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Abstract — In real finite-sized polycrystals, the background elastic properties are no longer determinis-
tic. Consequently, the corresponding phase velocities and attenuation coefficients also become random.
Recently, we showed that second-order statistics of polycrystals’ effective elastic modulus tensor and
the phase velocities reveal microstructural information such as the mean and standard deviation of grain
size. In this paper, we extend the results to the case of textured polycrystals. The analytical framework
is valid for cubic equiaxed grains with arbitrary grain size distribution and crystallographic texture level.
The variabilities the phase velocities are shown to be proportional to the anisotropy level of the single
crystals multiplied by the product of the two lowest eigenvalues of the local stiffness tensor. The former
is inversely proportional to material’s density.
Mots clés — random polycrystals, texture, phase velocity variation.

1 Introduction

Polycrystals comprise discrete grains exhibiting variable shapes, sizes, and crystallographic orientations,
and thus, they reveal important fluctuations in their mechanical properties. The overall elastic modulus
tensor of a polycrystal with infinite number of grains is a deterministic isotropic tensor. However, real
polycrystals have a finite number of crystals which results in a non-zero anisotropy degree. Therefore,
the overall mechanical properties of these polycrystals present variations between different samples. This
has been observed in experimental works investigating the impact of the number of grains and medium
size [1,3] as well as in numerical studies [4,8]. Sheng et al. [8] investigated the influence of the mean
grain diameters and their dispersion level on the standard deviation of plane wave phase velocities prop-
agating in textureless cubic equiaxed polycrystals. In this paper, we first derive analytical equations for
the standard deviations of the effective elastic modulus tensor. We show the link between the latter and
the microstructural parameters such as the mean and coefficient of variation of the grain diameters, the
anisotropy level of single crystals, and the number of grains. Solving for the eigenvalues of Christofel’s
equation will further allow us to derive expressions for variabilities of the phase velocities. By introduc-
ing a parameter quantifying the texture level, and a universal anisotropy index, we show that the variance
of the squared phase velocities is directly proportional to the product of the anisotropy level and the two
lowest eigenvalues of the local elasticity tensor. The results obtained in this paper could be used for non-
destructive microstructural characterization of polycrystals. Deviation from the analytical predictions
could allow us to characterize regions exhibiting significantly distinct morphological or crystallographic
properties, i.e., the presence of macrozones [2].

2 Theoretical framework

2.1 Statistics of effective medium properties

Let Ω⊂R3 denote a randomly generated polycrystalline sample containing Ng equiaxed crystals, each of
which occupied by a domain Ωi with measure (volume) Vi = (π/6)D3

i where Di is the equivalent diameter
of i-th grain, i ∈ [[1,Ng]]. To simplify the final results, we follow the classical lognormal distribution
assumption for the equivalent diameter random variable D, i.e., D∼ lognormal(D̄,σD). For this particular
case, since iid random variables Di follow a lognormal distribution, the volumes Vi are also lognormally
distributed (with modified shape parameters). Each of these crystals has a different crystallographic
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orientation that is characterized by triplets of Euler angles (Θ
(i)
1 ,Θ(i),Θ

(i)
2 ). These are iid vectors of

random variables distributed following the joint probability density function (PDF) defined as:

f(Θ1,Θ,Θ2)(θ1,θ,θ2) = F(θ1,θ,θ2)
sin(θ)

8π2 1[0,2π](θ1)1[0,π](θ)1[0,2π](θ2), (1)

where 1D(x) specifies the indicator function (1 if x ∈ D and 0 otherwise) and the orientation distribution
function (ODF) F writes:

F(θ1,θ,θ2) = F0 exp
(

cos(θ1)

2τθ1

+
cos(θ)

2τθ

+
cos(θ2)

2τθ2

)
, (2)

where F0 is a normalization factor such that
∫ ∫ ∫

f(Θ1,Θ,Θ2)(θ1,θ,θ2)dθ1dθdθ2 = 1 and can be obtained
via F0 = (2τθ)

−1csch((2τθ)
−1)/[I(0,(2τθ1)

−1)I(0,(2τθ2)
−1)] where I(ν,z) is the modified Bessel func-

tion of the first kind of order ν. In equation (2), the ODF is modeled using a Gaussian-type distribution
where the triplet (τθ1 ,τθ,τθ2) represents three independent texture parameters that characterize the de-
grees of preferred orientation for crystallites along each respective direction. Two extreme cases of per-
fect clustering (resulting in a single orientation where the polycrystal degenerates to a single grain) and
no clustering (uniformly distributed random orientations, corresponding to statistically isotropic poly-
crystals) can be obtained when the texture parameters tend to zero and infinity, respectively. Following
Yang et al. [10], the texture parameters are modeled as τθ = τ, τθ1 = qτθ1

τ and τθ2 = qτθ2
τ where τ is

called the unified texture parameter and the factors (qτθ1
,qτθ2

) specify the relative degrees of texture in
the corresponding directions. In this paper, for simplification purposes, we consider the particular case
of one-parameter Gaussian ODF where τθ1 = τθ2 → ∞ and τθ = τ describes the texture parameter (see
Yang et al. [9]).

Figure 1 schematically depicts this aggregate of randomly packed grains. Since a statistical study
of the homogenized elastic properties is to be carried out, the analytical averaging approaches based
on Voigt, Reuss, and self-consistent are more appropriate thanks to their fast evaluation (see [4,8] for
more details). We limit our focus to the Voigt average medium of equiaxed grains with cubic symmetry.
The stiffness tensor is thus characterized with three elastic constants c11, c12, and c44. The positive
eigenvalues of the cubic stiffness matrix are (λ1,λ2,λ3) = (c11 + 2c12,2c44,c11 − c12). To quantify the
anisotropy level of these cubic single crystals, we will use the universal anisotropy index AU ∈ R+,
introduced by Ranganathan and Ostoja-Starzewski [6], which is identically zero for isotropic crystals
and increases for more anisotropic crystayls. For cubic crystals, AU = 6ν2

v/(5λ2λ3), where νv = c11 −
c12 − 2c44 is called the anisotropy coefficient. The components of the Voigt average elastic modulus
tensor read:

Ceff
i jkl = c12δi jδkl + c44(δikδ jl +δilδ jk)+νv

Ng

∑
m=1

(
3
∑

n=1
A(m)

in A(m)
jn A(m)

kn A(m)
ln

)
Vm

Ng

∑
m=1

Vm

, (3)

Figure 1: Schematic representation of a random polycrystal.
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where δmn is the Kronecker delta (1 if m = n and 0 otherwise), and A(θ1,θ(τ),θ2) is the rotation matrix.
The corresponding 6×6 matrix Ceff

IJ is further constructed via the following one-to-one mapping between
a symmetric pair (i, j) ∈ [[1,3]]2 and a multi-index I ∈ [[1,6]]: 11 ↔ 1, 22 ↔ 2, 33 ↔ 3, 23 ↔ 4, 13 ↔ 5,
and 12 ↔ 6. Taking the standard deviation of both sides of Equation (3) yields the following general
formula for the standard deviation of different components of the effective elastic modulus matrix, Ceff

IJ :

σCeff
IJ
=

αIJ(τ)|νv|√
Ng

√
D2d

Dd2 =

√
5AU λ2λ3αIJ(τ)(1+δ2

D)
4.5√

6Ng
, (4)

where δD = σD/D̄ and Dn denote the coefficient of variation and the nth moment of D, respectively. It
is worth mentioning that |νv| includes the material-dependent part which implies that the variation of
σCeff

IJ
/|νv| in terms of Ng results in a master curve. Note also that the last part of this equation is obtained

for the particular case where D is distributed via a lognormal distribution. The components of interest
of the matrix Ceff

IJ are IJ = {11,12,66} for which the corresponding coefficients αIJ(τ) are reported in
Sheng et al. [8] as [

√
16/525,

√
9/525,

√
9/525], respectively. For a range of values for the texture

parameter τ, these coefficients are numerically calculated and plotted in Figure 2(left and middle). These
plots show larger variabilities for the components of Ceff

IJ when the texture parameter τ tends to zero.
Convergence to non-preferential orientations occurs for τ > 0.5. As an example, sharp local textures
associated with the clusters of α grains give rise to the so-called macrozones in some titanium alloys
[2]. Higher variabilities of the effective properties of these samples are thus expected. Figure 2(right)
depicts the change in the marginal distribution of the Euler angle θ between textureless case (τ → ∞,
corresponding to the well-known Gilbert’s sine distribution) and textured case where τ = 0.07. For this
particular textured case, θ does not take any values in the interval [π/2,π].
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Figure 2: Coefficients α11 (left) and α12 = α66 (middle) in terms of the texture parameter τ. PDFs of the
Euler angle θ for textureless and textured polycrystals (right).

Note that the fluctuation level of Ceff
11 is always larger than that of Ceff

12 and Ceff
66 , regardless of the

value of the texture parameter τ. It is worth mentioning that changing the homogenization method will
change the term |νv| in Equation (3) (see [4,8] for more details). In Sheng et al. [7], a random field-
based modeling of Euler angles is used to take into account the texture, where the correlation lengths are
employed instead of the texture parameters (τθ1 ,τθ,τθ2).

2.2 Statistics of phase velocities

The phase velocities vi (i specifies the mode type: compression P, fast shear S1 and slow shear S2) and
their corresponding polarization directions wi can now be determined by solving the Christoffel equation
(Ceff

mnopk̂nk̂o −ρv2δmp)wp = 0 where k̂ is the propagation direction, and ρ is the density of the material
considered deterministic constant. Since the background elastic modulus tensor is not deterministic, the
eigenvalues and eigenvectors of the symmetric second-order tensor Λmp = Ceff

mnopk̂nk̂o are also random
variables. Let a plane wave propagate following k̂ = [1 0 0]⊤, the phase velocities of the modes i ∈
{P,S1,S2} are then determined by ρv2

i = Ceff
IJ where IJ ∈ {11,66,55}, respectively. As a result, the

standard deviations of the squared phase velocities are directly linked to those of the components of the
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effective elastic modulus tensor of the medium:

σv2
i
=

αIJ(τ)|νv|
ρ
√

Ng

√
D2d

Dd2 =
ζαIJ(τ)

(
1+δ2

D
)4.5√

Ng
, (5)

wherein ζ = |νv|/ρ =
√
(5/6)AU λ2λ3/ρ. A normalization of the standard deviation by ζ, i.e. σv2

i
/ζ,

yields a master curve, regardless of the material properties. Even though σv2
i

is proportional to the square
root of the universal anisotropy level, the latter cannot solely determine which material has more or
less variability in squared phase velocity. Instead, larger (resp. smaller) values of ζ imply larger (resp.
smaller) variability in squared phase velocities.

In practice, when ultrasonic measurements are conducted over a sample of volume |Ω|=Vs, one ap-
proach to analytically predict the variability of squared phase velocities is by approximating the number
of grains Ng via Vs/((π/6)D̄3(1+δ2

D)
3). This yields the following estimator:

σv2
i
=

√
π

6 ζαIJ(τ)D̄1.5
(
1+δ2

D
)6

√
Vs

. (6)

3 Numerical results

In this section, we aim to validate the analytical results in Section 2 via numerical simulations. For this
purpose, we generate polycrystalline samples using the open-source software Neper [5]. An example
of these samples along with the PDF of the grain equivalent diameters are depicted in Figure 3. The
number of grains are Ng = D × 10E with D ∈ {1,5} and E ∈ [[2,6]], and for each value of Ng, 200
realizations are generated by reshuffling the seeds used to generate the grains and by re-randomizing
the crystallographic orientations. The latter are generated for large values of the texture parameter τ

(textureless). Moreover, three different values for the dispersion level of the grain equivalent diameters
are considered, δD ∈ {0.25,0.5,0.75}. Following [8], five cubic materials are considered with increasing
anisotropy levels (from aluminium to lithium). The elastic constants, densities, universal anisotropy
indices AU and the values of the parameter ζ are summarized in Table 1.

Figure 3: A realization of a polycrystalline aggregate with 103 grains (left) whose equivalent diameters
follow a lognormal distribution with the following parameters D̄ = 30 µm, and δD = 0.25 (right).

Figure 4(left) shows the variation of the standard deviation of squared P-wave velocity in terms
of the number of grains for different values of δD. In this figure, black solid lines are those obtained
using the analytical formula (5). From bottom to top, the lines correspond to δD = 0.25, 0.5, and 0.75,
respectively. The blue markers are the results obtained based on synthetic samples by considering a plane
wave propagating in k̂ = [1 0 0]⊤ direction. As for the red markers, we also did a statistical averaging
over the entire direction space, generated uniformly over a unit sphere. The results from both types of
simulations are in general in good agreement with the analytical predictions. However, a discrepancy
is observed for large values of δD and small number of grains (Ng < 5× 103). The reason is that, for
these cases, 200 realizations are not statistically sufficient to accurately represent the microstructure of
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Table 1: Elastic constants and densities of different cubic materials considered in this study (taken from
[8]).

Name c11 [GPa] c12 [GPa] c44 [GPa] ρ [kg/m3] AU [−] ζ×107 [(m/s)2]

Al 108 62 28.3 2700 0.05 0.43
α-Fe 231 135 115 7860 0.98 1.88
Co 242 160 128 8900 1.73 2.14

γ-Fe 154 122 77 8000 3.62 1.67
Li 13.4 11.3 9.6 534 8.70 3.51

the polycrystal. Therefore, by using a larger number of samples, the blue and red markers will converge
toward the analytical solid lines. Note that similar results are obtained for the standard deviations of fast
and slow shear wave velocities, although they are not presented here for the sake of brevity.

In Figure 4(right), we compared the variation of σv2
p

in terms of Ng for different cubic materials
listed in Table 1. It can be observed that, increasing in the values of σv2

p
does not necessarily occur by

increasing the anisotropy level AU . In contrast, the values of the parameter ζ (last column of Table 1)
determines the level of variability in the squared phase velocities.
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Figure 4: Standard deviation of squared P-wave velocity for three different values of δD. Solid black lines
indicate the analytical predictions (δD increases from bottom to top). Blue and red markers correspond
to the results obtained using synthetic polycrystals (left). The standard deviation of squared P-wave
velocity for five cubic materials with different anisotropy levels (right).

4 Conlusions

In this paper, the analytical framework developed by Sheng et al. [8] is extended to the case of textured
random polycrystals. Instead of a random field-based approach to model the crystallographic orientations
introduced in Sheng et al. [7], we used a model for the orientation distribution function. The variation
in the squared phase velocities could be estimated based on elastic parameters, morphological charac-
teristics (mean and standard deviation of equivalent grain diameters) and a unified texture parameter.
Extending these results to the case of materials with hexagonal symmetry will be carried out in a future
work.
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