
HAL Id: hal-04823184
https://hal.science/hal-04823184v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coq Platform docs: A Compilation of Short Interactive
Tutorials and How-To Guides for Coq

Thomas Lamiaux, Pierre Rousselin, Théo Zimmermann

To cite this version:
Thomas Lamiaux, Pierre Rousselin, Théo Zimmermann. Coq Platform docs: A Compilation of Short
Interactive Tutorials and How-To Guides for Coq. The 15th Coq Workshop 2024, Clément Pit-Gaudel;
Théo Winterhalter, Sep 2024, Tbilisi / Hybrid, Georgia. �hal-04823184�

https://hal.science/hal-04823184v1
https://hal.archives-ouvertes.fr


Coq Platform docs: A Compilation of Short Interactive

Tutorials and How-To Guides for Coq

Thomas Lamiaux1, Pierre Rousselin2, and Théo Zimmermann3

1 ENS Paris-Saclay thomas.lamiaux@ens-paris-saclay.fr
2 LAGA, Université Sorbonne Paris Nord rousselin@math.univ-paris13.fr

3 LTCI, Télécom Paris, Polytechnic Institute of Paris theo.zimmermann@telecom-paris.fr

1 Motivation

Having a proper, clean and accessible documentation is one of the keys to the success of soft-
ware. There are different forms of documentation: abstract and detailed documentation like
the reference manual [8], course-shaped documentation like Coq’Art [2] or Software Founda-
tions [5], or short action-oriented documentation. We focus on the latter. Short action-oriented
documentation provides users with practical information on specific features of Coq, so that
users can learn and discover new features by themselves or consult it when they fail to use them
efficiently.

At this point, Coq has only minimal and scattered action-oriented documentation about
specific features or topics. The reference manual is by design not learning-oriented and not
action-oriented, and it would be a mistake to try to bend it that way. Books like Coq’Art or
Software Foundations provide nice pedagogical explanations but target specific audiences, and
are rather meant to be read from cover to cover. Moreover, they are not well suited for learning
about specific features, to discover horizontally, and are not easy to keep updated.

Yet, short action-oriented documentation has many interests:

• Having an easy to access documentation, accessible through a nice centralized online
interface is of utmost importance to engage new users and keep current users. We cannot
expect users to have to dig on their own through the reference manual, books, or GitHub
repositories of ecosystem packages to learn how to use or get information while working
about a specific feature. Moreover, these sources may not contain the basic answers they
are looking for, due to their nature.

• Not having such a documentation prevents people from actually discovering and learning
by themselves new amazing features, as well as the richness of our ecosystem [1]. Indeed,
many features and packages are still currently under-documented, and when existing, the
documentation is often scattered out, making it hard to discover a feature if one is not
already an expert. A symptom of that is the trouble that students are currently facing to
find answers or discover new functionalities by themselves, even sometimes about basic
features.

• Even advanced users need help to keep up to date with recent developments inside of Coq
(SProp, universe polymorphism, Ltac2, ...) or around it (MetaCoq, coq-elpi, Hierarchy
Builder, ...).

• Writing proper documentation forces us to explain the different aspects of a feature clearly,
step by step, and without relying on recipes to get the code working, thus to understand
it better. Therefore, we hope that by writing the documentation, we will clarify the use
of many features, and potentially discover or shed light on bugs or weaknesses. Actually,



Coq Platform docs Lamiaux, Rousselin and Zimmermann

writing tutorials for Equations has already revealed different issues with the main tactic
funelim and bugs involving rewrite.

• Most users are currently unaware of the extent of what has been formalised and is available
in Coq. There are many libraries, and it is not easy to know which library to use, or to
know on which axioms they rely or their compatibilities. This is obviously not just a
documentation issue, but having a clearer documentation of what we have and where
would help.

2 Description of the project

This project aims to create an online compilation of short and interactive tutorials and how-to
guides for Coq and the Coq Platform [7, 4]. Each core functionality and plugin of Coq and the
Coq Platform should have (short) pedagogical tutorials and/or how-to guides demonstrating
how to use this functionality, with practical examples. They should further be available online
through an interactive interface, most likely using jsCoq [3], and a non-interactive interface (for
reading on mobile devices).

Tutorials and how-to guides serve different purposes and are complementary. Tutorials guide
a user during learning in discovering specific aspects of a feature like “Notations in Coq”, by
going through (simple) predetermined examples, and introducing notions gradually. In contrast,
how-to guides are use-case-oriented and guide users through real life problems and their inherent
complexity, like “How to define functions by well-founded recursion and reason about them”.

This form of documentation is complementary to other kinds of documentation and has
several advantages:

• Tutorials should enable users to learn and discover specific features on their own, modu-
larly, and according to their needs.

• How-to guides should provide users practical answers to practical problems that they can
refer to when working.

• By nature, the documentation should be mostly horizontal, which should:

– make it easy to navigate and to find specific information,

– prevent users from having to read a bunch of documentation to be able to read a
specific tutorial,

– make it possible to build it gradually, making new tutorials and how-to guides avail-
able as we progress

– allow differentiated learning: depending on your background or objective you can
navigate the documentation differently, potentially reading different tutorials.

• It will enable us to showcase all that is possible in Coq’s ecosystem.

At the moment, we use a GitHub repository that people can check out to discover the project,
and a dedicated Zulip stream to discuss the project. A few tutorials are already available on
the repository. They have proven useful by providing practical answers that are otherwise hard
to find without asking directly to an expert. A first online interactive interface based on JsCoq
and coqdoc is currently being developed and will be available soon. In the future, we hope to
support a more standard and expressive format, possibly using Alectryon [6].

To further discuss the project, we have written a Coq Enhancement Proposal. We hope
that, eventually, this documentation will become part of the website that will be created when
renaming Coq to the Rocq Prover.

2

https://github.com/Zimmi48/platform-docs/pull/1
https://coq.zulipchat.com/#narrow/stream/237659-Equations-devs-.26-users/topic/Bug.20funelim.20on.20Ack
https://github.com/Zimmi48/platform-docs
https://coq.zulipchat.com/#narrow/stream/437203-Platform-docs
https://github.com/coq/ceps/pull/91


Coq Platform docs Lamiaux, Rousselin and Zimmermann

References

[1] Andrew W Appel. Coq’s vibrant ecosystem for verification engineering (invited talk). In Proceedings
of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 2–11,
2022.

[2] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development: Coq’Art:
the calculus of inductive constructions. Springer Science & Business Media, 2013.

[3] Emilio Jesús Gallego Arias, Benôıt Pin, and Pierre Jouvelot. jsCoq: Towards Hybrid Theorem
Proving Interfaces. In S. Autexier and P. Quaresma, editors, Proc. of the 12th Workshop on User
Interfaces for Theorem Provers (UITP 2016), volume 239 of Electronic Proceedings in Theoretical
Computer Science, pages 15–27. Open Publishing Association, 2017. https://doi.org/10.4204/

EPTCS.239.2.

[4] Karl Palmskog, Enrico Tassi, and Théo Zimmermann. Reliably reproducing machine-checked proofs
with the Coq Platform. In RRRR 2022-Workshop on Reproducibility and Replication of Research
Results, 2022.

[5] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Logical Foundations, volume 1 of
Software Foundations. Electronic textbook, 2023. Version 6.5, http://softwarefoundations.cis.
upenn.edu.

[6] Clément Pit-Claudel. Untangling mechanized proofs. In Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering, pages 155–174, 2020.

[7] Michael Soegtrop and contributors. The Coq Platform. https://github.com/coq/platform, 2019–
2024.

[8] The Coq Development Team. The Coq reference manual, version 8.19.0. https://coq.inria.fr/
doc/V8.19.0/refman/, 1999–2024.

3

https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.4204/EPTCS.239.2
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://github.com/coq/platform
https://coq.inria.fr/doc/V8.19.0/refman/
https://coq.inria.fr/doc/V8.19.0/refman/

	Motivation
	Description of the project

