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Résumé — Spiral strands exhibit nonlinear hysteretic bending behavior due to their helical geometry
and interwire frictional contact interaction. In this study, an efficient framework based on computational
homogenization is proposed, in which a spiral strand is replaced by a homogeneous beam with effective
material properties. To obtain the macroscopic (moment curvature response) and microscopic (axial force
of individual wires) responses at each integration point, rheological models are proposed, the parameters
of which are easily obtained from several monotonic uniaxial bendings.

Mots clés — Spiral strand, Computational homogenization, Rheological model.

1 Introduction

Frictional interactions between steel wires within spiral strands used as mooring lines for offshore
platforms induce a complex mechanical response of these strands when subjected to a bending load
under tension. Due to these internal frictional interactions, the mechanical behavior of the strand at the
macroscopic scale is dissipative, and the bending stiffness, which is governed by interwire slip, evolves
nonlinearly with respect to curvature and tension. It is possible to simulate the effects of interwire friction
using finite element simulation by considering all the individual wires that make up the rope and all
the frictional contact interactions, which is called direct numerical simulation (DNS). However, this
approach cannot be applied to spiral strands used as mooring lines for offshore platforms due to their
size, both in terms of the number of wires and the length considered. Therefore, a mixed stress-strain
computational homogenization framework is developed to identify the nonlinear constitutive model of
a beam element capable of reproducing the complex hysteretic response of spiral strands subjected to
bending under tension. In this framework, the spiral strand is replaced by a single beam whose material
properties at each integration point are extracted from the solution of a boundary value problem (BVP)
on a microscopic sample called a representative volume element (RVE). Although the computational
cost of using the proposed homogenization framework would be lower compared to DNS, it is still
high for large cables, as in this framework, for each integration point and at iteration of each step, a
nonlinear RVE BVP should be solved. Therefore, to reduce the computational cost of the homogenization
framework, rheological models are proposed to replace the solution of RVE BVP. These models are able
to predict the macroscopic (moment curvature response) and microscopic (axial force of individual wires)
responses of spiral strands subjected to biaxial bending and variable axial force. Using the proposed
rheological models in the computational homogenization framework allows modeling of spiral strands
in a few seconds which would have taken several weeks to model using DNS.

2 Direct numerical simulation (DNS)

In DNS, all wires and frictional contact interactions are modeled using finite element simulation [2].
As can be seen in Figure 1, the obtained axial-bending response of the four-layer spiral strand is in good
agreement with the experimental results.
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FIGURE 1 — The axial-bending experiment conducted by Papailiou [5]. a, Geometry and boundary condi-
tions ; b, Comparison of the response of the four-layer strand obtained from DNS with experimental data.

3 A mixed stress-strain driven computational homogenization [6]

In the computational homogenization technique, a heterogeneous medium is replaced by its equiva-
lent homogeneous medium. In this framework, the constitutive behavior for each integration point of the
homogeneous medium (macro-scale model) is extracted from the representative volume element (RVE)
attached to that point, where all the heterogeneities are explicitly modeled, while no explicit assumption
on the macroscopic constitutive behavior is necessary. In conventional homogenization at finite strain,
the macro-scale tangent modulus and first Piola-Kirschoff stress are obtained for a given macroscopic
deformation gradient. In the context of cables, the spiral strand is considered as the heterogeneous me-
dium, represented by a single beam model at the macro-scale, and a short length of the spiral strand is
the RVE.

As the macro-scale model is a single beam and the mechanical properties in the longitudinal direction
are dominant, the homogenization will be performed only in the longitudinal direction, and no averaging
condition is considered in the transverse directions. In the proposed framework, two different beam ele-
ments are used in the macro- and micro-scales. A kinematically enriched beam element [2], which has 9
degrees of freedom and is able to capture the deformation of the cross-section, is used in the micro-scale.
For the macro-scale model, the geometrically exact beam element [1], which has 6 degrees of freedom
and considers a rigid cross-section, is used. In this study, cables are considered slender structures whose
behavior is dominated by axial, torsional, and flexural mechanisms, and shear strains are neglected. Ho-
wever, it should be emphasized that shear is accounted for at the microscopic scale, as it plays a vital
role in determining the macroscopic bending behavior of spiral strands. Consequently, the macroscopic
strains of interest are an axial extension, a twist, and two bending curvatures. Due to the dependence of
the bending stiffness of the spiral strands on the axial stress and the geometric coupling of axial force and
bending curvature at finite strain, following [7], a mixed stress-strain driven homogenization framework
is developed (Figure 2). In this formulation, the macroscopic strains enter the microscopic boundary va-
lue problem (BVP) as "displacement” degrees of freedom, while their work-conjugate stresses will be
their corresponding dual "forces". This allows strain, stress, or mixed stress-strain driven homogeniza-
tion to be performed straightforwardly. Furthermore, the macroscopic stresses and strains are naturally
obtained as the solution to the microscopic BVP, without needing any averaging relation.

3.1 Axial-bending response extracted from RVE

To investigate the nonlinear RVE response due to inter-wire frictional interactions, the two-layer
strand which has been studied by [4] before is subjected to an axial force equivalent to an axial strain of
1073 and is then subjected to a bending curvature. The response of the RVE is presented in Figure 3. As
it can be observed, the response is in very good agreement with the results from the literature.
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FIGURE 2 — The mixed stress-strain driven computational homogenization algorithm for spiral strands.
BVP, boundary value problem.
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FIGURE 3 — A two-layer spiral strand behavior under combined axial force and bending curvature loa-
ding.

3.2 Verification of the homogenization scheme against DNS

In this section, the results of the multi-scale analysis are verified against direct numerical simulation
(DNS). The geometry and boundary conditions of a bending experiment under constant axial force are
shown in Figure 4. In order to satisfy the separation of scales, L/4 is considered equal to two pitches of
the outermost layer.

The force vs. displacement diagram of the multi-scale and DNS models is presented in Figure 4,
along with the responses considering the strand’s theoretical maximum and minimum bending stiff-
nesses [5]. The maximum bending stiffness is computed as a function of the second moment of area of
the strand, assuming its cross-section remains rigid (no sliding), while the minimum bending stiffness
is taken equal to the sum of the bending stiffnesses of all constituent wires. As it can be observed, the
response of the DNS is perfectly predicted by the multi-scale method. As expected, at low deflections,
the response is similar to the case considering the maximum bending stiffness, and the final stiffness is
equal to the minimum bending stiffness.
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FIGURE 4 - a, The geometry and boundary conditions of the bending under constant axial force; b, The
force-deflection responses obtained through the DNS, multi-scale analysis, and theoretical stiffnesses of
the 2-layer strand.

4 Rheological models

In the framework of mixed stress-strain driven computational homogenization, a set of macroscopic
stresses or strains are imposed on an RVE as boundary conditions, and their work-conjugate quantities as
well as the consistent tangent modulus, which describes the relationship between increments of macro-
scopic strains and stresses, are obtained after solving the RVE BVP. In the context of spiral strands, the
macroscopic strains are the axial strain €, the twist K3, and the two bending curvatures K; and K5, and
their corresponding macroscopic stresses are the axial stress, the torque and the two bending moments.
The consistent tangent modulus, C, is a 4 x 4 matrix as seen in Equation 1.

Css (C£K3 (CeKz (CEK 1 Caa CaK; 0 0

C= Crie Crixs Cik, Criky | | Cree Cros 0 0 )
Cre Crk, Cirx Ckk, 0 0 Cgr, Cii
Crie Crixs Cirix, Ckix, 0 0 Cgr Cki

The spiral strands exhibit axial-torsional and axial-bending couplings due to their helical geometry.
The axial-torsional coupling has been found to be linear from numerical tests, and therefore its corres-
ponding terms in the consistent tangent modulus, Cee, Cek, , Ck,e, Ck;, k;, are constant and calculated only
once. In contrast, it is well known that the axial-bending coupling is the main source of nonlinear be-
havior for these strands. Since this coupling is a function of the axial stress and the friction coefficient
rather than axial strain and twist, most of the off-diagonal terms can be neglected, leading to the approxi-
mation given in 1, which has been verified by examining the corresponding terms of C obtained by the
homogenization procedure on RVE. Consequently, only the terms corresponding to bending, Ck,x; with
i,j=1,2, are assumed to be a function of the axial stress and the friction coefficient. Therefore, a rheo-
logical model capable of characterizing the biaxial bending response of a spiral strand as a function of
the applied tensile force can replace the solution of the RVE BVP in the homogenization scheme if only
the macroscopic response of the system is of interest. However, in many cases, the microscopic response
of the strands, i.e. the axial force of individual wires, is also required. Therefore, in order to fully replace
the RVE BVP solution, both the macroscopic and microscopic responses should be predicted.

4.1 Macroscopic response [3]

The rheological model capable of predicting the uniaxial bending behavior of an m-layer spiral strand
subjected to a variable tensile force consists of m+1 linear springs and m frictional slider elements, as
can be seen in Figure 5, and is called a unidirectional spring system. The parameters of the springs
and slider elements are obtained from several monotonic uniaxial bending tests under constant tensile
forces obtained from solving the RVE BVP. To extend the rheological model to describe the biaxial
bending behavior of the strands, a multidirectional spring system consisting of ng unidirectional systems
is proposed, as shown in Figure 5.
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FIGURE 5 - a, The equivalent rheological models consisted of a unidirectional system to represent the
uniaxial response of spiral strands; b, The rheological model consisted of a multidirectional spring sys-
tem to represent the biaxial bending behavior of spiral strands.

To verify the proposed rheological model for predicting the biaxial response of spiral strands, the two-
layer strand is subjected to biaxial bending and constant tensile force, and the response of the rheological
model is compared with that of homogenization. The parameters for the rheological model are extracted
from the uniaxial bending responses of Figure 6. As can be seen in Figure 7, the results obtained from the
rheological model are in good agreement with the homogenized responses. An important aspect of this
loading is the induced anisotropy observed in the spiral strand, which has been captured by the proposed
rheological model.
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FIGURE 6 — The uniaxial bending response of the two-layer spiral strand subjected to different constant
tensile stresses of 0, 100, 200 and 300 N/mm? used to find the parameters of the rheological model.

4.2 Microscopic response

The axial force in individual wires is required to perform fatigue life estimation for spiral strands.
For this purpose, since the bending induced axial force is due to interlayer friction, the increment of the
tangential force due to friction is obtained from the homogenized monotonic axial bending response of
the strands as a function of the bending curvature increment. These tangential forces are then integrated
to obtain the axial force of the wires. A comparison of the axial force of the wires of the two-layer spiral
strand obtained from homogenization and the proposed approach when subjected to biaxial loading of
Figure 7 is shown in Figure 8.



FIGURE 7 — a, A comparison of the biaxial bending response of spiral strands obtained from homogeni-
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zation and from the rheological model; b, The loading history.
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FIGURE 8 — A comparison of the variation of axial force of the wire in the first and second layer of a
two-layer spiral strand under biaxial loading obtained from homogenization and the proposed approach at
different loading stages. (x-axis : Curvilinear abscissa [mm]; y-axis : Axial force [N]). Coloured crosses
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Conclusion

In this study, a framework based on computational homogenization for spiral strands has been pro-

posed to efficiently model their anisotropic nonlinear bending response. In this framework, instead of
solving an RVE BVP for each macroscopic integration point, rtheological models have been proposed
that are capable of predicting both macroscopic and microscopic responses of these strands. Using the
proposed framework, modeling of large strands would take only a few seconds, which would have taken
several weeks to model using DNS.
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