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Abstract
There are very few mathematical results governing the interpolation of functions or their gradients on
Delaunay meshes in more than two dimensions. Unfortunately, the standard techniques for proving
optimal interpolation properties are often limited to triangular meshes. Furthermore, the results
which do exist, are tailored towards interpolation with piecewise linear polynomials. In fact, we are
unaware of any results which govern the high-order, piecewise polynomial interpolation of functions
or their gradients on Delaunay meshes. In order to address this issue, we prove that quasi-optimal,
high-order, piecewise polynomial gradient interpolation can be successfully achieved on protected
Delaunay meshes. In addition, we generalize our analysis beyond gradient interpolation, and prove
quasi-optimal interpolation properties for sufficiently-smooth vector fields. Throughout the paper, we
use the words ‘quasi-optimal’, because the quality of interpolation depends (in part) on the minimum
thickness of simplicies in the mesh. Fortunately, the minimum thickness can be precisely controlled
on protected Delaunay meshes in Rd. Furthermore, the current best mathematical estimates for
minimum thickness have been obtained on such meshes. In this sense, the proposed interpolation is
optimal, although, we acknowledge that future work may reveal an alternative Delaunay meshing
strategy with better control over the minimum thickness. With this caveat in mind, we refer to our
interpolation on protected Delaunay meshes as quasi-optimal.
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1 Introduction

The primary purpose of this article is to motivate the construction of protected Delaunay
meshes in higher dimensions, d > 2. In order to avoid confusion, we will refer to traditional
Delaunay meshes which satisfy an empty-hypersphere criterion as standard Delaunay meshes.
In contrast, a protected Delaunay mesh satisfies a modified empty-hypersphere criterion,
where the hypersphere of each simplex is augmented by a spherical-buffer region. This buffer
region is formed by taking the original hypersphere with radius R, and subtracting its volume
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from an augmented hypersphere with radius R + r. Here, we insist that r ≥ δ, for some δ > 0.
In this context, the quantity δ is called the protection. Broadly speaking, our goal is to make
δ as large as possible, as this has two positive ramifications: (i) it increases the minimum size
of slivers in the Delaunay mesh, and (ii) it reduces the sensitivity of the Delaunay mesh to the
locations of its points. In this work, we are primarily interested in the first benefit, as we can
directly reduce the errors of gradient or vector-field interpolation by increasing the minimum
size of slivers. Of course, in a standard Delaunay mesh without protection, the thickness of
a sliver can become arbitrarily close to zero, (for d > 2). Fortunately, in cases where the
protection is non-zero, we obtain fatter simplices whose thickness is bounded away from zero.
This fact was established in the pioneering work of Boissonnat, Dyer, and Ghosh [5]. More
precisely, they showed that slivers naturally arise from pathological configurations of d + 2
vertices which are nearly co-spherical. These pathological configurations can be avoided by
carefully perturbing the mesh points to facilitate the construction of a protected Delaunay
mesh. A computationally expensive procedure for perturbing the points has been proposed
in [6]. In addition, a detailed summary of protected Delaunay meshes in Rd appears in [3].

Now, having established the concept of a protected Delaunay mesh, let us expand our
discussion in order to present some broader perspectives on the entire field of Delaunay
meshing. Generally speaking, standard Delaunay meshes have a very good reputation among
scientists and engineers. This positive reputation has been documented in many places,
including the excellent textbooks of Cheng, Dey, and Shewchuk [10], and Borouchaki and
George [7]. However, in our opinion, the reputation of these meshes is mostly based on
their optimality properties in R2. Unfortunately, there is a weaker justification for using
standard Delaunay meshes in higher dimensions. In particular, Delaunay triangulations of
nets (well-spaced point sets) still contain slivers in dimensions higher than 2, while in 2D
the quality of simplices in a Delaunay triangulation of a net is lower bounded (as mentioned
previously). In the next section, we will provide a short review of optimality properties of
standard Delaunay meshes, and identify areas for potential improvement.

1.1 Background: Optimality of Standard Delaunay Meshes
There are many optimality results for standard Delaunay triangulations in R2. For example,
Sibson [27] proved that a standard Delaunay triangulation of a point set S is guaranteed to
maximize the minimum-interior angle of its triangles, relative to any other triangulation of
the same points. In addition, Musin [17, 18] proved that the standard Delaunay triangulation
of S minimizes the average circumradius of triangles in the triangulation. In a similar
fashion, Lambert [16] proved that the standard Delaunay triangulation of S minimizes the
average inradius. Furthermore, Musin [20] proved that the standard Delaunay triangulation
minimizes the harmonic index functional, where the functional is the sum over each triangle
of the squared edge lengths divided by the triangle area. In more recent work, Musin [19]
conjectured that the mean radius functional and the D functional are minimized on standard
Delaunay triangulations. Here, the mean radius functional is an area-weighted sum of
the squared circumradii, and the D functional is an area-weighted sum of the squared
distance between the barycenter and circumcenter of each triangle. Following this work,
Edelsbrunner et al. [12] proved that the mean radius functional is minimized on standard
Delaunay triangulations. In addition, they showed that the Voronoi functional is maximized
on the same triangulations. For the sake of brevity, the precise formulation of the Voronoi
functional will not be described here; the interested reader is encouraged to consult [2] for
details. In addition, a detailed summary of the optimality properties of standard Delaunay
triangulations appears in Sierra’s thesis [28].
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Most of the results above, govern the shape-regularity of triangles in a standard Delaunay
triangulation. Essentially, these results ensure that the triangles resemble equilateral triangles,
as much as possible.

One may also obtain results which directly predict the interpolation or approximation
accuracy of a standard Delaunay triangulation. In particular, Rippa [24] and Powar [21]
proved that the piecewise linear interpolations of H1 functions have minimal roughness on a
standard Delaunay triangulation. Here, the roughness of the linear interpolation is defined as
the integral of the squared magnitude of the gradient. This quantity naturally arises when a
classical finite element method is applied to elliptic problems in R2. In [23], Rippa and Schiff
leveraged the roughness result of [24], and proved that standard Delaunay triangulations
minimize the solution error for simple elliptic problems. Thereafter, Shewchuk [26] performed
an exhaustive study of piecewise linear interpolation on generic triangular and tetrahedral
meshes. Here, Shewchuk presented techniques for improving interpolation error on meshes
that are not necessarily Delaunay.

Regrettably, there are few optimality properties for standard Delaunay meshes in Rd

when d > 2. In [22], Rajan proved that the standard Delaunay mesh minimizes a functional
of the weighted sum of the squared edge lengths, (see Theorem 1 of [22]). In addition, Rajan
proved that the standard Delaunay mesh minimizes the maximum, min-containment radius
of simplices in the mesh, (see Theorem 2 of [22]). These results are somewhat abstract, but
they can easily be clarified with appropriate examples. In particular, Rajan’s functional
in R4 is the sum over each 4-simplex of the hypervolume-weighted squared edge lengths of
the simplex. Furthermore, the min-containment radius of a 4-simplex corresponds to the
hypersphere of minimum radius which contains the simplex. This latter quantity is often
called the enclosing hypersphere or ball [10].

Following the work of Rajan, Waldron [30] proved that a standard Delaunay mesh
minimizes the infinity error for the piecewise linear interpolation of a multivariate function
with pointwise-bounded second derivatives, (see Theorem 3.1 of [30]). We note that Waldron’s
work implicitly leverages the min-containment radius result of Rajan [22].

In addition, one can prove that the standard Delaunay mesh provides optimal piecewise
linear interpolation of the quadratic function, |x|2 + a · x + b, where x is a generic point in
Rd, a ∈ Rd, and b ∈ R [10]. For this function, the standard Delaunay mesh minimizes the
error in the Lp-norm for p ≥ 1. This result has been leveraged in order to construct objective
functions for optimal Delaunay triangulations, (ODTs)—see the pioneering work of Chen and
Xu [9]. In particular, ODTs are defined based on an energy functional or objective function
which takes a mesh as input. Let f : x → |x|2 be the parabola. A given mesh T , induces a
piecewise linear interpolation fpl, which coincides with f on the vertices of T and is a linear
interpolation on each simplex. The energy functional (objective function) is now defined as
the integrated error that the PL-interpolation makes, that is FODT(T ) = ∥f − fpl∥2

L1(Ω). An
optimal Delaunay triangulation is a mesh that minimizes this functional within the class of
meshes with the same number of vertices. We stress that this means that both the position
of the vertices and the combinatorics of the mesh are not fixed in this optimization. However,
because for a fixed set of vertices the Delaunay triangulation minimizes FODT(T ), the result
is always a Delaunay triangulation (assuming the vertices are in general position). We note
that other objective functions can be used as alternatives to FODT(T ), including functions
which minimize the hypervolume-weighted sum of the edge lengths [8], in accordance with
Rajan’s result [22]. From our perspective, the only issues with the ODT approach are, (a)
the lack of theoretical guarantees on the minimum size of slivers, and (b) the inherent focus
on piecewise linear interpolation.
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Finally, we note that Musin [18] proved that a parabolic functional is minimized on
standard Delaunay meshes. This functional consists of a hypervolume-weighted sum over
each simplex of the squared vertex locations. While this is an interesting result, we are
presently unaware of how it can be used in practical applications.

1.2 Summary of Existing Literature and New Contributions

The best work on the optimality of standard Delaunay meshes in Rd appears to be that of
Rajan [22], Waldron [30], Chen, Xu, and coworkers [9, 8], and Musin [18]. In particular, the
work of Waldron [30] guarantees that standard Delaunay meshes minimize the pointwise,
piecewise linear, interpolation error of functions with pointwise-bounded second derivatives.
Unfortunately, this work is incomplete, as it does not apply to interpolation with high-order,
piecewise polynomial functions.

In the current paper, we prove a new set of results, which establish the quasi-optimality
of gradient interpolation on protected Delaunay meshes in Rd. Our results are more general
than previous results, as they are applicable to interpolation with high-order, piecewise
polynomial functions.

Furthermore, we observe that (by definition) the gradient of a scalar function is a vector
field. With this in mind, we extend our results which govern gradient interpolation in order
to establish the quasi-optimality of vector-field interpolation on protected Delaunay meshes.

1.3 Paper Approach and Outline

There are many possible approaches for analyzing the accuracy of high-order interpolation. In
this work, we proceed in a straightforward fashion, and leverage vector calculus in conjunction
with classical interpolation theory for polynomial functions. Briefly, our approach involves
extending the notion of roughness, originally introduced by Rippa [24] for gradients in R2,
to the case of Rd. Thereafter, we use this notion to obtain a set of results which govern
the quasi-optimality of gradient interpolation and vector-field interpolation on protected
Delaunay meshes.

The format of the paper is as follows. In section 2, we motivate the present work by
introducing a canonical, elliptic problem in R4. In addition, we expand the definition of
roughness, originally introduced by Rippa [24], into higher dimensions. In section 3, we
present the new theoretical results that govern the interpolation of gradients on meshes in
Rd. Here, we prove the quasi-optimality of protected Delaunay meshes for this purpose. In
section 4, we extend the results of section 3, in order to establish quasi-optimal interpolation
properties for L2-vector fields. Finally, section 5 contains concluding remarks and suggestions
for additional research.

2 Preliminaries

In this section, we define some important notation. Thereafter, we introduce an example
problem in R4. Next, we define the notion of roughness for this problem, and explain the
relationship between roughness and the solution error. Lastly, we provide a precise definition
for roughness in any number of dimensions.
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2.1 Notation
Consider a simply-connected, polytopal domain Ω ⊂ Rd. On this domain, we can define the
Sobolev space L2(Ω) and its associated norm ∥·∥L2(Ω) as follows

L2(Ω) =
{

f

∣∣∣∣∣
∫

Ω
f2 dx1dx2 · · · dxd

< ∞

}
, ∥f∥L2(Ω) =

[∫
Ω

f2 dx1dx2 · · · dxd

]1/2
,

where f = f(x) = f(x1, x2, . . . , xd) is a scalar function. The vector-version of this space is
associated with the following norm

∥f∥L2(Ω) =
[∫

Ω
f · f dx1dx2 · · · dxd

]1/2
,

where f = f(x) = f(x1, x2, . . . , xd) ∈ Rd is a vector-valued function.
We can also define the following Sobolev spaces

H1(Ω) = {f ∈ L2(Ω) |Dαf ∈ L2(Ω), |α| ≤ 1} , H1
0 (Ω) =

{
f ∈ H1(Ω) | f = 0 on ∂Ω

}
,

where

Dαv = ∂|α|f

∂xα1∂xα2 · · · ∂xαd
, α = (α1, α2, . . . , αd) ∈ Nd, |α| = α1 + α2 + · · · + αd.

Evidently, the associated norms are

∥f∥H1(Ω) =
[∫

Ω

(
f2 + ∇f · ∇f

)
dx1dx2 · · · dxd

]1/2
, ∥f∥H1

0 (Ω) =
[∫

Ω
(∇f · ∇f) dx1dx2 · · · dxd

]1/2
,

where ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
.

2.2 Elliptic Problem in 4D
Now, consider a simply-connected, polytopal domain Ω ⊂ R4. We are interested in solving
the following elliptic problem on Ω

−∆u = f, in Ω, (1)
u = 0, on ∂Ω,

where u is the twice-differentiable solution that vanishes on the boundary ∂Ω, f is a forcing
function in L2(Ω), and ∆ = ∇ · ∇ (·) is the four-dimensional Laplacian. The four-dimensional
gradient operator is given by ∇ =

(
∂

∂x , ∂
∂y , ∂

∂z , ∂
∂w

)
.

We can formulate a finite element method for solving Eq. (1) by replacing u with uh,
multiplying by the test function vh, integrating over the domain Ω, and integrating by parts
as follows∫

Ω
∇uh · ∇vh dV −

∫
∂Ω

vh
∂uh

∂x
nx dydzdw −

∫
∂Ω

vh
∂uh

∂y
ny dxdzdw

−
∫

∂Ω
vh

∂uh

∂z
nz dxdydw −

∫
∂Ω

vh
∂uh

∂w
nw dxdydz =

∫
Ω

fvh dV,



6 Quasi-Optimal Interpolation on Protected Delaunay Meshes in Rd

where uh, vh ∈ H1(Ω) and dV = dxdydzdw. Next, boundary conditions can be enforced by
choosing uh, vh ∈ Vh ⊂ H1

0 (Ω) so that∫
Ω

∇uh · ∇vh dV =
∫

Ω
fvh dV.

We can rewrite the expression above in terms of more familiar notation

ah(uh, vh) = Lh(vh), (2)

where

ah(uh, vh) ≡
∫

Ω
∇uh · ∇vh dV

=
∫

Ω

(
∂uh

∂x

∂vh

∂x
+ ∂uh

∂y

∂vh

∂y
+ ∂uh

∂z

∂vh

∂z
+ ∂uh

∂w

∂vh

∂w

)
dxdydzdw,

Lh(vh) ≡
∫

Ω
fvh dV.

It is well known that Eq. (2) has a unique solution when ah is symmetric, bilinear, and
governed by the following constraints

|ah(uh, vh)| ≤ σ ∥uh∥ ∥vh∥ , τ ∥vh∥2 ≤ ah(vh, vh),

where σ and τ are positive constants, and

∥vh∥ ≡
[∫

Ω

(
v2

h + ∇vh · ∇vh

)
dV

]1/2

=
[∫

Ω

(
v2

h +
(

∂vh

∂x

)2
+
(

∂vh

∂y

)2
+
(

∂vh

∂z

)2
+
(

∂vh

∂w

)2
)

dV

]1/2

.

Next, we can define the energy norm

∥vh∥a ≡
√

ah(vh, vh).

In accordance with standard elliptical theory (see [25], Lemma 2.2), we can introduce the
following energy functional

J(vh) ≡ ah(vh, vh) − 2Lh(vh). (3)

Here, J(vh) is the integral of the Lagrangian. The minimum of this functional is the solution
of Eq. (2). More precisely

J(uh) = min
vh∈Vh

J(vh).

Now, we are ready to introduce the notion of roughness, and its relationship to solution error.
In particular, suppose that we create a pair of meshes, T1 and T2, for our domain Ω. These
meshes are distinct, and do not necessarily possess the same number of simplices. Due to
the bilinearity and symmetry of ah, then the following equality holds

∥u − uh,1∥2
a = J(uh,1) − J(uh,2) + ∥u − uh,2∥2

a . (4)
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Naturally, if we choose T1 such that

J(uh,1) ≤ J(uh,2),

then it follows that

∥u − uh,1∥a ≤ ∥u − uh,2∥a .

Therefore, we seek to minimize J(uh) in order to minimize the error as measured by the
energy norm ∥·∥a. In turn, due to the definition of J(uh) (see Eq. (3)), we seek meshes T1
that minimize the quantity ah(uh, uh). This quantity is often called the roughness of the
mesh.

2.3 Roughness in Rd

It turns out that the measure of roughness that we identified in the previous section can be
extended to any number of dimensions d. In particular, one may define

a(v, v) ≡
∫

Ω

d∑
m=1

(
∂v

∂xm

)2
dx1dx2 · · · dxd, (5)

as the measure of roughness in Rd. Here, we have omitted the subscript h from the quantities
a and v in order to simplify the notation. We note that the roughness functional (above) is
merely the square of the norm on H1

0 (Ω), introduced previously.

3 Theoretical Results: Gradient Interpolation

3.1 Mesh Properties
Let us introduce a finite set of points S

S = {p1, p2, . . . , pl, . . . , pNv } , 1 ≤ l ≤ Nv,

where the cardinality |S| = Nv, and each point pl is contained within a bounded, simply-
connected domain Ω ∈ Rd. For the sake of simplicity, we let conv(S) = Ω. Furthermore, we
assume that S is a (ε, η)-net, which satisfies the following conditions:

∀x ∈ Ω, ∃pl ∈ S : |x − pl| ≤ ε, (6)

∀pl, pn ∈ S : |pl − pn| ≥ η, (7)

where ε > 0, η > 0, and η = η/ε. Together, Eqs. (6) and (7) control the density of the points.
Now, let us introduce a generic mesh T whose vertices are the points of S, and whose

elements K are non-overlapping. We assume that the mesh is a triangulation, and that
the union of all elements has the same hypervolume as the domain itself. Furthermore, let
us assume that each K is a d-simplex equipped with (d + 1)-facets of dimension d − 1. In
addition, we assume that each facet is either a boundary facet (with precisely one d-simplex
neighbor) or an interior facet (with precisely two d-simplex neighbors). As a result, the mesh
does not contain any hanging nodes. In accordance with these assumptions (above), we say
that the mesh is a pseudo manifold: i.e. a pure simplicial d-complex which is d-connected,
and for which each (d − 1)-simplex has exactly one or two d-simplex neighbors.
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The d + 1 vertices of each simplex K are denoted by pK,i, where i = 1, . . . , d + 1. The
coordinates of each vertex are given by

pK,i =
(
p1

K,i, p2
K,i, . . . , pm

K,i, . . . , pd
K,i

)T
, (8)

where 1 ≤ m ≤ d. The absolute value of a vertex can be defined in terms of the absolute
values of its components, as follows

abs(pK,i) =
(∣∣p1

K,i

∣∣ , ∣∣p2
K,i

∣∣ , . . . ,
∣∣pm

K,i

∣∣ , . . . ,
∣∣pd

K,i

∣∣)T
. (9)

Note that |pK,i| and abs(pK,i) are not equivalent quantities, as one is the scalar magnitude
of a d-vector, and the other is a d-vector of absolute values.

Lastly, we can define the d(d + 1)/2 edges of each simplex K as follows

pK,ij = pK,j − pK,i =
(
p1

K,ij , p2
K,ij , . . . , pm

K,ij , . . . , pd
K,ij

)T
, (10)

where 1 ≤ i ≤ d + 1, 1 ≤ j ≤ i − 1, and 1 ≤ m ≤ d.

3.2 The Sizing Function
Next, we introduce a sizing function D(x) = D(x1, x2, . . . , xd) > 0. We assume that this
sizing function has units of length, and that the squared-reciprocal of this function is
C2-continuous over the domain Ω, i.e.

1
D2(x) ∈ C2(Ω).

We can relate the sizing function to the local mesh spacing, as follows

min
[

1
D2(pK,1) ,

1
D2(pK,2) , . . . ,

1
D2(pK,d+1)

]
≤
(

1
∆(K)2 + ζK

)
, (11)

max
[

1
D2(pK,1) ,

1
D2(pK,2) , . . . ,

1
D2(pK,d+1)

]
≥
(

1
∆(K)2 + ζK

)
,

where ∆(K) is the diameter of K (the longest edge length of K), and where we choose
ζK ∈ R so that the inequalities above hold true. Let us interpret Eq. (11) in more intuitive
terms. Suppose that Eq. (11) holds with ζK = 0. This means that 1/∆(K)2 is bounded
above and below by the minimum and maximum values of 1/D2(x) evaluated at the vertices
of K. This indicates that the size of each element K (as characterized by ∆(K)) conforms
to the specifications of the sizing field, D(x). Conversely, if ζK is non-zero, then 1/∆(K)2 is
not bounded above and below by the minimum and maximum values of 1/D2(x) evaluated
at the vertices of K. In this sense, ζK characterizes the difference between the actual mesh
spacing and the suggested mesh spacing provided by the sizing function.

We may now construct a linear interpolant L[1/D2](x) which takes on the values of
1/D2(x) at the mesh vertices pl, such that

L[1/D2](pl) = 1
D2(pl)

, ∀l. (12)

As a consequence of Eq. (11) and the linearity of the interpolant, there exists at least one
point xK ∈ K such that

L[1/D2](xK) = 1
∆(K)2 + ζK , (13)

for each K. For the sake of additional clarity, we have included a figure, (Figure 1), which
summarizes the role of the sizing function for a tetrahedron.

We are now ready to proceed with our analysis.
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Figure 1 Left, the sizing function for a tetrahedron element K evaluated at its vertices, pK,i.
Here, the longest edge length between vertices is denoted by ∆(K). Right, the squared-reciprocal of
the sizing function evaluated at the vertices, and its linear interpolant L[1/D2](x).

3.3 Derivation of Results
In this section, our objective is to construct an error estimate for gradient interpolation on
the mesh T . Towards this end, we introduce definitions for a roughness functional and a
gradient norm. Next, we prove that the roughness function is equivalent to the gradient
norm. Thereafter, we construct a series of upper bounds for the roughness functional and
the gradient norm, and then leverage these results to construct an upper bound for the error
in the gradient norm.

▶ Definition 1 (Roughness Functional). Consider the following, non-negative functional of v

over the mesh T

ΨT (∇v) ≡

∑
K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(pK,ij))2
dV

1/2

, (14)

where we assume that v is a piecewise-H1-vector field on Ω, and hK is a characteristic length
scale associated with each K. The presence of the abs symbols above makes it easier for us
to construct a lower bound for ΨT (∇v) in the work that follows.

▶ Definition 2 (Gradient Norm). Consider the following gradient norm of v over the mesh T

∥∇v∥L2(Ω) ≡

[∑
K∈T

∫
K

∇v · ∇v dV

]1/2

, (15)

where we assume that v is a piecewise-H1-vector field on Ω.

We are now ready to show that the roughness functional and the gradient norm are
equivalent.

▶ Theorem 3 (Equivalence of the Roughness Functional and the Gradient Norm). The functional
in Definition 1 and the gradient norm in Definition 2 are equivalent in the following sense

C1 ∥∇v∥L2(Ω) ≤ ΨT (∇v) ≤ C2 ∥∇v∥L2(Ω) , (16)
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where v resides in the space of piecewise-H1-vector fields on Ω, and C1 and C2 are constants
that depend on the mesh T ,

C1 =
√

d + 1
2d

min
K

(
mins [dist (pK,s, aff(FK,s))]

∆(K)

)
, (17)

C2 = max
K

 1
∆(K)

√√√√d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)

 . (18)

Here, FK,s is the facet opposite to the vertex pK,s and 1 ≤ s ≤ d + 1.

Proof. See Appendix A.1. ◀

The mesh-dependent constants C1 (Eq. (17)) and C2 (Eq. (18)) appear to be new. In
what follows, we will interpret their meanings.

▶ Remark 4 (Sliver-Detecting Constant). In order to interpret the constant C1, it is helpful
for us to first define the concept of thickness. In accordance with [4], the thickness of a
d-simplex K is given by

Ξ(K) =

1 if d = 0
mins

(
dist(pK,s,aff(FK,s))

d ∆(K)

)
otherwise.

(19)

Evidently, the minimum thickness, minK(Ξ(K)), will be small for meshes which contain
sliver elements, and will be large in the absence of slivers. We can rewrite C1 in terms of
Ξ(K) as follows

C1 =
√

d + 1
2d

min
K

(
min

s

[
dist (pK,s, aff(FK,s))

d ∆(K)

]
d

)
=
√

d(d + 1)
2 min

K
Ξ(K). (20)

Therefore, the constant C1 is a direct measure of the minimum element thickness.

▶ Remark 5 (Protected Delaunay Meshes and Thickness). Broadly speaking, the minimum
element thickness is difficult to control in Rd, for arbitrary d. Fortunately, in Lemma 5.27
of [3], Boissonnat and coworkers proved that the thicknesses of simplices are bounded below
as follows

Ξ(K) ≥ δ2

8dε2 . (21)

Therefore, the element thickness depends quadratically on the protection, δ. It is important
to note that, with the exception of Eq. (21), we are unaware of any results which provide
rigorous mathematical guarantees for the thickness of simplices in an arbitrary number of
dimensions.

Upon combining Eq. (21) with Eq. (20), we obtain

C1 ≥
√

d + 1
2d

(
δ2

8ε2

)
. (22)

Therefore, direct control of C1 can be obtained on protected Delaunay meshes.

▶ Remark 6 (Maximum Protection). In light of the results above, we seek a procedure for
generating protected Delaunay meshes with a maximal level of protection δ for arbitrary d.
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The current best procedure for generating unstructured, protected Delaunay meshes is given
by [3]. Here, the protection is guaranteed to be at least

δ ∼ O
(

1
2d2

)
. (23)

In addition, the current best procedure for generating structured protected Delaunay meshes
is given by Coxeter reflection [11]. In particular, the Coxeter triangulations of type Ãd are
protected Delaunay triangulations, which are guaranteed to have the following protection

δ ∼ O
(

1
d2

)
. (24)

This level of protection is the largest of any known triangulation. In this sense, we argue
that structured protected Delaunay meshes are best for maximizing the protection in Rd,
and thereby, maximizing the constant C1.

Finally, we note that the gap between the protection estimates for the unstructured and
structured cases (Eqs. (23) and (24), respectively) can likely be improved. In particular,
the protection estimate for the unstructured case decays exponentially with the number of
dimensions d, and is therefore, an example of the ‘curse of dimensionality’. However, given
the exceptional quality of the structured estimate, we are optimistic that the unstructured
estimate can be improved.

▶ Remark 7 (Max Edge-Length Constant). The constant C2 is easier to interpret than C1.
By inspection, C2 is merely the square root of the maximum of the sum of squared edge
lengths, normalized by ∆(K), and evaluated across all simplices in the mesh T . A more
precise interpretation of this constant is unnecessary in the context of the present work, as it
does not appear in any of the subsequent estimates.

In what follows, we will introduce additional upper bounds for both the roughness
functional and the gradient norm.

▶ Lemma 8 (Upper Bound for the Roughness Functional). The functional in Definition 1 is
bounded above by the infinity norm of the gradient as follows

ΨT (∇v) ≤ C3
√

Θ ∥∇v∥L∞(Ω) , (25)

where v resides in the intersection of L∞-vector fields and piecewise-H1-vector fields over Ω,
Θ is a functional that depends on the mesh T , and C3 is a constant that also depends on the
mesh

C3 =

√√√√min
[

1
2 max

K
(RK,min)2

∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(Ω)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(Ω)

+ max
K

|ζK | ,
1
η2

]
, (26)

Θ =
∑

K∈T

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 . (27)

Here, RK,min is the min-containment radius.

Proof. See Appendix A.2. ◀

Let us now interpret the new quantities C3 and Θ.
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▶ Remark 9 (Min-Containment Radius Constant). The behavior of C3 is directly influenced
by the largest min-containment radius of an element in the mesh T , the smoothness of the
sizing function 1/D2(x), the difference between the local element size and the sizing function
(given by ζK), and the separation of points (given by η). Suppose that we specify a particular
function 1/D2(x) a priori, and the discrepancy in the element size ζK is precisely controlled
by the distribution of mesh nodes pl, l = 1, . . . , Nv, which is also known a priori. Under
these circumstances, the mesh closely conforms to the sizing function, and the magnitude of
the constant C3 only depends on the min-containment radius. Furthermore, in this case C3
is minimized on a standard Delaunay mesh in Rd, as Rajan [22] proved that such a mesh
minimizes the maximum min-containment radius, relative to any other mesh that uses the
same set of points.
▶ Remark 10 (Rajan’s Functional). The quantity Θ is a functional of the mesh T . It is the
‘weighted-sum of edge lengths squared’, where the weighting quantity is the d-hypervolume
of each simplex K. This functional was originally identified by Rajan [22]. His version of the
functional included an extra factor of 1/(d + 1)(d + 2), such that

Θ̂ = Θ
(d + 1)(d + 2) = 1

(d + 1)(d + 2)
∑

K∈T

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 . (28)

In [22], Rajan proves that a standard Delaunay mesh in Rd is guaranteed to minimize Θ̂
relative to any other mesh which uses the same set of points. Evidently, this Delaunay-
minimization property immediately extends to Θ.

▶ Corollary 11 (Upper Bound for the Gradient Norm). The norm of the gradient in Definition 2
is bounded above by the infinity norm of the gradient as follows

∥∇v∥L2(Ω) ≤ C3
√

Θ
C1

∥∇v∥L∞(Ω) , (29)

where Θ is a functional that depends on the mesh T , and C1 and C3 are constants that
depend on the mesh. In addition, v resides in the intersection of L∞-vector fields and
piecewise-H1-vector fields over Ω.

Proof. The result follows immediately from combining Eq. (16) from Theorem 3 with Eq. (25)
from Lemma 8. ◀

Next, we introduce some results which govern the interpolation of the gradient on our
canonical mesh T . These results leverage classical interpolation theory, and hold true for
polynomials of any degree.

▶ Definition 12 (Gradient Interpolation). Consider the following interpolation of the gradient
on element K ∈ T

(∇v)h,i =
(

∂v

∂xi

)
h

, where
(

∂v

∂xi

)
h

=
Np∑
j=1

∂v

∂xi
(xj)Lj(ξ(x)), (30)

and where i = 1, . . . , d are indexes, x is a vector of coordinates in physical space (x1, x2, . . . , xd),
ξ is a vector of coordinates in reference space (ξ1, ξ2, . . . , ξd), ξ(x) is the map from physical
space to reference space, x(ξ) is the inverse map from reference space to physical space,
xj = x(ξj) is an interpolation point on the element K, Np is the total number of interpolation
points, and Lj(ξ) is a multi-dimensional Lagrange polynomial which assumes the value of one
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at ξj and zero at all other interpolation points. One may consult Figure 2 for an illustration
of the relationship between the physical and reference space elements in three dimensions.

Finally, an explicit formula for Np is

Np = (k + d)!
k!d! , (31)

for polynomials of degree ≤ k.

Figure 2 Mapping between the reference element and the physical element K in three dimensions.

We are now ready to introduce a theorem which governs the error of gradient interpolation.

▶ Theorem 13 (Error Estimate for Gradient Interpolation). A measure of the error between
the gradient ∇v and a piecewise polynomial interpolation of the gradient (∇v)h on the mesh
T is given by

ΨT (∇v − (∇v)h) ≤ (1 + Λ)C3
√

Θ ∥∇v − (∇v)∗∥L∞(Ω) , (32)

where (∇v)∗ is the piecewise polynomial ‘best approximation’ of the gradient over T , Λ is the
Lebesgue constant, Θ is a functional of the mesh, and C3 is a constant that also depends on
the mesh.

Proof. See Appendix A.3. ◀

▶ Corollary 14 (Simplified Error Estimate for Gradient Interpolation). A measure of the error
between the gradient ∇v and a piecewise polynomial interpolation of the gradient (∇v)h on
the mesh T is given by

∥∇v − (∇v)h∥L2(Ω) ≤ (1 + Λ)C3
√

Θ
C1

∥∇v − (∇v)∗∥L∞(Ω) , (33)

where (∇v)∗ is the piecewise polynomial ‘best approximation’ of the gradient over T , Λ is the
Lebesgue constant, Θ is a functional that depends on the mesh, and C1 and C3 are constants
that depend on the mesh.
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Proof. We begin by replacing ∇v with (∇v − (∇v)h) in Eq. (16) from Theorem 3, such that

C1 ∥∇v − (∇v)h∥L2(Ω) ≤ ΨT (∇v − (∇v)h) ≤ C2 ∥∇v − (∇v)h∥L2(Ω) .

Thereafter, combining the expression above with Eq. (32) from Theorem 13 yields the desired
result. ◀

▶ Remark 15 (Error Estimate Interpretation). Corollary 14 is important, because it characterizes
the dominant sources of error in high-order, piecewise polynomial gradient interpolation.
Broadly speaking, the interpolation error is amplified by four factors:

Small values of the constant C1. This constant becomes small when the mesh contains
sliver elements, (see Remark 4). Recall that the element thickness can become arbitrarily
small on a standard Delaunay mesh for d > 2. However, on a protected Delaunay mesh,
we are guaranteed a lower bound for the minimum thickness of our elements. This fact
was established in Remark 5.
Large values of the constant C3. This constant becomes large when the maximum min-
containment radius becomes large. The maximum min-containment radius is minimized
on a standard Delaunay mesh. This fact was established by Rajan in [22], and discussed
in Remark 9.
Large values of the mesh functional Θ. This functional can be minimized by using a
standard Delaunay mesh. This fact was established by Rajan in [22], and discussed in
Remark 10.
Large values of the Lebesgue constant Λ. This constant can be minimized by carefully
choosing the locations of the interpolation points within each element. The process of
finding Lebesgue-optimized interpolation points is a thriving industry, and we refer the
interested reader to [31, 15, 13] for detailed discussions of this topic.

Based on the discussion above, one may seek to minimize gradient interpolation error by
using Lebesgue-optimized interpolation points on a protected Delaunay mesh.

4 Theoretical Results: Vector-Field Interpolation

Let us briefly shift our attention to the problem of interpolating a vector-valued function
f = f(x) = f(x1, x2, . . . , xd) defined on the domain Ω, where f ∈ [L2(Ω)]d. In this case, we
can define the following function:

▶ Definition 16 (Edge Functional). Consider the following, non-negative functional of f over
the mesh T

ΨT (f) ≡

∑
K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(f) · abs(pK,ij))2
dV

1/2

, (34)

where we assume that f is an L2-vector field on Ω, and hK is a characteristic length scale
associated with each K.

With this definition in mind, we note that Theorem 3, Lemma 8, Corollary 11, and
Theorem 13 hold with f in place of ∇v. In addition, the following corollary holds.

▶ Corollary 17 (Simplified Error Estimate for Vector Interpolation). A measure of the error
between the vector, f , and a piecewise polynomial interpolation of the vector, fh, on the
mesh T is given by

∥f − fh∥L2(Ω) ≤ (1 + Λ)C3
√

Θ
C1

∥f − f∗∥L∞(Ω) , (35)
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where f∗ is the piecewise polynomial ‘best approximation’ of the vector f over T , Λ is the
Lebesgue constant, Θ is a functional that depends on the mesh, and C1 and C3 are constants
that depend on the mesh.

Proof. The proof follows immediately from the proof of Corollary 14, with f in place of
∇v. ◀

▶ Remark 18. Recall that Remark 15 describes the conditions under which we can obtain
quasi-optimal interpolation of gradients ∇v. These conditions are also required in order to
obtain quasi-optimal interpolation of L2-vector fields f .

5 Conclusion

In this work, we extend the concept of roughness, originally introduced by Rippa [24], into
dimensions greater than two. We construct a roughness functional, which is inspired by the
variational formulations of elliptic problems in Rd. We prove that this roughness functional
is equivalent to the L2-norm of the gradient. In addition, we leverage this equivalence in
order to construct an upper bound for the L2-norm of the gradient interpolation error. This
upper bound is written in terms of the best-approximation error in the infinity norm, Rajan’s
functional, the Lebesgue constant, and two new constants: a sliver-detecting constant, and a
min-containment radius constant. Based on these results, we conclude that quasi-optimal,
high-order, piecewise polynomial gradient interpolation can be achieved on a protected
Delaunay mesh, equipped with Lebesgue-optimized interpolation points. Finally, we show
that our analysis of quasi-optimal gradient interpolation extends to quasi-optimal vector-field
interpolation.

To our knowledge, we have constructed the first mathematical results which govern the
optimality of high-order, piecewise polynomial interpolation on protected Delaunay meshes.
In addition, we have identified one of the few practical applications of Rajan’s optimality
results [22]. Based on this work, we believe there are now stronger incentives to develop
additional optimality results which govern geometric functionals.
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A Proofs

A.1 Proof of Theorem 3

Proof. We start by establishing the lower bound and identifying C1. From the definition of
ΨT (∇v), we have

(ΨT (∇v))2 =
∑

K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(pK,ij))2
dV (36)

≥
∑

K∈T

1
h2

K

∫
K

min
m

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2

 (∇v · ∇v) dV,

where we have used the following sequence of inequalities

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(pK,ij))2 =
d+1∑
i=1

i−1∑
j=1

(
d∑

m=1
|(∇v)m||pm

K,ij |

)2

(37)

≥
d+1∑
i=1

i−1∑
j=1

[
d∑

m=1

(
|(∇v)m||pm

K,ij |
)2
]

=
d+1∑
i=1

i−1∑
j=1

[
d∑

m=1
((∇v)m)2 (

pm
K,ij

)2
]

=
d∑

m=1

((∇v)m)2
d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2


≥ min

m

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2

 d∑
m=1

((∇v)m)2
.

The second line of Eq. (37) follows from the observation that the sum of the squares is less
than the square of the sum in cases where all the terms are non-negative.

Now, it remains for us to bound the first term in the integrand of Eq. (36)—i.e. the
argument of the minimum function

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2
. (38)

Bounding this term requires a fairly lengthy process, which leverages various geometric
properties of the simplex in higher dimensions. With this in mind, we recall that the
Levi-Civita symbol ϵa1,a2,...,ad

is completely antisymmetric, that is

ϵa1,a2,...ad
=


+1 if (a1, a2, . . . , ad) is an even permutation of (1, 2, . . . , d),
−1 if (a1, a2, . . . , ad) is an odd permutation of (1, 2, . . . , d),
0 otherwise.

(39)
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By the definition of the determinant, we have that

det([q1, q2, . . . , qd]) = det





q1
1 q1

2 · · · q1
d

q2
1 q2

2 · · · q2
d

...
qm

1 qm
2 · · · qm

d

...
qd

1 qd
2 · · · qd

d




(40)

= (−1)m+1 det





qm
1 qm

2 · · · qm
d

q1
1 q1

2 · · · q1
d

...
qm−1

1 qm−1
2 · · · qm−1

d

qm+1
1 qm+1

2 · · · qm+1
d

...
qd

1 qd
2 · · · qd

d




= ϵa1,a2,...,ad

qa1
1 qa2

2 . . . qad

d ,

where [q1, q2, . . . , qd] denotes the matrix whose columns are q1, q2, . . . , qd, and each qai
i

denotes the ai-th entry of qi ∈ Rd. Here, we use the Einstein summation convention, that is
we sum over repeated indices. Thanks to the standard interpretation of the determinant as
an (orientated) hypervolume of a d-parallelepiped spanned by the vectors q1, q2, . . . , qd, we
have that

d!|K| = | det([q1, q2, . . . , qd])|, (41)

where |K| denotes the hypervolume of the simplex whose edges emanating from 0 are
q1, q2, . . . , qd. The factor of d! in Eq. (41) originates from the observation that a d-cube can
be subdivided into d! simplices that all have the same hypervolume.
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Next, we can introduce a normal vector

n(r) = (−1)r


e1 det





q2
1 q2

2 · · · q̂2
r · · · q2

d

q3
1 q3

2 · · · q̂3
r · · · q3

d

...

qm
1 qm

2 · · · q̂m
r · · · qm

d

...

qd
1 qd

2 · · · q̂d
r · · · qd

d





− e2 det





q1
1 q1

2 · · · q̂1
r · · · q1

d

q3
1 q3

2 · · · q̂3
r · · · q3

d

...

qm
1 qm

2 · · · q̂m
r · · · qm

d

...

qd
1 qd

2 · · · q̂d
r · · · qd

d




+ · · ·

+ (−1)m+1em det





q1
1 q1

2 · · · q̂1
r · · · q1

d

...

qm−1
1 qm−1

2 · · · q̂m−1
r · · · qm−1

d

qm+1
1 qm+1

2 · · · q̂m+1
r · · · qm+1

d

...

qd
1 qd

2 · · · q̂d
r · · · qd

d




+ · · ·

+(−1)d+1ed det





q1
1 q1

2 · · · q̂1
r · · · q1

d

q2
1 q2

2 · · · q̂2
r · · · q2

d

...

qm
1 qm

2 · · · q̂m
r · · · qm

d

...

qd−1
1 qd−1

2 · · · q̂d−1
r · · · qd−1

d






,

where n(r) is a vector whose magnitude equals the hypervolume of the (d − 1)-parallelepiped
spanned by q1, q2, . . . , q̂r, . . . , qd, the hat ·̂ denotes omission, and each em ∈ Rd is a vector
with 1 in the m-th entry and zeros elsewhere. Each component of n(r) can be written as
follows

n(r)m = δar,mϵa1,a2,...,ad
qa1

1 qa2
2 . . . q̂ar

r . . . qad

d , (42)

where δ denotes the Kronecker delta. Eq. (42) holds because n(r) is orthogonal by construc-
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tion to all qi and

|n(r)| = |n(r)|2

|n(r)| = n(r)m n(r)m

|n(r)| (43)

= ϵa1,a2,...,ar−1,m,ar+1,...,ad
qa1

1 qa2
2 . . . q

ar−1
r−1

n(r)m

|n(r)| q
ar+1
r+1 . . . qad

d ,

is the hypervolume of the d-parallelepiped spanned by q1, q2, . . . , qr−1, n(r)
|n(r)| , qr+1, . . . , qd,

which is in turn equal to the hypervolume of the d-parallelepiped spanned by q1, q2, . . . , qr−1, qr+1, . . . , qd

by orthogonality. It follows that

|n(r)| = (d − 1)!|Fr|, (44)

where Fr is the facet opposite qr. We point out that this construction is not new. Indeed,
for the reader that is familiar with Hodge theory, we note that the vectors n(r) are the dual
vectors of the Hodge dual (the image of the Hodge star operator) of the exterior product of
q∗

1 , . . . , q̂∗
r , . . . , q∗

d, where w∗ denotes the dual of w, (i.e. the covector of w). A pedagogical
introduction to the concept of Hodge duals appears in section 7.2 of [1].

Let us return our attention to the vectors themselves: q1, q2, . . . , q̂r, . . . , qd. These vectors
can be defined so that

q1 = pK,1 − pK,ℓ = pK,ℓ1,

q2 = pK,2 − pK,ℓ = pK,ℓ2,

...

q̂r = ̂pK,r − pK,ℓ = p̂K,ℓr

...
qℓ−1 = pK,ℓ−1 − pK,ℓ = pK,ℓ(ℓ−1),

qℓ = pK,ℓ+1 − pK,ℓ = pK,ℓ(ℓ+1),

...
qd = pK,d+1 − pK,ℓ = pK,ℓ(d+1).

Here, we have shifted each vertex by pK,ℓ. Evidently, this ensures that the vertex pK,ℓ itself
is shifted to the origin. As a result, we have that

|n(r)| = (d − 1)!|FK,r|, (45)

where FK,r is the facet opposite the vertex pK,r.
Next, in accordance with Eqs. (40), (41), and (42), we have that

|K| ≤ 1
d!

d+1∑
r=1
r ̸=ℓ

(∣∣pm
K,ℓr

∣∣ |n(r)m|
)

. (46)
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Upon summing Eq. (46) over all ℓ, we obtain

(d + 1) |K| ≤ 1
d!

d+1∑
ℓ=1

d+1∑
r=1
r ̸=ℓ

(∣∣pm
K,ℓr

∣∣ |n(r)m|
)

(47)

≤ 1
d!

d+1∑
ℓ=1

d+1∑
r=1
r ̸=ℓ

(∣∣pm
K,ℓr

∣∣ |n(r)|
)

= 1
d

d+1∑
ℓ=1

d+1∑
r=1
r ̸=ℓ

(∣∣pm
K,ℓr

∣∣ |FK,r|
)

≤ 1
d

(
max

s
|FK,s|

) d+1∑
ℓ=1

d+1∑
r=1
r ̸=ℓ

∣∣pm
K,ℓr

∣∣ , s ∈ [1, d + 1],

where we have used Eq. (45) on the second-to-last line of Eq. (47).
We note that the following identity holds by a symmetry argument

1
2

d+1∑
ℓ=1

d+1∑
r=1
r ̸=ℓ

∣∣pm
K,ℓr

∣∣ =
d+1∑
i=1

i−1∑
j=1

∣∣pm
K,ij

∣∣ . (48)

Substituting Eq. (48) into Eq. (47) yields

d(d + 1)
2

|K|
(maxs |FK,s|) ≤

d+1∑
i=1

i−1∑
j=1

∣∣pm
K,ij

∣∣ . (49)

The ratio |K|/ maxs |FK,s| on the left hand side (above) can be rewritten in terms of the
minimum elevation of the simplex. In particular

|K|
(maxs |FK,s|) = mins [dist (pK,s, aff(FK,s))]

d
, (50)

where the function dist(·, ·) returns the shortest distance between the vertex pK,s and the
affine hull of its opposite facet, aff(FK,s). We can substitute Eq. (50) into Eq. (49) as follows

(d + 1)
2 min

s
[dist (pK,s, aff(FK,s))] ≤

d+1∑
i=1

i−1∑
j=1

∣∣pm
K,ij

∣∣ . (51)

Next, upon squaring both sides of the expression above(
(d + 1)

2 min
s

[dist (pK,s, aff(FK,s))]
)2

≤

d+1∑
i=1

i−1∑
j=1

∣∣pm
K,ij

∣∣2

≤ d(d + 1)
2

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2
.

(52)

Here, we have leveraged the root-mean-square-arithmetic-mean inequality in order to refor-
mulate the right hand side.

Equivalently, upon simplifying Eq. (52), we obtain

d + 1
2d

(
min

s
[dist (pK,s, aff(FK,s))]

)2
≤

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2
. (53)
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Finally, substituting Eq. (53) into Eq. (36), and setting hK = ∆(K), yields

(ΨT (∇v))2 ≥
∑

K∈T

1
∆(K)2

∫
K

min
m

d+1∑
i=1

i−1∑
j=1

(
pm

K,ij

)2

 (∇v · ∇v) dV (54)

≥ d + 1
2d

∑
K∈T

1
∆(K)2

∫
K

min
m

(
min

s
[dist (pK,s, aff(FK,s))]

)2
(∇v · ∇v) dV

≥ d + 1
2d

min
K

(
mins [dist (pK,s, aff(FK,s))]

∆(K)

)2 ∑
K∈T

∫
K

(∇v · ∇v) dV

= d + 1
2d

min
K

(
mins [dist (pK,s, aff(FK,s))]

∆(K)

)2
∥∇v∥2

L2(Ω) .

Upon setting

C1 ≡
√

d + 1
2d

min
K

(
mins [dist (pK,s, aff(FK,s))]

∆(K)

)
, (55)

in Eq. (54), and taking the square root of both sides, we obtain the desired lower bound for
ΨT (∇v).

Next, we will construct the upper bound for the roughness functional and identify the
constant C2. From the definition of the functional, we have

(ΨT (∇v))2 =
∑

K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(pK,ij))2
dV (56)

≤
∑

K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(∇v)) (abs(pK,ij) · abs(pK,ij)) dV

=
∑

K∈T

1
h2

K

∫
K

(∇v · ∇v)
d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) dV

=
∑

K∈T

1
h2

K

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)
∫

K

(∇v · ∇v) dV

≤ max
K

 1
h2

K

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)

 ∑
K∈T

∫
K

(∇v · ∇v) dV

= max
K

 1
∆(K)2

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)

 ∥∇v∥2
L2(Ω) ,

where the Cauchy-Schwarz inequality has been used on the second line, and hK = ∆(K) has
been used on the last line. Upon setting

C2 ≡ max
K

 1
∆(K)

√√√√d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)

 , (57)

in Eq. (56) and taking the square root of both sides, we obtain the desired upper bound for
ΨT (∇v). ◀
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A.2 Proof of Lemma 8
Proof. Consider the definition of the roughness functional

(ΨT (∇v))2 =
∑

K∈T

1
h2

K

∫
K

d+1∑
i=1

i−1∑
j=1

(abs(∇v) · abs(pK,ij))2
dV (58)

≤
∑

K∈T

1
h2

K

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij)
∫

K

(∇v · ∇v) dV

≤
∑

K∈T

1
h2

K

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K| ∥∇v · ∇v∥L∞(K)

≤
∑

K∈T

 1
h2

K

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 ∥∇v · ∇v∥L∞(Ω)

=
∑

K∈T

 1
∆(K)2

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 ∥∇v∥2
L∞(Ω) ,

where we have set hK = ∆(K) on the last line. It remains for us to analyze the term

1
∆(K)2 ,

that appears on the right hand side (above).
In accordance with Eq. (13), we have that

1
∆(K)2 = L[1/D2](xK) − ζK = L[1/D2](xK) − 1

D2(xK) + 1
D2(xK) − ζK (59)

≤
∣∣∣∣L[1/D2](xK) − 1

D2(xK)

∣∣∣∣+
∣∣∣∣ 1
D2(xK)

∣∣∣∣+ |ζK |

≤
∥∥∥∥L[1/D2] − 1

D2

∥∥∥∥
L∞(K)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(K)

+ |ζK | .

The first term on the right hand side of Eq. (59) can be bounded as follows (see Waldron [30],
Theorem 3.1)∥∥∥∥L[1/D2] − 1

D2

∥∥∥∥
L∞(K)

≤ 1
2R2

K,min

∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(K)

, (60)

where RK,min is the min-containment radius of K,∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(K)

≡
∥∥∥∥ ∣∣∣∣ ∂2

∂u2

(
1

D2

)∣∣∣∣ ∥∥∥∥
L∞(K)

,

and where∣∣∣∣ ∂2

∂u2

(
1

D2

)∣∣∣∣ (x) ≡ sup
u1,u2∈Rd

∥ui∥≤1

∣∣∣∣ ∂

∂u1

∂

∂u2

(
1

D2(x)

)∣∣∣∣ .
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We may now substitute Eq. (60) into Eq. (59) in order to obtain

1
∆(K)2 ≤ 1

2R2
K,min

∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(K)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(K)

+ |ζK | . (61)

Evidently, we can immediately generalize this result to the entire mesh

max
K

(
1

∆(K)2

)
≤ 1

2 max
K

(RK,min)2
∥∥∥∥ 1

D2

∥∥∥∥
2,L∞(Ω)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(Ω)

+ max
K

|ζK | . (62)

Interestingly enough, because the vertices of our mesh are an (ε, η)-net, we also have that

max
K

(
1

∆(K)2

)
≤ 1

η2 . (63)

We now return our attention to Eq. (58). Upon substituting Eqs. (62) and (63) into Eq. (58),
one obtains

(ΨT (∇v))2 ≤ min
[

1
2 max

K
(RK,min)2

∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(Ω)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(Ω)

+ max
K

|ζK | ,
1
η2

]
(64)

×
∑

K∈T

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 ∥∇v∥2
L∞(Ω) .

Finally, on setting

C3 ≡

√√√√min
[

1
2 max

K
(RK,min)2

∥∥∥∥ 1
D2

∥∥∥∥
2,L∞(Ω)

+
∥∥∥∥ 1

D2

∥∥∥∥
L∞(Ω)

+ max
K

|ζK | ,
1
η2

]
, (65)

Θ ≡
∑

K∈T

d+1∑
i=1

i−1∑
j=1

(pK,ij · pK,ij) |K|

 , (66)

in Eq. (64) and taking the square root of both sides, one obtains the desired result. ◀

A.3 Proof of Theorem 13
Proof. We start by employing the Triangle inequality as follows∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)
h

∥∥∥∥
L∞(K)

=
∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)∗

+
(

∂v

∂xi

)∗

−
(

∂v

∂xi

)
h

∥∥∥∥
L∞(K)

(67)

≤
∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)∗∥∥∥∥
L∞(K)

+
∥∥∥∥( ∂v

∂xi

)∗

−
(

∂v

∂xi

)
h

∥∥∥∥
L∞(K)

.

Here, the quantity(
∂v

∂xi

)∗

is the ‘best approximation’ of the gradient, (see [29, chapter 10] for details). Note that
(

∂v
∂xi

)∗

and
(

∂v
∂xi

)
h

reside in the same piecewise polynomial space, and that
(

∂v
∂xi

)∗
minimizes the

error in the infinity norm.
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In accordance with classical interpolation theory, see for example [29, Theorem 15.1],
or [14, pg. 47], the following inequality holds∥∥∥∥( ∂v

∂xi

)∗

−
(

∂v

∂xi

)
h

∥∥∥∥
L∞(K)

≤ Λ
∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)∗∥∥∥∥
L∞(K)

, (68)

where

Λ ≡ max
ξ

Np∑
m=1

|Lm(ξ)|, (69)

is the well-known Lebesgue constant. Upon substituting Eq. (68) into Eq. (67), we obtain∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)
h

∥∥∥∥
L∞(K)

≤ (1 + Λ)
∥∥∥∥ ∂v

∂xi
−
(

∂v

∂xi

)∗∥∥∥∥
L∞(K)

. (70)

Next, summing Eq. (70) over the number of dimensions d yields

∥∇v − (∇v)h∥L∞(K) ≤ (1 + Λ) ∥∇v − (∇v)∗∥L∞(K) . (71)

Evidently

∥∇v − (∇v)h∥L∞(Ω) ≤ (1 + Λ) ∥∇v − (∇v)∗∥L∞(Ω) . (72)

Now, we can replace ∇v with (∇v − (∇v)h) in Eq. (25) from Lemma 8, as follows

ΨT (∇v − (∇v)h) ≤ C3
√

Θ ∥∇v − (∇v)h∥L∞(Ω) (73)

Upon substituting Eq. (72) into the right hand side of Eq. (73), we obtain the desired
result. ◀
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