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Abstract

Motivation

Biologically relevant RNA secondary structures are routinely predicted by efficient dynamic programming
algorithms that minimize their free energy. Starting from such algorithms, one can devise partition function
algorithms, which enable stochastic perspectives on RNA structure ensembles. As the most prominent exam-
ple, McCaskill's partition function algorithm is derived from pseudoknot-free energy minimization. While this
algorithm became hugely successful for the analysis of pseudoknot-free RNA structure ensembles, as of yet
there exists only one pseudoknotted partition function implementation, which covers only simple pseudoknots
and comes with a borderline-prohibitive complexity of O(n°) in the RNA length n.

Results

Here, we develop a partition function algorithm corresponding to the hierarchical pseudoknot prediction
of HFold, which performs exact optimization in a realistic pseudoknot energy model. In consequence, our
algorithm CParty carries over HFold's advantages over classical pseudoknot prediction to characterizing the
Boltzmann ensemble at equilibrium. Given an RNA sequence S and a pseudoknot-free structure GG, CParty
computes the partition function over all possibly pseudoknotted density-2 structures GUG’ of S that extend
the fixed G by a disjoint pseudoknot-free structure G’. Thus, CParty follows the common hypothesis of
hierarchical pseudoknot formation, where pseudoknots form as tertiary contacts only after a first pseudoknot-
free ‘core’ G and we call the computed partition function hierarchically constrained (by G ). Like HFold, the
dynamic programming algorithm CParty is very efficient, achieving the low complexity of the pseudoknot-free
algorithm, i.e. cubic time and quadratic space. Finally, by computing pseudoknotted ensemble energies, we
unveil kinetics features of a therapeutic target in SARS-CoV-2.

Availability

CParty is available at https://github.com/HosnaJabbari/CParty.

Key words: RNA, pseudoknots, hierarchical folding, hierarchically constrained partition functions, bisecondary
structures

1. Introduction

RNA molecules play a vital role in cellular processes; many possess functio-
nal structures (Cruz and Westhof, 2009; Kozak, 2005; Mortimer et al., 2014;
Warf and Berglund, 2010; Wilson and Lilley, 2015). As experimental meth-
ods to detect RNA structure are time consuming and costly, computational
methods for predicting RNA structure have become indispensable. We focus
on the accurate prediction of RNA secondary structure (2D), which in turn
sheds light on the 3D structure of the RNA. Various algorithms have been
developed to tackle this problem, aiming to predict the most energetically
favorable structure based on thermodynamic models and empirical data (Ber-
nhart et al., 2008; Reuter and Matthews, 2010; Rivas, 2020; Rivas and
Eddy, 1999; Sato et al., 2011; Zuker and Stiegler, 1981). The best-known,
most widely-used thermodynamics-based approaches are the algorithms by
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Zuker and Stiegler (1981) for predicting RNA secondary structure and due
to McCaskill (1990) for computing partition functions.

The Zuker algorithm finds the minimum free energy (MFE) structure
among all possible pseudoknot-free structures for the given RNA sequ-
ence (Zuker and Stiegler, 1981). RNA secondary structure prediction is
NP-hard (Akutsu, 2000; Lyngsg and Pedersen, 2000) and even inapproxi-
mable (Sheikh et al., 2012) when pseudoknots are allowed. Existing efficient
algorithms for exact prediction of pseudoknotted RNA secondary structure
handle only restricted classes of structures, trading off run-time and structure
complexity (Chen et al., 2009b; Jabbari et al., 2018; Rivas and Eddy, 1999;
Reeder and Giegerich, 2004).

Offering a stochastic perspective on the entire ensemble of possible
pseudoknot-free structures of an RNA, the McCaskill algorithm computes
partition functions. Algorithmically it has strong parallels to the pseudoknot-
free MFE algorithm by Zuker, since both algorithms decompose the same



https://orcid.org/0000-0001-7143-1367
https://orcid.org/0000-0002-1578-7964
https://orcid.org/0000-0001-9466-7196
https://orcid.org/0000-0002-7615-3930
https://orcid.org/0000-0002-2376-9205
https://orcid.org/0000-0002-7155-2297
email:email-id.com
https://github.com/HosnaJabbari/CParty

Gray, Trinity et al.

structure space in their dynamic programming scheme. Generally, there is
a one-to-one correspondence between the search spaces considered by par-
tition function algorithms, such as McCaskill (1990), and MFE algorithms,
provided they are unambiguous and complete (Ponty and Saule, 2011). This
correspondence also extends to pseudoknotted structure spaces. Consequen-
tly, the run-time vs. structure complexity trade-offs that were discussed for
pseudoknot MFE algorithms like Chen et al. (2009b); Jabbari et al. (2018);
Rivas and Eddy (1999) are mirrored in (hypothetical) corresponding par-
tition function algorithms. So far, the only pseudoknot partition function
algorithm, which realizes this idea, is due to Dirks and Pierce (2003). Their
algorithm (D&P) handles the restricted class of simple pseudoknots. While
it is implemented in NUPACK, its practical application is limited by the
algorithm’s O(n®) time and O(n*) space complexity.

To address the high time and space complexity of other pseudoknot pre-
diction algorithms, we previously developed HFold (Jabbari et al., 2007,
2008). Given an RNA sequence and a pseudoknot-free structure, HFold
calculates a potentially pseudoknotted secondary structure with minimum
free energy in a full RNA energy model that extends the given structure
with a, in a specifically defined way, ‘compatible’ second pseudoknot-free
structure. By following this principle, HFold becomes the first MFE algo-
rithm that adheres to the hierarchical folding hypothesis. This hypothesis
suggests that RNA initially folds into a pseudoknot-free structure, and then
additional bases pair to further lower the MFE of the structure, possibly for-
ming pseudoknots (Tinoco Jr and Bustamante, 1999). Hierarchical folding
has been experimentally observed in the formation of pseudoknotted structu-
res (Cho et al., 2009), including frameshift stimulating pseudoknots (Chen
et al., 2009a).

HFold has only cubic time and quadratic space complexity. This means
it is as efficient as pseudoknot-free prediction algorithms and, for exam-
ple, is faster than CCJ (Chen et al., 2009c) or D&P (Dirks and Pierce,
2003) by a quadratic factor. HFold takes a pseudoknot-free structure GG as
input, and predicts a pseudoknot-free structure G’ such that G U G’ has
minimum free energy among all density-2 structures (Jabbari et al., 2008)
(Figure 1; Methods). The class of density-2 structures allows for arbitrary
depth and length of nested pseudoknots including H-type pseudoknots and
kissing hairpins. This class encompasses structures not handled by CCJ and
is more comprehensive than the structure class described by the partition
function algorithm by Dirks and Pierce (2003). Since the selection of the
non-pseudoknotted partial structure G is crucial in hierarchical folding, pre-
vious work has identified promising techniques for selecting G (Jabbari
and Condon, 2014; Trinity et al., 2023). These techniques involve compu-
ting energetically favorable pseudoknot-free structures (Jabbari and Condon,
2014) or choosing partial structures compatible with chemical modification
data, such as SHAPE reactivity (Trinity et al., 2023).

The main objective of this work is to develop and study a parti-
tion function counterpart to HFold. To achieve this, we present CParty,
a constrained partition function (CPF) algorithm that considers possibly
pseudoknotted density-2 structures.

The primary challenge in constructing the CParty algorithm is that
HFold decomposes density-2 structures in a non-trivially redundant manner.
Removing or avoiding such ambiguities is a general and recurring issue in the
construction of dynamic programming algorithms to compute RNA partition
functions, e.g. McCaskill (1990); Dirks and Pierce (2003). Since partition
functions sum over the weights of all considered structures, any ambiguities
directly lead to over-“counting”. To address this problem, we have resolved
all ambiguities in the decomposition process. This careful preparation step,
finally enables deriving the CParty algorithm by a systematic exchange of
algebras (e.g. a core idea of ADP (Giegerich, 2000)).

Similar to HFold, CParty takes an RNA sequence and an input structure
G. Then, it calculates the hierarchically constrained partition function over
G U G’, where G’ is pseudoknot-free and G U G’ is density-2. Here, we

Fig. 1: Bands of a bisecondary structure (left) with the corresponding bi-
partite crossing graph (right). Note that the connected components of the
crossing graph can be understood as groups of bands that directly or tran-
sitively cross each other. The structure has density three, since there are
positions which are simultaneously covered by three transitively crossing
bands. For example, the three bands a, b, and e cover the position indica-
ted by the dashed line. When removing one of the bands a, b, or e, the
remaining structure is density-2 (see Methods). The dynamic programming
algorithms CParty and HFold exploit that the crossing bands of density-2
structures are arranged in chains, in the sense that bands a,b,c,d form a 4-
chain or f,g form a 2-chain. This allows decomposing density-2 structures
by recursively decomposing such chains.

focus on the algorithm for calculating this hierarchically constrained parti-
tion function (i.e. partition function for the ensemble of structures G U G,
where G is fixed) and we leave the base pair probability calculation as a
future direction.

To clarify, CParty is designed to compute hierarchically constrained
partition functions of RNAs, which ensures very high efficiency. In some
applications, this hierarchical approach can be advantageous, as it allows
for the integration of prior knowledge. Additionally, its efficiency makes it
suitable for iterated use in meta-strategies (cf. Jabbari and Condon (2014)).

1.1. Contributions

We introduce the novel hierarchical constraint partition function algori-
thm CParty as a counterpart to HFold. CParty decomposes the density-2
structure class completely and, in contrast to HFold, unambiguously. We
implement CParty to perform realistic computations using a full-featured
pseudoknot energy model (HotKnots 2.0 (Andronescu et al., 2010)), tho-
roughly scrutinize the implementation, and study its properties. Through
empirical time complexity analysis, we demonstrate that CParty outper-
forms the only other existing pseudoknotted partition function algorithm
in NUPACK. Applying our novel tool to the SARS-CoV-2 frameshift ele-
ment, we compute constrained ensemble energies and unveil a key kinetic
transition of its pseudoknot (Kelly et al., 2020).

2. Methods

2.1. RNA Secondary Structure

An RNA sequence of length n, known as the primary structure of RNA, is
represented as a string in { A, C, G, U }". Its secondary structure is a set of
base pairs 7.7, where 1 < i < j < n, and each base 1 < ¢ < n occurs
in at most one pair (no triplets). A secondary structure is called crossing or
pseudoknotted if there are at least two base pairs, .7 and ¢’.j’, that cross
each other (i.e. 7 < i’ < j < j ori’ <i < j’ < j). Otherwise, it is called
pseudoknot-free or non-crossing. The base pairs 7.7 and i’.j’ are nested if
i <1 <j <jori <i<j< j' Given a secondary structure G that
pairs %, bpi (2) denotes the other end of the base pair of ¢ in G; similarily,
bp(%) refers to the other end in G U G

Features of pseudoknotted and density-2 structures.

Due to space restrictions, we review important features of pseudoknotted
structures briefly, and refer to the literature (Dirks and Pierce, 2003; Jabbari
et al., 2008) for full detail; see also Fig. 1. Pseudoknotted structures can be
classified by considering specific subsets of base pairs called bands (Dirks



CParty: Hierarchically Constrained Partition Function of RNA Pseudoknots 3

and Pierce, 2003). A band of an RNA structure is a maximal subset of base
pairs with the properties that 1) all of its base pairs are pairwisely nested; 2)
each base pair of the remaining structure crosses either all or no base pairs
of the band; and, moreover, 3) the base pairs of a band cross at least one base
pair of the structure.

The literature distinguishes various classes of RNA structures such as
simple pseudoknots, kissing hairpins, k-knots, and genus g that all can be
characterized by specific restrictions on the crossing configurations of bands.

In this work, we focus on a specific subclass of bisecondary structu-
res (Fontana et al., 1993; Hasslinger and Stadler, 1999; Witwer et al., 2004),
which can be decomposed into two pseudoknot-free secondary structures.
Specifically, we consider the subclass of density-2 structures defined by Jab-
bari et al. (2008) to precisely describe the search space of HFold. Envision
the crossing graph of a structure that consists of one node for each band
and one edge between any pair of crossing bands. In this graph, we can
identify connected components of bands, that are in direct or transitive
crossing relation to each other. This allows to characterize bisecondary stru-
ctures graph-theoretically as the structures with bipartite crossing graphs.
In density-k structures, the number of bands per connected component that
cover a single position is less or equal k. For example, in Fig. 1, positions
are covered by up to three bands of the connected component {a, b, ¢, d, e}.
Thus, the example shows the bands of a density-3 structure, the density-2
property is violated by the bands a, b and e; e.g. removing the band e leaves
a density-2 structure.

We require additional technical definitions from HFold’s description
(Jabbari et al., 2008): In density-2 structures, a region [4, j] (denoting positi-
onst,t+1,...
connected due to a chain of crossing bands. In the latter case, 7 and j are the
left and right ends of a pseudoloop, which is closed by base pairs of ¢ and j
as well as the outer base pairs of the other bands in the chain. For example, in
Fig. 1, the outermost base pairs of bands a,b,c, and d form such a chain and
close a pseudoloop. Sec. Suppl.1 (Supplementary Information) summarizes

, J 18 closed, either if ¢ pairs with j, or if they are transitively

further definitions.

2.2. Energy Model

To assess the energy of RNA structures, we distinguish different types of
structural elements, called loops, i.e. hairpin loops, stacks, bulges, inte-
rior loops, or multiloops. Loops are generally defined by their outer and
potentially inner closing base pairs (Rastegari and Condon, 2007).

Nearest neighbor energy models define the free energy E(G) of a
secondary structure G as the sum of the energies of its loops E(G) =
> ca EvP(L). A prominent example is the Turner 2004 energy
model (Turner and Matthews, 2009) for pseudoknot-free RNAs, which is
used by RNAfold. For pseudoknotted RNAs, Dirks and Pierce (2003) intro-
duced the DP03 energy model, used for pseudoknot prediction in NUPACK;
it extends the Turner model by adding penalties for pseudoknots and bands,
as well as parameters to score multiloops that ‘span’ a band.

CParty’s energy model and Vienna RNA based implementation. In
CParty, we utilize the DP09 energy parameters of HotKnots 2.0, which
improve upon the DP03 energy model due to training on known pseudoknot-
ted structures (Andronescu et al., 2010). Specific parameters and loop energy
functions are provided in Supplementary Table 1. While HFold calculates
loop energies based on SimFold (Andronescu et al., 2005), CParty uses the
Vienna RNA library (Lorenz et al., 2011). For this purpose, the energy model
parameters were translated to a compatible format, allowing for better inte-
roperability and comparability with the Vienna RNA package. Additionally,
our CParty implementation supports hard constraints that restrict the parti-
tion functions to structures that leave specified bases unpaired. We note that
CParty is limited to the constraints of its energy model and hence, limited to
A.U,G.C and G.U base pairings.

2.3. Problem statement: partition functions over density-2
structures

Given an RNA sequence S, a pseudoknot-free secondary RNA structure G,
CParty computes the hierarchically constrained partition function (CPF)

z§ = >

G’:G" is secondary structure of S
st GN G’ = {}and G U G’ is density-2

exp(~Es(GUG")/(RT)), (D)

where T' denotes the temperature (e.g, 77 = 37 °C) and R denotes the
universal gas constant (R /2 1.987 cal K—! mol—1).

Analogous to the pseudoknot-free partition function developed by McCa-
skill (McCaskill, 1990), this partition function is defined as the sum of
Boltzmann weights exp(—Es(G)/(RT)) of RNA structures G, where Eg
computes the RNA energy. Extending this result, our constrained partition
function sums over all density-2 structures that are the union of a given
(constrained) structure GG and a secondary structure G’. The energy Eg
is evaluated using a pseudoknot energy model (specifically, DP09). Note
that this is a true generalization, reducing to the pseudoknot-free partition
function of McCaskill when the structure G is empty.

Boltzmann weights, B(e) := exp(—e/(RT)), and partition functi-
ons have several immediate applications in the description of the potential
structures (called ensemble) of an RNA at equilibrium. For example, we
obtain the conditional equilibrium probability of each structure G U G':
Pr(GUG'|G,S) = B(E(GUG"))/ZS, and the ensemble free energy
E§ = B~YZ§) — RT1In Z§ of the constrained ensemble.

2.4. The HFold algorithm and its ambiguity

HFold efficiently minimizes the free energy over all density-2 structures
G U G’ that are hierarchically constrained by a given pseudoknot-free stru-
cture G. Like G, G’ must be pseudoknot-free. Energies are defined by a
D&P pseudoknot energy model for the given sequence S. As a dynamic
programming (DP) algorithm, HFold can be fully defined in terms of its
recurrences.

HFold computes the total minimum free energy (MFE) as the entry
W(1,n) of its DP matrix W, where W (4, j) denotes the MFE of the
subsequence $;Si+1 . ..s;. Each W (i, 5) is computed using HFold’s W-
recurrence with the help of additional DP matrices. These matrices store
MFEs under specific conditions: for example, V' (7, j) is the MFE over “clo-
sed” structures that pair ¢ and j, WMB(4, j) requires that ¢ and j are the
ends of a pseudoloop, and VP (4, j) is the MFE over the loop closed by 4.j
that spans a band.

Compared to pseudoknot-free prediction algorithms, HFold requires a
large number of helper matrices to decompose density-2 structures and opti-
mize correctly in the DP0O9 model. For instance, it distinguishes pseudoloops
with the rightmost band in G’ (WMB’ (3, 5)), bands in G (BE), parts of a
multiloop (W I), and parts of a multiloop that span a band (W I”).

Ambiguity. Several of HFold’s recurrences are non-trivially ambigu-
ous, preventing a direct translation of the HFold recurrences for CParty. A
good example is the decomposition of multiloops spanning a band in the VP
recurrence, as illustrated in Figure 2.

2.5. Dataset

For the time and space complexity analysis of CParty we obtained 2808
sequences from the RNASTRAND V2.0 database (Andronescu et al., 2008).
The smallest sequence has a length of 8 nucleotides, while the largest is 1500
nucleotides long. For each sequence, we identified the 20 most stable stem-
loop by calculating only hairpin and stacking base pair energies across the
whole sequence. These stem-loop structures were then used as constraints.
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Fig. 2: The ambiguity of computing VP(%, j) in HFold. Since i.j is a base
pair of a band, it can be crossed by other bands to the left or right (dashed
arcs). To handle cases where ¢.j closes a multiloop that spans the band,
HFold utilizes two ambiguous recursion cases (middle) (Jabbari et al., 2008)
to allow further multiloop branches on the left and/or right of the next base
pair of the band. These different cases can converge (right) and produce the
same structures in different ways, leading to ambiguity.

To assess the impact of constraint variation on CParty, we obtained 4
sequences of length 968 from the RNASTRAND V2.0 database (Androne-
scu et al., 2008). We generated 24 dinucleotide-shuffled versions for each
sequence, resulting in a total of 100 sequences, using the MEME suite (Bai-
ley et al., 2015). Using the same method as in the time and space complexity
analysis, we generated the 20 most stable stem-loops for each sequence to
be used as constraints, as well as the output of RNAfold, for a total of 21
input constraints for each sequence.

3. The CParty Algorithm

To address the partition function problem corresponding to HFold’s energy
minimization problem, we build on HFold’s decomposition of the con-
strained density-2 structure space. However, the ambiguity in HFold’s
decomposition prevents a straightforward rewriting of the energy minimi-
zation recurrences into correct partition function recurrences by simply
swapping the minimization algebra (min, +) with the ‘partition function
algebra’ (+,-). Therefore, as our core contribution, we resolve all these
ambiguities by carefully rewriting HFold’s recurrences and introducing new
structure classes and recurrences. This enhancement ensures a complete and
unambiguous decomposition of the density-2 class of structures.

Here, we discuss the main recurrences of the CParty algorithm and refer
readers to the Supplementary Information for a detailed explanation of the
remaining recurrences.

3.1. General density-2 structures

Corresponding to the W (3, j) recurrence in HFold, Zw (i, j) denotes the
partition function over all density-2 structures R; ; = Gi,; U G} ; for the
subsequence s; . . . s; and input substructure G5, ;, taken over all choices of

/

JCall a base r covered by G, write isCovered(G, r), iff it is covered by
some base pair k.£ € G, i.e. k < r < £. Note that Zy (¢, j) is defined only
for weakly closed regions, where no base in the region [z, j] pairs with a base
outside of the region. For empty region (¢ > j), Zw (4, j) = 1—accounting
for the empty structure with energy 0. Moreover, Zw (i,7) = 0, if ¢ or j is
covered by G.

(1) Z Zw(’i,’l”*l)'Zv(T,j)
i<r<j

isCovered(G,r)

(2) Zw(i,j—1)

B3 > Zw(i,r—1)-Zp(r,j)  B(Ps)
i<r<j

isCovered(G,r)

Figure 3 illustrates the three cases of Zyy . Case (1) decomposes the structu-
res, where j is paired to some k in [i, j]; it recurses to Zv (4, 1), the partition
function over all structures closed by r.j. Case (2) handles structures where
j is unpaired. Case (3) is analogous to Case (1), but r and j are left and
right ends of a pseudoloop. The case recurses to Zp(r, j) (see below), and
penalizes the pseudoknot initiation (Ps).

RN (6)]
AY

4
W

T ]

@,-=-~_ ® :

4

Fig. 3: Zw (4, j) recurrence in graphical notation: Dashed arcs indicate pos-
sible structure, each solid arc represents a base pair. The dotted vertical line

indicates an overlapping chain of bands of arbitrary length and that the chain
can begin or end via either G (above horizontal line) or G’ (below horizon-
tal line). Filled in circles show regions covered by specific structure classes,
orange for Zv, and green for Zp.

3.2. Structures closed by a pseudoloop
The partition function over [, j] where ¢ and j are ends of a pseudoloop is
calculated as Zp (7, j). The decomposition splits of the rightmost band of
the pseudoloop with ends 4 and j. The band can be in either G or G’. We
handle the former case in the recurrence of Zp and the latter in Zpg-.
Figure 4 illustrates cases of the Zp recurrence. The vertical dashed line
in the figure symbolizes a series of crossing alternating bands of unspecified
length.

o @

W, rPG

I Al

Fig. 4: Cases of Zp. (1) j is paired in G and there must be some base, ,
between bpc (7) and j that is paired in G’. (2) j is not paired in G, then
move directly to Zp . Filled in circles show regions covered by specific
structure classes, red for Z g, and green for Zp and Z p . Detailed recur-
rences are provided in the Supplementary Information.

We distinguish whether j is paired in G (Case 1) or in G’ (Case 2).
In Case 1, each valid structure must contain a base pair in G that crosses
bpc (7). where bpc (7) denotes the base pair of j in G. This forms part of
the pseudoloop. We consider all possible choices for the right end of this
base pair, denoted as . Each [ determines unique inner and outer base pairs
of the rightmost band (Jabbari et al., 2008).

Note that for a given G, only one case can be applicable (depending
on whether j is paired in ). To maintain unambiguity, the corresponding
sets of structures for different [ must be disjoint, which is true for density-2
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structures. Each single entry of Zp is computed in linear time, and there is
a quadratic number of entries.

3.3. Pseudoknotted structures with rightmost band in G’

The partition function of the structures closed by a pseudoloop with ends 2
and j and rightmost band in G is calculated in Zpg- (Fig. 5).

In case (1), j pairs with [ such that I.j crosses a band of G. Zvp (I, j)
accounts for the contribution of region closed by [.j, and Z g g accounts for
the contribution of the band in G. We then recurse back to Zp g to consi-
der the contribution of the rest of the structure. Case (2) is similar to case
(1) with the only difference being the nested substructures allowed betw-
een the bands, which is handled by Zpgsw» in this case. The introduction
of Zpgm (i, ) prevents multiple adjacent weakly closed subregions in the
pseudoloop.

Cases (3-4) of Zpg are end cases, where only one or two bands,
respectively, need to be accounted for. If ¢ > j, Zpgr = Zpgw = 0.

@ ® 3

i @ BE) ; BE , J
l‘/P;E}’/] =i P@n x@y@ul iw-gjli @gi

Fig. 5: Cases of Zpgr. (1) handles two rightmost elements of the chain
and continues. (2) is similar to (1) except there is a weakly closed region
between the bands, this will be handled by Zp g structure class to prese-
rve the cubic time complexity. For the end cases we have (3) leftmost band
of chain in G’; and (4) leftmost band in G. Dashed arcs indicate possible
structure, each solid arc represents a base pair. Filled in circles show regions
covered by specific structure classes, green for Zpgsw. Colored lines cor-
respond with structure classes that may or may not have any substructures:
Zw 1 in green, and purple for Zyp. Detailed recurrences are provided in
the Supplementary Information.

3.4. Structures closed in G', crossing G

Zyvp(i,7) is the partition function over all structures R; ; in which ¢.j €
G’ and crosses a base pair in G (Fig. 6). If ¢ > 4, i or j is paired in G, or
1.7 does not cross any base pair of G, then Zvp (i,5) = 0.

Cases (1-3) of Zvp (4, ) handle nested substructures where there are no
other base pairs in [, j] that cross the same band(s) that 7.5 crosses. These
nested substructures are managed by the W1 recurrence (see Supplementary
Information). The three cases are disjoint: either ¢ is covered in G (Case 1),
j is covered in G (Case 2), or both are covered (Case 3). In Case (4), .5 and
(i41).(j—1) form a stacked pair; substructures created by (+1).(j—1) are
handled recursively by Zvp. In Case (5), i.j and r.7’ close an internal loop,
and we recurse back to Zyp (r, r’) for the structures formed by r.r’. Cases
(6-9) handle .5 closing a multiloop that spans a band. In these cases, one
band of the multiloop crosses the same band in G that 4.5 crosses, and the rest
of the multiloop bands and unpaired bases are handled by WI’ recurrences
as nested substructures. In Case (6), r.(j — 1) crosses the base pair in G that
i.j crosses, and [¢ + 1,7 — 1] is a non-empty weakly closed region. In Case
(7), (i+1).r crosses the base pair in G that 4.5 crosses, and [r + 1, j — 1] is
anon-empty weakly closed region. In Case (8), [¢ 4+ 1, 7 — 1] is a non-empty
weakly closed region, r.bp(r) crosses the base pair in G that 4.5 crosses,
and [bp(r) + 1,j — 1] is weakly closed. We introduce Z# (4, 7) (see the
bottom left part of Fig. 6), the partition function over all structures such that
i.r € G’ crosses a band in G, and r # j (distinct from Case 6). Finally,
in Case (9), [r + 1,7 — 1] is a non-empty weakly closed region, bp(r).r
crosses the base pair in G that ¢.j crosses, and [i + 1, bp(r) — 1] is empty.
We introduce Z{, (i, j) (see the bottom right part of Fig. 6), the partition

function over all structures such that r.j € G’ crosses a base pair in G,
r #  (distinct from Case 7), and [z, — 1] is empty.

4. Correctness

In the following, we argue that the cases of Zyy fully decompose the density-
2 structure class, and are unambiguous. The proof sketch for correctness
works by structural induction, showing the correctness of each case.

Theorem 1 The recurrence of Zwy (4, j) is complete, correct, and unambi-
guous.

Recall that Zyy (4, 7) is the partition function over the set of structures
Gi,; U Gj ; for the subsequence s; . .. s; taken over all choices of G
(which is pseudoknot-free, disjoint from G, ;, and such that G;, ; U GL j is
density-2).

By definition of density-2 there are three possible cases, Case (1): j pairs
withr, ¢ < r < j, such that r.j closes a pseudoknot-free loop, Case (2): j is
unpaired, or Case (3): j is the rightmost end of a chain of crossing base pairs.
These cases are disjoint; additionally, if j is paired and closes a pseudoknot-
free loop, it cannot also be paired in the rightmost band of a pseudoloop.
Therefore, the recurrence is unambiguous. Since every density-2 structure
falls into one of these three cases, the Zw (i, j) recurrence is complete.
Finally, it is correct, since partition functions can be correctly inferred from
smaller subproblems (which are correct by induction hypothesis). ll

Similarly we have constructed each recurrence to be complete and unam-
biguous by construction. Of particular importance are Cases (6 —9) of Zyp
that handle a multiloop that spans a band. For a complete decomposition
that preserves the O(n?®) time complexity, Z&5 and ZL, are introdu-
ced asymmetrically such that there is only one possible path to reach each
structure. For example, Zyp Case (8) enforces a structure somewhere in
the region between 7 and r, and moving to Z{, Case (1) enforces an
additional structure in the subregion adjacent to j. To compare with Zyp
Case (9), similarly we enforce a structure somewhere in the region betw-
een r and j, but moving to Z.{;P there is no possible case to introduce an
additional structure adjacent to . Thus, we avoid any ambiguity in Zyp
decomposition.

5. Complexity

Starting with the Zy recurrence, we observe that its time and space com-
plexity depend on those of Zy and Zp. Since Zy, handles pseudoknot-free
loops, its time complexity is O(n2), and its space complexity is O(n?),
where n is the length of the input sequence.

Zp deals with pseudoloops. As Zp matches the WMB recurrence of
HFold, and HFold has been proven to have time and space complexities
of O(n3) and O(n?) respectively, the same applies to Zp. We further
empirically verify Zp’s time and space complexity (see Empirical Results).
Therefore, Zy,’s time and space complexity remain O(n3) and O(n?),
respectively.

Similarly, all other cases remain within the O(n?) time and O (n?) space
complexity. For example, the time complexity for both Zpgs and Zpgrw
is O(n?), as both cases involve searching over all values of [ for a given
region [, j]. The time complexity of Zyvp is dominated by the search over
the region [4, §] to find the value of 7, which is also O(n?).

6. Empirical Results

Since CParty solves the conditional partition function for density-2 stru-
ctures for the first time, it cannot be directly benchmarked against existing
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pair and internal loop, respectively. (6 — 9), 4. closes a multiloop spanning a band. Bottom-left: VP, i.e., 1.bp(i) in G’ crosses base pair in G, bp(i) # j.
VPR (1) weakly closed non-empty region [r + 1, 51, (2) empty region [r + 1, j]. Bottom-right: VP, i.e., bp(5).j in G’ crosses base pair in G, bp(j) # 1.
VPL (1) empty region [i, 7 — 1]. Dashed arcs indicate possible structure, each solid arc represents a base pair. Colored lines correspond with structure classes:
Zw 1 in green may or may not have any substructure, but for Zy ;- which also has a green arc, there must be some substructure. Detailed recurrences are

provided in the Supplementary Information.

algorithms. Nevertheless, some comparisons to RNAfold and NUPACK
remain meaningful and can provide insights.

CParty and RNAfold compute identical partition functions on non-
crossing structures.

Recall that in the special case of an empty input structure &G, CParty com-
putes a pseudoknot-free partition function Zygee. As plausibility check, we
first compared the ensemble free energy computed by CParty for Zygree to
the ensemble free energy for pseudoknot-free structures computed by RNA-
fold (Lorenz et al., 2011). Here, CParty perfectly reproduces the results of
RNAfold (Fig. 7a), using Turner 2004 parameters (Mathews et al., 2004)
without dangle energies.

The MFE variant of CParty resembles HFold.

To further validate CParty’s results, we compared CParty-MFE (the MFE
variant of CParty) with HFold using 945 density-2 pseudoknotted structures
from the RNASTRAND database (Andronescu et al., 2008). For each sequ-
ence, we extracted a partial structure to use as input. We found that HFold
and CParty predicted the same output energy for every sequence and pro-
duced identical structures in 913 out of 945 cases. In the remaining cases,
the predicted structures differed but resulted in the same energy, represen-
ting alternate structures. Both programs were run using the DP09 parameters
from HotKnots V2 (Andronescu et al., 2010).

These alternate structures are generated due to significant rewrites in both
the codebase and the recursions used by CParty. One of the most significant
changes is in how CParty traverses the matrix, facilitating the generation of
alternative structures. Another major modification is the rewrite of the mul-
tiloop recurrence to permit unpaired bases on both sides of a pseudoknot, a
feature not allowed in HFold.

CParty does not ‘invent’ pseudoknots in pseudoknot-free RNAs.
To assess the robustness of CParty against potential mispredictions of
pseudoknots, we study the 24 pseudoknot-free tRNA structures from the

RNASTRAND database having completely determined sequence and hair-
pins of at least size 3. For these RNAs, we do not expect energetically strong
pseudoknotted extensions of the RNASTRAND reference, which would
manifest as differences in the results from CParty and RNAfold. Demon-
strating the desirable behavior of CParty, we compare the ensemble energies
predicted by CParty and RNAfold, each time constrained by the reference
structure, in Fig. 8.

CParty’s empirical time and space outperform NUPACK’s and closely
match RNAfold’s.

We then sought to assess the empirical time and space of computing the
CParty partition function, Z, against RNAfold and NUPACK. We chose
RNAfold as a benchmark for our lower bound and NUPACK as it is the
only pseudoknotted partition function calculation algorithm. Since CParty
requires an input structure in addition to the RNA sequence, for each sequ-
ence we identified the stem-loop structure with the lowest free energy, as
detailed in Section Dataset, and used it as input to CParty and RNAfold
(NUPACK’s algorithm does not accept a partial structure as input), for a
fair runtimes comparison. All experiments were performed on the Digital
Research Alliance of Canada’s Cedar cluster. We measured runtime using
user time (see Fig. 9b), and memory using maximum resident set size (see
Fig. 9a). The maximum time and memory used by CParty was 103.42
seconds and 117212 KB. In comparison, RNAfold had a maximum time
of 36.39 seconds and 52208 KB. The expected increase in time and space
usage when transitioning from pseudoknot-free to pseudoknotted structures
in CParty is due to the need for new data structures and additional recurre-
nce relations. As NUPACK requires a large amount of memory, its results
were limited to sequences of max length 100. The maximum time and space
for NUPACK on this subset of our dataset were 23.05 seconds and 460908
KB (see Fig. 9b and 9a in blue). As seen in Figure 9, CParty’s time and
space complexities closely match those of RNAfold.
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Fig. 7: We considered 2733 sequences with length up to 1500 analyzed from
the RNASTRAND V2.0 database (Andronescu et al., 2008). (a) Ensemble
free energies without constraints via CParty (as the y-axis) and RNAfold
(as the x-axis). Agreement is observed between the two. (b) Ensemble free
energies vs minimum free energy of CParty with constraints (pseudoknot-
ted). (c) Each sequence is plotted as its ensemble energy from CParty vs the
minimum free energy from HFold. Colors represent the lengths of the sequ-
ences. A diagonal line represents a 1 to 1 for ensemble energy to minimum
free energy. (d) We plot the results of CParty given a sequence and an input
structure. We took 4 sequences of equal length from the RNASTRAND data-
base (Andronescu et al., 2008) and created 24 dinucleotide shuffled versions
for each of them. Each sequence had 21 varying input structures; time was
placed in a histogram to show the distribution given different inputs.

-20
L

-25
L

CParty ensemble energy (kcalimol)

T T T T T
—40 -35 -30 -25 -20

RNAFold ensemble energy (kcal/mol)

Fig. 8: Constrained ensemble free energies by CParty compared to the ones
of RNAfold for 24 selected pseudoknot-free tRNAs from RNASTRAND.
The virtually identical ensemble energies show that CParty does not predict
strong pseudoknotted extensions in its ensemble.

Input structure has minimum effect on CParty’s performance.

To assess the potential impact of the input structure on the performance
of CParty, we calculated the constrained partition function on 100 seque-
nces of length 968 with a total of 2100 various input structures, as detailed
in Section Dataset. As shown in Figure 7d, little variation is observed in
memory given different input structures with the 25th and 75th percentiles
showing a difference of 10 KB. Figure 7d also provides a median time of
18 seconds with the 25th and 75th percentiles showing a difference of only
2 seconds. While variations in CParty’s time and space usage are expected,
those were not deemed significant.
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Fig. 9: Time and space consumption of CParty vs. RNAfold and NUPACK
on our dataset, when given an RNA sequence and a pseudoknot-free stru-
cture as input. (a) Memory Usage (maximum resident set size in KB) versus
length (log-log plot) over all benchmark instances. The solid line shows an
asymptotic fit (¢1 +c2n®) for sequence length n, constants ¢1,¢2, and expo-
nent x for the fit. We ignored all values < 250 for CParty and RNAfold
and all values < 40 for NUPACK. (b) Run-time (s) versus length (log-log
plot) over all benchmark instances. For each tool in both plots, we report (in
parenthesis) the exponent x that we estimated from the benchmark results; it
describes the observed complexity as ©(n®).

6.1. Analysis of SARS-CoV-2 frameshift structure

There has been extensive research into predicting structure of the SARS-
CoV-2 frameshift sequence, which includes both computational efforts (Sch-
lick et al., 2021b; Trinity et al., 2023, 2024) and experimental probing
experiments (Huston et al., 2021; Manfredonia et al., 2020; Yang et al., 2021;
Zhang et al., 2021). The frameshift sequence is believed to form a density-2
pseudoknotted structure (Kelly et al., 2020; Schlick et al., 2021a; Jones and
Ferré-D’ Amaré, 2022).

Employing CParty with different fixed input structures, here we provide
a view of suboptimal structures for the SARS-CoV-2 frameshift stimulating
structure ensemble. Combining the available SHAPE reactivity probing data-
sets and various thermodynamic-based algorithms, we previously identified
the top-most energetically favourable initial stems for the SARS-CoV-2 77
nucleotide frameshift pseudoknot sequence (Schlick et al., 2021b; Trinity
et al., 2023, 2024). Here, we utilize the top two stems (referred to as initial
stem 1 and 2) to explore the structural ensemble for the frameshift seque-
nce. These two stems were identified as pivotal for formation of two of the
main structural motifs, referred to as 3_3 and 3_6 (Schlick et al., 2021a)(see
Fig. 11b).

Following the pipeline of Fig. 10, with each of the two initial stems as
constraint, we employ CParty to compute ensemble free energy for sequ-
ences of decreasing length (taking 7 bases one at a time from the 5’ end),
to simulate the effects of the translocating ribosome (Atkins et al., 2016;
Dinman, 2012).

l 1. Obtain input RNA sequence l
l 3. Compute ensem-

ble energies with each
initial stem constraint

2. Compute energetically
favourable initial stems
l Ensemble energies
Energetically
favourable

4. Remove one base

initial stems
’ from 5 end of sequence

Fig. 10: CParty constrained ensemble energy pipeline. Rectangles dictate
actions, parallelograms denote outputs.
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Fig. 11: SARS-CoV-2 secondary structure motif transition. (a): Constrained
ensemble energies for decreasing SARS-CoV-2 sequence lengths (decrea-
sing from 77 to 70 nt, left to right, sequence labeled on x-axis corresponding
with 5” end of RNA strand shown in (b)). (b) Arcs represent base pairs. Ini-
tial stem 1 in black (included in both top and bottom pseudoknot motifs),
initial stem 2 in blue, psuedoknot-free stem in green. Top arc diagram: 3_3
motif (Schlick et al., 2021a), Bottom arc diagram: 3_6 motif (also referred
to as the native structure). (a & b): Red rectangles highlight the location of
a transition from the 3_3 motif to the 3_6 motif. When the ribosome desta-
bilizes the 3_3 motif base pairs (blue arcs) to the left of the red rectangle,
refolding of the native-type pseudoknot (red arcs) is expected.

As seen in Fig. 11, ensemble free energies constrained by initial stems
1 and 2 are close to one another for the 77 length frameshift sequence.
However, at the Sth base removal from the 5’ end (see the red rectangle
in Fig. 11), the ensemble free energy for initial stem 2 increases, suggesting
a significant change of structural ensemble at this point. We further inve-
stigated this possible structural change using Iterative HFold (Jabbari and
Condon, 2014); with frameshift sequence and initial stems 1 and 2 as input
and decreasing the length by 7 bases (one base at a time) from the 5” end. We
noticed that both initial stems 1 and 2 can form the 3_3 structural motif at
original sequence length (77). However, at the marked transition form (red
rectangle), the 3_3 motif is destabilized while the 3_6 motif maintains its sta-
bility. Therefore, the ensemble constrained by initial stem 1 is not affected.
This transition observed through both ensemble free energy change as well
as structurally supports the hypothesis that destabilization of initial stem 2
facilitates subsequent refolding of the native-type pseudoknot (Trinity et al.,
2024).

7. Discussion

In this work, we introduce CParty, a novel biologically motivated algori-
thm that follows the hierarchical folding hypothesis to efficiently compute
the constrained partition function (CPF) for density-2 RNA secondary stru-
ctures. CParty takes an RNA sequence and a pseudoknot-free structure G as
input and computes the CPF over all density-2 structures G U G, where G’
is pseudoknot-free and disjoint from G.

CParty was developed by addressing the ambiguities in the HFold algo-
rithm (Jabbari et al., 2008). While HFold relies on SimFold (Andronescu
et al., 2005) for pseudoknot-free energy calculations, CParty utilizes the
efficient and well-maintained ViennaRNA library (Lorenz et al., 2011) and
supports various energy models.

CParty handles the class of density-2 structures, which includes a wide
range of pseudoknots such as kissing hairpins and interleaved bands of
infinite length with arbitrarily nested substructures of the same class. By
employing a hierarchical folding approach, CParty achieves a runtime com-
plexity of O(n?) and a space complexity of O(n2). We evaluated the
empirical time and space usage of CParty against RNAfold and NUPACK
on a large dataset of RNA sequences of varying lengths, demonstrating
CParty’s efficiency in handling large RNA sequences.

Correctly identifying the input structure G is an important factor when
using our algorithm. As noted in previous studies (Jabbari and Condon,
2014; Trinity et al., 2023), utilizing the most stable pseudoknot-free stem-
loops is effective in identifying both the minimum free energy (MFE)
structure and low-energy suboptimal structures—those energetically close
to the MFE structure. Repeatedly sampling the hierarchical distribution with
multiple fixed structure choices for G can help identify possible folding paths
to different secondary structure motifs. Although the input structure influe-
nces our algorithm’s runtime and memory usage, we found this impact to be
minimal.

In this work, we demonstrated CParty’s application in characterizing
structural motifs in the SARS-CoV-2 frameshift element. We believe our
algorithm can be similarly used in other structure-function characterizations
and aid in the development of novel therapeutics.

Under hierarchical folding assumptions, CParty enables us to calculate
the probability of observing a density-2 structure G U G’ at equilibrium for
an RNA S as the product of the pseudoknot-free probability of G (following
McCaskill’s method) and the conditional probability Pr(G U G’ |G, S).

Building on this concept, CParty supports sampling from the correspon-
ding hierarchical structure probability distribution. While we plan to study
hierarchical sampling explicitly in future work, it can be achieved through
direct stochastic traceback from CParty’s dynamic programming matrices.
This process involves a two-step approach: first, sampling pseudoknot-
free structures G (Ding and Lawrence, 2003), and then drawing from the
hierarchical distribution constrained by G.

By leveraging these capabilities, CParty offers a powerful and efficient
method for exploring RNA secondary structures, paving the way for further
advancements in RNA research.
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