
HAL Id: hal-04821785
https://hal.science/hal-04821785v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Modeling Wazuh rules with Weighted Timed Automata
Anass Haydar, Mathias Ramparison

To cite this version:
Anass Haydar, Mathias Ramparison. Modeling Wazuh rules with Weighted Timed Automata. Mathias
Ramparison. Parametric verification to ensure safe behaviour of connected devices. 15th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks / 14th International Conference
on Current and Future Trends of Information and Communication Technologies in Healthcare EU-
SPN/ICTH 2024, Elsevier, Procedia Computer Science, vol. 251, Nov 2024, Leuven, France. pp.75-82,
�10.1016/j.procs.2024.11.086�. �hal-04821785�

https://hal.science/hal-04821785v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Modeling Wazuh rules with Weighted Timed
Automata

Anass Haydar, Mathias Ramparison[0000−0001−6764−1214]

Univ. Grenoble Alpes, CNRS, Grenoble INP†, VERIMAG, UMR 5104, 38000,
Grenoble, France

Abstract. In the rapidly evolving landscape of cybersecurity, Endpoint
Detection and Response (EDR) systems have emerged as a critical ad-
vancement in cybersecurity, providing organizations with enhanced ca-
pabilities to detect, investigate, and mitigate sophisticated attacks. The
open-source EDR platform Wazuh is specifically highlighted as an at-
tractive option for organizations and provides comprehensive security
monitoring, threat detection, and incident response capabilities without
the burden of licensing costs. A critical component of the Wazuh sys-
tem is its rules set, which are predefined or custom-written conditions
that analyze log data and system events to identify potential security
threats, anomalies, or policy violations. These rules, typically written
in XML format, form the core of Wazuh’s threat detection capabilities.
However, in complex architectures, the set of rules can be challenging
to understand and update, and different rules can overlap, preempt, or
cancel each other. To address this issue, we propose to model Wazuh
rules as Weighted Timed Automata, which helps to verify that rules are
well-triggered by verifying the reachability of the corresponding state in
the automaton using the model checker Uppaal.

1 Introduction

In the face of escalating cyber threats, Endpoint Detection and Response (EDR)
systems have emerged as a critical advancement in cybersecurity, offering orga-
nizations enhanced capabilities to detect, investigate, and mitigate sophisticated
attacks. These systems provide real-time monitoring and analysis of endpoint ac-
tivities, leveraging advanced analytics and machine learning to identify anoma-
lous behaviour that may indicate a security breach. The growing interest in EDR
technology is driven by its ability to offer comprehensive visibility into endpoint
activities, facilitate rapid incident response and provide valuable forensic data,
thus enabling organizations to adopt a more proactive and robust approach
to cybersecurity in an increasingly complex threat landscape. Specifically, the
open-source EDR Wazuh [Waz22] attracts considerable attention in the cyber-
security field as an open-source platform that provides comprehensive security
monitoring, threat detection, and incident response capabilities without the bur-
den of licensing costs. Its versatility in supporting multiple operating systems,

†Institute of Engineering Univ. Grenoble Alpes

1

coupled with features such as intrusion detection, log analysis, and compliance
monitoring, makes it a compelling choice for organizations seeking to bolster
their security infrastructure efficiently and economically. A critical component of
Wazuh is the rules set. Wazuh rules are predefined or custom-written conditions
that analyze log data and system events to identify potential security threats,
anomalies, or policy violations within the Wazuh security platform. These rules,
typically written in XML format, form the core of Wazuh’s threat detection
capabilities by defining specific patterns to look for in collected data and trig-
gering appropriate alerts or actions when these patterns are detected, thereby
enabling organizations to effectively monitor and respond to security incidents.
However in complex architectures the set of rules can be difficult to understand
and update and different rules can overlap and preempt or even cancel each
other.

Several methods have been developed to tackle this issue, especially for In-
trusion Detection Systems (IDS). In [AL15] the authors parse every rules and
generate a payload to test each of them in order to detect overlapping rules.
In [NK20] the authors propose a semantic analysis approach to identify redun-
dant rules.

In this paper, we propose a framework to model rules as Uppaal Weighted
Timed Automata [BY03] and to ensure that rules are well triggered by verifying
the reachability of the corresponding state in a network of automata. In contrast
with [AL15,NK20] we do not test rules by generating payloads nor check for
redundancy of rules but we verify that custom-rules are able to be triggered.
On top of that, Wazuh integrates IDS such as Suricata [Sur] and processes its
output: Wazuh covers a wider range of behaviours than IDSs.

Timed automata (TAs) [AD94] represent a powerful formalism to model and
verify systems where concurrency is mixed with hard timing constraints. TAs
are an extension of finite-state automata with clocks, i. e., real-valued variables,
that can be compared to integer constants and updated to 0 along edges (called
reset in the literature). TAs benefit from many decidability results such as the
reachability of a discrete location, which is PSPACE-complete [AD94] (and some
undecidability results too, such as language inclusion). Several optimization is-
sues have been demonstrated to be solvable, such as minimum-cost reachability
in the context of Weighted/Priced Timed Automata where integer constants can
be used to model costs [BFH+01,ALP04].

Outline. Section 2 recalls necessary definitions. Section 3 introduces the for-
malism of Weighed Timed Automata while Section 4 presents Wazuh rules.
Section 5 describes our framework. Section 6 concludes the article and outlines
future research directions.

2 Preliminaries

Let N, Z, and R+ denote the set of non-negative integers, integers and non-
negative reals, respectively.

2

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is a function v : X → R+. We write
~0 for the clock valuation assigning 0 to all clocks. Given d ∈ R+, v + d denotes
the valuation s.t. (v + d)(x) = v(x) + d, for all x ∈ X. Given R ⊆ X, we define
the reset of a valuation v, denoted by [v]R, as follows: [v]R(x) = 0 if x ∈ R, and
[v]R(x) = v(x) otherwise.

We assume a set W = {w1, . . . , wM} of weights. A weight valuation µ is a
function µ : W → Z. We write ~0W for the weight valuation assigning 0 to all
weights.

A linear arithmetic expression over W is
∑

i aiwi + c, where wi ∈ W
and ai, c ∈ Z. Let LA(W) denote the set of arithmetic expressions over W.
A weight update is a partial function α : W 9 LA(W). That is, we can assign
a weight to an arithmetic expression of weight values and constants.

We assume ./ ∈ {<,≤,=,≥, >}. A guard g is a constraint over X∪W defined
by a conjunction of inequalities of the form x ./ d or w ./ k with x ∈ X, w ∈W,
d, k ∈ N. Given g, we write (v, µ) |= g if the expression obtained by replacing
each x with v(x) and each w with µ(w) in g evaluates to true.

Given a weight valuation µ and a weight update α, we need an evalua-
tion function eval(α, µ) returning a weight valuation, and defined as follows:
eval(α, µ)(w) = µ(w) if α(w) is undefined, and µ(α(w)) otherwise, where
µ(α(w)) denotes the replacement within the linear arithmetic expression α(w)
of all occurrences of a weight wi by its current value µ(wi). Observe that this
replacement gives a integer constant, therefore eval(α, µ) is indeed a weight val-
uation W→ Z.

3 Weighted Timed Automata

We take advantage of the multiple modeling opportunities offered by Timed
Automata and Uppaal [BY03] to establish the following formalism to model the
activation of a security rule as a combination of discrete and continuous events,
enabling the verification of its behavior. The resulting structure can be seen as an
extension of a Weighted/Priced Timed Automaton [BFH+01,ALP04] with only
integer weights on edges (the discrete “switch” weight part of [BFH+01,ALP04])
in guards and/or weight updates. Moreover, we allow multiple weights and also
to set to zero and decrement weights. Our formalism can also be seen as the non
parametric version of [ALRS21] where operations can be performed on multiple
parametric weights, but where weights cannot be compared in guards.

Definition 1. A Weighted Timed Automaton (WTA) A is a tuple
A = (Σ,L, l0, F,X,W, I, E), where:

1. Σ is a finite set of synchronization actions,
2. L is a finite set of locations,
3. l0 ∈ L is the initial location,
4. F ⊆ L is the set of accepting locations,
5. X is a finite set of clocks,

3

6. W is a finite set of weights,
7. I is the invariant, assigning to every l ∈ L a guard I(l),
8. E is a finite set of edges e = (l, g, a,R, α, l′) where l, l′ ∈ L are the source

and target locations, g is a guard, a ∈ Σ, R ⊆ X is a set of clocks to be reset,
and α : W 9 LA(W) is a weight update.

Let us now define the concrete semantics of WTA.

Definition 2 (Semantics of a WTA). Given a WTA A =
(Σ,L, l0, F,X,W, I, E), the semantics of A is given by the timed transi-
tion system (TTS) (S, s0,→), with

– S = {(l, v, µ) ∈ L× RH
+ × ZM | v |= I(l)},

– s0 = (l0,~0,~0W),
– → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (l, v, µ)
e7→ (l′, v′, µ′), if (l, v, µ), (l′, v′, µ′) ∈ S, and

there exists e = (l, g, a,R, α, l′) ∈ E, such that (v, µ) |= g, v′ = [v]R, and
µ′ = eval(α, µ)(w);

2. delay transitions: (l, v, µ)
d7→ (l, v + d, µ), with d ∈ R+, if ∀d′ ∈

[0, d], (l, v + d′, µ) ∈ S.

That is, a state is a triple made of the current location, the current clock val-
uation, and the current weight valuation. The clock valuations evolve naturally
as in timed automata, while the current weight evolves according to the weight
update function.

Moreover we write (l, v, µ)
(e,d)−→ (l′, v′, µ′) for a combination of a delay

and discrete transition if ∃v′′ : (l, v, µ)
d7→ (l, v′′, µ)

e7→ (l′, v′, µ′). Given A
with concrete semantics (S, s0,→), we refer to the states of S as the concrete
states of A. A run of A is an alternating sequence of concrete states of A
and pairs of edges and delays starting from the initial state s0 of the form

s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ E, and

(si, ei, si+1) ∈ →. Given a state s = (l, v, µ), we say that s is reachable if s
belongs to a run of A. By extension, we say that l is reachable in A, if there
exists a state (l, v, µ) that is reachable.

Communication between processes can occur synchronously through hand-
shake synchronization, which utilizes input and output actions. To represent
hand-shake synchronization, it is assumed that the set of synchronization ac-
tions Σ contains symbols for input actions (denoted as a?) and output actions
(denoted as a!). As in [BY03], we will manipulate a network of WTA where they
interact using a synchronization channel, i. e., pairs of labels (a!, a?). One au-
tomaton can broadcast a!, and the other remains in a state of anticipation a?.
Either a single automaton can move on its own or several automata can move
simultaneously.

Uppaal facilitates the modeling of atomic action sequences, such as atomic
broadcast, through the concept of committed locations. In a committed location,
no delay is permitted. In a network of WTA, if a process occupies a committed

4

location, only action transitions originating from that committed location are
allowed to occur. Consequently, processes in committed locations can only be
interleaved with other processes residing in committed locations. Each WTA in
a network may contain a subset Lc ⊆ L of locations, designated as committed
locations. As a syntactical constraint, only predicates over weights are permitted
to appear in a guard on an outgoing edge from a committed location; no clock
constraints are allowed. Regular locations of L \Lc are represented as location

and committed locations of Lc as committed location .

4 Rules in Wazuh

Wazuh is an open-source security platform that provides comprehensive security
monitoring, threat detection, and incident response capabilities. It combines a
powerful Security Information and Event Management engine (SIEM) with ad-
vanced capabilities for endpoint detection and response, file integrity monitoring,
and vulnerability detection. Wazuh offers a centralized management console–
called Wazuh manager–, real-time alerts, and comprehensive reporting to help
organizations effectively secure their IT infrastructure and protect against cy-
ber threats. To detect and report behaviours of any endpoint connected to the
Wazuh manager, rules have to be defined. In the usual workflow:

– Wazuh’s agent software (endpoint) collects security-related events from the
monitored systems and sends them to the Wazuh manager;

– the Wazuh manager then processes these events and matches them against
the defined rules;

– when an event matches the conditions specified in a rule, the corresponding
action(s) are triggered, such as generating an alert.

4.1 Existing and custom rules

In Wazuh, rules play a crucial role in the security monitoring and detection
process. Wazuh comes with a set of pre-defined rules that cover a wide range
of security scenarios, such as file integrity monitoring, user activity monitoring,
and detection of known threats. In addition to existing rules that cover basic se-
curity events, administrators can create custom rules to address specific security
requirements or to detect organization-specific threats. Rules can be configured
to have different levels of severity, allowing for prioritization and effective inci-
dent response.

Wazuh rules are defined in XML files located by default in the
/var/ossec/etc/rules directory [Waza]. Each rule consists of various elements,
such as the rule’s id (used to identify the rule that is triggered in the Wazuh
manager), description (log to display in the Wazuh manager), level (incident
level, that infers in some cases a priority between rules, at the discretion of the
administrator), and match conditions [Wazb]. Match conditions within rules are
a crucial component that define the criteria for triggering alerts or other ac-
tions: they are the logical expressions that are used to evaluate the incoming

5

security events. These conditions are defined within the <match> tag in the rule
configuration. The match conditions can include various elements, such as event
attributes, file paths, user information, regex, or other contextual data. We do
not focus on match conditions any further; we only detect (or match) a triggered
rule using the the tags <if sid> and <if matched sid>: the rule id that we are
trying to match. Rules matching rules is called rules encapsulation. Additionally
we focus on the following components:

– frequency: the number of times a rule is matched before triggering;
– timeframe: the duration in seconds where we consider the frequency.

In Listing 1.1, rule 100101 is a simple rule that is triggered if 60122 is trig-
gered, and shown in the Wazuh manager with the log in the <description>

tag. Rule 60122 is a default rule that indicates logon failures e. g., a failed ssh
authentication on Windows systems (see [Wazc] for the default set of rules).

4.2 Rules preemption

Several factors affect rules and define the preemption of a rule over another one
i. e., whether a rule will have priority and prevent other rules from triggering. In
this section, we list the properties that we found to be followed by Wazuh consid-
ering rules encapsulation, the frequency (number of occurrences) and timeframe
parameters and the order in which the rules are written in the configuration file
w.r.t. their incident level.

In the following, we will consider the following set of rules.

Listing 1.1: Example set of rules.

<rule id="100101" level="5">

<if_sid >60122</if_sid >

<description >Failed tentative to log on</description >

</rule>

<rule id="100102" level="5">

<if_sid >100101 </if_sid >

<description >Failed tentative to log on</description >

</rule>

<rule id="100103" frequency="3" timeframe="100" level="

11" >

<if_matched_sid >100101 </if_matched_sid >

<description >frequency test: 3 in 100 sec</

description >

</rule>

<rule id="100107" frequency="3" timeframe="100" level="

11" >

<if_matched_sid >100102 </if_matched_sid >

<description >frequency test: 3 in 100 sec</

description >

6

</rule>

<rule id="100108" frequency="3" timeframe="100" level="

11" >

<if_matched_sid >100102 </if_matched_sid >

<description >frequency test: 3 in 100 sec</

description >

</rule>

<rule id="100109" frequency="4" timeframe="100" level="

11" >

<if_matched_sid >100102 </if_matched_sid >

<description >frequency test: 4 in 100 sec</

description >

</rule>

<rule id="100110" frequency="2" timeframe="2" level="11

" >

<if_matched_sid >100102 </if_matched_sid >

<description >frequency test: 2 in 2 sec</

description >

</rule>

We will now present the constraints that determine priority and preemption
between rules.

Encapsulation

If a rule a encapsulates a rule b, only a can be triggered. If rule c counts
the number of occurrences of b and rule d counts the number of occurrences
of a, only d can be triggered.

In the above example Listing 1.1, rule 100102 encapsulates 100101 then
only 100102 can be triggered. Rule 100103 counts the number of occurrences
of 100101, while rule 100107 counts the number of occurrences of 100102: there-
fore only 100107 can be triggered.

Frequency

If two rules a and b use the same timeframe to count the occurrences of the
same rule c, rule a has frequency fa and rule b has frequency fb with fa < fb
then only a can be triggered.

In Listing 1.1, rule 100107 counts if rule 100102 is triggered three times
in 100s, while rule 100109 counts if rule 100102 is triggered four times in 100s:
therefore only 100107 can be triggered.

Order

If two rules a and b that count occurrences of a rule c with the same fre-
quency f can be triggered (i. e., conditions to trigger both rules are satisfied)
and a is written before b in the configuration file then only a can be trig-
gered, unless rule b has an incident level ib greater than the incident level ia
of a.

7

idle counting
x ≤max

counter ≤ c− 1

warningreset counters

x := 0
counter := 1

100102?

100102?
counter := counter + 1

x ≤ max & counter == c− 1
counter := counter + 1

100102?

reset counter?
counter := 0

counter 6= 0

1001XX!
& counter := 0

reset counter!
& counter := 0

counter
=

=
0

counter := 0
clock reset?

counter := 0
reset counter?

clock reset!
& counter := 0

x ≥ max

Fig. 1: WTA to model a rule with timeframe and frequency

In Listing 1.1, rules 100107 and 100108 count if rule 100102 is triggered three
times in 100ms, but rule 100107 is written before 100108: therefore only 100107
can be triggered as both 100107 and 100108 have level="11". If 100108 had had
a lower incident level (e. g., level="9") only 100108 could have been triggered.

5 Modeling rules with WTA

Multiple constraints and conditions, described in Section 4.2, impact the trig-
gering or occurrence of a rule. Crafting and maintaining a cohesive set of rules in
a complex environment with the possibility of multiple administrators can be an
extremely challenging endeavor with unpredictable outcomes. In this section we
propose a framework to model a set of Wazuh rules using WTA and the Uppaal
model checker [BY03] that aims at preserving a robust set of rules in such a
complex environment.

5.1 Clocks, channels and counters

By default we will use different counters (which are the weights of our WTA), and
clocks for each automaton modeling a rule. If several rules count the occurrences
of the same rules, the automata will share a reset counter synchronization
channel to reset all counters at once. If these rules use the same frequency, they
will share a clock and a clock reset synchronization channel.

8

idle

ssh failed!

(a) Warning generator

idle signal next

ssh failed?

100102!

(b) Rule encapsulation

idle

100103

100102

100101

100107

100108

100109

100110

100103?

100108?100110?

100101?

100102?

100107?

100109?

(c) Rules selector, based on the declaration of priorities

Fig. 2: Rules contraints modeled as WTA

5.2 Declaration of rules priority

We declare in Uppaal the priority between rules, modeled as synchronization
channels. In the left most position, we model encapsulation rules: rule 100102
encapsulates (therefore has priority over) 100101. In the right most position we
model counter resets which are equivalently at the highest priority to take its
transition before lower priority channels (we discuss this further in Section 5.6).
In between we model rules that use the frequency and timeframe parameters
written, if they use the same frequency, from right to left by incident level, and
by order in the configuration file if incident levels are equal.

chan priority 100101 < 100102︸ ︷︷ ︸
encapsulation rules

<

rules using frequency and timeframe︷ ︸︸ ︷
100110 < 100109 < 100108 < 100107 < 100103 < reset counter︸ ︷︷ ︸

reset counter(s)

;

Rule 100102 is encapsulated in 100108 but also in 100107 with the same
frequency. The order in the configuration file gives priority to 100107, as they
have equal incident levels (level="11"). The order of 100109 and 100110 does
not influence the behaviour as they have different frequencies or timeframes.
Optionally in the Wazuh configuration file we can ignore a rule in the encapsu-
lation chain using the field noalert="1"; we simply remove the rule from the
declaration chain.

5.3 Generator

This automaton in Fig. 2a, with a single transition, operates as a log generator
under the name ssh failed (rule 60122) in our example. It models a failed logon
by an active user (e. g., wrong password).

9

5.4 Rule encapsulation

This automaton in Fig. 2b models the priority according to encapsulation, as it
receives the most deeply encapsulated rule (in Listing 1.1 it is 60122 ssh failed)
and returns the most exposed rule (100102 in Listing 1.1).

5.5 Rule selector

The automaton in Fig. 2c models the fact that if we reach a location 1001XX
then the corresponding rule 1001XX is triggered in Wazuh. Otherwise if not
reachable, it cannot be triggered in Wazuh. Using Uppaal, we analyse the reach-
ability of all locations in this automata.

5.6 Rule with timeframe and frequency

In the following, we discuss the behaviour of the main automaton in Fig. 1
that models the rules with frequency and timeframe. max is the timeframe in
seconds of the rule (e. g., if timeframe="100", max = 100), and c is the number
of occurrences to count before the rule is triggered (e. g., if frequency="3",
c = 3)

We start in the idle location. As soon as we receive 100102! from the rule
encapsulation automaton (see Fig. 2b), the synchronization 100102? makes us

move to the counting location; the counter is set to 1 as it is the first match
and the clock x is reset to 0 to initiate the countdown to max.

From the counting location, we can return to idle and reset counter to 0
if the clock exceeds the threshold max of the timeframe. As several rules can
count the occurrences (with possibly different frequencies) of the same rule in
the same timeframe (see Section 4.2), we broadcast the clock reset! message so
the other automata that share the same channel clock reset? also reset their
counter to 0 and return to the idle location. Note that if two rules count the
occurrences of the same rule with two different frequencies and timeframes, they
share a reset counter synchronization channel but not a clock reset synchro-
nization channel. When we exceed the smallest time threshold then its counter
is reset and clock reset! is broadcasted, but the other rule is not affected: the
clock reset synchronization channel is not shared so counter is not reset and
it occurrences counting continues (see rules 100107 and 100110 in Listing 1.1).

While in the counting location we take the loop each time we receive 100102!
from the rule encapsulation automaton and increase the counter.

If we receive our last 100102! without exceeding our timeframe max, i. e.,
when counter == c− 1 and we receive 100102! (therefore we received exactly c

messages), we move to the warning location (and set counter to c for coherence).
In the case where two rules that possibly have the same timeframe but es-

pecially two different frequencies, the one with the smallest frequency, which
will be triggered, goes from counting to warning then to the reset counters

location (counter > 0) and will broadcast reset counter!. The other automaton

10

that has a higher frequency is still in the counting location (and the rule will

not be triggered), receives reset counter! and returns to idle .
In the other case, where two rules count the occurrences of the same rule

with the same frequency, they arrive simultaneously in the warning location.
The automaton with the highest priority channel, as defined in the decla-

rations (see Section 5.2), broadcasts its warning 1001XX! (used by the selector
automaton in Fig. 2c to detect the triggered rule) and goes to reset counters .

Since the channel reset counter has the highest priority (see Section 5.2, it
immediately broadcasts reset counter! before the any other automata take a
transition transition and goes to idle location to be able to receive 100102! again
and reset its counter to 0.

The other automata with lower priority in warning take the loop transition

and reset their counter to 0 and immediately jump to the idle location (as
counter == 0) without broadcasting a warning message.

5.7 Reachability analysis

Using Uppaal, we now can check whether the rules can be triggered by check-
ing whether the state corresponding to the rule in the automata of Fig. 2c is
reachable. Our analysis shows that only rules 100102, 100107 and 100110 can be
triggered∗ in Wazuh for sequences of failed ssh logon by an active user.

6 Conclusion

In this work we proposed a framework to model Wazuh rules as WTA and verify
that the rules can be triggered using Uppaal and reachability analysis to ensure
the robustness of the set of rules.

Currently, from a set of Wazuh rules, knowing only the deepest encapsulated
and the most exposed rules in an encapsulation chain, and the order in which
rules are written in the configuration file to define the priority declarations, we
are able to model the set of rules as WTA in Uppaal and automatically check
whether a rule can be triggered. More than that it only takes a few lines in
Uppaal to create and add a new rule to the model.

Future works. We aim to enhance our framework by enabling the automatic
generation of Wazuh rules from the Uppaal model. This approach will allow us to
create a robust set of rules that can be triggered when they are reachable within
the Uppaal model. Additionally, we plan to apply machine learning techniques
to suggest new rules based on analyzing potentially malicious log sets.

More broadly, we recognize that the current model is quite rigid and specifi-
cally tailored to Wazuh detection rules. We are interested in increasing its flex-
ibility to adapt to similar solutions, making it more versatile and applicable to
a wider range of security systems.

∗The complete set of rules and the Uppaal model can be found at https://

gricad-gitlab.univ-grenoble-alpes.fr/MRprojects/wazuhrulesuppaal/

11

https://gricad-gitlab.univ-grenoble-alpes.fr/MRprojects/wazuhrulesuppaal/
https://gricad-gitlab.univ-grenoble-alpes.fr/MRprojects/wazuhrulesuppaal/

Finally, a promising direction is the addition of timed and constraints pa-
rameters as in [ALRS21] where timed constraints and weights can have unknown
values. This would empower our framework in order to model incomplete Wazuh
rules.

References

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, April 1994.

AL15. Zeeshan Afzal and Stefan Lindskog. Automated testing of IDS rules. In IEEE
International Conference on Software Testing, Verification and Validation
Workshops, pages 1–2. IEEE Computer Society, April 2015.

ALP04. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. Theoretical Computer Science, 318(3):297–322,
2004.

ALRS21. Étienne André, Didier Lime, Mathias Ramparison, and Mariëlle Stoelinga.
Parametric analyses of attack-fault trees. Fundam. Informaticae, 182(1):69–
94, 2021.

BFH+01. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen,
Paul Pettersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost
reachability for priced timed automata. In HSCC, volume 2034 of Lecture
Notes in Computer Science, pages 147–161. Springer, 2001.

BY03. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets,
volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer,
2003.

NK20. Piyawat Noiprasong and Assadarat Khurat. An IDS rule redundancy ver-
ification. In 17th International Joint Conference on Computer Science
and Software Engineering, JCSSE 2020, Bangkok, Thailand, November 4-6,
2020, pages 110–115. IEEE, 2020.

Sur. Suricata. Suricata intrusion detection system. https://suricata.io/. Ac-
cessed: 2024-07-10.

Waza. Wazuh. Wazuh documentation: custom rules. https://documentation.

wazuh.com/current/user-manual/ruleset/rules/custom.html. Accessed:
2024-06-30.

Wazb. Wazuh. Wazuh documentation: rules syntax. https://documentation.

wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/rules.

html. Accessed: 2024-06-30.
Wazc. Wazuh. Wazuh github rules. https://github.com/wazuh/wazuh-ruleset/

blob/master/rules/0580-win-security_rules.xml. Accessed: 2024-06-
30.

Waz22. Wazuh. Wazuh for GDPR white paper. https://wazuh.com/resources/

Wazuh_GDPR_White_Paper.pdf, 2022. Accessed: 2024-06-30.

12

https://suricata.io/
https://documentation.wazuh.com/current/user-manual/ruleset/rules/custom.html
https://documentation.wazuh.com/current/user-manual/ruleset/rules/custom.html
https://documentation.wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/rules.html
https://documentation.wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/rules.html
https://documentation.wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/rules.html
https://github.com/wazuh/wazuh-ruleset/blob/master/rules/0580-win-security_rules.xml
https://github.com/wazuh/wazuh-ruleset/blob/master/rules/0580-win-security_rules.xml
https://wazuh.com/resources/Wazuh_GDPR_White_Paper.pdf
https://wazuh.com/resources/Wazuh_GDPR_White_Paper.pdf

