAs and six for sRNAs associated with Hfq RIP-seq 
signal. Three antisense RNAs corresponded to previously identified type I toxin–antitoxin 
system components (15, 16, 86) missing from current NCBI annotation. Eleven predicted 
RNAs corresponded to longer transcripts overlapping previously annotated ncRNAs or 
CDS with 3′UTR. Interestingly, in accordance with Hfq RIP-seq analysis (18) DETR’PROK 
pipeline detected three new ncRNAs in IGR of CD630_22170–22180, CD630_26100, and 
CD630_33640–33650 genes and 12 additional IGR ncRNAs associated with lower signal. 
Altogether, these analyses contributed to the definition of the C. difficile transcriptomics 
landscape, highlighting the extent of antisense transcription, specifying the boundaries 
of some previously annotated transcripts, and enriching the C. difficile ncRNA repertoire 
for future studies.

Transcriptomic analysis of host response to C. difficile infection

On the mouse side, our analysis revealed 2,297 genes significantly differentially 
expressed (fold change <−2 or >2, P < 0.05) between all conditions. Among them, 
800 correspond to regulatory RNA genes, 294 induced and 506 repressed, with 
mostly lncRNAs (788 differentially expressed, 293 induced, and 495 repressed) and few 
microRNAs (12 differentially expressed, 11 induced, and one repressed). The heatmap 
summarizes the comparison of each mouse transcriptome (Fig. 5) and shows the 
expression profile of the uninfected (red), 8 h (blue), 28 h (green) and 32 h (orange) 
post-infection mice. Depending on their differential expression, these 2,297 genes could 
be grouped in 12 clusters, numbered I to XII (Fig. 5). Overall, the gene expression profiles 
of the 28 and 32 h infected mice (except S5 sample) are fairly similar and distinct from 
the 8 h infected and non-infected groups. Following this overview, we focused on main 
transcriptomic differences between groups.

For each gene cluster, enrichment analyses identified several differentially expressed 
pathways or gene families discriminating infected and uninfected mice. As expected, 
several specific host inflammatory markers were induced during CDI, including members 
of the TNFα signaling pathway (IL-1β, NLRP3, TNF, CCRL2, NFKBIA, and FOS), and 
chemokines (CCL4 and CCXL1) (Table S7). These inflammatory markers from clusters I 
and II (Fig. 5), were particularly induced in 28 and 32 h infected mice with clinical signs 
(diarrhea) and a highly inflamed cecum, unlike the other symptom-free 28 and 32 h 
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infected mice. The strong overexpression of several inflammatory markers in these sick 
mice revealed a stronger immune response to CDI consistent with the strong cecal 
inflammation visually observed during animal sacrifice. This expression profile, with the 
induction of TNFα, IL-1β, or CCL4, reveals the activation of a T Helper type 1 (Th1) 
immune response, while no evidence of Th2 response was observed.

Gene clusters III, V, and VI were also induced in the 28 and 32 h infected mice 
both symptomatic and symptom-free. Genes from cluster III are involved in cell division 
and DNA repair including Nupr1, involved in regulation of cellular catabolic process or 
programmed cell death, already shown as part of the host response to bacterial infection 
(87, 88).

Few genes (cluster IV) show a distinct profile, with an induction in all infected (8, 28, 
and 32 h) mice. Most of these genes are part of metabolism pathways, but two could 
also be related to immune response, including bovine leukocyte antigen family member 
2 (BOLA2), upregulated in CD4+ T cells by JAK-STAT signaling following IL-12 stimulation, 
and then Th1 immune response (89), and G protein subunit alpha transducin 3 (GNAT3) 
encoding a taste receptor, which is also expressed in the gut with potential role in innate 
immunity (90).

FIG 5 Differential gene analysis of mouse genes expression during C. difficile infection. A hierarchically clustered heatmap 

and dendrogram show the expression patterns of the genes differentially expressed in mice between uninfected control mice 

(Uninfected, samples S11, S12, S13), infected mice at 8 h (Infected 8 h, samples S1, S2, S3), 28 h (Infected 28 h, samples S4, 

S5, S6), and 32 h (Infected 32 h, samples S7, S8, S9) post-infection. Symptoms: mice infected with C. difficile showing visible 

symptoms (samples S4, S7, S9). No_Symptoms: mice infected with C. difficile showing no visible symptoms (samples S5, S6, 

S8). Clusters of genes are numbered from I to XII and discussed in the text. The color key represents the level of expression for 

each gene.
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Among genes repressed during CDI (clusters VII – XII), we found many genes 
encoding proteins involved in (i) metabolism (fatty acid metabolism, cholesterol 
homeostasis, glycan, and glycosaminoglycan metabolism, …); (ii) cell junction interac
tions and cell adhesion molecule (cadherin, claudin, contactin, ...); (iii) signal transduc
tion (ligand-gated ion channel as glutamate receptor, adrenergic receptor, and calcium 
channel) (Table S8). Similar results were obtained in dual RNA-seq experiments with 
Yersinia pseudotuberculosis proliferating in the gut-associated lymphoid tissue or Eimeria 
tenella-infected cecal tissue with shutdown of pivotal cellular functions in response to 
the infection (23, 91).

As no statistically significant differences in gene expression were observed with 
principal component analysis (Fig. S10A) between 28 and 32 h infected mice, these 
two groups could be combined into a late infected mice group to explore the mouse 
gene expression profile associated with CDI; 1,780 genes were significantly differentially 
expressed between late infected mice and uninfected mice (Fig. S10A and S11A) (530 
repressed and 1,250 induced during infection). Among the most induced genes in 
infected mice were host immune response genes encoding TIR adaptor protein (TIRAP), 
FOS (transcription factor), NLRP3 (member of the NLRP3 inflammasome complex) and 
several cytokines (TNFα, IL-1α, IL-1β, IL-6, IL-22, CXCL1-2-5, CCL2-3-4-7). We validated the 
overexpression of IL-1β, Il-22, and CXCL5 gene in late infected mice as compared with 
uninfected mice by independent qRT-PCR experiment. Several genes encoding anti-
microbial peptides, such as α-defensins or intelectin-1, were repressed in late infected 
mice (92). It has been previously observed that a parasite, Cryptosporidium parvum, was 
able to downregulate these genes as another immune evasion strategy (93).

The large number of reads aligning to the mouse genome allows for more detailed 
comparisons between different groups of samples. We therefore looked for potential 
differences based on kinetic or clinical criteria (Fig. S11B and C) by comparing the 
expression profile of late infected (28 and 32 h) vs early (8 h) infected mice and of 
symptomatic (sick) vs asymptomatic (healthy) mice within the late infected mice group.

When the combined group of 28 and 32 h late-infected mice was compared with the 
8 h early infected mice group (Fig. S10B), we found a much lower number of differentially 
expressed genes than for the previous analysis (late infected mice versus uninfected 
mice). Only 375 genes were significantly differentially expressed (98 repressed and 
277 induced), suggesting the quick induction of host response to CDI with the major
ity of genes differentially expressed as early as 8 h post-infection (e.g., inflammatory 
response TNFα, IL-6, and IL-22), although the histological and clinical consequences of the 
inflammatory process are not yet observable.

Finally, within the late infected mice (28 and 32 h), we were able to compare gene 
expression between sick mice vs symptom-free mice. Despite a somewhat different gene 
expression profile of sample S5 compared with other asymptomatic mice samples, this 
analysis revealed a number of potential markers for extensive inflammatory processes 
during CDI. We identified as many as 3,538 significantly differentially expressed genes 
in the sick animals, 1,909 induced and 1,629 repressed (Fig. S10C). The differentially 
expressed genes were classified into biological functions using Reactome (94). A large 
number of immune and inflammatory responses genes were induced in symptomatic 
mice compared with asymptomatic mice. Several highly induced genes encode proteins 
(calprotectin composed on S100A8 and SA1009, lactotransferrin Ltf and lipocalin 2 Lcn2) 
(Table 2) that contribute to nutritional immunity as an efficient antimicrobial defence 
strategy of the host to sequester essential divalent metals during infection (95). This 
induction of metal scavenging processes by the host is in line with recent studies 
highlighting the importance of such responses in the context of CDI (82). Other induced 
genes are involved mostly in metabolism, homeostasis, signal transduction, keratiniza
tion, and tissue remodeling (Table 2). Several genes encoding metalloproteases with 
collagenase activity, notably the MMP8 gene, were strongly overexpressed in sick mice, 
in accordance with the results of Fletcher et al. (27). Degradation of collagen by these 
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TABLE 2 Host genes strongly induced in sick symptomatic mice compared with asymptomatic mice (both being late infected animals) and miRNAs induced or 
repressed in mice during CDI

Gene ID Description Categorya Fold 

change

Cxcl3 Chemokine (C-X-C motif ) ligand 3 Immune system 163.37

Csf3 Colony-stimulating factor 3 (granulocyte) 129.61

S100a8 S100 calcium binding protein A8 (calgranulin A) 113.38

Trim10 Tripartite motif-containing 10 93.44

Cxcl2 Chemokine (C-X-C motif ) ligand 2 92.80

S100a9 S100 calcium binding protein A9 (calgranulin B) 85.57

Acod1 Aconitate decarboxylase 1 85.27

Ccl3 Chemokine (C-C motif ) ligand 3 75.74

Ptx3 Pentraxin-related gene 71.11

Il1f9 Interleukin 1 family, member 9 70.23

Siglecl1 Siglec family like 1 66.63

Il1a Interleukin 1 alpha 65.39

Ltf Lactotransferrin 55.87

Ccl4 Chemokine (C-C motif ) ligand 4 51.77

Cxcr2 Chemokine (C-X-C motif ) receptor 2 48.94

Mrgpra2a MAS-related GPR, member A2A 45.73

Mrgpra2b MAS-related GPR, member A2B 45.44

Clec4e C-type lectin domain family 4, member e 42.25

Hcar2 Hydroxycarboxylic acid receptor 2 36.81

Tarm1 T cell-interacting, activating receptor on myeloid cells 1 35.04

Nlrp3 NLR family, pyrin domain containing 3 33.78

Hdc Histidine decarboxylase 33.78

Cxcl5 Chemokine (C-X-C motif ) ligand 5 32.76

Clec4d C-type lectin domain family 4, member d 31.47

Lcn2 Lipocalin 2 30.13

Il1b Interleukin 1 beta 29.65

Il1r2 Interleukin 1 receptor, type II 29.38

Osm Ncostatin M 28.60

Il6 Interleukin 6 26.21

Il1rn Interleukin 1 receptor antagonist 24.05

Spp1 Secreted phosphoprotein 1 21.81

Cxcl1 Chemokine (C-X-C motif ) ligand 1 21.02

Scrg1 Scrapie responsive gene 1 19.20

Il13ra2 Interleukin 13 receptor, alpha 2 19.13

Tnip3 TNFAIP3 interacting protein 3 18.23

Mcemp1 Mast cell expressed membrane protein 1 18.14

Il1bos Interleukin 1 beta, opposite strand 17.24

Serpina3k Serine (or cysteine) peptidase inhibitor, clade A, member 3K 16.95

Ifng Interferon gamma 16.81

Nos2 Nitric oxide synthase 2, inducible 16.44

Trim30b Tripartite motif-containing 30B 16.00

Plaur Plasminogen activator, urokinase receptor 15.85

Il23a Interleukin 23, alpha subunit p19 15.53

Lilr4b Leukocyte immunoglobulin-like receptor, subfamily B, member 4B 15.12

Ccl17 Chemokine (C-C motif ) ligand 17 13.21

Plet1 Placenta-expressed transcript 1 Metabolism 28.01

Lypd3 Ly6/Plaur domain containing 3 23.20

Fgf23 Fibroblast growth factor 23 19.60

Cemip Cell migration-inducing protein, hyaluronan binding 19.35

B3galt5 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 5 15.00

(Continued on next page)
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TABLE 2 Host genes strongly induced in sick symptomatic mice compared with asymptomatic mice (both being late infected animals) and miRNAs induced or 
repressed in mice during CDI (Continued)

Gene ID Description Categorya Fold 

change

Chac1 ChaC, cation transport regulator 1 14.64

Serpina3m Serine (or cysteine) peptidase inhibitor, clade A, member 3M 13.38

Plet1os Placenta-expressed transcript 1, opposite strand 13.13

Prss27 Protease, serine 27 12.90

Ly6g Lymphocyte antigen 6 complex, locus G Hemostasis 149.50

Trem1 Triggering receptor expressed on myeloid cells 1 53.52

Gata4 GATA binding protein 4 50.63

Slc7a11 Solute carrier family 7 (cationic amino acid transporter, y + system), 

member 11

21.01

Sele Selectin, endothelial cell 17.52

F10 Coagulation factor X 14.08

Prok2 Prokineticin 2 Signal transduction 149.91

Slc4a11 Solute carrier family 4, sodium bicarbonate transporter-like, member 11 60.13

Adgrf1 Adhesion G protein-coupled receptor F1 22.58

Epgn Epithelial mitogen 14.87

Rnd1 Rho family GTPase 1 14.22

Nkx2-9 NK2 homeobox 9 12.99

Sprr2h Small proline-rich protein 2H Keratinization 102.04

Krt36 Keratin 36 29.88

Csta1 Cystatin A1 27.90

Tgm1 Transglutaminase 1, K polypeptide 16.31

Sprr1a Small proline-rich protein 1A 15.92

Krt14 Keratin 14 12.73

Prss22 Protease, serine 22 Tissue remodeling 641.36

Mmp8 Matrix metallopeptidase 8 154.66

Chil1 Chitinase-like 1 33.47

Mmp10 Matrix metallopeptidase 10 30.70

Mmp3 Matrix metallopeptidase 3 26.37

Nppc Natriuretic peptide type C Muscle contraction 17.63

Ankrd33b Ankyrin repeat domain 33B Programmed cell death 13.36

MIR1938* Induced miRNAs in infected mice (MI vs MC)b 8.17

MIR3109* 8.07

MIR21a 4.18

MIR1938* Induced miRNAs in symptomatic mice (sick vs healthy)c 6.72

MIR6236 6.04

MIR7678 5.32

MIR3109* 3.72

MIR7672 3.36

MIR3064 1.90

MIR3069 Repressed miRNAs in infected mice (MI vs MC)b −1.72

MIR1843a −3.45

MIR1843b* −4.17

MIR1949* −4.55

MIR1843b* Repressed miRNAs in mice infected at 28 h and 32 h (late vs 

early)d

−4.00

MIR1949* −3.70

MIR682 Repressed miRNAs in symptomatic mice (sick vs healthy)c −1.85

MIR99ahg −4.17

(Continued on next page)
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host proteins may participate to the tissue lesions but may also sustain the growth of C. 
difficile by providing proline and hydroxyproline to the bacteria.

Differential expression of host ncRNAs during CDI

ncRNAs can be at the crossroad of regulatory processes governing the interactions of 
the pathogens with their host during infection (20, 96, 97). In the present study, many 
lncRNAs have been identified differentially expressed during CDI, but most of them have 
not yet been characterized. Compared with uninfected mice, 185 ncRNAs differentially 
expressed, with more lncRNAs (178 genes, 96 repressed, and 82 induced) than miRNAs 
(seven genes, four repressed, and three induced), have been identified in infected mice. 
Thirty-eight ncRNAs were differentially expressed in late infected mice compared with 
early infected mice (20 induced and 18 repressed), with the vast majority being lncRNAs 
(36 genes, 20 induced, and 16 repressed) and only two repressed miRNAs. Among late 
infected mice, 257 ncRNAs were differentially expressed (155 induced and 102 repressed) 
in symptomatic mice compared to asymptomatic mice. As in the global differential 
analysis encompassing all conditions, almost all of these ncRNAs were lncRNAs (248 
genes, 99 repressed, and 149 induced). Moreover, in this analysis, nine differentially 
expressed miRNAs were identified (three repressed and six induced).

Among the ncRNAs, the miRNAs have emerged as important players in host 
responses to bacterial pathogen infections (96, 98). We thus extracted the miRNAs 
differentially expressed in mice during CDI for each comparative analysis (Table 2). Of 
the 14 miRNAs identified, seven were repressed, and seven were induced upon CDI. 
Four miRNAs were found to be differentially expressed in two of the three differential 
analyses. The two miRNAs, miR-1843b and miR-1949, were repressed in infected mice as 
compared with uninfected mice but also in late infected mice as compared with early 
infected mice. miR-1949 has only been described as apoptosis-related miRNA in ovarian 
granulosa cells induced by cadmium and also as a potential inducer of bladder cancer 
following spinal cord injury (99, 100). miR-1938 and miR-3109 were induced in infected 
mice compared with uninfected mice but also in symptomatic mice compared with 
asymptomatic mice. These two miRNAs could be then of particular interest for further 
functional characterization.

Among the miRNAs repressed in mice during CDI, three (miR-145a, miR-682, and 
miR-99a) have already been involved in anti-inflammatory processes, whereas no role for 
miR-1843a and miR-3069 has been previously identified. miR-145a negatively regulates 
the sepsis-induced inflammatory response through modulation of NF-κB signaling (101), 
miR-682 has a protective effect on intestinal cells damaged during ischaemic episodes 
(102) and miR-99a exerts an anti-inflammatory effect when expressed in adipose tissue 
by inhibiting TNF-α (103).

Among the miRNAs induced in mice during CDI, two (miR-21a and miR-7678) have 
already been described in inflammatory response. miR-21a, one of the most highly 
expressed miRNAs in mammalian cells, could play a dynamic role in pro-inflamma-
tory responses (104). miR-7678 is regulated by TNF-α and involved in controlling the 
inflammatory response in tissue-engineered cartilage (105). No role in inflammatory 
response has been shown for miR-3064 and miR-6236, which have only been described 
in cardiac or brain diseases (106, 107).

TABLE 2 Host genes strongly induced in sick symptomatic mice compared with asymptomatic mice (both being late infected animals) and miRNAs induced or 
repressed in mice during CDI (Continued)

Gene ID Description Categorya Fold 

change

MIR145a −33.33

aThe functional category of host genes or miRNA differential expression class is indicated for the first gene/miRNA of the group.
bmiRNAs from the differential analysis performed between infected mice from the 28 h and 32 h groups (MI) and uninfected mice (MC).
cmiRNAs from the differential analysis performed between symptomatic mice (sick) and asymptomatic mice (healthy) from the 28 and 32 h groups.
dmiRNAs from the differential analysis performed between mice infected at 8 h (early) and mice from the 28 and 32 h (late) groups. The common miRNAs between at least 
two different analyses are indicated by an asterisk (*).
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Our results underline the complexity of the regulatory networks of the inflammatory 
response during CDI and the potential role of miRNAs and lncRNAs in this process. 
Nevertheless, global miRNA regulation seems to favor the inflammatory process, with 
reduced expression of anti-inflammatory miRNAs and induction of pro-inflammatory 
miRNAs. Interestingly, the comparison showing the greatest differences in expression 
within these regulatory RNAs was between late-infected mice that were sick or 
asymptomatic. A more detailed analysis of these phenomena could provide a better 
understanding of the relationship between infection and disease in the host.

Conclusion

C. difficile interacts with host and resident microbial communities inside the gut during 
infection. We took advantage here of the conventional mouse model of CDI mimicking 
the infection in humans to follow simultaneously the transcriptome dynamics of the 
pathogen and the host but also the kinetics of the gut microbiota composition. Such 
dual in vivo transcriptomics approach has never been applied to C. difficile before, and 
ncRNAs were not included in previous transcriptomics during CDI, although a recent 
paper reports a transcriptomic profiling of C. difficile attached to epithelial cells using 
an in vitro human gut model over 24 h (108). This study did not look at ncRNA and, 
importantly, the expression of several key RNA regulators could be only detected under 
relevant conditions in vivo.

From the pathogen side, our data confirmed differential expression in vivo as 
compared with in vitro conditions of the toxin, metabolism and sporulation genes also 
observed with different infection models before and identified for the first time the 
ncRNA expression dynamics in vivo. Our dual RNA-seq analysis revealed new promising 
candidates among ncRNAs highly induced or repressed in vivo that correlated with 
analysis of available raw RNA-seq data sets from two independent studies. Some of these 
ncRNAs could be related to the regulation of sporulation process in accordance with 
accumulating evidence for the importance of RNA-based mechanisms in the control of 
this key step in C. difficile infection cycle including Hfq (17, 109) and Hfq-binding ncRNAs 
(18, 110, 111).

From the host side, our transcriptomics revealed various inflammation-related 
pathways as highly induced during infection. A number of known pro-inflammatory 
miRNAs or previously uncharacterized miRNAs and lncRNAs have been identified as 
differentially expressed during CDI paving the way for further functional studies of these 
RNA-based mechanisms modulating host responses. We identified a particular expres
sion pattern for C. difficile-infected mice presenting symptoms as compared with infected 
but asymptomatic mice, leading to identification of promising markers associated with 
extensive inflammatory processes. Unfortunately, the relatively low number of C. difficile 
reads in in vivo samples did not allow a detailed comparison of the gene expression 
profiles between asymptomatic and sick late infected mice. However, the host changes 
between these two groups correlated with specific modifications of microbiota profiles 
revealing interesting candidate species that may be involved in the modulation of 
the inflammatory process during CDI as potential targets for further microbiota-related 
modulatory strategies to improve the efficiency of CDI treatments.

The present study made it possible to follow the complex interactions between 
C. difficile and its host during infection, illustrating the battle for essential nutrients 
including metals with strong metal scavenging processes induced in the host to combat 
the pathogen and specific metal transport deregulations in C. difficile. The pathogen 
secretes the toxins inducing host inflammatory responses leading to tissue lesions and 
successful infection, while the host induces a number of defense mechanisms producing 
antimicrobial peptides and activating immune responses. Both interacting organisms 
are experiencing profound metabolic adaptations with C. difficile, inducing translational 
activity and adjusting its metabolism to available resources in the gut in competition 
with resident microbiota, while the host largely shuts down its metabolism and other 
general cell functions. As an example, the induction of collagenase expression in the 
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host contributes to tissue lesions providing resources to sustain the C. difficile growth, 
the pathogen inducing proline reductase pathway to use proline as energy source 
available from collagen degradation. During infection, the induction of C. difficile spore 
formation appears also as an efficient strategy to persist in the gut evading the host 
immune responses. Future studies will complete this first transcriptomic picture with 
more detailed view on gene expression dynamics and regulations during C. difficile 
interactions with its host expanding it to clinically relevant epidemic strains.

Overall, the data generated during this work represent a unique resource for scientific 
community to explore both the pathogen and the host gene expression during infection 
and show the power of combined computational approaches applied to complex data 
sets to extract valuable and statistically significant information on host and pathogen 
transcriptome, microbiome, and ncRNA identification despite the small sample size. 
These data constitute the essential basis to specify the RNA-based mechanisms shaping 
virulence and adaptation of C. difficile to its host and modulating the immune and 
inflammatory host responses. By identifying specific virulence markers and potential 
therapeutic targets, this work opens new avenues for future development of alternative 
therapeutic and diagnostic strategies.
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