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Résumé — A new methodology to control the error in approximations of solutions to boundary-value
problems obtained with deep learning methods is presented here. The main idea consists in computing
an initial approximation to the problem using a simple neural network and in estimating, in an iterative
manner, a correction by solving the problem for the residual error with a new network of increasing
complexity. This sequential reduction of the residual of the partial differential equation allows one to
decrease the solution error, which, in some cases, can be reduced to machine precision.
Mots clés — Neural networks, Partial differential equations, Physics-informed neural networks, Nume-
rical error, Convergence.

1 Introduction

In recent years, the solution of partial differential equations using deep learning [1, 2, 3] has gai-
ned popularity and is emerging as an alternative to classical discretization methods, such as the finite
element or the finite volume methods. Deep learning techniques can be used to either solve a single ini-
tial boundary-value problem [4, 5, 6] or approximate the operator associated with a partial differential
equation [7, 8, 9, 10]. The primary advantages of deep learning approaches lie in their ability to pro-
vide meshless methods, and hence address the curse of dimensionality, and in the universality of their
implementation for various initial and boundary-value problems. However, one of the main obstacles
remains their inability to consistently reduce the relative error in the computed solution. Although the
universal approximation theorem [11, 12] guarantees that a single hidden layer network with a sufficient
width should be able to approximate smooth functions to a specified precision, one often observes in
practice that the convergence with respect to the number of iterations reaches a plateau, even if the size
of the network is increased. This is primarily due to the use of gradient-based optimization methods, e.g.
Adam [13], for which the solution may get trapped in local minima. These optimization methods applied
to classical neural network architectures, e.g. feedforward neural networks [14], do indeed experience
difficulties in controlling the large range of scales inherent to a solution, even with some fine-tuning
of the hyper-parameters, such as the learning rate or the size of the network. In contrast, this is one
of the main advantages of classical methods over deep learning methods, in the sense that they feature
well-defined techniques to consistently reduce the error, using for instance mesh refinement [15, 16] or
multigrid structures [17].

We introduce in this work a novel approach based on the notion of multi-level neural networks,
which are designed to consistently reduce the residual associated with a partial differential equation,
and hence, the errors in the numerical solution. The approach is versatile and can be applied to various
neural network methods that have been developed for the solution of boundary-value problems [5, 6],
but we have chosen, for the sake of simplicity, to describe the method on the particular case of physics-
informed neural networks (PINNs) [4]. Once an approximate solution to a linear boundary-value problem
has been computed with the classical PINNs, the method then consists in finding a correction, namely,
estimating the solution error, by minimizing the residual using a new network of increasing complexity.
The process can subsequently be repeated using additional networks to minimize the resulting residuals,
hence allowing one to reduce the error to a desired precision.
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The development of the proposed method is based on two key observations. First, each level of the
correction process introduces higher frequencies in the solution error, as already discussed in [18] and
highlighted again in the numerical examples. This is the reason why the sequence of neural networks
should be of increasing complexity. Moreover, a key ingredient will be to use the Fourier feature map-
ping approach [19] to accurately approximate the functions featuring high frequencies. Second, the size
of the error, equivalently of the residual, becomes at each level increasingly smaller. Unfortunately, feed-
forward neural networks employing standard parameter initialization, e.g. Xavier initialization [20] in
our case, are tailored to approximate functions whose magnitudes are close to unity. We thus introduce a
normalization of the solution error at each level based on the Extreme Learning Method [21], which also
contributes to the success of the multi-level neural networks.

2 Preliminaries : Neural Networks and PINNs

Neural networks have been extensively studied in recent years for solving partial differential equa-
tions [1, 4]. A neural network can be viewed as a mapping between an input and an output by means
of a composition of linear and nonlinear functions with adjustable weights and biases. Training a neural
network consists in optimizing the weights and biases by minimizing some measure of the error between
the output of the network and corresponding target values obtained from a given training dataset. As a
predictive model, the trained network is then expected to provide accurate approximations of the output
when considering a wider set of inputs. Several neural network architectures, e.g. convolutional neural
networks (CNNs) [22] or feedforward neural networks (FNNs) [14], are adapted to specific classes of
problems.

We shall consider here FNNs featuring n hidden layers, each layer having a width Ni, i = 1, . . . ,n, an
input layer of width N0, and an output layer of width Nn+1. Denoting the activation function by σ, the
neural network with input z0 ∈ RN0 and output zn+1 ∈ RNn+1 is defined as

Input layer : z0,

Hidden layers : zi = σ(Wizi−1 +bi), i = 1, · · · ,n,
Output layer : zn+1 =Wn+1zn +bn+1,

(1)

where Wi is the weights matrix of size Ni×Ni−1 and bi is the biases vector of size Ni. To simplify the
notation, we combine the weights and biases of the neural network into a single parameter denoted by
θ. The neural network (1) generates a finite-dimensional space of dimension Nθ = ∑

n+1
i=1 Ni(Ni−1 + 1).

To keep things simple, throughout this work we shall use the tanh activation function and the associated
Xavier initialization scheme [20] to initialize the weights and biases.

We briefly review the PINNs approach to solving partial differential equations, as described in [4].
Let Ω be an open bounded domain in Rd , d = 1,2, or 3, with boundary ∂Ω. For two Banach spaces U
and V of functions over Ω, we assume a linear differential operator A : U → V . Our goal is to find the
solution u ∈U that satisfies, for a given f ∈ V , the partial differential equation cast here in its residual
form :

R
(
x,u(x)

)
:= f (x)−Au(x) = 0, ∀x ∈Ω, (2)

and the following boundary conditions :

B
(
x,u(x)

)
= 0, ∀x ∈ ∂Ω. (3)

For the sake of simplicity in the presentation, but without loss of generality, we consider here only
the case of homogeneous Dirichlet boundary conditions, such that the residual B is given by

B
(
x,u(x)

)
:= u(x), ∀x ∈ ∂Ω. (4)

The primary objective in PINNs is to use a neural network with parameters θ to find an approximation
ũθ(x) of the solution u(x) to problem (2)-(3). For the sake of simplicity in the notation, we shall omit
in the rest of the paper the subscript θ when referring to the approximate solutions ũθ, and thus simply
write ũ(x). The training, i.e. the identification of the parameters θ of the neural network, is performed
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by minimizing a loss function, defined here as a combination of the residual associated with the partial
differential equation and that associated with the boundary condition in terms of the L2 norm :

L(θ) := wr

∫
Ω

R
(
x, ũ(x)

)2dx+wbc

∫
∂Ω

B
(
x, ũ(x)

)2dx, (5)

where wr and wbc are penalty parameters. In other words, by minimizing the loss function (5) one obtains
a weak solution ũ that weakly satisfies the boundary condition.

Alternatively, the homogeneous Dirichlet boundary condition could be strongly imposed, as done
in [23], by multiplying the output of the neural network by a function g(x) that vanishes on the boundary.
For instance, if Ω = (0, `) ∈ R, one could choose g(x) = x(`− x). The trial functions ũ would then be
constructed, using the feedforward neural network (1), as follows :

Input layer : z0 = x,

Hidden layers : zi = σ(Wizi−1 +bi), i = 1, . . . ,n,

Output layer : zn+1 =Wn+1zn +bn+1,

Trial function : ũ = g(x)zn+1.

(6)

where the input and output layers have a width N0 = d and Nn+1 = 1, respectively. The dimension of
the finite-dimensional space of functions generated by the neural network (6) is now given by Nθ =

∑
n+1
i=1 Ni(Ni−1 +1) = N1(d +1)+∑

n
i=2 Ni(Ni−1 +1)+(Nn +1).

For the rest of this work, the boundary conditions will be strongly imposed, so that the loss function
will henceforth be

L(θ) =
∫

Ω

R
(
x, ũ(x)

)2dx. (7)

The problem that one solves by PINNs can thus be formulated as :

min
θ∈RNθ

L(θ) = min
θ∈RNθ

∫
Ω

R
(
x, ũ(x)

)2dx. (8)

One major issue that one faces when using PINNs is that it is very difficult, even impossible, to
effectively reduce the L2 or H1 error in the solutions to machine precision. The main reason, from our
own experience, is that the solution process may get trapped in some local minima, without being able to
converge to the global minimum, when using non-convex optimization algorithms. We study the perfor-
mance of Adam solver and L-BFGS solver, when applied to a simple one-dimensional Poisson problem.
This numerical example will also serve later as a model problem for further verifications of the under-
lying principles in our approach.

Example 1 Given a function f (x), the problem consists in finding u= u(x), for all x∈ [0,1], that satisfies

−∂xxu(x) = f (x), ∀x ∈ (0,1),

u(0) = 0,

u(1) = 0.

(9)

For the purpose of the study, the source term f is chosen such that the exact solution to the problem is
given as

u(x) = esin(kπx)+ x3− x−1, (10)

where k is a given integer. We take k = 2 in this example.
We consider here a network made of only one hidden layer of a width of 20, i.e. n = 1 and N1 = 20.

Moreover, N0 = N2 = 1. The learning rates for the Adam optimizer and L-BFGS are set to 10−2 and
unity, respectively. In the first experiment, the network is trained for 10,000 iterations using Adam. In the
second experiment, it is trained with Adam for 4,000 iterations followed by 100 iterations of L-BFGS.
Figure 1 compares the evolution of the loss function with respect to the number of iterations for these two
scenarios. In the first case, we observe that the loss function laboriously reaches a value around 10−2

after 10,000 iterations. The loss function further decreases in the second case but still plateaus around
5× 10−5 after about 30 iterations of L-BFGS. Note that the scale along the x-axis in the figure on the
right has been adjusted in order to account for the large discrepancy in the number of iterations used
with Adam and L-BFGS.
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FIGURE 1 – Results from Example 1. (Left) Exact solution with k = 2. (Middle) Evolution of the loss
function using the Adam optimizer only. (Right) Evolution of the loss function using the Adam optimizer
and L-BFGS.

3 Multi-level neural networks

In this section, we describe the multi-level neural networks, whose main objective is to improve the
accuracy of the solutions obtained by PINNs. Supposing that an approximation ũ of the solution u to
Problem (2)-(3) has been computed, the error in ũ is defined as e(x) = u(x)− ũ(x) and satisfies :

R(x,u(x)) = f (x)−Au(x) = f (x)−Aũ(x)−Ae(x) = R(x, ũ(x))−Ae(x) = 0, ∀x ∈Ω,

B(x,u(x)) = B(x, ũ(x))+B(x,e(x)) = B(x,e(x)) = 0, ∀x ∈ ∂Ω,

where we have used the fact that A and B are linear operators and ũ strongly verifies the boundary
condition. In other words, the error function e(x) satisfies the new problem in the residual form :

R̃(x,e(x)) = R(x, ũ(x))−Ae(x) = 0, ∀x ∈Ω, (11)

B(x,e(x)) = 0, ∀x ∈ ∂Ω. (12)

We notice that the above problem for the error has exactly the same structure as the original problem,
with maybe two exceptions : 1) the source term R(x, ũ(x)) in the error equation may be small, 2) the
error e(x) may be prone to higher frequency components than in ũ. Our earlier observations suggest
we find an approximation ẽ of the error using the PINNs approach after normalizing the source term by
a scaling parameter µ, in a way that scales the error to a unit maximum amplitude. The new problem
becomes :

R̃(x,e(x)) = µR(x, ũ(x))−Ae(x) = 0, ∀x ∈Ω, (13)

B(x,e(x)) = 0, ∀x ∈ ∂Ω. (14)

The dimension of the new neural network to approximate e should be larger than that used to find ũ, due
to the presence of higher frequency modes in e. In particular, the number of wave numbers M in the Fou-
rier feature mapping should be increased. The idea is to some extent akin to a posteriori error estimation
techniques developed for Finite Element methods. Finally, one should expect that the optimization algo-
rithm should once again reach a plateau after a certain number of iterations and that the process should
be repeated to estimate a new correction to the error e.

We thus propose an iterative procedure, referred here to as the “multi-level neural network method",
in order to improve the accuracy of the solutions when using PINNs (or any other neural network proce-
dure based on residual reduction). We start by modifying the notation due to the iterative nature of the
process. As mentioned in the previous section, the source term f may need to be normalized by a scaling
parameter µ0, so that we reconsider the initial solution u0 satisfying a problem in the form :

R0(x,u0(x)) = µ0 f (x)−Au0(x) = 0, ∀x ∈Ω, (15)

B(x,u0(x)) = 0, ∀x ∈ ∂Ω. (16)
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The above problem can then be approximated using a neural network to obtain an approximation ũ0 of
u0. Hence, the first approximation ũ to u reads after scaling ũ0 with µ0 :

ũ(x) =
1
µ0

ũ0(x). (17)

We would like now to estimate the error in ũ. However, we find it easier to work in terms of ũ0. Therefore,
we look for a new correction u1 that solves the problem :

R1(x,u1(x)) = µ1R0(x, ũ0(x))−Au1(x) = 0, ∀x ∈Ω, (18)

B(x,u1(x)) = 0, ∀x ∈ ∂Ω. (19)

Once again, one can compute an approximation ũ1 of u1 using PINNs. Since ũ1 can be viewed as the
normalized correction to the error in ũ0(x), the new approximation to u is now given by :

ũ(x) =
1
µ0

ũ0(x)+
1

µ0µ1
ũ1(x). (20)

The process can be repeated L times to find corrections ui at each level i = 1, . . . ,L given the prior
approximations ũ0, ũ1, . . . , ũi−1. Each new correction ui then satisfies the boundary-value problem :

Ri(x,ui(x)) = µiRi−1(x, ũi−1(x))−Aui(x) = 0, ∀x ∈Ω, (21)

B(x,ui(x)) = 0, ∀x ∈ ∂Ω. (22)

After finding an approximation ũi to each of those problems up to level i, one can obtain a new approxi-
mation ũ of u such that :

ũ(x) =
1
µ0

ũ0(x)+
1

µ0µ1
ũ1(x)+ . . .+

1
µ0µ1 . . .µi

ũi(x). (23)

Once the approximations ũi have been found at all levels i = 0, . . . ,L, the final approximation at the end
of the process would then be given by :

ũ(x) =
L

∑
i=0

1
Πi

j=0µ j
ũi(x). (24)

Using PINNs, the neural network approximation ũi (which implicitly depends on the network para-
meters θ) for each error correction will be obtained by solving the following minimization problem :

min
θ∈RNθ,i

Li(θ) = min
θ∈RNθ,i

∫
Ω

Ri
(
x, ũi(x)

)2dx, (25)

where Nθ,i denotes the dimension of the function space generated by the neural network used at level i. We
recall that the boundary conditions are strongly imposed and, hence, do not appear in the loss functions
Li(θ). Since each correction ũi is expected to have higher frequency contents, the size Nθ,i of the networks
should be increased at each level. Moreover, the number of iterations used in the optimization algorithms
Adam and L-BFGS will be increased as well, since more iterations are usually needed to approximate
higher frequency functions.

4 Numerical example

To illustrate the proposed approach, we consider the one-dimensional numerical example presented
in Example 1. We solve Problem (9) with k = 2 whose exact solution is given by (10). We consider
three levels of the multi-level neural networks, i.e. L = 3, in addition to the initial solve, so that the
approximation ũ will be obtained using four sequential neural networks. We choose networks with a
single hidden layer of width N1 given by {10,20,40,20}. The networks are first trained with 4,000
iterations of Adam followed by {200,400,600,0} iterations of L-BFGS. The mappings of the input
and boundary conditions are chosen with M = {1,3,5,1} wave numbers. In this example, the scaling
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FIGURE 2 – (Left) Evolution of the loss function. (Middle) Evolution of the error e(x) = u(x)− ũ(x)
measured in the L2 and H1 norms. (Right) Pointwise error after three error corrections. The regions
shown by Li, i = 0, . . . ,3, in the first two graphs indicate the region in which the neural network at level i
is trained.

parameter µi, i = 0, . . . ,3, for ũ0 and the three corrections ũi, are chosen here as µi = {1,103,103,102}. In
the next section, we will present a simple approach to evaluate these normalization factors. We note that
the last network has been designed to approximate functions with a low-frequency content. This choice
will be motivated below.

We present in Figure 2 the evolution of the loss function and of the errors in the L2 and H1 norms
with respect to the number of optimization iterations, along with the pointwise error at the end of the
training. We first observe that each error correction allows one to converge closer to the exact solution.
More precisely, we gain almost seven orders of magnitude in the L2 error thanks to the introduced cor-
rections. Indeed, after three corrections, the maximum pointwise error is around 6× 10−12, which is
much smaller than the error we obtained with ũ0 alone. To better explain our choice of the number M
of wave numbers at each level, we show in Figure 3 the computed corrections ũi. We observe that each
correction approximates higher frequency functions than the previous one, except ũ3. In fact, once we
start approximating the high-frequency errors, it becomes harder to capture the low-frequencies with
larger amplitudes. Here, we see that the loss function eventually decreases during the training of ũ2, but
that the L2 error has the tendency to oscillate while slightly decreasing. It turns out that this behavior
can be attributed to the choice of the loss function L2, in which the higher frequencies are penalized
more than the lower ones. In other words, we have specifically designed the last network to approximate
only low-frequency functions and be trained using Adam only. Thanks to this architecture, the L2 error
significantly decreases during the training of ũ3, without a noticeable decrease in the loss function. As
a remark, longer training for ũ2 would correct the lower frequencies while correcting high frequencies
with smaller amplitudes, but it is in our opinion more efficient, with respect to the number of iterations,
to simply introduce a new network targeting the low frequencies.

5 Conclusions

We have presented in this paper a novel approach to control and reduce errors in deep learning
approximations of solutions to linear boundary-value problems. The method has been referred to as
the multi-level neural network method in the sense that, at each level of the process, one uses a new
neural network, possibly of different sizes, to compute a correction corresponding to the error in the
previous approximation. Each successive correction aims at reducing the global error in the resulting
approximation of the solution. Although the conceptual idea seems straightforward, the efficiency of the
approach relies on two key ingredients : normalization of the residual before computing a new correction
based on the Extreme Learning Method and use of Fourier feature mapping to the input data and the
functions used to strongly impose the Dirichlet boundary conditions. We believe that the multi-level
neural network method is a versatile approach and could be applied to other deep learning techniques
designed for solving boundary-value problems. The numerical results presented here illustrate the fact
that the method can provide highly accurate approximations to the solutions and, in some cases, allows
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FIGURE 3 – Approximation ũ0(x) and corrections ũi(x), i = 1,2,3.

one to reduce the numerical errors in the L2 and H1 norms down to the machine precision.
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