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Demons registration for 2D empirical wavelet transforms

Charles-Gérard Lucas∗ Jérôme Gilles∗

Abstract

The empirical wavelet transform is a fully adaptive time-scale representation that has been
widely used in the last decade. Inspired by the empirical mode decomposition, it consists of filter
banks based on harmonic mode supports. Recently, it has been generalized to build the filter
banks from any generating function using mappings. In practice, the harmonic mode supports
can have a low-constrained shape in 2D, leading to numerical difficulties to estimate mappings
adapted to the construction of empirical wavelet filters. This work aims to propose an efficient
numerical scheme to compute empirical wavelet coefficients using the demons registration algo-
rithm. Results show that the proposed approach is robust, accurate, and continuous wavelet
filters permitting reconstruction with a low signal-to-noise ratio. An application for texture
segmentation of scanning tunneling microscope images is also presented.

Keywords: Empirical wavelet, adaptive representation, demons algorithm, texture segmentation.

1 Introduction
The empirical wavelet transform is a fully adaptive time-scale representation, introduced in [6],
based on data-driven filter banks. Unlike the traditional wavelet transform, the wavelet filters are
not designed on the basis of prescribed scales independent of the data under study, but on the
basis of supports that contain the underlying harmonic modes. This approach is inspired by the
empirical mode decomposition [14] but is based on solid theoretical foundations that the latter
lacks. Due to its robust performance in decomposing images, it has led to many applications such as
glaucoma detection [20, 22], hyperspectral image classification [21], cancer histopathological image
classification [4], medical image fusion [24, 23] and texture segmentation [16]. Notably, it has been
shown to outperform traditional wavelet transforms in extracting appropriate texture features from
images [15, 17].

The last decade has seen an intensive development of the two steps involved in the 2D empirical
wavelet transform: (i) the extraction of regions containing the harmonic modes and (ii) the design
of filters mainly supported by these regions. The extraction of harmonic modes can be performed by
scale-space representations [8], and several methods of separation of the harmonic modes in possibly
low-constrained shaped supports have been proposed, such as the Tensor [6], Ridgelet, Curvelet [17],
Watershed [10] and Voronoi [7] methods. However, the design of filter banks has mainly long
been limited to a specific generating function based on the Littlewood–Paley formulation. This
formulation relies on a separable definition or the distance to the boundaries of the supports, which
limits its extension to other generating functions.

Recently, a general framework has been proposed to consider classic generating functions [19].
Deformations of a homogeneous or separable wavelet kernel are carried out by mappings between
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the data’s Fourier supports and the generating function’s Fourier support. In practice, this approach
suffers from the difficulty of estimating the required mappings with constraints of invertibility, con-
tinuity, and differentiability. Such an estimation can be performed by the well-known demons algo-
rithm [26], as first proposed by [19], or its variants [3, 27]. These fast algorithms have been widely
used and compared for medical image registration [28, 25], where they have shown to provide ro-
bust and accurate estimates. However, an in-depth investigation of their use for empirical wavelet
transform remains a key challenge. This is the main objective addressed in this work.

This manuscript is organized as follows. In Section 3, we recall the framework of empirical wavelet
transform based on mappings and present different demons algorithms for mapping estimation. In
particular, as a first contribution, we build specific band-pass wavelet filters from homogeneous
or separable wavelet kernels, which is suitable for an empirical analysis of the wavelet transform.
Section 4 presents the main contribution of this manuscript: a comparative analysis of various
demons algorithms for designing continuous wavelet filters. The accuracy of the estimated filters and
the effect of the estimation process on wavelet reconstruction is thoroughly analyzed. Additionally,
to demonstrate the practical utility of the proposed tools, we include an illustration of texture
segmentation for scanning tunneling microscope images. Section 4 provides a detailed discussion
of the findings. The MATLAB toolbox for the empirical wavelet transform is freely available at
https://github.com/jegilles/Empirical-Wavelets.

2 Notations
We recall that an invertible function γ is called a homeomorphism if it is continuous of inverse
continuous and a diffeomorphism if it is infinitely differentiable of inverse infinitely differentiable.
We consider that the space of square integrable functions L2(R2) is endowed with the usual inner
product

⟨f, g⟩ =
∫

R2

f(x)g(x)dx.

The Fourier transform f̂ of a function f ∈ L2(R2) and its inverse are given by, respectively,

f̂(ξ) = F(f)(ξ) =
∫

R2

f(x)e−2πi(ξ·x)dx,

f(x) = F−1(f̂)(x) =

∫
R2

f̂(ξ)e2πi(ξ·x)dξ,

where · stands for the dot product in R2.

3 Empirical wavelet transform

3.1 Empirical wavelet systems
The construction of empirical wavelets relies on the partitioning of the Fourier domain Ω. Technically,
we consider a family of disjoint open sets {Ωn}n∈Υ, with Υ ⊂ Z, of closures Ωn covering the Fourier
domain, i.e., Ω =

⋃
n∈Υ Ωn. In this work, we focus on real-valued images, which implies that

the Fourier domain is symmetric, leading us to consider a partition {Ωn}n∈Υ that is symmetric,
i.e., such that Ω−n = {−ξ | ξ ∈ Ωn}. To obtain such a partition, the modes of the Fourier
spectrum are obtained by scale-space representation [8] , and the Fourier domain is partitioned
by the Watershed [17] or Voronoi [7] methods. Figure 1 shows an example of an image and the
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Figure 1: Fourier partitioning. Toy image of size 256 × 256 along with the (middle) Watershed
and (right) Voronoi partitions (overlapping in red) of the logarithm of their Fourier spectra.

Watershed and Voronoi partitions of the logarithm of its Fourier spectrum using a scale-space step-
size parameter set to s0 = 0.8.

Symmetric empirical wavelet systems are built as filters mostly supported on the sets Ωn ∪Ω−n

for n ∈ Υ+ = {n ∈ Υ | n ≥ 0}. The authors of [19]have proposed building filters χn from a
wavelet kernel ψ using mappings γn on R2. Let ψ be such that its Fourier transform ψ̂ is localized
in frequency and compactly supported (or rapidly decaying) by a connected open subset Λ. Let
{γn}n∈Υ be mappings on R2 such that Λ = γn(Ωn) if Ωn is bounded and Λ ⊊ γn(Ωn) otherwise.
Empirical wavelet systems ψn and their symmetric counterparts χn are then defined as follows.

Symmetric empirical wavelet systems are built as filters mostly supported on the sets Ωn ∪Ω−n

for n ∈ Υ+ = {n ∈ Υ | n ≥ 0} the subset of positive elements of Υ. In [19], it has been proposed
to build filters χn from a wavelet kernel ψ using mappings γn on R2. Let ψ such that its Fourier
trasnform ψ̂ is localized in frequency and compactly (or rapidly decaying) supported by a connected
open subset Λ. Let γn be mappings on R2 such that Λ = γn(Ωn) if Ωn is bounded and Λ ⊊ γn(Ωn)
otherwise. Empirical wavelet systems ψn and their symmetric counterparts χn are then defined as
follows.

Definition 1 (Normalized empirical wavelet system). Assume that the mappings γn are diffeomor-
phisms. The symmetric empirical wavelet system {χn}n∈Υ corresponding to the partition {Ωn}n∈Υ

is defined by, for all ξ ∈ R2,

χ̂0(ξ) = ψ̂0(ξ) and ∀n ∈ Υ \ {0}, χ̂n(ξ) =
1√
2

(
ψ̂n(ξ) + ψ̂−n(ξ)

)
,

where, for every n ∈ Υ,

ψ̂n(ξ) =
1√
an(ξ)

ψ̂ ◦ γn(ξ), with an(ξ) =
1

|det Jγn
(ξ)|

,

with γ−n : ξ 7→ −γn(−ξ) and Jγn
being the Jacobian of the mapping γn.

The symmetry of the filter χ̂n has to be understood with respect to the Fourier support n, i.e.
χ̂n = χ̂−n. The normalization coefficient an(ξ) ensures that∫

Ωn

|χ̂n(ξ)|2dξ =
∫
Λ

|ψ̂(ξ)|2dξ, (1)
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in most cases (see [19] for more details). If γn is not a diffeomorphism, the substitution theorem
ensuring the energy conservation (1) is not valid despite the use of the normalization coefficient an(ξ).
However, in practice, estimating diffeomorphisms is a difficult and computationally expensive task.
Since an intervertible continuous function is a homeopmorphism if and only if it is an open map,
i.e., a map for which the preimage of an open set is an open set, the existence of homeomorphisms
is a milder assumption and their estimation is less difficult. We thus propose an unnormalized
definition for the case when γn is only a homeomorphism by removing the Jacobian determinant
from Definition 1, as follows.

Definition 2 (Unnormalized empirical wavelet system). Assume that the mapping γn is a home-
omorphism. The unnormalized symmetric empirical wavelet system {χn}n∈Υ corresponding to the
partition {Ωn}n∈Υ is defined by, for all ξ ∈ R2,

χ̂0(ξ) = ψ̂0(ξ) and ∀n ∈ Υ \ {0}, χ̂n(ξ) = ψ̂n(ξ) + ψ̂−n(ξ),

where ψ̂n = ψ̂ ◦ γn and γ−n : ξ 7→ −γn(−ξ).

3.2 Empirical Wavelet Transform
The empirical wavelet transform consists of a filtering process from a normalized or unnormalized
empirical wavelet system, as follows.

Definition 3 (Empirical wavelet transform). The symmetric empirical wavelet transform is defined
by, for all n ∈ Υ,

Efχ(·, n) = F−1
(
f̂ .χ̂n

)
,

where F denotes the inverse Fourier transform.

Figure 2 shows an example of unnormalized wavelet filter’s Fourier transforms χ̂n and the re-
sulting wavelet coefficients Efχ(·, n) for the toy image in Figure 1 (left) and the Watershed partition
of its Fourier spectrum given in Figure 1 (middle).

Empirical wavelet filter bank
 

Empirical wavelet coefficients
 

Figure 2: Empirical wavelet filtering. Example of unnormalized symmetric empirical wavelet
filters χn in the Fourier domain (left) and resulting wavelet coefficients Efχ(·, n) (right), for n =
1, . . . , 10, associated with the toy image using the Watershed partitioning.

The reconstruction of a real-valued image f from its symmetric empirical wavelet transform Efχ
is guaranteed by Theorem 4.3 in [19], recalled hereafter.
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Theorem 1 (Reconstruction). Let Υ+ = {n ∈ Υ : n ≥ 0}. Let assume that, for a.e. ξ ∈ R2,

0 <
∑

n∈Υ+

∣∣∣ψ̂n(ξ)
∣∣∣2 <∞ and

∑
n∈Υ+\{0}

∣∣∣ψ̂n(ξ)
∣∣∣ ∣∣∣ψ̂−n(ξ)

∣∣∣ <∞. Then

f =
∑

n∈Υ+

Efχ(·, n) ⋆ F−1

 χ̂n∑
m∈Υ+

|χ̂m|2

 , (2)

where ⋆ denotes the convolution of functions and F−1 denotes the inverse Fourier transform.

3.3 Band-pass empirical wavelets
For the study of the numerical behavior of the empirical wavelet transform, it is more convenient
to consider band-pass filters. Therefore, we propose in this section defining homogeneous or sep-
arable 2D wavelet band-pass filters. The proposed definition extends the band-pass wavelet filters
introduced in [17, 6], which are based on the semi-Euclidean distance to support boundaries, thus
corresponding to a discrete mapping. In 1D, the continuous band-pass wavelet kernel can be defined
as follows.

Definition 4 (1D band-pass wavelet). The 1D band-pass wavelet, mostly supported by the segment
Λ = [− 1

2 ,
1
2 ], is defined by, for every ξ ∈ R,

ψ̂1D
τ (ξ) =


1 if |ξ| < 1

2 − τ,

cos
π

2
β

(
τ − 1

2 + |ξ|
2τ

)
if 1

2 − τ ≤ |ξ| ≤
1
2 + τ,

0 otherwise,

where 0 < τ < 1
2 is a transition width and β is a continuous function on [0, 1] such that β(0) = 0,

β(1) = 1 and β(x) + β(1− x) = 1 for every x ∈ [0, 1].

The function β is usually chosen as β(x) = x4(35−84x+70x2−20x3). The 1D band-pass wavelet
can be extended to 2D in a homogeneous or separable way, as proposed in the following definitions.

Definition 5 (Disk band-pass wavelet). The disk band-pass wavelet, mostly supported by the disk
Λ = B(0, 12 ), is defined by, for every ξ ∈ R2,

ψ̂D
τ (ξ) =


1 if ∥ξ∥2 < 1

2 − τ,

cos
π

2
β

(
τ − 1

2 + ∥ξ∥2
2τ

)
if 1

2 − τ ≤ ∥ξ∥2 ≤
1
2 + τ,

0 otherwise,

where 0 < τ < 1
2 is a transition width and β is a continuous function on [0, 1] such that β(0) = 0,

β(1) = 1 and β(x) + β(1− x) = 1 for every x ∈ [0, 1].

Definition 6 (Square band-pass wavelet). The square band-pass wavelet, mostly supported by the
square Λ = [− 1

2 ,
1
2 ]

2, is defined by, for every ξ = (ξ1, ξ2) ∈ R2,

ψ̂S
τ (ξ) = ψ̂1D

τ (ξ1) ψ̂
1D
τ (ξ2),

where 0 < τ < 1
2 is a transition width.
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Figure 3: Band-pass wavelet. Disk (left) and square (right) band-pass wavelet with transition
width τ = 0.2.

Figure 3 show examples of disk and square band-pass wavelet filters.

Theorem 2. Let χD,τ
n = χD

τ ◦ γn and χS,τ
n = χS

τ ◦ γn, the (normalized or unnormalized) symmetric
wavelet systems resulting from the disk and square band-pass wavelets ψ̂D

τ and ψ̂S
τ , respectively,

for every n ∈ Υ. The reconstruction Formula (2) holds for the normalized and unnormalized systems
{χD,τ

n }n∈Υ and {χS,τ
n }n∈Υ.

Proof. Let ψ̂τ be either ψ̂τ = ψ̂D
τ or ψ̂τ = ψ̂S

τ . We set Λτ = B(0, 12 + τ) if ψ̂τ = ψ̂D
τ and Λτ =

[− 1
2 − τ, 12 + τ ]2 if ψ̂τ = ψ̂S

τ . Let ξ ∈ Ωm. Since there exists a finite number of γn such that
γn(ξ) ∈ Λτ , we have∑

n∈Υ+

∣∣∣ψ̂n(ξ)
∣∣∣2 =

∑
n∈Υ+

∣∣∣∣ 1

an(ξ)

∣∣∣∣ ∣∣∣ψ̂τ (γn(ξ))
∣∣∣2 =

∑
n∈Υ+

m

∣∣∣∣ 1

an(ξ)

∣∣∣∣ ∣∣∣ψ̂τ (γn(ξ))
∣∣∣2 < +∞, (3)

where Υ+
m = {n ∈ Υ+ : γn(ξ) ∈ Λτ} and an(ξ) = 1 or an(ξ) = 1/|det Jγn

(ξ)| for the normalized or
unnormalized empirical wavelet system, respectively. Moreover, since ψ̂τ (γm(ξ)) ̸= 0 and an(ξ) > 0

for every n ∈ Υ, we have 0 <
∑

n∈Υ+ |ψ̂n(ξ)|2. Similarly, we can show that
∑

n∈Υ+ |ψ̂n(ξ)ψ̂−n(ξ)| <
+∞. Hence, the reconstruction Formula (2) for {χD,τ

n }n∈Υ and {χS,τ
n }n∈Υ holds by Theorem 1.

3.4 Mapping estimation
In practice, the mappings γn in Definitions 1 and 2 have to be estimated. The Thirion’s demons
algorithm [26] is a mapping estimation scheme inspired by a diffusion process in which the targeted
mapping is represented by a displacement field γ. This method alternates between solving the flow
equations and regularization. To give a theoretical justification for this method, [27] revisited it as
the following optimization problem:

minimize
γ,c∈F(R2)

∥Λ− Ω ◦ c∥22 +
1

σ2
x

∥γ − c∥22 +R(γ), (4)

where Λ and Ω are considered as functions from R2 to R, F(R2) denotes the set of mappings on R2,
c is an intermediate mapping to allow spatial uncertainties, σx is a parameter controlling the spatial
uncertainty on the mappings, and R(γ) is a regularization term.

The additive demons algorithm proposed in [3] consists of estimating the minimum s of Equa-
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tion 4 using an intermediate displacement field u such that c = γ + u and alternate

minimize
u∈F(R2)

∥Λ− Ω ◦ (γ + u)∥22 +
1

σ2
x

∥u∥22 := E(u), (5)

minimize
γ∈F(R2)

1

σ2
x

∥γ − c∥22 +R(γ). (6)

The displacement field u minimizing Equation 5 is approximated by, for every position p ∈ RN ,

u(p) ≈ Λ(p)− Ω ◦ γ(p)

∥∇(Ω ◦ γ)(p)∥22 −
σ2
i

σ2
x

|Λ(p)− Ω ◦ γ(p)|2
∇Ω⊤, (7)

where ∇ denotes the gradient of functions. This implies that σx controls the maximum step length:
∥u(p)∥2 ≤ σx/2 for every p ∈ R2. As for the minimization of Equation 6 with a regularization term
R(γ) = ∥Jγ∥22/σ2

d, it corresponds to a convolution with a Gaussian kernel Gdiff(σd) of standard
deviation σd. This regularization R(γ) has been modified by [3] in order to add a fluid-like regular-
ization Gfluid(σf ) of standard deviation σf . Moreover, to ensure the mapping γ to be diffeomorphic,
an alternative update of c with an exponential field has been proposed in [27]: c = s ◦ exp(u).
The additive and diffeomorphic demons algorithms are summarized in Algotirhm 1.

Algorithm 1: Vercauteren’s demons algorithm
1 Input: Sets Λ, Ω.
2 Initialization: Displacement field γ[0].
3 k = 0 ;
4 while k ≤ K and |E(γ[k])− E(γ[k−5])|/E(γ[0]) > ϵ do
5 k ← k + 1 ;
6 Update u[k] from γ[k−1] using Equation 7 ;
7 Fluid-like regularization: γ[k] = Gfluid(σf ) ⋆ u

[k] ;
8 Either additive update c[k] = γ[k−1] + u[k]

or diffeomorphic update c[k] = γ[k−1] ◦ exp(u[k]) ;
9 Diffusion-like regularization: γ[k] = Gdiff(σd) ⋆ c

[k] ;

10 Output: Displacement field γ[k] minimizing E(γ[k]) over k.

For large deformations, a multiresolution scheme is necessary: the demons is performed iteratively
from the lowest to the highest resolution. This scheme is summarized in Algotirhm 2.

4 Numerical experiments
In this section, we compare the Thirion’s demons algorithm (MATLAB built-in func-
tion imregdemons) and the additive and diffeomorphic Vercauteren’s demons algorithms
(MATLAB toolbox available at https://www.mathworks.com/matlabcentral/fileexchange/
39194-diffeomorphic-log-demons-image-registration) for the computation of estimates γ̃n
of the mappings γn. We consider the toy image and the sets Ωn obtained by either Watershed or
Voronoi partitioning presented in Figure 1.
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Algorithm 2: Multiresolution demons algorithm
1 Input: Sets Λ, Ω.
2 Initialization: Displacement field γ[0] = 0.
3 for k = Nlevel − 1, . . . , 0 do
4 Λ[k],Ω[k], γ[k] ← Downsample Λ, Ω and γ[k−1]/2k by 2k

5 γ∗ ← Demons(Λ[k],Ω[k]) initialized with γ[k] (Algotirhm 1)
6 γ[k] ← Upsample 2kγ∗ by 2k

7 Output: Displacement field γ[Nlevel]

4.1 Mapping estimation set-up
For the three demons algorithms, the diffusion-like parameter σd and number of resolution levels
Nlevel are selected by minimizing the quadratic risk ∥Λ − Ωn ◦ γ̃n∥22 over the values (σd, Nlevel) ∈
(0.3, 0.31, . . . , 0.5) × (nP − 1, nP ), with nP being the highest integer such that 2nP is smaller than
each dimension of the image. For the Thirions’s demons algorithm, the numbers iterations at each
resolution level is set to (24, . . . , 2Nlevel+1) from the highest to the lowest level. For the Vercauteren’s
demons algorithm, the maximum step length is set to σx = 5, the fluid-like regularization is set to
σf = 1, the error threshold in the stop criterion is set to ϵ = 10−3 and the maximum number of
iterations is set to K = 500.

4.2 Assessment measures
The accuracy of an estimate γ̃n is measured using the Root Mean Squared Error defined as

RMSE(Λ,Ωn, γ̃n) =
1√

Npixels

∥Λ− Ωn ◦ γ̃n∥2,

where Npixels is the number of pixels in the image Λ. The reconstruction f̃ of the image f , with
values in [0, 1], obtained by Equation 2 is assessed using the Peak Signal-to-Noise Ratio (PSNR)
defined as

PSNR(f, f̃) = −10 log10 ∥f̃ − f∥22.

4.3 Mapping estimation assessment
We assess the behavior of the different algorithms to map a partition to a generating function’s
Fourier support, which is usually a disk or a square. Table 1 reports the average RMSE of the
estimated mappings γ̃n from the sets Ωn of the Watershed or Voronoi partition to the disk or
square Λ for the different demons algorithms. The additive and Thirion’s demons algorithms have
similar performance on average, and both outperform the diffeomorphic demons algorithm due to the
latter’s additional constraint on diffeomorphicity. However, the Thirion’s demons algorithm suffers
from more variability than the additive demons algorithm. Furthermore, all demons algorithms
achieve higher performance for the more shape-constrained Voronoi partition than for the Watershed
partition and better for the disk than for the square due to its irregularity.

In addition, Table 2 reports the computtional time of the different demons algorithms for the
Watershed and Voronoi partitions {Ωn}n∈Υ and the disk and square sets Λ. The Thirion’s demons
is the fastest algorithm and the diffeomorphic demons is much more computationally costly than
the two other demons.
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Table 1: RMSE ×10−2 averaged over the sets Ωn (with lowest and highest values) for the different
demons algorithms, partitions {Ωn}n∈Υ and sets Λ.

Demons Watershed → Disk Watershed → Square Voronoi → Disk Voronoi → Square

Thirion’s 4.37 (0.82− 18.43) 4.59 (0.31− 20.03) 2.41 (0.58− 13.71) 2.32 (0.32− 6.80)
Additive 3.83 (2.13− 5.13) 4.30 (2.47− 7.23) 3.00 (2.14− 4.17) 3.08 (2.23− 4.14)
Diffeomorphic 5.64 (3.00− 10.29) 7.35 (3.15− 14.47) 4.03 (2.86− 6.04) 6.41 (2.00− 17.05)

Table 2: Computational times (h:min:sec) of the demons algorithms for the different partitions
{Ωn}n∈Υ and sets Λ.

Demons Watershed → Disk Watershed → Square Voronoi → Disk Voronoi → Square

Thirion’s 00 : 02 : 44 00 : 02 : 50 00 : 02 : 48 00 : 02 : 44
Additive 00 : 12 : 50 00 : 11 : 35 00 : 14 : 51 00 : 12 : 17
Diffeomorphic 01 : 43 : 22 01 : 32 : 25 01 : 27 : 53 01 : 44 : 40

To assess the invertibility, continuity, and diffeomorphicity of the mapping estimates, we explore
the behavior of the resulting empirical wavelet coefficients expected to be concave and equal to one
on most of each support Ωn. Figures 4 and 5 show the disk band-pass empirical wavelet coefficients
χ̂D,τ
n , where τ = 0.2, respectively, with and without normalization for the Watershed partition and

the different demons algorithms. The normalized coefficients are not concave for the additive and
Thirion’s demons algorithms due to the discontinuity of the normalization coefficient, while they
are concave but very sparse for the diffeomorphic demons algorithm. The unnormalized wavelet
coefficients are more satisfactory as they are continuous, concave and mostly equal to one for all sets
Ωn. However, the coefficients obtained using the diffeomorphic demons algorithm are more spread
out due to the additional constraint of differentiability. As for the Thirion’s demons algorithm, it
can miss an important part of a filter (see the top right corner of Figure 5).

In conclusion, the additive demons algorithm provides accurate continuous mapping estimates to
compute robust unnormalized empirical wavelet filters in a reasonable computation time. As for the
diffeomorphic demons algorithm, it provides inaccurate diffeomorphic mapping estimates, leading to
unsuitable normalized filters.

4.4 Reconstruction assessment
To assess the numerical behavior of the empirical wavelet transform, which is theoretically lossless
for the disk and square band-pass filter according to Theorem 2, we examine the quality of recon-
struction. Table 3 reports the PSNR of the empirical wavelet reconstruction of the toy image for
the disk and square band-pass filters with different transition widths τ , the Watershed and Voronoi
partitions, and the different demons algorithms. The additive demons algorithm provides better,
or at least similar, reconstruction to the other demons algorithms. Moreover, the normalization
in the empirical wavelet filters has no impact on the reconstruction performance for the different
demons algorithms.

Despite the accuracy of the mapping estimation obtained in Table 1, the related wavelet recon-
struction can be corrupted when the estimated filter bank does not entirely cover the Fourier domain.
Notably, the transition width τ = 0.1 leads to lower signal-to-noise ratios than the transition width
τ = 0.2. Indeed, in case of an inaccurate estimate of a mapping, τ = 0.2 ensures a larger covering of
the Fourier domain by the wavelet filters than τ = 0.1. In contrast, the transition width τ = 0.3 can
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Figure 4: Normalized wavelet systems. Normalized disk band-pass empirical wavelet filters χ̂D,τ
n

with τ = 0.2 for the Watershed partition and the different mapping estimators.

lead to artifacts in a symmetric wavelet filter χn due to overlaps of paired wavelet filters ψ̂n and ψ̂−n,
as confirmed by lower signal-to-noise ratios for the disk band-pass transform using the Watershed
partition and a diffeomorphic demons algorithm compared to the transition width τ = 0.2.
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Figure 5: Unnormalized wavelet systems. Unnormalized disk band-pass empirical wavelet filters
χ̂D,τ
n with τ = 0.2 for the Watershed partition and the different mapping estimators.

4.5 Application to texture segmentation
In this section, we illustrate the relevance of the proposed Empirical wavelet transform in the segmen-
tation of scanning tunneling microscope images. Analyzing the structure and chemical properties
of self-assembled monolayers of organic molecules is the core of many applications in nanoscience
and nanotechnology [18, 11]. These properties result in variations in the textures that are crucial to
identify. Recently, Empirical Curvelet Wavelet Transform (EWT-Curvelet), obtained by partition-
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Table 3: PSNR of the reconstructed images for the different demons algorithms, sets Λ, partitioning
methods and transition widths τ for the normalized and unnormalized empirical wavelet transforms.

Demons τ
Normalized Unnormalized

Watershed Voronoi Watershed Voronoi
Disk Square Disk Square Disk Square Disk Square

Thirion’s
0.1

76.21 79.67 82.61 90.79 76.21 79.67 82.63 90.79
Additive 96.08 79.23 120.47 305.64 96.08 79.23 120.47 306.03
Diffeomorphic 89.20 62.05 97.88 286.93 89.20 62.05 97.12 269.60

Thirion’s
0.2

78.22 87.21 85.34 297.90 78.22 87.22 85.34 302.70
Additive 112.78 305.65 305.47 305.69 112.78 305.88 306.37 306.26
Diffeomorphic 89.20 124.85 103.42 303.76 89.20 120.77 101.77 305.40

Thirion’s
0.3

85.02 180.79 89.32 305.10 84.82 183.43 89.32 305.39
Additive 124.41 305.16 305.78 305.61 124.41 305.67 306.00 306.16
Diffeomorphic 77.27 117.87 103.45 303.19 64.14 128.81 103.38 305.38

ing the Fourier domain in scales and angles [10], has been shown to provide relevant texture features
for scanning tunneling microscope images of self-assembled monolayers [12, 2, 13]. In particular,
the EWT-Curvelet based segmentation outperforms the state-of-the-art methods for this task [2].
Therefore, we propose a comparison of our approach with the latter.

We perform the texture segmentation according to the procedure of [15], which consists of the
following steps. First, we extract the cartoon and textural parts u and v, respectively, of an image
f by solving the cartoon–texture decomposition model [1], defined as follows:

minimize
u∈F,v∈G

∥∇u∥1 + µ∥v∥G s.t. f = u+ v, (8)

where F is the set of functions from R2 to R and G is the set of oscillating functions. Following
numerical analyses conducted by [5], the parameter controlling the oscillation degree of the textural
part is set to µ = Npixels/2. This problem is solved numerically using the algorithm described in [9].
Next, we compute the local energy of the empirical wavelet transform Evχ of the textural part v,
defined as the local average of the wavelet coefficients Evχ(., n) for each frequency band n, i.e.,

T E
n (x) =

1

NW

∑
y∈Wx

∣∣Evχ(y, n)∣∣2 , (9)

where Wx is a window centered at the pixel x of size set to NW = 19 × 19, following the work
of [15]. Finally, the segmentation is obtained by performing a pixel-wise k-means clustering with
the cityblock distance on the local energy (9), for preselected numbers of clusters k.

Figure 6 shows partitions of the Fourier spectrum of a scanning tunneling microscope image
obtained by performing the Curvelet, Watershed and Voronoi methods with a scale-space step-size
s0 = 0.2 on the logarithm of the Fourier spectrum. The Curvelet method results in a large number of
sets Ωn, namely 393, while the Watershed and Voronoi methods extract as many sets Ωn as detected
harmonic modes, 17 in this case.

Figure 7 shows scanning tunneling microscope images, their corresponding textural parts,
and their segmentation for the EWT-Curvelet and the proposed disk and square band-pass empir-
ical wavelet transforms with τ = 0.2 for both Voronoi and Watershed partitioning. The proposed
empirical wavelet transforms provide accurate and comparable texture masks for the different
images. In all cases, the segmentation performance with the proposed approach is better than with
the EWT-Curvelet, as can be clearly seen in the last two rows of Figure 7.
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Figure 6: Examples of Fourier partitions. Fourier spectrum of a scanning tunnelling microscope
image overlapped with partitions obtained by the Curvelet (left), Watershed (middle) and Voronoi
(right) methods.

Figure 7: Texture segmentation. Original scanning tunneling microscope images, their textural
parts and the segmentation obtained for the different empirical wavelet transforms with numbers of
clusters k set to 5, 3, 3 and 4 from top to bottom, respectively. Raw scanning tunneling microscope
images of cyanide on Au{111} have been reproduced from [12, 13] with permission. Images copyright
American Chemical Society.

5 Discussion
As shown by numerical experiments, the additive demons algorithm provides accurate continuous
mappings suitable for the empirical wavelet transform. The results show that this approach has satis-
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factory performances for reconstruction and texture extraction. In contrast, diffeomorphic mapping
estimates are harder to obtain and take longer. This suggests that the use of normalization proposed
in previous work [19] should be avoided in practice.

Moreover, although the proposed algorithm applies to any homogeneous or separable wavelet
kernel and any Fourier partition, the selection of the wavelet kernel’s support and the partitioning
method is crucial to optimize the mapping estimation performance. The study conducted in the
present work shows that a Voronoi partition and a wavelet kernel defined on a disk result in a better
performance overall.

The tools introduced in this work are ready for application on real-world data. In particular, they
have been shown to provide relevant texture features for scanning tunneling microscope images for
the different studied wavelet kernels. In addition, the number of features resulting from the Voronoi
or Watershed partitioning methods is reasonable compared to the one obtained by the Curvelet
transform used in [2].

Future work will include a thorough study of the stop criterion of the additive demons algo-
rithm. In addition, an in-depth study of texture segmentation will also be carried out on a large
labeled dataset, including a quantitative assessment of the impacts of the Fourier partitioning on
the segmentation performance.

6 Conclusions
This work proposed an efficient algorithm for the empirical wavelet transform from any wavelet
kernel based on demon registration. Among the different meticulously compared demons algorithms,
the additive one has been shown to provide accurate numerical empirical wavelet systems with good
properties of reconstruction, as validated for suitable wavelet kernels. The relevance of this approach
for texture feature extraction has also been highlighted.
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