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Abstract. With the surge of IoT devices, these systems must provide
reliable services and make trustworthy decisions based on fast and ac-
curate data analytics. Effective data analysis is crucial for IoT systems
to make rapid decisions, gain insights, uncover hidden patterns, and in-
teract with users and other systems efficiently. This work in progress
aims to model connected devices as Parametric Timed Automata, allow
them to share operating data on a blockchain and verify its good be-
haviour with this data. Operating data are seen as unknown constraints
in Parametric Timed Automata and can be used to verify or improve
models of connected devices, along with providing safety. We propose
a framework to model simple connected devices, upload and download
parameter through smart contracts and verify the safety of the produced
behaviour.

1 Introduction

Experts predict that smart devices will generate a very large volume of data
globally, potentially reaching 80 ZB by 2025 [Cor21] generated by 55.7 billion
connected IoT devices. This raises questions about the future of this automat-
ically generated data: who will store it, where, and for what purpose? In the
data-driven economy, manufacturers of connected devices aim to collect as much
user data as possible. The generated data has become more valuable than the
device itself, serving to enhance the product’s functionality or to be sold to other
manufacturers. Companies’ marketing departments will utilize this data to pro-
mote related products, such as applications or energy-related items: keep private
data under control remains a tough task.

Connected devices face significant security challenges, particularly in terms
of security and formal specifications [Sin21]. As these devices can be considered
embedded systems, formal specifications are crucial. Flaws in embedded system
design have historically led to project failures, such as the Ariane 5 rocket ex-
plosion in 1996∗ due to a simple but hard-to-detect conversion error [Den]. To
ensure safety and security in modern connected devices a more secure, design-
oriented philosophy is required. This involves formally model a system and its

†Institute of Engineering Univ. Grenoble Alpes
∗exploded 36.7 seconds after its launch, due to a bad 64 to 16 bits conversion (an

easily correctable error but humanly hard to spot).
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functionalities before coding and ensuring that the written code adheres to the
initial model. On top of that, energy consumption optimization is a key point
of smart devices while many of these devices use proprietary software and hard-
ware, limiting users’ ability to customize them freely.

In [CAR22] the authors propose a formal framework for IoT architectures
based on Discrete Event System Specification to enhance resource management
and energy efficiency in edge computing applications for centralized architec-
tures. Besides, [HKB17] focuses on the formal verification of the communication
protocol between connected objects.
Outline. This work aims to help users build models of connected device which can
share, using the blockchain, data from a specific usage. Devices are allowed to
download new data and update their connected devices with global settings com-
puted by similar connected devices. In Section 2 we present formal verification
through the Parametric Timed Automata formalism. In Section 3 we exemplify
the interest of sharing verified data to optimize the use of connected devices.
In Section 4 we discuss a framework to upload and download data from con-
nected devices in order to create a collaboration process through a blockchain.
Finally in Section 5, we expose the future scientific directions brought by this
work and conclude in Section 6.

2 Parametric Timed Automata to model IoT devices

Formal methods are a powerful tool to prove the good behaviour of embed-
ded systems. Precisely, Timed Automata theory is a mature research field that
has been under studies for more than 20 years. Timed Automata theory is an
excellent way to model and analyze timed systems [AD94] i. e., systems that
evolve according to time. With this formalism it is possible to model a system
and prove whether a given timed property is respected. It can be described a
tuple composed of a set of clocks that model time elapsing, locations that rep-
resent physical states of a system, and transitions between locations, possibly
augmented with guards which are time constraints involving clocks that must
be true to take the transition. A more powerful method to model timed sys-
tems where not all timed constants are known is the use of Parametric Timed
Automata (PTA). In these models, constraints involving clocks can contain un-
known variables [AHV93] called parameters.

2.1 Clocks, parameters and parametric clock constraints

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is a function v : X→ R+. We identify
a clock valuation v with the point (v(x1), . . . , v(xH)) of RH

+ . We write ~0 for
the clock valuation assigning 0 to all clocks. Given d ∈ R+, v + d denotes the
valuation s.t. (v + d)(x) = v(x) + d, for all x ∈ X. Given R ⊆ X, we define the
reset of a valuation v, denoted by [v]R, as follows: [v]R(x) = 0 if x ∈ R, and
[v]R(x) = v(x) otherwise.
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We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants.
A parameter valuation pv is a function pv : P→ Q+.

We assume ./ ∈ {<,≤,=,≥, >} and / ∈ {<,≤}. A parametric clock con-
straint pcc is a constraint over X ∪ P defined by a set of inequalities of the
form x ./

∑
1≤i≤M αipi + d, with αi ∈ {0, 1} and d ∈ Z. Given pcc, we

write v |= pv(pcc) if the expression obtained by replacing each x with v(x)
and each p with pv(p) in pcc evaluates to true.

2.2 Parametric timed automata

We recall PTAs [AHV93].

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X,P, I, E), where: i) Σ is a
finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial
location, iv) X is a finite set of clocks, v) P is a finite set of parameters, vi) I is
the invariant, assigning to every l ∈ L a parametric clock constraint I(l), vii) E
is a finite set of edges (or transitions) e = (l, g, a,R, l′) where l, l′ ∈ L are the
source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and the
guard g is a parametric clock constraint.

Given a parameter valuation pv, we denote by pv(A) the non-parametric
structure where all occurrences of a parameter p have been replaced by pv(p).
We denote as a timed automaton any structure pv(A).†

Let us recall the concrete semantics of TAs.

Definition 2 (Concrete semantics of a TA). Given a PTA A =
(Σ,L, l0,X,P, I, E), and a parameter valuation pv, the concrete semantics of
pv(A) is given by the timed transition system (S, s0,→), with

– S = {(l, v) ∈ L× RH
+ | v |= pv(I(l))},

– s0 = (l0,~0)
– → consists of the discrete and (continuous) delay transition relations:
• discrete transitions: (l, v)

e7→ (l′, v′), if (l, v), (l′, v′) ∈ S, there exists
e = (l, g, a,R, l′) ∈ E, v′ = [v]R, and v |= pv(g).

• delay transitions: (l, v)
d7→ (l, v + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, v +

d′) ∈ S.

Moreover we write (l, v)
e−→ (l′, v′) for a combination of a delay and discrete

transition where ((l, v), e, (l′, v′)) ∈ → if ∃d, v′′ : (l, v)
d7→ (l, v′′)

e7→ (l′, v′).
Given a TA pv(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of pv(A). A run of pv(A) is a possibly infinite alter-
nating sequence of states of pv(A) and edges starting from the initial state s0

of the form s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→ · · · , such that for all i = 0, 1, . . . ,

ei ∈ E, and (si, ei, si+1) ∈ →.

†We should use a rescaling of the constants to avoid comparisons of clocks with
rationals: by multiplying all constants in pv(A) by the least common multiple of their
denominators, we obtain an equivalent (integer-valued) TA, as defined in [AD94].
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off on

activate:
x ≤ p

deactivate:
x ≤ q
x := 0

Fig. 1: PTA that models an electric radiator

Given a state s = (l, v), we say that s is reachable if s appears in a run of
pv(A), or simply that l is reachable in pv(A), if there exists a state (l, v) that is
reachable.

Example 1. Consider an electric radiator that turns on for a specific period of
time. Fig. 1 models the behaviour of the radiator depending on time with:

1. L : {on, off}, X : {x}, Σ : {activate, deactivate}
2. guard g(activate) = {x ≤ p}, g(deactivate) = {x ≤ q}
3. reset R(deactivate) = {x} as x := 0.

In the initial state the radiator is off, the clock x starts from 0 and its
value increases monotonically. It might activate itself within p units of time, p
being an unknown constant, called a parameter. Once it is activated, it might
deactivate itself within q − p units of time, with q a parameter as well. This
transition is possible if and only if p ≤ q. Finally, x is reset to 0 when the
radiator is turned off. Questions such as, given values for p and q, “is it possible
my radiator never turn off?” can be answered using this model. For more complex
and general systems (i. e., involving more states, clocks and parameters) such
questions remain undecidable [AHV93].

The formula “EF” expresses reachability [AD94], that is EF-emptiness asks
whether the set of parameter valuations for which a given location is reachable
for at least one run is empty or not. We focus notably on EF-synthesis that asks
to synthesize these parameter valuations, i. e., given a PTA A and a location l,

synthesize the set {pv | ∃s0
e0−→ (l1, v1)

e1−→ · · · em−1−→ (l, v) a run of pv(A)}. In
our example Fig. 1, we consider reachability of the location off.

3 Improve models using collected data resulting from
collaboration

From daily data sent by every connected devices to the blockchain, we try to
improve parameterized models in order to optimize the device operations and
behaviour.
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We take again as an example our connected radiator, but this time working
along with a thermometer. We depict this scenario in Fig. 2. Using the basic
model with timed automaton of Fig. 1, we valuate the parameters p and q with
a parameter valuation pv, say pv(p) = 60 minutes and pv(q) = 90 minutes. With
these values for parameters, the radiator can estimate how much time it is in an
active state. Combining this with its known hourly electricity consumption it can
estimate its daily consumption in order to keep a room at a given temperature.

Given another radiator at different places, say one has a lower daily electricity
consumption to keep the same average temperature. It can upload its settings
(i. e., its values for parameters p and q) to the blockchain so other connected
radiators can download these new parameter values and try to apply them both,
or one of them only, or even try to produce more accurate values for the model
by using approached values of pv(p) and pv(q).

radiator

Z3
IMITATOR
Hardhat

local values p = 3, q = 5
stores “good” values of p, q

PTA model

radiator

Z3
IMITATOR
Hardhat

local values p = 2, q = 6
stores “good” values of p, q

thermometer

Z3
IMITATOR
Hardhat

stores “good”
values of p, q

PTA model

Fig. 2: Scenario of a pair radiator/thermometer connected to a distant radiator

In the following we propose to build a formal verification framework that is
portable on low resources devices. We use a smart contract to store values that
can be used in our model, e. g., maximum and minimum time values that allow
our radiator to turn on and off. Suppose a connected device wants to upload data.
It can download a PTA model that represents its behaviour. It downloads from to
the blockchain the latest parameter values that are suited for its environment and
tasks e. g., from other connected devices of the same type (we can use categories
of devices, say connected radiator with connected radiators, connected fridge
with connected fridges...) or create new values and verify these values do not
contradict the current constraints used in the model with the parametric model
checker IMITATOR [AFKS12] and the constraint solver Z3 [dMB08]. The output
is whether the model guarantees the “good” behaviour of the connected devices
for these parameter values. Finally, if data is not compromising the behaviour
of the device category, the parameter values are validated and new values are
stored on the blockchain.

5



4 Communication and offline parametric verification

We implemented the following smart contracts, fully portable on the main
Ethereum blockchain, to allow connected devices to:

1. upload data on their behaviour;
2. download data in order to modify their behaviour;
3. run offline a model checking algorithm to verify stored data.

In this work in progress, we do not automatically collect data from the con-
nected devices but use a set of predefined values to illustrate the behaviour of
our models.

We describe the components we use in the following, which are Hardhat, Z3
and IMITATOR.

Hardhat is a comprehensive development environment and task runner for
Ethereum smart contract development, designed to streamline the process of
building, testing, and deploying smart contracts. It offers features such as a lo-
cal Ethereum network for testing, a built-in testing framework, Solidity compila-
tion, and a plugin system for extended functionality. Hardhat’s focus on developer
experience, coupled with its robust toolset including debugging capabilities, net-
work management, and Typescript support, has made it a popular choice among
Ethereum developers.

Z3 [dMB08] is a powerful theorem prover and SMT solver developed by Mi-
crosoft Research, designed to determine the satisfiability of logical formulas over
various theories. It’s widely used in software verification, program analysis, and
formal methods, helping developers and researchers prove properties about pro-
grams, find bugs, and solve complex logical and mathematical problems. Z3 is
known for its high performance and ability to handle large and complex formulas
efficiently, making it valuable in both academic research and industrial applica-
tions. The solver provides APIs for several programming languages, facilitating
its integration into various tools and applications across different domains of
computer science and software engineering.

IMITATOR [AFKS12] is an open-source model checker specifically designed
for the analysis of parametric timed systems, using PTA as its underlying formal-
ism. It allows for the modeling, verification, and parameter synthesis of real-time
systems where timing constants may be unknown or variable. IMITATOR can per-
form various tasks including parameter synthesis (finding parameter values that
satisfy given properties), robustness analysis, and model checking of parametric
systems. The tool’s ability to handle systems with parametric constraints sets it
apart from traditional model checkers, enabling more flexible and comprehensive
analysis of time-dependent systems. IMITATOR natively supports operations on
rational parametric fixed variable to model e. g., costs or weights.

The development constraints were the following:

– IMITATOR synthesizes constraints on an infix form e. g., 2 + 2 ∗ 4 ≤ 11 read
from left to right, and is not meant to check that a conjunction of a set of
constraints is satisfiable; it must run on a low resources device;
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– Hardhat uses Typescript/Javascript; it must run on a low resources device;
– Z3 most developed APIs are for Java and Python. The one for Typescript/-

Javascript runs with constraint of similar form, e. g., 2.add(2.mul(4)).le(11)
but not with an infix form e. g., ≤ +2 ∗ 2 4 11 which is easier to parse.

The developed solution‡, all in Typescript working with Hardhat, processes
as follows:

We model e. g., a radiator as shown in Fig. 1 in the IMITATOR format,
and set up IMITATOR and a Hardhat node on a low resources device such as a
Raspberry Pi. This is one node, the left one shown in Fig. 2. Using IMITATOR
we output the set of values for the device to run as expected i. e., synthesize
the parameter values s.t. “off” is reachable§ and this set is 0 ≤ q − p. We store
“good” parameter values p and q (e. g., pv(p) = 3 and pv(q) = 5) on the Hardhat
node as the initialization. We can also decide to use our own parameter values.
Recall that the parameter values that are given in the example are predefined
values that are used to illustrate the behaviour of our model.

We fetch two parameters values p and q and along with the constraints (e. g.,
0 ≤ q − p) given by IMITATOR we:

– create a Z3 solver;
– transform the constraints in prefix notation (e. g., ≤ − q p 0);
– replace parameters by their values (e. g., ≤ − 5 3 0);
– transform the constraints into a well-parenthesized expression (e. g., (0 ≤

(5− 3))) and in Z3 notation (e. g., 0.le(5.sub(3)));
– check whether the constraint is satisfiable.

Now if the constraint is satisfiable, we consider that the parameter valuation
s.t. pv(p) = 3 and pv(q) = 5 ensures the good behaviour of our system.

As we have used model-checking techniques, the good behaviour is proven
under the given parameter valuations. However, a model checker needs comput-
ing resources that may not be available on some IoT hardware. We prove the
good behaviour of the model of our system and assume the model is as close as
possible to the actual device.

5 Future directions

Formally model a network of connected devices and prove that security and
safety constraints hold is a complex collaborative project.
Automatic connection. The next development step includes the ability for con-
nected devices to verifies on-the-fly that safety and security properties hold each
time a new device is added to or removed of the network. Indeed, it would allow
connected device to interact together with respect to some security constraints
previously required, resulting in a win-win scenario. This can be done without the

‡Code, examples and technical environment can be found at https://

gricad-gitlab.univ-grenoble-alpes.fr/MRprojects/imitatortoz3hardhat/
§Note that the radiator can always stay off which is considered a safe behaviour
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need of a human third-party: the decentralized network becomes autonomous,
especially in the case of nearby devices.
Light model checkers. Model checkers tend to be greedy in resources. We also
would like to develop light versions of model checkers e. g., Uppaal for Timed
Automata [BLL+95] and Romeo for Petri Nets [GLMR05]. By compiling a light
model checker version that runs on other architectures such as Arduino (ours
runs on ARM Raspberry Pi 32bits), we could increase the number of architec-
tures and therefore devices that support our framework. In that case, we could
split the model checking and the blockchain communication on separated devices
if the hardware lacks resources.
Security and safety models. In order to enlarge the capabilities of our models,
we could use attack-fault trees as a mean to model safety failures. Such models
use simplified semantic to model possible events combinations that may lead to
a system failure or security breach. Attack-fault trees can be used along with
model checkers to improve their modeling power (see e. g., [KS17,ALRS21].
Hybrid models. We are yet limited by the expressiveness of our models: PTAs
can model timing constraints that evolve at the same rate and its extensions
additionally model costs and weight values (see e. g., Priced/Weighted Timed
Automata [BFH+01,ALP04] and their parametric extensions [ALR21]). Hybrid
Automata [HKPV98] offer the most suitable model as variables can evolve at
different rates: this offers the ability to model more environmental parameters
such as energy consumption and temperature. However, model checking in that
case is more complex [Fre08,AFKS12].
Machine Learning. Machine learning can be valuable for classifying types of
connected devices and enhancing their safety, such as by detecting maintenance
needs early [SK23].

6 Conclusion

This on-going work offers a framework using TypeScript and Hardhat to model
connected devices, such as radiators, using Parametric Timed Automata. We can
upload and download operating data as parameters using smart contracts written
in Solidity to share them with other connected devices on a blockchain to preserve
integrity of the data. The process involves using IMITATOR to generate and verify
parameter values that ensure the device operates as expected. These values are
stored on a Hardhat node running on a low-resource device like a Raspberry
Pi. The solution also uses the Z3 solver to check the satisfiability of constraints
derived from IMITATOR when new parameter values are introduced. Finally, if
the the behaviour of the model is not compromised by these new parameter
values, they are stored on the blockchain and can be verified and used by other
connected devices. Note that the model-checker is developed for classic desktop
computer systems: it needs an IoT device with powerful computing resources and
also depends on the accuracy of the model compared to the actual device. In
future versions, we plan to optimize the model-checker for low resources devices
and the models.
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