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Abstract. In this paper, we develop a novel model of opinion dynam-
ics that takes into account the variability of self-confidence. This agent-
based model aims at combining both opinion and self-confidence, two no-
tions often assimilated in many modeling works, although well distinct
in practice. We analyze our model under two types of opinion space,
namely a standard interval and a circular structure under which the
system presents some intriguing specificity. We give some insights con-
cerning the global equilibria of the co-evolving dynamics, and also high-
light some salient features of the global system’s trajectory. Finally, we
conduct several numerical simulations to support the analytical results.
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1 introduction

1.1 Research context and motivation

In many opinion dynamics models, the variable of opinion is taken as a simple
scalar value. But since in general, opinion is a complex and fuzzy system of
beliefs and reasoning, it can hardly be projected into a simple interval. Then,
one shall ask whether the scalar value presented as an "opinion" in the literature
is finally nothing else but a confidence degree (with respect to an underlying
social norm or behaviour not explicitly defined). To this title, some authors [1,2]
propose models where agents hold an opinion on each topic, and the different
opinions of the same agent can be structured and influence each other. Hence, the
two concepts of opinion and confidence are confusedly assimilated. The current
work aims at developing a framework where the distinction is clearly done: each
agent is endowed with an opinion value (which can be in the interval or in a
cyclic structure), plus a scalar value comprised between 0 and 1, measuring how
confident the agent is in his own opinion.
To define the opinion dynamics (OD) structure, we rely on the well-established
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bounded-confidence (BC) interaction, also known under the name of Hegselman-
Krause model (HK model for short). This socially-inspired mechanism aims at
encapsulating both homophily and selective exposure, two natural psycho-social
trends one may follow to reduce cognitive dissonance. Since the pioneering works
of Rainer and Krause [3], the BC model has been the scope of intensive study (see
e.g. [4,5] and references therein), even until very recently [6], and by researchers
coming from various horizons. The interested reader can easily refer to the recent
survey of C. Bernardo and her coauthors [7].
Moreover, we also analyse the coupling of opinion and self-confidence in the case
where the opinion space is toric. This modelling has the main advantages to
preserve a total symmetry between all the opinions, and to prevent the border-
effect.

1.2 Related literature

Circular opinion has already been investigated in the past. In [8] and [9], the
authors opt for a statistical-physics approach and combine attractive and re-
pelling mechanism. In [10], the problem of convergence time of the HK model
on the circle is tackled via rigorous and involved mathematical methods. But
none of these already existing works encompass in their frame a self-confidence
dynamics. This concept of self-confidence is indeed very close to social power or
influence, notions which have been already investigated: authors of [11] indeed
consider a dynamical social power furnished to each agent, combined with stub-
bornness. Nevertheless, they rather focus on network evolution and convergence.
Authors of [12] pursue in the same vein but here consider a multiplicity of topics.
Some authors indeed mention self-confidence and make a clear distinction with
the opinion variables, but the self-confidence is taken constant along time [13].
In his notes of 2016 [14], C. Wang considers dynamical self-confidence, but is
designed as an autonomous process, which does not depend of the opinion vari-
ables. Finally, to the best of our knowledge, the explicit combination of opinion
and self-confidence with an emphasis on the interaction of the two variables still
has yet to be explored.

1.3 Paper scope and organisation

The goal of this study is to investigate the impact of the self-confidence on the
opinion when the former is driven by a dynamics induced by a network effect,
while the latter is driven by a BC dynamics. In the case we are interested in, we
assume that two agents with a low self-confidence are close one to each other,
whatever their respective opinion. At the extreme case, two agents with zero self-
confidence coincide, whatever their opinion. It is indeed this assumption which
acknowledges the very nature of self-confidence, and then gives rise to the (semi-
)ball structure. If we do not make this assumption, then we simply obtain as
phase space a rectangle instead of a semi-ball, and a cylinder’s border instead
of a ball. In Section 2, we formally introduce the multi-agent model coupling
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opinion with self-confidence. Then, the following section 3 is devoted to its anal-
ysis, including an additional variant: the opinion space taken as a toric structure
(namely the circle C). Finally, the last section 4 before concluding consists of a
substantial amount of numerical experiments illustrating the analytical investi-
gations and pave the way for future research.
Notations. For any K ≥ 1, we write [K] to shorten {1, 2, ...,K}. We write 1U
for the indicator map of event U , and for any positive scalar h > 0 we write
∆hx(t) := x(t + h) − x(t) the difference operator. We denote the unitary circle
as C := {(x, y) ∈ R2 : ||(x, y)||2 = 1}, the ball B := {(x, y) : ||(x, y)||2 ≤ 1}, and
the semi-ball B+ := B ∩

(
R×R+

)
. Finally, |P | stands for the cardinality of any

set P , ⊥⊥ stands for the symbol of independence between two random variables,
and λ(.) is the Lebesgue measure.

2 the model

We define a population of agents of size K ∈ N∗, where each agent is indexed
by an integer k ∈ [K]. The time step is fixed and small: h ≪ 1. The time axis
is taken discrete along the set Nh, and at each time point t ∈ Nh, for each
agent k ∈ [K] is assigned an opinion value θk(t). In the first part of the analysis
3.1, we take the simple interval [0, π]. Subsequently, we extend the model to the
circle C := [0, 2π]

/
0∼2π

. In this latter case, the curbless structure of C gives
birth to interesting changes in the model’s behaviour. In addition to his opinion
θk(t), agent k is also endowed with a scalar value, standing for his self-confidence
degree in his own opinion. We note it ρk(t) ∈ [0, 1]. Hence, one can represent the
global state of agent k in polar coordinates: uk(t) := (θk(t), ρk(t)) ∈ B+ in the
case of the semi-ball (resp. B for the full circle case studied in subsection 3.2). As
mentioned in the last subsection of the introduction 1.3, it is precisely the (semi-
)ball structure which makes the zero state the only equidistant point of the arc of
maximal confidence. Mathematically, one can see the semi-ball (respectively the
ball) as the simple rectangle [0, π]× [0, 1] (respectively C× [0, 1]) where all the
points of the horizontal line (respectively circle-shaped section) {(θ, ρ) : ρ = 0}
has merged to form one single point.
Since the self-confidence (written as a radius) and the opinion (written as an
angle) co-evolve, the confidence profile (ρj(t))j appears in the evolution equation
of the opinion θk(t) for agent k and especially his own confidence ρk(t). First,
define the radius map R and the directed influence network represented by the
matrix-valued map ϕ, two structural elements in the dynamics:

R : ρ ∈ [0, 1] 7→ R(ρ) := c0π(1− ρ), c0 ∈ [0, 1], and

ϕ : (B+)
K 7→ {0, 1}K

2

as ϕkj(u) := 1{
|θk−θj |<R(ρk)

},
∀u ∈ (B+)

K . The scalar c0 is a parameter defined beforehand. Hence, if ϕkj =
1, then k is influenced by j. Notice that the map R decays according to the
confidence variable, and delimits the zone of influence. Let us also define the
neighbour set. For a given configuration u ∈ (B+)

K , denote by Nk(u) the set of
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neighbours of agent k ∈ [K]: Nk(u) :=
{
j ∈ [K] : |θj − θk| < R(ρk)

}
. When

it is clear from the context, we write Nk(t) instead of Nk(u(t)) for brevity, and
respectively ϕkj(t) instead of ϕkj(u(t)). Thus, we are now able to state the global
(θ, ρ)-dynamics: 

∆hθk(t) =
h

K

∑
j

ρj(1− ρk)ϕkj(t)(θj − θk),

∆hρk(t) = h

(
|Nk(t)|

K
− ρk(t)

)
.

(1)

The first equation corresponds to a classical BC dynamics with ρj(1 − ρk) as
weighting coefficients. This refinement seems indeed intuitive: the more agent j
is self-confident, the more persuasive is she. On the contrary, the more agent k
is self-confident, the less steerable is she. This is why this coefficient grows with
ρj and decays with ρk.
The second equation of the dynamics relies on a standard herding behaviour
known as network effect : each agents gains in self-confidence as long as his neigh-
bour size increases. His ideological proximity with alter egos tends to reinforce
him in his own opinion. By contrast, an isolated agent has low self-confidence,
and remains able to be influenced. In accordance with the network-effect formal-
ism [15,16], the self-confidence may be interpreted as the utility to be connected
to others.

x

y

•

( 4π
9
, 0.9)

••
(π, 1) (0, 1)

•
( 16π

18
, 0.05)

•
( π
18
, 0.1)

Fig. 1: A simple scheme to explain dynamics (1) with 5 agents and their respec-
tive radius of influence.

Figure 1 illustrates a situation with K = 5 agents, represented in coloured
dots in B+ whose associated tuples are their respective polar coordinates. The
red and brown point respectively represent a left radical and right radical, both
with maximal confidence. The blue point correspond to a quasi-centrist agent
with high (but not maximal) confidence. On the contrary, the orange and green
agents are rather extreme, but with a low self-confidence. This explains why their
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respective influence zone is larger than the blue one: it is the zone delimited by
two dashed segments of the same colour. We thus can see that the blue agent
both influences the green and the orange one, but the reciprocal is false. Finally,
the maximally-confident agents (the red and brown) cannot be influenced since
R(1) = 0.
The choice of the initial agents states impacts the system’s dynamics. In the rest
of the analysis, we consider an independent and identically distributed (i.i.d)
sequence of tuples: (θk(0), ρk(0))k∈[K] ∼i.i.d θin ⊗ ρin, where the angular and
radius distribution are also independent: θk(0) ⊥⊥ ρk(0) for all k ∈ [K].

Remark 1. Note that if we simply take (θk, ρk)k ∼i.i.d Unif[0, π]⊗Unif[0, 1], then
a concentration on the center occurs, as illustrated figure 3a. In order to construct
a sample of K i.i.d agents uniformly distributed on the semi-ball B+, one shall
use the sample (θk,

√
ρk)k , where (θk, ρk)k ∼i.i.d Unif⊗2[0, π]×[0, 1]. For a proof,

see the appendix.

3 Analysis

3.1 General analysis

First, we characterise the rest points of dynamics (1). Relying on the analysis
of the classical BC dynamics, which is very similar to the first line of (1), one
can assume that clusters emerge in finite time, i.e. there exists a time Tclust > 0
such that for any t > Tclust, there exists an integer P ≥ 1 (the actual number of
clusters) and a map (assigning to each agent the cluster she belongs to) C : [K] 7→
[P ] such that C(k) = C(j) ⇐⇒ |θk(t) − θj(t)| < min

(
(R(ρj(t)), R(ρk(t))

)
. In

such a clustered configuration, the influence network map ϕ is symmetric and
block-wise diagonal, whose blocks are complete graphs, and the size of the blocks
correspond to the size of the clusters. We then have two cases according to the
number of clusters.

– one single cluster: P = 1. In that case, we have |Nk(Tclust)| = K ∀k, implying
that

∆hρk(t) = h(1− ρk(t)) for t ≥ Tclust =⇒ ρk(t) ≈ (1− Cke
−t).

However, when ρk(t) becomes almost 1, the graph becomes disconnected
leading to ρk decreasing again. This in turn, makes the graph reconnected
and so forth. Thus, we expect a slower convergence speed to exact consensus,
i.e., lim

t→+∞
(θj − θk)(t) = 0 for all k, j ∈ [K] asymptotically.

– several clusters: in the case where P ≥ 2, then we have |Nk(t)|
K < 1, and due

to dynamics (1) we have

ρk(t) −→
t−→+∞

ρ∗k :=
|Nk(Tclust)|

K
, (2)
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where the convergence occurs exponentially fast from the time instant Tclust.
Note that in the case where the clusters are of equal size, we have ρ∗k = 1

P
for all k ∈ [K]. After clustering and quasi convergence of ρk(t), we then get

∆hθk(t) ≈
(ρ∗j )(1− ρ∗k)

K

∑
j∈C(k)

(θj − θk)(t),

=⇒ ∀j ∈ C(k), (θj − θk)(t) −→
t→+∞

0.

The last convergence is due to the fact that the interaction graph of the
variables (θi, θj)i,j∈C(k) is complete.

3.2 Circle case

We now consider the full circle (FC) case, that is θk(t) ∈ C. Choosing the circle
C presents two main modelling advantages: first, there is neither extreme opin-
ions nor central ones, whose connotation is not neutral. More precisely, extreme
opinions can be implicitly considered as negative, while on the contrary central
or moderate opinions can be considered as positive. A toric modeling of the opin-
ion space is then an interesting way to evacuate this kind of preconceptions. In
the FC case, all opinions play a symmetric role, and there is no "natural con-
vergence point" supposed to be in the center. There are indeed many situations
where there is no extreme viewpoints, despite an area for disagreement. Second,
in many models where the opinion space is an interval, the consensus is reached
in the center, which clearly resembles to a modelling artefact of type edge effect.
Over the circle, this effect does not occur. This topological modification of the
opinion space requires to redefine the notion of subtraction and distance, which
is done in the next paragraph.
Giving two angles θk and θj , there are always two paths to reach θj from θk:
the first path d0 crosses 0, while the other d∅ does not. The latter is of length
d∅ = |θk − θj |, while the former is of length d0 = 2π − |θk − θj |. We can now
define the proper subtraction of angles:

(θj −C θk) :=

{
sign(θk − θj)d0 if d0 < π, and
(θj − θk) otherwise.

(3)

More simply, we write dC(θk, θj) for the distance in the circle: dC(θk, θj) :=
min(d0, d∅).

In the FC case, all subtraction of angles are made according to the preceding
formula (3). Specifically, we then have ϕkj = 1{dC(θk,θj(t))<R(ρk)} and Nk = {j :
dC(θk, θj) < R(ρk)}.

Although the full-circle case displays a similar behaviour to the semi-circle
case, there is indeed one specificity which deserves to be revealed: a temporal
phase separation between the two variables θ and ρ. Taking (θin, ρin) = Unif(B),
there exists a time instant Tps such that

∆hθk(t) = 0,∀t ≤ Tps, with Tps = inf{t ≥ 0 : ∆hρk(t) = 0},
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θk
/

/
θi

θj
/

d∅(θk, θj)

d0(θk, θj)

d0(θk, θi)

d0(θk, θi)

Fig. 2: A simple scheme to explain the computation of angle subtraction and
distance in the circle. Here, we have three angles θk = π

3 , θj = 3π
4 and θi =

5π
3 .

The arc (θj −C θk) is positive, flowing in the trigonometric direction. On the
contrary, the arc (θi−C θk) is negative: in order to reach θi starting from θk, one
shall run along the circle toward the anti-trigonometric direction.

for all k ∈ [K]. To see this, let us compute the opinion dynamics of a single
agent from the initial configuration (θin, ρin) ∈ Unif(C) ⊗ [0, 1]. Then, we have
the following convergence as the number of agents tends to be infinite:

lim
K→+∞

(
θj , ρj

)
j∈[K]

=
dθdρ

2π
in law, (4)

by Glivencko-Cantelli theorem. Next, for k ∈ [K] and (θk(0), ρk(0)) being fixed,
we can write

1

h
∆hθk(t) =

1

K

∑
j

ρj(1− ρk)1{dC<R(ρk)}(θj −C θk)(t) ≈

(1− ρk)

∫ ρ=1

ρ=0

ρ

∫
θ∈C

1{dC(θk,θ)<R(ρk)}(θ −C θk)
dθdρ

2π
,

where the second equation relies on the asymptotics (4) mentioned above, with
in addition K to be large. Furthermore, we have for any pair (θk, ρk)∫

θ∈C
1{dC(θ,θk)<R(ρk)}(θ −C θk)dθ =

∫ θk+R(ρk)

θk−R(ρk)

(θ − θk)dθ = 0.

We can then conclude that for any h > 0 and any initial state (θk(0), ρk(0)), we
have 1

h∆hθk(t) ≡ 0, provided the entrance law for θ is uniform over the circle.
Nevertheless, one has to keep in mind that the uniform density Unif(C) is an
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unstable equilibrium measure, this is why in all numerical experiments presented
in the next section, since K is always large but finite, fluctuations arise and the
angular symmetry is broken.
As we have shown that the opinion remains constant at least during the first
phase of the process, it is then possible to estimate the pseudo radius equilibrium
(PRE) ρ⋆, which is clearly different of the true limiting value ρ∗ defined in equa-
tion (2) above. Concretely, ρ⋆ is the limiting value if we consider a continuum
of agents written as a density map instead of a large but finite number. This
value can be obtained by a repeated use of equation (4):

|Nk(t)|
K

=
1

K

∑
j

ϕkj =

∫
θ∈C

1{dC(θ,θk)<R(ρk(t))}
dθ

2π
=

∫ θk+R(ρk)

θk−R(ρk)

dθ

2π
=

R(ρk)

π
.

Thus, by definition of R, R(ρ) = c0π(1 − ρ) for c0 > 0, then the PRE for any
agent k ∈ [K] satisfies the following:

1

h
∆hρ

⋆
k = 0 ⇐⇒ Nk

K
− ρ⋆k = 0 ⇐⇒ c0(1− ρ⋆k ) = ρ⋆k ⇐⇒ ρ⋆k =

c0
1 + c0

.

This convergence result is finely corroborated by the numerical experiments pre-
sented in the next section.
To avoid the phase separation described above, one shall consider an alternative
initial distribution for the angular variables:

θk(0) ∼i.i.d fn : x ∈ [0, 2π] 7→ 1 + cos(nx)

2π
, (5)

for some n ≥ 0. It is easy to show that fn is a density map supported on
[0, 2π]. Note that for n = 0 and n = +∞, we retrieve the uniform law. We have
conducted an experiment with such a non uniform law, and the result is given
figure 4b.

4 Numerical Simulations

In this section, we present a sample of the results obtained from numerical ex-
periments, conducted with various parameters: the first part 4.1 deals with the
semi-ball case, whereas the second part 4.1 shows the system’s behaviour when
the opinion is circular-valued. We systematically take as population size K = 250
and step size h = 0.01. On the one hand, we took c0 = 1 in the definition of
the influence radius map R for the semi-circle case, while on the other hand, we
took c0 = 1

2 for the FC case. We represent the initial configurations with red
stars, and the final ones with blue stars. In the three first cases, it is interesting
to notice that all the agents seem to slide across an oval-shaped curve.

4.1 The semi-circle case

In the next two figures, the opinion variables evolve in the interval: θk(t) ∈ [0, π]
for all k ∈ [K], and at all time instant t ≥ 0. The initial angular distribution
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is the same in the two cases: θin = Unif[0, π], but two types of entrance laws
for the self-confidence distribution ρin are tested: in the first case (figure 3a), we
took ρk(0) ∼i.i.d Unif[0, 1]. We can therefore observe a concentration on the the
center at initial time. In the second case (figure 3b), we use the spatially uniform
distribution (θk, ρk) ∼i.i.d Unif(B+). In both cases, a quasi-consensus seems to
occur around the value (θ∗, ρ∗) ≈ (π2 , 1). At equilibrium, all the agents get a
maximum confidence because consensus is reached, as depicted in the preceding
section. See also that in this case, the convergence is slow due to the exponentially
decaying terms (1 − ρk(t)) in the angular dynamics. Since the entrance law θin
is uniform, the limiting opinion θ∗ is unsurprisingly around the center of the
interval [0, π], whence the interest for the full-circle case.

(a) (b)

Fig. 3: Comparison of different entrance laws. On the left (a), we took as entrance
law uniform in the opinion, that is θin = Unif[0, π], but with concentration on
the center by choosing ρin = Unif[0, 1]. And on the right (b), we took as entrance
law the uniform spatial measure: (θin, ρin) = Unif(B+).

4.2 The full circle case

The last two figures display the coupled dynamics when the opinion space is
circular: θk(t) ∈ C for all k ∈ [K]. In both cases, we took ρk(0) =

√
rk , where

(rk)k is an i.i.d sample of random variables uniform over [0, 1]. But in the first
case (figure 4a), we took θin = Unif(C). The temporal phase separation is then
clearly visible: in the first instants of the process, all agents describe a quasi-
exact radial trajectory. Subsequently, as they get closer to the circle of radius
ρ⋆ = 1

3 , the radial dynamics decays and the ’finite size’ effect prevails. Finally,
all the agents converge with a self-confidence ρ∗ = 1

P , here P = 2.
In the last picture 4b, we have chosen a non-uniform angular entrance law:
θin ∼ f4 (see equation (5)). The temporal phase separation does not occur, which
proves that this phenomenon is very dependent of the initial configuration.
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(a) (b)

Fig. 4: Comparison of different entrance laws over the full circle. On the left (a),
the entrance law (θin, ρin) is uniform over the whole ball. We clearly observe
two phases of the process: during the first phase is only the radii evolve. Once
the agents’ self-confidence get closer to the PRE value, here ρ⋆ = 1

3 , the radius
dynamics decelerates and the angular dynamics expands, namely due to fluctua-
tions, also called ’finite-type’ effect.
And on the right (b), we took as entrance law (θin, ρin) = f4⊗Unif[0, 1] (see
equation (5)). By contrast with the preceding experiment with uniform angular
entrance law, both the angles and the radii evolve from the initial time of the
process.
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5 Conclusion

In this paper, we developed and analyzed a tractable multi-agent system inter-
twining both the opinion and the self-confidence of each agent. We saw that
injecting the self-confidence within the classical BC scheme is very intuitive,
but the converse is not as straightforward. In the design of the self-confidence
dynamics, we opted for a network effect, relating self-confidence and herding
behaviour, but this choice deserves to be discussed and refined. More generally,
the interaction between the key features of the classical BC model – namely the
influence radius map R and the self-confidence dynamics – shall be explored in
a more general framework. This constitutes an interesting avenue of research for
the future.

Appendix. We show that when we have (θ, ρ) ∼ Unif⊗2[0, 2π] × [0, 1], then
the couple (θ,

√
ρ) is distributed according to a Lebesgue restricted to the ball.

Compute the density of the random variable √
ρ: for any x ∈ [0, 1],

P(
√
ρ < x) = P(ρ < x2) = x2 =⇒ √

ρ ∼
(
2x

)
x∈[0,1]

.

Now, for any two angles θ1 < θ2 and any positive value ρ0 ∈]0, 1[, define the
parcel P in polar coordinates as P := {(θ, ρ) ∈ B : θ ∈ [θ1, θ2] and ρ > ρ0}. It is
sufficient to show that P

(
(θ,

√
ρ) ∈ P

)
= λ(P)

λ(B) =
(θ2−θ1)(1−ρ2

0)
2π :

P ((θ,
√
ρ) ∈ P) =

∫ u=θ2

u=θ1

∫ x=1

x=ρ0

2xdx
du

2π
=

(θ2 − θ1)

2π
(1− ρ20),

which terminates the proof.
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