
HAL Id: hal-04823162
https://hal.science/hal-04823162v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test function approach to fully nonlinear equations in
thin domains

Isabeau Birindelli, Ariela Briani, Hitoshi Ishii

To cite this version:
Isabeau Birindelli, Ariela Briani, Hitoshi Ishii. Test function approach to fully nonlinear
equations in thin domains. Proceedings of the American Mathematical Society, In press,
�10.48550/arXiv.2404.19577�. �hal-04823162�

https://hal.science/hal-04823162v1
https://hal.archives-ouvertes.fr


TEST FUNCTION APPROACH TO FULLY NONLINEAR

EQUATIONS IN THIN DOMAINS

ISABEAU BIRINDELLI, ARIELA BRIANI, AND HITOSHI ISHII

Abstract. In this note we extend to fully nonlinear operators the well known result
on thin domains of Hale and Raugel [7]. The result is more general even in the case
of the Laplacian.
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1. Introduction

The classical result of Hale and Raugel [7] in thin domains states that if uε are
solutions of {

−∆uε + uε = f(x, y) in Ωε

∂νεuε = 0 on ∂Ωε

where Ωε = {(x, y) ∈ RN × R : x ∈ Ω, 0 < y < εg(x)}, for some g ∈ C3(Ω) such that
0 < inf

Ω
g ≤ sup

Ω
g <∞ then uε converges to uo solution of{

−(∆uo +
Dg·Duo

g ) + uo = f(x, 0) in Ω

∂νu0 = 0 on ∂Ω.

This result has been extended in a wide variety of related problems see e.g. the works of
Arrieta, Pereira, Raugel [1, 2, 10]. But all the above results concern variational problems,
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where the appearance of the first order seems to come from a typical integration by parts,
related to the variational nature of the problem.

In this paper, instead, we treat fully nonlinear equation in thin domains i.e. where
the equation is given by

F (D2u,Du, u, (x, y)) = 0 in Ωε

where F : S(N + 1) × RN+1 × R × Ωε → R is a proper functional in the sense of the
User’s guide [4]. Of course the solutions are viscosity solutions and the proof follows
the test function approach of Evans [5] which is somehow more direct and completely
different from the papers mentioned above. Furthermore the technique does not require
the operator to be uniformly elliptic as it will be evident from the hypotheses below. An
example of thin domains for degenerate elliptic operator will be given explicitly below.

Even though the results will be proved for a large class of operators, in this introduc-
tion, we will illustrate the special case where the fully non linear operator is one of the
extremal Pucci operators e.g. for 0 < λ ≤ Λ

M+
λ,Λ(D

2u) := sup
λI≤A≤ΛI

(trA(D2u)) = λ
∑
ei≤0

ei + Λ
∑
ei≥0

ei,

where ei = ei(D
2u) denotes the i-th eigenvalue of the Hessian matrix D2u.

Under the hypothesis

(H1) g ∈ C1(Ω) and 0 < inf
Ω
g ≤ sup

Ω
g <∞,

we will prove that uε, the solutions of

(1)

{
−M+

λ,Λ(D
2uε) + uε = f(x, y) in Ωε

∂νεuε = 0 on ∂Ωε

converge uniformly to uo solution of

(2)

{
−M+

λ,Λ(D
2uo(x))− Λ

(
Dg·Duo

g

)+
+ λ

(
Dg·Duo

g

)−
+ uo(x) = f(x, 0) in Ω

∂νuo = 0 on ∂Ω.

Of course in the first equation M+
λ,Λ acts on matrices in S(N + 1) while, in the second

equation, it acts on matrices in S(N).
In the special case λ = Λ = 1, when M+

λ,Λ = ∆, we recover Hale and Raugel result,

but we improve the condition on g that is only required to be the natural condition C1

and not C3.
We wish to explain the heuristic behind the formal proof which will be given in this

paper, for a much larger class of operators. Let uε be a solution of (1) and let

vε(x, y) := uε(x, εg(x)y)

so that we have ”flattened” the top boundary. In similarity with the linear variational
case we can suppose that there exists a constant C such that

|∂yyvε| ≤ Cε2.

This in turn implies that for ε→ 0, ∂yyvε → 0 and then, using the boundary condition,
we get

vε(x, y) → vo(x).
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On the other hand, the above estimates implies also that, for some function k(x), we
get that

∂yyvε(x, y)

ε2
→ k(x) := g2(x)h(x).

So we may use the following ansatz :

vε(x, y) = w(x) + ε2k(x)
y2

2
+ o(ε2).

Substituting the ansatz in the equation, we let formally ε go to zero; after a tedious
but simple computation it is easy to see that we obtain

−M+
λ,Λ(

(
D2w(x) 0

0 h(x)

)
) + w(x) = f(x, 0).

We use the condition on the ”top” boundary, in order to determine h(x):

Dg(x) · [Dw(x) + ε2D(g2h)(x)
1

2
] = g(x)h(x)[1 + ε2Dg(x)].

Passing to the limit we find

h(x) =
Dg(x) ·Dw(x)

g(x)

i.e. the limit equation becomes:

−M+
λ,Λ(

(
D2w(x) 0

0 Dg(x)·Dw(x)
g(x)

)
) + w(x) = f(x, 0).

Observe that writing the ansatz directly for uε one obtains

(3) uε(x, y) = w(x) +
h(x)

2
y2 + o(ε2).

In the rest of the paper we will treat the general case and make rigorous the above idea,
in particular using Evans’s test approach to the problem at hand.

We will first give some a priori bounds, which allow to prove that the upper and lower
relaxed limits u+ and u− of {uε}ε∈(0,ε0] are respectively sub and super solutions of the
limit equation:

(4)


F

((
D2w 0
0 Dg ·Dw/g

)
, (Dw, 0), w, (x, 0)

)
= 0 in Ω,

∂w

∂ν
= 0 on ∂Ω.

Under the further condition that the comparison principle holds, we will prove that the
convergence of uε to the solution of (4) is uniform.

The scope of this paper is to open the results in thin domains from a perspective that
is, to our knowledge completely different from the previous results, see e.g. [1, 2, 7, 10].
So, in order to make the exposition the clearer possible, we have decided to concentrate
on the more classical case i.e. domains like Ωε that in one direction have a one flat
boundary and with a Neumann boundary condition. We plan to investigate in a further
research, more generale domains, for examples with jumps or with non flat sides, or thin
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domains that also have an oscillatory boundary. We hope the reader will appreciate this
choice.

2. Preliminaries

Let F : S(N + 1) × RN+1 × R × Ωε → R be a proper functional in the sense of the
User’s guide [4], i.e.

(H2)

{
F ∈ C(S(N + 1)× RN+1 × R× Ωε,R),
F (X, p, r, (x, y)) ≤ F (Y, p, s, (x, y)) whenever r ≤ s, and Y ≤ X.

Furthermore, for simplicity of the presentation, we strengthen the monotonicity con-
dition on F in the above as follows.

(H3) There exists α > 0 such that

α(r − s) ≤ F (X, p, r, (x, y))− F (X, p, s, (x, y))

for r ≥ s and (X, p, (x, y)) ∈ S(N + 1)× RN+1 × Ωε.

Our PDE problem is:

(5) F (D2uε, Duε, uε, (x, y)) = 0 in Ωε and
∂uε

∂νε
= 0 on ∂Ωε,

where νε denotes the outward (unit) normal to Ωε.
Since our concern is the asymptotic behavior of solutions uε to (5), we will restrict

ourself to the parameter ε in the range (0, ε0], where ε0 > 0 is a number fixed throughout.
Let us note that we shall use ν to indicate the normal to Ω and νε for Ωε. Obviously,
the assumptions above are not enough to ensure the existence of viscosity solutions in
the sense of the User’s guide [1] to (5). To keep the generality of the assumptions made
above, we consider the notion of viscosity solutions to (5) which eliminates the continuity
requirement. That is, we call a bounded function u on Ωε a (viscosity) solution of (5) if
its upper and lower semicontinuous envelopes are viscosity sub and super solutions, in
the sense of [1], to (5), respectively.

We assume throughout that

(H4) Ω is a bounded C1 domain of RN .

Accordingly, we may choose a function ρ ∈ C1(RN ) so that

(6) ρ(x) < 0 for x ∈ Ω, Dρ(x) ̸= 0, and ρ(x) > 0 for x ∈ RN \ Ω.

Note that the outward unit normal ν to Ω at x ∈ ∂Ω is given by ν = |Dρ(x)|−1Dρ(x).
The domain Ωε has corners, where the N–dimensional hypersurface ∂Ω × R intersects
either the hypersurfaces y = g(x) or y = 0, respectively.
We denote by ∂LΩε, ∂BΩε, and ∂TΩε the lateral, bottom, and top portions of the
boundary ∂Ωε, which are described respectively as

{(x, y) ∈ ∂Ωε : x ∈ ∂Ω}, {(x, y) ∈ ∂Ωε : y = 0}, and

{(x, y) ∈ ∂Ωε : y = εg(x)}.
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Furthermore, the outward unit normal to Ωε at the lateral boundary, at the bot-
tom, y = 0, and at the top boundary, y = εg(x), is given, respectively, by νL =
(|Dρ(x)|−1Dρ(x), 0), νB = −eN+1 = −(0, . . . , 0, 1), and

νT =
(−εDg(x), 1)√
1 + ε2|Dg(x)|2

.

The appearance of corners of the domain Ωε requires a little care in the definition of
sub and super solutions to (5). For instance, when u is a bounded upper semicontinuous
function on Ωε, we call u a viscosity subsolution of (5) if the following condition holds:
whenever ϕ ∈ C2(Ωε), ẑ = (x̂, ŷ) ∈ Ωε and maxΩε

(u− ϕ) = (u− ϕ)(ẑ), we must have

(7) F (D2ϕ(ẑ), Dϕ(ẑ), u(ẑ), ẑ) ≤ 0

if ẑ ∈ Ωε, we have either (7) or

(8) νL ·Dϕ(ẑ) ≤ 0

if ẑ ∈ ∂LΩε \ (∂BΩε ∪ ∂TΩε), we have either (7) or

(9) νB ·Dϕ(ẑ) ≤ 0

if ẑ ∈ ∂BΩε \ ∂LΩε, we have either (7) or

(10) νT ·Dϕ(ẑ) ≤ 0

if ẑ ∈ ∂TΩε \∂LΩε, we have either (7), (8), or (9) if ẑ ∈ ∂LΩε∩∂BΩε, and we have either
(7), (8), or (10) if ẑ ∈ ∂LΩε ∩ ∂TΩε. Replacing “max” and “≤” with “min” and “≥”,
respectively, in the above condition yields the right definition of viscosity supersolution.

Thanks to (H2), we can fix a constant C0 > 0 so that

|F (0, 0, 0, (x, y))| ≤ C0 for (x, y) ∈ Ωε0 .

Under the assumptions (H1) and (H4), we define κ ∈ [0,+∞) and ε1 ∈ (0,+∞] by

(11) κ = max
x∈∂Ω

(ν(x) ·Dg(x))+ and ε1 =
1

κ
,

where 1
κ = +∞ if κ = 0. Define ε∗ = min{ε0, ε1}.

Proposition 1. Assume that (H1)–(H4) hold. Let ε ∈ (0, ε∗).

(1) The constant functions α−1C0 and −α−1C0 are classical super and sub solutions
to (5), respectively.

(2) There is a viscosity solution to (5).
(3) Any viscosity solution u to (5) satisfies supΩε

|u| ≤ α−1C0.

The boundary of the domain Ωε has corners, ∂TΩε ∩ ∂LΩε and ∂BΩε ∩ ∂LΩε. The
following two lemmas take care of the main difficulties arising from the corners.

Lemma 2. Assume (H1) and (H4). Let ε ∈ (0, ε1). Let c ∈ ∂TΩε ∩ ∂LΩε. Let ψ ∈
C2(Ωε) take a maximum at c. Then, either

νT ·Dψ(c) ≥ 0 or νL ·Dψ(c) ≥ 0.
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Proof. We write (c′, cN+1) for c, where cN+1 = εg(c′). Set θ =
√
ε2|Dg(c′)|2 + 1 and

ζ = νL(c) + θνT(c). First, we show that for some t0 > 0,

(12) c− tζ ∈ Ωε for all t ∈ (0, t0).

Let ρ ∈ C1(RN ) be a function satisfying (6). Writing ζ = (ζ ′, ζN+1), we have

ζ ′ = ν(c′)− εDg(c′) and ζN+1 = 1,

and wish to show that for some t0 > 0,

(13) ρ(c′ − tζ ′) < 0 and cN+1 − tζN+1 < εg(c′ − tζ ′) for all t ∈ (0, t0).

Since

εg(c′ − tζ ′) = cN+1 − tεζ ′ ·Dg(c′) + o(t) as t→ 0+,

it is obvious that if

(14) ζ ′ ·Dρ(c′) > 0 and ζN+1 − εζ ′ ·Dg(c′) > 0,

then (13) holds.
We compute that

ζ ′ ·Dρ(c′) = |Dρ(c′)|(ν(c′)− εDg(c′)) · ν(c′) ≥ |Dρ(c′)|(1− εκ),

and

ζN+1 − εζ ′ ·Dg(c′) = 1− ε(ν(c′)− εDg(c′)) ·Dg(c′) ≥ 1− εκ.

Since εκ < 1, we find that (14) is valid. In view of (12), we see that

0 ≥ d

dt
ψ(c− tζ))

∣∣∣
t=0

= −ζ ·Dψ(c),

which can be stated as

(νL + θνB) ·Dψ(c) ≥ 0.

Hence, we have either νL ·Dψ(c) ≥ 0 or νB ·Dψ(c) ≥ 0. □

Remark 3. A claim similar to the above lemma holds for other boundary points. Indeed,
assume (H1) and (H4), and let ε > 0, c ∈ ∂Ωε \ (∂TΩε ∩ ∂LΩε), ψ ∈ C2(Ωε), and
ψ(c) = maxΩε

ψ. In addition, if c ∈ ∂LΩε, then c − tνL(c) ∈ Ωε for all t ∈ (0, t0) and

some t0 > 0, which implies that νL · Dψ(c) ≥ 0. If c ∈ ∂TΩε, then c − tνT(c) ∈ Ωε

for t ∈ (0, t0) and some t0 > 0 and, therefore, νT · Dψ(c) ≥ 0. If c ∈ ∂BΩε, then
c− tνB(c) ∈ Ωε for t ∈ (0, t0) and some t0 > 0, which yields that νB ·Dψ(c) ≥ 0.

Remark 4. An important consequence of Lemma 2 and Remark 3 is this. Assume (H1),
(H2), and (H4) and let ε ∈ (0, ε∗). If u ∈ C2(Ωε) is a classical subsolution to (5), then it
is a subsolution to (5) in the viscosity sense. Let us start by remarking that a classical
subsolution u ∈ C2(Ωε) to (5) means that all the following conditions hold pointwise;
F (D2u,Du, u, (x, y)) ≤ 0 on Ωε, νT · Du ≤ 0 on ∂TΩε, νB · Du ≤ 0 on ∂BΩε, and
νL ·Du ≤ 0 on ∂LΩε. For instance, on ∂TΩε ∩ ∂LΩε, classical subsolution u satisfies the
pointwise inequality max{F (D2u,Du, u, x)), νT ·Du, νL ·Du} ≤ 0. Similarly, classical
supersolutions to (5) are defined just by reversing the inequalities. Now suppose that
ϕ ∈ C2(Ωε), c ∈ Ωε, and (u − ϕ)(c) = maxΩε

(u − ϕ). The function ψ := u − ϕ takes
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a maximum at c. If c ∈ Ωε, then 0 ≥ D2ψ(c) = D2u(c) − D2ϕ(c), 0 = Dψ(c) =
Du(c)−Dϕ(c), which, together with (H2), yields

0 ≥ F (D2u(c), Du(c), u(c), c) ≥ F (D2ϕ(c), Dϕ(c), u(c), c).

If c ∈ ∂TΩε ∩ ∂LΩε, then, by Lemma 2, either

0 ≤ νT ·Dψ(c) = νT ·Du(x)− νT ·Dϕ(c) ≤ −νT ·Dϕ(c)

or

0 ≤ νL ·Dψ(c) = νL ·Du(c)− νL ·Dϕ(c) ≤ −νL ·Dϕ(c),

that is, either νT · Dϕ(c) ≤ 0 or νL · Dϕ(c) ≤ 0. Finally, consider the case c ∈ ∂Ωε \
(∂TΩε∩∂LΩε). By Remark 3, if c ∈ ∂TΩε, then νT ·Dψ(c) ≥ 0 and, hence, νT ·Dϕ(c) ≤ 0.
If c ∈ ∂LΩε, then νL · Dψ(c) ≥ 0 and νL · Dϕ(c) ≤ 0. If c ∈ ∂BΩε, then νB · ψ(c) ≥ 0
and νB ·Dϕ(c) ≤ 0. Thus, u is a subsolution to (5) in the viscosity sense. Similarly, we
deduce that any classical supersolution of (5) is a viscosity supersolution of (5).

Lemma 5. Assume (H1) and (H4). Let ε ∈ (0, ε1). Then, there exists a function
ψ ∈ C2(Ωε,R) such that

(15) ν ·Dψ(z) > 0 for


ν = νL and z ∈ ∂LΩε,

ν = νB and z ∈ ∂BΩε,

ν = νT and z ∈ ∂TΩε.

Proof. Let ρ ∈ C1(RN ) be a function satisfying (6). We note here (see Remark 6) that,
for each γ > 0, it is possible to choose ρ such that ||Dρ(x)| − 1| < γ for x ∈ ∂Ω.

Choose a function η ∈ C1(R) such that

η(r) = 0 for r ≤ −g0, 0 ≤ η′(r) ≤ 1 for r ∈ R, and η′(0) = 1,

where g0 := infΩ g > 0. We define ψ = ψε on RN+1 by setting

ψ(x, y) = ρ(x) + ε
(
η
(
− y

ε

)
+ η
(y − εg(x)

ε

))
for (x, y) ∈ RN × R.

If z = (x, y) ∈ ∂LΩε, then

νL ·Dψ(z) = (ν(x), 0) ·
(
(Dρ, 0)− η′

(
− y

ε

)
eN+1

+ η′
(y − εg(x)

ε

)
(−εDg(x), 1)

)
≥ |Dρ(x)| − η′

(y − εg(x)

ε

)
εκ ≥ |Dρ(x)| − εκ.

Similarly, if z = (x, 0) ∈ ∂BΩε, then

νB ·Dψ(z) = −eN+1 ·Dψ(z) = η′(0)− η′(−g(x)) = 1,
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and if z = (x, y) ∈ ∂TΩε, then

νT ·Dψ(z) ≥ 1√
ε2|Dg|2 + 1

(
− ε|Dρ|ν ·Dg(x)− η′(−g(x)) + η′(0)(ε2|Dg(x)|2 + 1))

)
≥ 1√

ε2|Dg|2 + 1

(
− εκ|Dρ|+ (ε2|Dg(x)|2 + 1))

)
≥ 1√

ε2|Dg|2 + 1

(
1− εκ|Dρ|

)
.

By th choice of ε, we have εκ < 1 and, as noted above, we may assume that

εκ < |Dρ(x)| and εκ|Dρ(x)| < 1 for x ∈ ∂Ω.

The function ψ satisfies the property (15). □

Remark 6. For any γ > 0, there exists a ρ ∈ C1(RN ) which satisfies (6) and ||Dρ(x)| −
1| < γ for x ∈ ∂Ω. To see this, fix any ρ ∈ C1(RN ) having the property (6). Let γ > 0.
Since Dρ(x) ̸= 0 for x ∈ ∂Ω, we may choose a function λ ∈ C1(RN ) such that λ > 0 in
RN and |λ(x)|Dρ(x)| − 1| < γ for x ∈ ∂Ω. Then, noting that D(λρ)(x) = λ(x)Dρ(x)
for x ∈ ∂Ω, we find that the function λρ has the required properties.

Proof of Proposition 1. (1) Set u(z) = α−1C0 for z ∈ Ωε. It is clear that νL ·Du(z) = 0
for z ∈ ∂LΩε, νB ·Du(z) = 0 for z ∈ ∂BΩε, and νT ·Du(z) = 0 for z ∈ ∂TΩε. It follows
that

F (D2u(z), Du(z), u(z), z) = F (0, 0, u(z), z) ≥ F (0, 0, 0, z) + αu(z)

≥ −C0 + C0 = 0 for z ∈ Ωε.

Thus, the constant function α−1C0 is a classical supersolution of (5). Similarly, the
constant function −α−1C0 is a classical subsolution of (5).

(2) Thanks to Remark 4, the constant functions α−1C0 and −α−1C0 are viscosity
sub and super solutions of (5), respectively. Due to Remark 3, we infer that the Perron
method works for the boundary value problem (5). Indeed, if we set

u(z) = sup{v(z) : v is a viscosity subsolution of (5),

− α−1C0 ≤ v ≤ α−1C0 on Ωε} for z ∈ Ωε,

then the function u is a viscosity solution to (5). (Remark 3 is critical when one checks
that the lower semicontinuous envelope of u is a supersolution to (5). See a related
remark [4, Remark 4.5].)

(3) According to Lemma 5, there is a function ψ ∈ C2(Ωε) satisfying (15). Let u be any
viscosity solution of (5). Let v and w be the upper and lower semicontinuous envelopes
of u on Ωε, respectively. Fix any δ > 0. We prove by contradiction that v ≤ α−1C0

on Ωε. Thus, we suppose that maxΩε
v > α−1C0. Choosing positive constants δ and γ

small enough, we have maxΩε
(v − γψ) > δ + α−1C0. Set ϕ = γψ + δ + α−1C0 on Ωε.

Let ẑ ∈ Ωε be a maximum point of the function v−ϕ. Noting that (15) holds with ϕ in
place of ψ, we find by the subsolution property of v that

0 ≥ F (D2ϕ(ẑ), Dϕ(ẑ), v(ẑ), ẑ)

≥ F (γD2ψ(ẑ), γDψ(ẑ), γψ(ẑ) + α−1C0, ẑ) + αδ.
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Sending γ → 0+, we obtain F (0, 0, α−1C0, z̃)+αδ ≤ 0 for some z̃ ∈ Ωε, which contradicts
that α−1C0 is a classical supersolution of (5). Hence, we conclude that u ≤ v ≤ α−1C0

on Ωε. A parallel argument ensures that u ≥ w ≥ −α−1C0 on Ωε. □

3. Convergence results

Henceforth, unless otherwise stated, we always assume that ε ∈ (0, ε∗).

3.1. Relaxed limits. Let uε be a solution of (5). By Proposition 1, we have

∥uε∥∞ ≤ C0

α
.

This allows us to define the upper and lower relaxed limits u+ and u− of {uε}ε∈(0,ε∗):

(16)


u+(x) = lim

r→0+
sup{uε(ξ, η) : (ξ, η) ∈ Ωε, |ξ − x| < r, 0 < ε < r},

u−(x) = lim
r→0+

inf{uε(ξ, η) : (ξ, η) ∈ Ωε, |ξ − x| < r, 0 < ε < r}.

It follows that u+ ≥ u− on Ω and u+,−u− ∈ USC(Ω). The limit equation will be

(17)


F

((
D2w 0
0 Dg ·Dw/g

)
, (Dw, 0), w, (x, 0)

)
= 0 in Ω,

∂w

∂ν
= 0 on ∂Ω.

Theorem 7. Suppose that (H1)–(H4) hold. The functions u+ and u− are, respectively,
sub and super solutions of (17).

Proof. We treat only the subsolution property. By replacing uε by its upper semicontin-
uous envelope, we may assume that uε is upper semicontinuous on Ωε. Let ϕ ∈ C2(Ω)
and assume that for some x̂ ∈ Ω,

(u+ − ϕ)(x) < (u+ − ϕ)(x̂) if x ̸= x̂.

In the following computation, we fix δ > 0 arbitrarily. We choose hδ ∈ C2(Ω) so that∣∣∣∣(Dg ·Dϕg

)
(x)− hδ(x)

∣∣∣∣ < δ for x ∈ Ω.

We set

ψ±
δ (x, y) =

1

2
y2 (±2δ + hδ(x)) ,

and in view of (3), explained in the heuristic of the introduction, we consider the function

Φ(x, y) = ϕ(x) + ψ+
δ (x, y) + γε2ζ(y/ε),

where ζ ∈ C2(R) is a bounded function on R having the properties

−1 < ζ ′(0) < 0 < ζ ′(y) < 1 for y ≥ min g and |ζ ′′(y)| < 1 for y ∈ [0,max g],

and γ > 0.
We choose a maximum point (x̄, ȳ) = (x̄(ε, γ), ȳ(ε, γ)) of the function uε − Φ on Ωε.

We are to take the limit ε → 0+. In our limit process as ε → 0+, the choice of γ
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depends on ε in such a way that lim γ/ε = 0. A possible choice is γ = ε2. It is a
standard observation (see Remark 8 below) that as ε→ 0+,

(18) (x̄, ȳ) → (x̂, 0) and uε(x̄, ȳ) → u+(x̂).

Since uε is a subsolution of (5), if

(i) (x̄, ȳ) ∈ Ωε,

then we have

(19) F (D2Φ(x̄, ȳ), DΦ(x̄, ȳ), uε(x̄, ȳ), (x̄, ȳ)) ≤ 0;

if

(ii) (x̄, ȳ) ∈ ∂TΩε \ ∂LΩε,

then we have either (19) or

(20) −εDg(x̄) ·DxΦ(x̄, εg(x̄)) + Φy(x̄, εg(x̄)) ≤ 0;

if

(iii) (x̄, ȳ) ∈ ∂BΩε \ ∂LΩε,

then we have either (19) or

(21) −Φy(x̄, 0) ≤ 0;

if

(iv) (x̄, ȳ) ∈ ∂LΩε \ (∂TΩε ∪ ∂BΩε),

then we have either (19) or

(22)
∂Φ(x̄, ȳ)

∂νε
= νL ·DΦ(x̄, ȳ) ≤ 0;

if

(v) (x̄, ȳ) ∈ ∂TΩε ∩ ∂LΩε,

then we have either (19), (20), or (22); if

(vi) (x̄, ȳ) ∈ ∂BΩε ∩ ∂LΩε,

then we have either (19), (21), or (22).
Observe that

DxΦ = Dϕ(x) +
y2

2
Dhδ(x), Φy = y (2δ + hδ(x)) + εγζ ′

(y
ε

)
,

D2
xΦ = D2ϕ(x) +

y2

2
D2hδ(x), Φyy = 2δ + hδ(x) + γζ ′′

(y
ε

)
,

Φxiy = Φyxi = y(hδ)xi(x).

Inequalities (19), (20), (21), and (22), can be written, respectively, as

(23) F (X̄, p̄, uε(x̄, ȳ), (x̄, ȳ)) ≤ 0,
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where

X̄ =

D2ϕ(x̄) +
ȳ2

2
D2hδ(x̄) ȳDhδ(x̄)

ȳDhδ(x̄)
T 2δ + hδ(x̄) + γζ ′′

( ȳ
ε

)
 ,

and p̄ = (Dϕ(x̄) +
ȳ2

2
Dhδ(x̄), ȳ (2δ + hδ(x̄)) + εγζ ′

( ȳ
ε

)
),

(24)
−Dg(x̄)·

(
Dϕ(x̄) +

ε2g(x̄)2

2
Dhδ(x̄)

)
+ g(x̄) (2δ + hδ(x̄)) + γζ ′(g(x̄)) ≤ 0,

(25) ζ ′ (0) ≥ 0,

(26)
∂Φ(x̄, ȳ)

∂νL
= (|Dρ|−1Dρ(x̄), 0) ·DΦ(x̄, ȳ) ≤ 0.

Choosing ε > 0 small enough, we may assume that

δ ≥ ε2g(x̄)

2
Dg(x̄) ·Dhδ(x̄).

If (24) holds, then we have

0 ≥ −Dg(x̄) ·
(
Dϕ(x̄) +

ε2g(x̄)2

2
Dhδ(x̄)

)
+ g(x̄)

(
δ +

(
Dg ·Dϕ

g

)
(x̄)

)
+ γζ ′(g(x̄))

≥ γζ ′(g(x̄)).

This contradicts our choice of ζ, and also (25) is a contradiction.
Thus, we have (23) in the case when either (i), (ii), or (iii) is valid, and we have either

(23) or (26) in the cases when either (iv), (v), or (vi) holds.
Sending ε→ 0+, we have

X̄ →
(
D2ϕ(x̂) 0

0 2δ + hδ(x̂)

)
≤

D2ϕ(x̂) 0

0 3δ +
Dg(x̂) ·Dϕ(x̂)

g(x̂)


and

p̄→ (Dϕ(x̂), 0).

Therefore, we see that if x̂ ∈ Ω, then we have

(27) F

D2ϕ(x̂) 0

0 3δ +
Dg(x̂)Dϕ(x̂)

g(x̂)

 , (Dϕ(x̂), 0), u+(x̂), (x̂, 0)

 ≤ 0,

if x̂ ∈ ∂Ω, then we have either (27) or

νL · (Dϕ(x̂), 0) = ∂ϕ(x̂)

∂ν
≤ 0.

This guarantees that u+ is a subsolution of (17).
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A remark on the proof of the supersolution property of u− is that, in this case, one
should use the perturbed test function

Φ(x, y) = ϕ(x) + ψ−
δ (x, y)− γε2ζ

(y
ε

)
. □

Remark 8. For a general approach to the proof of (18), we may refer to the User’s guide
[4]. Here, for the reader’s convenience, we give a straightforward proof of (18). By the
definition of u+(x̂), we may choose {(εj , xj , yj)}j∈N so that

εj → 0+, (xj , yj) ∈ Ωεj , |xj − x̂| < 1

j
, u+(x̂) <

1

j
+ uεj (xj , yj).

Since Φ depends on ε, we write Φε for Φ. Also, we write (x̄j , ȳj) for (x̄, ȳ) with ε = εj .
Thus, (x̄j , ȳj) is a maximum point of uεj − Φεj , and we have

(uεj − Φεj )(x̄j , ȳj) ≥ (uεj − Φεj )(xj , yj) > −1

j
+ u+(x̂)− Φεj (xj , yj).

We may assume after passing to a subsequence that for some x̃ ∈ Ω and ũ ∈ R,
lim(x̄j , ȳj) = (x̃, 0) and limuεj (x̄j , ȳj) = ũ.

Since (εj , x̄j , ȳj) → (0, x̃, 0), we see, by the definition of u+(x̃), that

u+(x̃) ≥ limuεj (x̄j , ȳj) = ũ.

All the above together, we see in the limit as j → ∞ that

u+(x̃)− Φ0(x̃, 0) ≥ ũ− Φ0(x̃, 0) ≥ u+(x̂)− Φ0(x̂, 0),

where Φ0(x, y) := limε→0+ Φε(x, y) = ϕ(x) + ψ−
δ (x, y), that is,

(u+ − ϕ)(x̃) ≥ ũ− ϕ(x̃) ≥ (u+ − ϕ)(x̂),

which shows that x̃ = x̂ and ũ = u+(x̂). □

3.2. Uniform convergence. Let F , Ω, and g be as in the previous section. Define the
function G ∈ C(S(N)× RN × R× Ω,R) by

(28) G(X, p, r, x) = F
((

X 0
0 Dg(x) · p/g(x)

)
, (p, 0), r, (x, 0)

)
.

Recall that the limit equation (17) for u is stated as

(29) G(D2u,Du, u, x) = 0 in Ω and
∂u

∂ν
= 0 on ∂Ω.

A convenient assumption for Theorem 9 to draw a uniform convergence result is the
validity of the comparison principle for (29):

(H5) If v and w are viscosity sub and super solutions to (29), respectively, then v ≤ w
on Ω.

Indeed, we have

Theorem 9. Assume (H1)–(H5). Let uε be a viscosity solution to (5) for ε ∈ (0, ε0].
Then, for a unique continuous viscosity solution u0 of (29), we have

(30) lim
ε→0+

max
(x,y)∈Ωε

|uε(x, y)− u0(x)| = 0.
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Proof. The following argument is standard in the asymptotic analysis based on the
half-relaxed limits, but we here present it for the reader’s convenience. Let u+ and
u− be the functions defined by (16). By the definition, we have u− ≤ u+ on Ω and
u+,−u− ∈ USC(Ω). Theorem 7 ensures that u+ and u− are viscosity sub and super
solutions to (29), respectively. Furthermore, (H5) assures that u+ ≤ u− on Ω. Hence,
we see that u+ = u− on Ω, which readily shows that u+ = u− is continuous on Ω.
Writing u0 for u+ = u−, we find that u0 is a continuous viscosity solution to (29).

To check (30), fix any δ > 0. By the definition of u+, for any x ∈ Ω, we select
r = r(δ, x) > 0 so that

uε(ξ, η) < u0(x) + δ if 0 < ε < r, (ξ, η) ∈ Ωε, and |ξ − x| < r.

Reselecting r > 0 sufficiently smaller, we may assume that u0(x) < u0(ξ) + δ if ξ ∈ Ω
and |ξ − x| < r. Now, the above inequality can be stated as

(31) uε(ξ, η) < u0(ξ) + 2δ if 0 < ε < r, (ξ, η) ∈ Ωε, and |ξ − x| < r.

Since Ω is compact, we can choose a finite number of balls, B1, . . . , Bm, which cover
Ω, such that for every j ∈ {1, . . . ,m}, if xj and rj denote, respectively, the center and
radius of Bj , then (31), with (xj , rj) in place of (x, r), holds. Setting r0 = min{rj : j =
1, . . . ,m}, we find that

uε(ξ, η) < u0(ξ) + 2δ for (ξ, η) ∈ Ωε and 0 < ε < r0.

An argument parallel to the above yields, after replacing r0 > 0 by a smaller one if
necessary,

uε(ξ, η) > u0(ξ)− 2δ for (ξ, η) ∈ Ωε and 0 < ε < r0,

which completes the proof of (30). □

Let us recall that there are a number of contests where the comparison principle (H5)
holds. In particular, when dealing with Neumann boundary conditions, one can refer to
the results of Hitoshi Ishii [8], Guy Barles [3] and Stefania Patrizi [9].

We consider here the general comparison principle given in [4, Theorem 7.5]. This
leads us to assume, further hypotheses on the domain Ω and the operator G.

On Ω, in addition to (H4), we need the uniform exterior sphere condition, i.e. that
there is a constant r0 > 0 such that

(32) Br0(x+ r0ν(x)) ∩ Ω = ∅ for x ∈ ∂Ω,

where Br(x) denotes the open ball {y ∈ RN : |y− x| < r}. On the function G a crucial
and typical hypothesis is the following:

(33)



There is a function ω : [0,∞) → [0,∞) that satisfies ω(0+) = 0 such that

G(Y, p, r, y)−G(X, p, r, x) ≤ ω(γ|x− y|2 + |x− y|(|p|+ 1))

whenever γ > 0, p ∈ RN , x, y ∈ Ω, r ∈ R, and X,Y ∈ S(N) satisfy

−3γI2N ≤
(
X 0
0 −Y

)
≤ 3γ

(
IN −IN
−IN IN

)
.
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Here Im denotes the identity matrix of orderm. We impose another continuity condition
on G, which states:

(34)


There is a neighborhood V of ∂Ω, relative to Ω, such that

G(X, p, r, x)−G(Y, q, r, x) ≤ ω(∥X − Y ∥+ |p− q|)
for X,Y ∈ S(N), p, q ∈ RN , r ∈ R, and x ∈ V .

Note that if (H3) holds, then

(35) α(r − s) ≤ G(X, p, r, x)−G(X, p, s, x)

for r ≥ s and (X, p, x) ∈ S(N)× RN × Ω.
The next proposition is a direct consequence of [4, Theorem 7.5] and Theorem 9.

Proposition 10. Assume (H1)–(H4) and (32)–(34). Then (H5) is satisfied and the
uniform convergence (30) as in Theorem 9 is valid.

Before concluding our discussion, we present two important examples of equations to
which Theorem 9 applies, one is fully nonlinear and the other is linear but degenerate
elliptic.

Example 11. We apply Proposition 10 to show the uniform convergence result for the
solution of equation (1), involving the extremal Pucci operator as presented in the
Introduction. The extremal Pucci operator −M+

λ,Λ(X) has the property (33). Indeed,

the matrix inequality on the right-hand side of (33) implies that X ≤ Y and hence,
−M+

λ,Λ(Y ) +M+
λ,Λ(X) ≤ 0. If the regularity of g is strengthened so that g ∈ C1,1(Ω),

then both the functions

H(p, x) =

(
Dg(x) · p
g(x)

)±

satisfy

|H(p, y)−H(p, x)| ≤ C|x− y||p|

for all p ∈ RN , x, y ∈ Ω and some constant C > 0. It is then obvious to see that the
operator

G(X, p, r, x) = −M+
λ,Λ(X)− Λ

(
Dg(x) · p
g(x)

)+

+ λ

(
Dg(x) · p
g(x)

)−
+ αr − f(x, 0),

where f ∈ C(Ωε0), satisfies (33). Thus, thanks to Proposition 10, we find that the
uniform convergence (30) for the solution uε to (1), as in Theorem 9, holds, provided
that α > 0, (H1), g ∈ C1,1(Ω), f ∈ C(Ωε0), (H4), and (32) are satisfied. Of course the
case of the Laplacian is recovered just by considering λ = Λ = 1.

Example 12. In these examples we concentrate on simple degenerate elliptic equations
in order to emphasize how the nature of the limit equation depends on the direction of
the diffusion. Let uε be the solution of

−∂2yy(uε) + uε = f(x, y) in Ωε, ∂νεuε = 0 on ∂Ωε.
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If g ∈ C1,1(Ω) and f ∈ C(Ωε0), then we are under the hypothesis of Proposition 10,
therefore uε converges uniformly to uo solution of a first order equation precisely:

−Dg ·Duo
g

+ uo = f(x, 0) in Ω, ∂νuo = 0 on ∂Ω.

Instead, if uε is the solution of

−∂2x1x1
(uε) + uε = f(x, y) in Ωε, ∂νεuε = 0 on ∂Ωε

it will converge to uo solution of

−(uo)x1x1 + uo = f(x, 0) in Ω, ∂νuo = 0 on ∂Ω.
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