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Résumé — Numerical simulations of physical phenomena can be computed by many (commercial/free)
software packages, but despite the apparent variety, all of them rely on a relatively small set of opera-
tions during the preparation, exploitation, and post-processing of these simulations, e.g., handling and
modifying meshes and fields. Muscat is a Python library designed to address these supporting tasks. It
features an efficient data model for meshes and field objects, as well as input/output routines compatible
with various formats. A finite element engine allows to assemble abstract variational formulations and
integrate fields on volumes and surfaces.

Muscat is actively used in artificial intelligence and model order reduction [1, 2, 3, 4], topology
optimization [5], and material sciences [6] projects. This paper reproduce the content of the original
publication for BasicTools (Muscat version 1.0) of [7].
Mots clés — Python, C++, mesh, fields, finite elements, pre-processing, post-treatment.

1 Statement of need

Industrial design tasks often rely on numerical simulation workflows involving different software
packages, each providing its own specific post-processing tools. Common tasks like transferring com-
puted fields from one tool to another must be routinely implemented, with subtle variations. This limits
interoperability and increases complexity.

Muscat is a solution to these concerns. It introduces a data model for meshes and related physical
fields that can be populated using different readers and exported using various writers : no new mesh
or solution format is forced upon the user. The data-oriented design of Muscat allows high performance
operations using a high-level language (Python with NumPy). Muscat allows users to convert meshes to
other "in-memory" formats (VTK [8], PyVista [9], MeshIO [10], CGNS [11], and Gmsh [12]), enabling
mixing (and reusing) the various treatments available in other frameworks. Other features available in
Muscat include various mesh handling routines, field transfer operators, and a flexible finite element
engine. Other features available in Muscat include various mesh handling routines, multi-threaded field
transfer operators computation (oneTBB [13]), and a flexible multi-threaded finite element engine.

2 State of the field

In the computational fluid dynamics community, the CFD General Notation System (CGNS) [11]
format is a de-facto standard. However, to the authors’ knowledge, no such standard exists for solid
mechanics. One may consider VTK and MeshIO for mesh manipulation and file format conversion,
respectively, but the post-processing of integration point data, a key requirement in solid mechanics,
would not be possible. Most available tools implement the simple, but potentially dangerous, approach
of extrapolating the integration point values to the nodes of the mesh or averaging in every cell. This
can lead to a misinterpretation of the solution and incorrect engineering decisions. Also, only a few
finite element engines allow assembling abstract variational formulations on arbitrary geometries, like
FreeFem++ [14] or FEniCS [15], amongst others.
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3 Overview

The main features of Muscat are :
– Mesh (in the ‘Containers‘ module) : The Mesh class implements an efficient unstructured mesh

data model : elements are stored using only one array for each element type. The mesh can fea-
ture nodes and elements tags. Many functions are available for creating, cleaning and modifying
meshes (e.g., field transfer and mesh morphing).

– Filters (in the ‘Containers‘ module) : Various types of ‘ElementFilter‘s and ‘NodeFilter‘s allow to
handle subparts of meshes by selecting element- and node-sets using threshold functions, tags, ele-
ment types, element dimensionality, and masks Filters can be combined using Boolean operations
(union, complementary, ...).

– A finite element engine (in the ‘FE‘ module) : A general weak formulation engine able to integrate
fields over parts of the meshes is available. The ‘FETools‘ submodule contains specific functions
for Lagrange P1 finite elements, including the computation of stiffness and mass matrices. The
domain of integration is defined using ‘ElementFilter‘s, making the integration domain flexible.
P0 and P2 Lagrange finite element spaces are implemented and tested. The framework is non-
isoparametric : the user can write weak formulations mixing P0, P1, and P2 fields on P1 or P2
meshes.

– Input/Output functions (in the ‘IO‘ module) : Various readers (respectively, writers) for import-
ing (respectively, exporting) meshes and solution fields from (respectively, to) Muscat’ internal
data model are available. Supported formats include, among others, geo/geof (Z-set [16]), VTK,
XDMF, SAMCEF, ABAQUS, LS-DYNA, and a bridge with MeshIO is provided. Readers for the
ABAQUS and SAMCEF proprietary formats are also enabled when properly licensed software is
available locally. See the Muscat documentation 1 for more details.

– Implicit geometry engine (in the ‘ImplicitGeometry‘ module) : Arbitrary subdomains can be de-
fined using implicit geometries (via level-set functions). Basic shapes (spheres, half-spaces, cylin-
ders, cubes), transformations (symmetry, translation, rotation) and binary operators (union, dif-
ference, and intersection) can be used to construct complex shapes. In turn these shapes can be
used to select elements or points (using ‘ElementFilter‘ of ‘NodeFilter‘), or be evaluated on point
clouds to explicitly construct iso-zero surfaces.

– Linear algebra functions (in the ‘LinAlg‘ module) : Some common operations on linear systems for
finite elements are implemented : penalization, elimination, Lagrange multipliers, and Ainsworths
[17] method to impose essential boundary conditions or linear multi-point constraints. The sub-
module ‘LinearSolver‘ offers an abstraction layer for sparse linear solvers, including : Cholesky
of the ‘sksparse‘ package ; factorized, CG, LSQR, GMRES, LGMRES of the ‘scipy.sparse.linalg‘
module ; CG, LU, BiCGSTAB, SPQR of the C++ Eigen library ; Pardiso solver of the MKL li-
brary ; and the AMG solver of ‘pyamg‘ package.

The large majority of functions are illustrated in the same file where they are defined, in ‘CheckIntegrity‘
functions.

4 Examples

We present two examples ; see Muscat documentation 2 for more details.

4.1 Pre/post deep learning

Convolution-based deep learning algorithms generally rely on structured data. Muscat can be used
to transfer a field computed on an unstructured mesh using finite elements to a structured grid and vice
versa. To validate the operation, the error on the final field is evaluated with respect to the original field.

1. https://muscat.readthedocs.io/en/latest/_source/Muscat.IO.html
2. https://muscat.readthedocs.io/en/latest/Examples.html
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FIGURE 1 – Deep learning workflow coupled to finite element simulator a) Initial field on unstructured
mesh, b) transferred field into regular grid (projection step), c) inverse transfer into original unstructured
mesh, d) transfer error on unstructured mesh.

4.2 Mechanical analysis : Thick plate with two inclusions

Consider a thick plate with two inclusions, one softer and the other stiffer than the base material. The
plate is clamped on the left side with a constant traction applied on the right side. We compute the strain
energy on only one inclusion. The linear elasticity problem is solved using P1 Lagrange finite elements
on an unstructured mesh.

FIGURE 2 – Analysis of a mechanical thick plate with two inclusions a) illustration of the mesh with
highlighting of the two inclusions, b) magnitude of the displacement solution on the deformed mesh
(also showing the applied traction), c) strain energy in the large inclusion, d) cutaway view of the strain
energy in the large inclusion (also showing the applied traction).
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