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118 route de Narbonne, F-31065 Toulouse, Cedex 9, France
(Dated: December 5, 2024)

Many drift-diffusion transport models rely on a coupling with a sub-model of the drift velocity. In
this letter we extend Feynman-Kac’s theory to provide probabilistic representations of such velocity-
coupled models, so far remained out of reach. Hence a single embedded stochastic process is built,
enabling such representations in a single branching path-space. To address this, we propose renewed
physical insights in terms of propagative pictures to non-linear physics such as Navier-Stokes, Keller-
Segel and Poisson-Nernst-Planck equations in confined and complex geometries.
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Probabilistic representations of non-linear Partial Dif-
ferential Equations (PDEs) have been enabled - un-
til recent advances - by step forward approaches ex-
tending Feynman-Kac theory, initially based on su-
perposition and linearity, to a first class non-linear
physics, and thus bringing renewed insights in terms
of path-space propagative pictures. This has resulted
in reactive nonlinearities, such as Boltzmann kinetic
equation [1–5], Kolmogorov-Petrovsky-Piskunov (KPP)
reaction-diffusion equations [6–8] or non-linear Fredholm
equations [9] benefiting from a conceptual framework
with a unique process propagating toward sources, so-
called branching stochastic process. Such non-linear
PDEs are represented in a single path-space instead of
an infinity of inlaid ones.

For non-linearities involving drift-velocity, such a feat
has not yet been achieved. Yet large and diverse
theoretical and applicative communities are concerned:
drift-diffusion transport models for unmagnetized col-
lisional plasma, incompressible fluids, globular clusters
[10], semiconducting crystals, bacterial colonies [11, 12],
extraneuronal ions [13, 14] and biological microswim-
mers, including Navier-Stokes, Poisson-Nernst-Planck or
Keller-Segel equations, rely on a coupling with a sub-
model of the drift velocity. Drift modeling with a pre-
scribed velocity is intrinsically linear but as soon as a
drift-velocity model is involved, the resulting coupled
physics is non-linear. Drift-velocities are as diverse as
gravitational field for self-gravitating globular clusters,
chemical gradients for the chemotactic aggregation of
bacterial colonies, or electrical field for ions surrounding
neurons, electrons/holes within semiconducting crystals
and electrotactic microswimmers. In terms of physical
insights, the resulting non-linearity class is today a cru-
cial question uniting these communities.

As an illustration, let us consider a density field sub-
mitted to only advection, at a stationary regime, in a
confined domain. In the linear case of Fig. 1 a), i.e. when
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FIG. 1. Illustration in the stationary and purely advective
regime. a) Canonical Feynman-Kac ballistic path traced us-
ing the local knowledge of a prescribed drift velocity field v.
b) Zoom close to the boundary, where η(y > −ε) = η+ or
η(y < −ε) = η− and v is uniform. [blue] δRs = vδs straight-
backwardly propagates up to the boundary wall where the

encountered value is η = η+. [red] δR̃s = Vδs sample paths
are broken lines since V is a random vector. Spurious intu-
ition: hitting positions on the wall are spatially distributed,
preventing to reconstruct η = η+. Counterintuitive solution:
the hitting-position distribution for three values of δs is shown
in red curves. There follows a normal distribution whose stan-
dard deviation decreases as δs vanishes (see End Matter A).

the drift-velocity field v is known, the purely advective
stochastic process δRs = v(Rs)δs leads to the density
solution η(r) = η(r∂Ω), where for any r we note r∂Ω the
boundary location backwardly ending the stream. Now
assume that the drift of this main process is only known
as the expectation v = E[V ] of a secondary process V .
If in place of a drift velocity we were dealing with a re-
active term, in the vein of Skorokhod, Mckean or Dimov
[6, 7, 9], we could replace v by V in the main process.
This would be perfectly correct and the non-linearity
would be treated exactly. However, doing so in the case
of a drift velocity would lead to a spurious situation.

Consider indeed, close to the boundary as in Fig. 1 b),
that v is now uniform and perpendicular to the bound-
ary. The stream is a straight line. How would it be pos-
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sible to reconstruct such a ballistic path with an advec-
tive stochastic process that uses a random drift-velocity
V that never equals the uniform value of v? Naively,
the first hitting locations to the left-sided boundary wall
would be spatially distributed around r∂Ω. In Fig 1 b)
the boundary density is discontinuous (η+ or η−). Triv-
ially, η(r) = η+ as r and r∂Ω are ε above the disconti-
nuity. Meanwhile, how could the exact solution η+ be
physically pictured as an average of η+ and η−?

This a priori spurious intuition has prevented the use
of branching stochastic processes for drift-diffusion trans-
port, but the present letter intends to show that this intu-
ition comes from an improper limit inversion and that the
two processes (drifting along the expectation or drifting
along the velocity random process) are rigorously simi-
lar. With this view, an extension of Feynman-Kac path-
integral formalism to velocity-coupled PDEs is hereafter
proposed by means of embedded Continuous Branching
Stochastic Processes (CBSP). We show that by using
such processes it is possible to provide a generic frame-
work allowing breakthrough physical insights in terms of
propagative pictures of such non-linearly coupled PDEs
and to handle subsequent statistical estimations in both
confined and complex geometries, as shown in Fig. 3.

a. State of the art In 1947, [15] first introduced the
term ”Branching Process”, although Discrete Branching
Stochastic Processes were first conceptually formulated
by [16, 17] and used by [18] to unravel probabilistic in-
sights to one-dimensional diffusion equations such as the
limit of a Bienaymé-Galton-Watson process. Between
late 40’s and late 60’s, [15, 19] and subsequent develop-
ments such as those of [20] in the field of superprocesses
laid the theoretical foundations for branching Markov
processes and especially CBSP [21, 22], of which branch-
ing brownian motion is a particular case. The first use of
these CBSP was finally made by [6, 7] to provide proba-
bilistic Feynman-Kac representations of solutions to KPP
reaction-diffusion equations [23] ∂tη(r, t) = D∇2η(r, t)+
f [η(r, t)] in which the non-linearity occurs within the
source term f [η] (e.g. Fisher-KPP: f [η] = η(1− η) [24]).
As mentioned above, the present paper deals with an-
other wide class: PDEs non-linearly coupled to a model
of the drift velocity. As a formal illustration of this cou-
pling we can mention Poisson-Nernst-Planck equations{
∂tc(r, t) = −∇ · (−D∇c(r, t)− µ c(r, t)E(r, t))
∇ ·E(r, t)= −e c(r, t)/ϵ

(1)

describing the dynamics of charged particles with con-
centration c(r, t) submitted to the electrical field E(r, t).
This system is analogous to Keller-Segel’s [11, 12] de-
scribing the chemotactic aggregation of bacterial colonies
(E standing then for chemical gradients) or even self-
gravitating systems such as globular clusters (E standing
then for the gravitational field) [10]. A second formal il-
lustration of such a coupling can be seen in the vorticity
rephrasing of incompressible Navier-Stokes equations{

∂tω(r, t) = ν∇2ω(r, t)− (v(r, t) ·∇)ω(r, t)
∇× v(r, t)= ω(r, t)

(2)

where v is the fluid velocity and ω its vorticity.
Until now, many probabilistic representations for free-

space Navier-Stokes have treated the non-linear terms
involving drift velocity as sources [25–27], rather than
considering it as part of the stochastic process. These
studies were thus able to make use of CBSPs previously
developed for KPP’s reactive non-linearities, in a simi-
lar vein as [7]. This approach relies on the probabilis-
tic representation of spatial derivatives using Malliavin
stochastic calculus [28, 29]. Another approach is to study
Navier-Stokes in Fourier space. Thusterms involving ve-
locity become reactive non-linearities, which also benefit
from previous developments for KPP equations [30–32].
We should also mention the use of such Fourier spaces
in the study of Poisson-Vlasov equations [33, 34] which
also benefit from KPP’s branching path-space - stochas-
tic cascades - in a similar vein as [9]. Although these
strategies have achieved a huge step forward in being able
to provide probabilistic representations and propagative
insights of such non-linearly coupled PDEs, they remain
incompatible with confined domains (especially due to
the use of Malliavin calculus). This is a major issue for
many applications, such as those shown in Fig. 3.
In contrast, some probabilistic representations compat-

ible with confined domains - but at what cost? - have
been advanced by considering velocity-involving terms as
being fully part of the process itself. They can be concep-
tualized as an infinity of inlaid path-spaces [35, 36]. In
the context of our introductory illustration, such a McK-
ean inlaid representation is obtained by replacing v with
E[V ] in the main process, as shown in Fig. 2 a). This
approach has been applied to Keller-Segel [37], Stokes-
Burger [38], or Navier-Stokes [39] equations. Statistical
estimations based on these representations have been in-
vestigated either by pointwise [40, 41] or particle-systems
approaches [42]. The cost is huge, since in comparison
with KPP’s branching trees, the coupling in terms of a
single stochastic process is lost: a full V path-space is
inlaid at each location Rs of the main path.
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FIG. 2. a) McKean inlaid representation in the situation of
Fig. 1: dRs = E[V

∣∣Rs, s]ds requiring the estimation of v =

E[V] = limN→∞(1/N)
∑N

i=1(Vi) with an infinite-size sample
mean at each main-path location r′ (only nine realizations Vi

of V are here represented at r′). b) Our proposition dR̃s =

(V
∣∣R̃s, s)ds: a unique realization V1 of V is required at r′.

Although large impacts could be expected, no attempt
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has yet been reported to encompass this non-linearity
in a single branching path-space to provide probabilis-
tic representations of velocity-coupled PDEs in confined
geometries. We address such a generic framework with
the same intents as those of applied mathematics com-
munities - providing probabilistic representations [32] -
but by resorting to embedded stochastic processes and
their connections with the path-integral formalism of
field equations (Fokker-Planck PDEs) [43]. Thus the cou-
pling in a single path-space as illustrated in Fig. 2 b) is
achieved, in contrast with the hitherto available inlaid
McKean representation in Fig. 2 a). As a major out-
come, we recover branching tree representations which
enabled the previously-mentioned achievements for reac-
tive non-linearities.

b. Feynman-Kac canonical framework. The
Feynman-Kac framework aims at providing proba-
bilistic insights into the solution of a field physics
parabolic PDE, by resorting to brownian motion. Such
insights were first introduced by [44, 45] to allow repre-
sentations of the Dirichlet problem’s harmonic measure.
It was then extended to a wide class of differential oper-
ators by [46–48] with breakthrough insights in terms of
propagative pictures for quantum mechanics. [49] finally
achieved the connections between probability theory and
Green functions. Here, the scope of (1)-(2) is extended
to include an additive source +k(r)η⋆(r, t) and a killing
term −k(r)η(r, t) in addition to drift-diffusion, leading
to the class of advection-reaction-diffusion equations

∂tη(r, t)=D∇2η(r, t) +v(r, t)·∇η(r, t)− k (η − η⋆) (3)

for all r ∈ Ω̊ and t ∈]to; +∞[. We focus on pre-
scribed Initial Boundary Value (IBV) ηIBV(r, t) ≡
1{r∈∂Ω}η

∂Ω(r, t)+1{t=to}ηo(r), where η
∂Ω stands for the

boundary value and ηo the initial one. The Feynman-Kac
probabilistic representation of η is [50]

η(r, t) = ERs

[
F(RT , t− T )

∣∣∣Ro = r
]

(4)

given the stochastic functional F

F(RT , t− T ) ≡ ηIBV (RT , t− T ) e−
∫ T
o

ds′ k(Rs′ )

+

∫ T

o

ds k(Rs) η
⋆ (Rs, t− s) e−

∫ s
o
ds′ k(Rs′ )

(5)

RT is an Itô integral [51] defined as the continuous limit
of the sum of stochastic increments

∑
i δRiδs as δs → 0

(see End Matter B). In such a limit, the stochastic pro-
cess Rs∈]s;t−to[ can be defined by the stochastic differen-
tial equation

dRs = v (Rs, s) ds+
√
2DdWs (6)

withRo = r and dWs the Gaussian Wiener process. Re-
alizations of {Rs}s∈[o;t−to] describe a non-standard con-
tinuous brownian path {rs}s∈[o;t−to] starting from r and
backwardly propagating until a boundary/initial/volume

source is found (within the meaning of Green). According
to (4)-(5), η results in the expected value of exponen-
tially attenuated initial/boundary/volumic sources en-
countered along each path. The first passage time of
this stochastic process to the boundary ∂Ω is a random
variable defined as T∂Ω := inf{s|Rs /∈ Ω̊}. The stopping
time T := min{T∂Ω, t−to} is either T∂Ω, in which case the
Dirichlet boundary condition η∂Ω(RT∂Ω

, t−T∂Ω) is taken
for ηIBV, or T = t− to if the initial instant is reached be-
fore the process exits the domain Ω, in which case the
initial condition ηo(Rt−to) is taken. The ensuing set of
paths draws a path-space and the Feynman-Kac repre-
sentation (4) is understood as a path-integral over this
Wiener-measurable functional domain [47, 52–54].
c. Coupling Feynman-Kac representations through

drift-velocities In the earlier framework, the velocity
field v was prescribed, as it was for the source term
η⋆. Now, we address the rephrasing of the Feynman-
Kac representation for η without having a prescribed ve-
locity field, but given instead a probabilistic formulation
v(r, t) = EV [V |r, t] which can itself be a Feynman-Kac
representation of an IBV problem. With this view,the
Feynman-Kac representation of η writes{

η(r, t)= ERs

[
F (RT , t− T )

∣∣Ro = r
]

dRs = EV
[
V
∣∣Rs, s

]
ds+

√
2DdWs

(7)

Such a representation is available even when V is a func-
tional of η [4]. At each time s ∈ [o, t − to] the knowl-
edge of this McKean stochastic process {Rs}s implies
EV

[
V
∣∣Rs′ , s

′] for all s′ < s, i.e. the whole velocity
field. A path {rs}s is constructed by inlaying a full ve-
locity path-space centered at each rs′ , as illustrated in
Fig. 2 a). In the context of Fig. 1 it reconstructs strictly
the ballistic path.
The question of handling the coupling in a single

branching path-space is now addressed using an embed-

ded CBSP {R̃s}s that enables us to write (7) as{
η(r, t)= ER̃s

[
F
(
R̃T , t− T

) ∣∣R̃o = r
]

dR̃s =
(
V
∣∣R̃s, s

)
ds+

√
2DdWs

(8)

At each time s ∈ [o, t − to] the knowledge of the pro-

cess {R̃s}s is now entirely determined by V |R̃s′ , s
′ for

all s′ < s, that is the statistics of V only, in contrast
with the full velocity field that was required above. A
path {r̃s}s is constructed by embedding a unique path
of V centered at each rs′ , as illustrated in Fig. 2 b).
In other words, sub-paths (V-paths) pass on all the in-
formation about the coupled velocity model to the main
path (η-path), without inlaying a full sub-path-space but

drawing instead a unique branch [55]. {R̃s}s can there-
fore be understood as an embedded process that includes
the statistics of V . As mentioned in the introduction and
shown in Fig. 1 b), this counterintuitive viewpoint is con-
structed as the continuous limit of a branching process,
which is studied hereafter.
The theoretical argument leading to (8) lies in a limit

inversion. Instead of trying to handle the coupling on
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the basis of (7), that is after taking the continuous limit
of stochastic increments building RT , we seek to handle
it before taking the continuous limit. For this purpose,
a finite-size time interval δs is introduced, during which
neither an initial value nor a boundary value are encoun-
tered by the main path. The corresponding stochastic in-
crement is δRo = EV

[
V
∣∣Ro, o

]
δs+

√
2DδWo. We can

then write η(r, t) = ERs

[
F(Ro + δRo, t− δs)

∣∣Ro = r
]

by substituting ηIBV with η itself into the stochastic func-
tional F . When δs approaches zero, the leading terms are
linear with respect to δRo (see End Matter B), hence F
can be treated as a linear functional between Ro = r and
Ro + δRo. Thus, the linearity property of the expecta-
tion operator E[F(E[.])] = E[F(.)] leads us to

η(r, t) = ERs,V

F
 Ro

+
(
V
∣∣Ro, o

)
δs

+
√
2DδWo

, t− δs

 (9)

We can therefore define an embedded increment
δR̃o = (V

∣∣R̃o, o)δs +
√
2DδWo such that η(r, t) =

ERs

[
F(R̃o + δR̃o, t− δs)

∣∣R̃o = r
]
. Then the whole η-

path can be recursively constructed before taking the
continuous limit as δs → 0, thus defining the proper Itô

integral R̃T (see End Matter B) and making {R̃s}s an
embedded continuous process. Thus the Feynman-Kac
path-space representation of η coupled to a model of the
drift velocity now reads as in (8).

Therefore, the similitude is strict between η-paths re-

sulting from the McKean process (7) - drifting along the
expectation - and our embedded CBSP (8) - drifting
along the velocity associated with a single V-path - as
illustrated by the blue path in Fig. 2, and in accordance
with Fig. 1 b). This equivalence enables us to provide
profound physical insights into non-linear physics. Such
physical insights benefit from propagative pictures that
have been a major and powerful breakthrough for reac-
tive non-linearities.
d. Can we also expect benefits in numerical terms?

We implemented (8) using Monte Carlo Maruyama path
sampling in confined and complex geometries without
any need for additional numerical work. As mentioned
with Fig. 1 b), one could predict the numerical imprac-
ticability of such representations because of limit inver-
sions occurring when discretizing. However, we were able
to prove the well-foundedness of such an implementa-
tion. Indeed, collaborating with photoconversion engi-
neering communities working on solar fuels production
using artificial photosynthesis, we put this representa-
tion to the test in Fig. 3 with the concrete problem of
estimating electron concentration at a given location in-
side a porous photo-anode. Interactions with the com-
puter graphics community have allowed us to advance a
numerical implementation which not only behaves well,
but also takes advantage of the most advanced techniques
handling complexity [56–58], and is thus of major interest
for computational physicists communities. A noteworthy
aspect is that computation times are insensitive to the
refinement in the geometric description of the system.
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FIG. 3. a) Photocatalytic water splitting device involving charge carrier drift-diffusion transport. Sampled paths: main path
in blue, velocity sub-path in red. b) Zoom of the porous photoanode. c-e) Three different levels of refinement (i.e. number
of triangles) in the geometric description of the porous semiconducting crystal composing the photoanode, whose morphology
is a key issue in attaining optimal efficiency. f) (green/right y-axis) Maruyama Monte-Carlo estimation using our Embedded
CBSP, compared to the analytical solution (see End Matter C). (red) Computation time. (blue) Geometry loading time.
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e. Conclusions and perspectives In the present let-
ter, a generic theoretical framework dedicated to the
probabilistic representation of drift-diffusion transport
equations coupled to a sub-model of the drift velocity
was proposed for confined domains. This coupling, be-
ing of prime interest for both applicative and theoretical
communities, results in a non-linearity class. A single
embedded CBSP was constructed, enabling such a rep-
resentation in a single branching path-space and giving
access to renewed physical insights in terms of propaga-
tive pictures for non-linear physics such as Navier-Stokes,
Keller-Segel and Poisson-Nernst-Planck. Finally, we per-
formed the numerical implementation in both confined
and complex geometries.

Therefore, we believe that our formal extension of the
Feynman-Kac framework opens a series of new research
avenues. To begin with, it would be interesting to apply
this proposition to models in which the sub-model of the
drift velocity is not explicit as in (1) and (2), but concerns
directional derivatives of a diffusive observable such as
an electrical/gravitational potential or a stream potential
(e.g. E = −∇Φ or v = ∇ ×Ψ) in confined geometries,
avoiding any use of Malliavin stochastic calculus. Then,
even if no conceptual progress is to be expected, it would
certainly be useful to apply our approach to other appli-

cations such fluidics, for instance. It would also be useful
to compare various path-sampling strategies and to ex-
amine their behavior when the regime tends towards pure
advection. In this regard, it would be useful to explore
how to handle such - by now allowed - coupling through
other numerical schemes using first passage distributions
of stochastic processes instead of Maruyama discretiza-
tion, in order to produce unbiased estimators, even in
the case of non-Dirichlet boundary conditions [59, 60].
Finally, the extension of our branching tree representa-
tions to velocity non-linearities such as in Navier-Stokes
equations could lead to new insights for stochastic cas-
cade descriptions of Kolmogorov turbulence, initially in-
troduced and conjectured by Mandelbrot [61].
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Appendix A: Statistics for Fig. 1

a. The problem. Random drift V is defined as
V = ||v||(−1, (1 − 2B(1/2))tan(θ))†, where B(1/2) is
the Bernoulli variable of probability 1/2. V outcomes
are V+ = ||v||(−1, tan(θ))† or V− = (−1,−tan(θ))†

with equal probability, and its expectation EV [V ] =
||v||(−1, 0)† is equal to v.

Starting from r := (l, y)†, the first hitting locations of

the purely advective stochastic embedded process {R̃s}s
to the left-sided boundary wall are given by

R̃Nδs = r+
∑

i∈J0;N−1K

Viδs

with N := l/(||v||δs). Its horizontal component is null by

construction: X̃Nδs = l − N ||v||δs = 0. Thus, only first

passage heights ỸNδs are distributed and their realiza-
tions can take values within the lattice Z||v||δs tan(θ) :=
{k||v||δs tan(θ)|k ∈ Z}.
b. Distribution of first passage heights. As the re-

sult of successive Bernoulli trials, the first passage height
distribution follows the binomial law

P{ỸNδs = y + k ||v||δs tan(θ)} =

(
N

N−k
2

)(
1

2

)N

When N → ∞, that is δs → 0; this discrete probability
law behaves as the gaussian distribution

dP{Ỹl/||v||δs = ỹ∂Ω} =
δs→0

exp
{

−(ỹ∂Ω−y)2

2l||v||δs tan2(θ)

}
√

2πl||v||δs tan2(θ)
dỹ∂Ω

with mean E
[
Ỹl/||v||δs

]
= y and variance V

[
Ỹl/||v||δs

]
=

l||v||δs tan2(θ). The variance vanishes as δs → 0.
c. Unbiased Feynman-Kac representation. In the

situation depicted in Fig. 1 the exact analytical solution
of η is η(l, y) = η∂Ω(y) = 1{y>−ε}η+ + 1{y≤−ε}η−. As

δs → 0, the embedded process {R̃s}s becomes a continu-
ous branching stochastic process allowing us to write the
strict probabilistic representation

η(r) = ER̃s

[
η∂Ω

(
R̃T∂Ω

)∣∣R̃o = r
]

Indeed,

lim
δs→0

EỸl/||v||δs

[
1{Ỹl/||v||δs>−ε}η+ + 1{Ỹl/||v||δs≤−ε}η−

]
=

∫
R

lim
δs→0

dP{Ỹl/||v||δs}×[
1{Ỹl/||v||δs>−ε}η+ + 1{Ỹl/||v||δs≤−ε}η−

]
=

∫
R
δ(ỹ∂Ω − y)dỹ∂Ω

[
1{ỹ∂Ω>−ε}η+ + 1{ỹ∂Ω≤−ε}η−

]
= 1{y>−ε}η+ + 1{y≤−ε}η− ≡ η(r)

and

lim
δs→0

VỸl/||v||δs

[
1{Ỹl/||v||δs>−ε}η+ + 1{Ỹl/||v||δs≤−ε}η−

]
=

∫
R

[
1{ỹ∂Ω>−ε}η+ + 1{ỹ∂Ω≤−ε}η−

]2
δ(ỹ∂Ω − y)dỹ∂Ω

−
(∫

R

[
1{ỹ∂Ω>−ε}η+ + 1{ỹ∂Ω≤−ε}η−

]
δ(ỹ∂Ω − y)dỹ∂Ω

)2

= η2(r)− η2(r) = 0

where δ(·) is the delta Dirac distribution.

Appendix B: Itô integral representation

a. Canonical/McKean framework. Knowing the
drift field v, {Rs}s is a stochastic process such that

http://www.jstor.org/stable/j.ctt1b9s066
http://www.jstor.org/stable/84448
http://www.jstor.org/stable/84448
http://www.jstor.org/stable/84448
https://doi.org/10.1371/journal.pone.0283681
https://doi.org/10.1126/sciadv.abp8934
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abp8934
https://doi.org/10.1145/3528223.3530134
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3658153
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1017/S0022112074000711
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RT appearing in Feynman-Kac representations (4) and
(7) is constructed as the continuous limit of the sum of
stochastic increments

RNδs = Ro +
∑

i∈J0;N−1K

δRiδs (B1)

Defining N such that T = Nδs and providing us with a
regular subdivision {iδs|i ∈ J0;N − 1K} of [o; T ], these
increments write

δRiδs = R(i+1)δs −Riδs = v(Riδs, iδs)δs+
√
2DδWiδs

The fundamental Wiener increment δWiδs is a gaus-
sian vector with mean E[δWiδs] = 0 and variance
V[δWiδs] = 2Dδsδm,n ((m,n) standing for component
labels). The continuous limit is obtained when N → ∞,
that is δs → 0, and has to be understood as convergence
in probability (rather than almost-surely). Thus (B1)
becomes the following Itô stochastic integral

RT = Ro +

∫ T

o

ds v (Rs, s) ds+
√
2D

∫ T

o

dWs (B2)

This construction is the same when the drift velocity v
is itself obtained from a sub-model, that is v(r, t) =
EV [V |r, t], as in the inlaid McKean picture. Such an
Itô integral (B2) may be represented as the stochastic
differential equation (6).

b. Coupled framework. Treating the reactive term
−k(η − η⋆) is (3) as a volume source along main paths,
in the same vein as for KPP representations, and the
Feynman-Kac representation (4) becomes a second kind
Fredholm equation in which the stochastic functional is

F (RT , t− T ) = ηIBV (RT , t− T )

+

∫ T

o

ds k (Rs) (η
⋆ (Rs, t− s)− η (Rs, t− s))

(B3)

Between Ro and the first stochastic increment δRo =
EV

[
V
∣∣Ro, o

]
δs+

√
2DδWo, this functional leads us to

F(Ro + δRo, t− δs) = η (Ro + δRo, t− δs)

+ δs k (Ro) (η
⋆ (Ro, t)− η (Ro, t))

(B4)

where ηIBV has been substituted by η itself since neither
an initial value nor a boundary value are encountered
during δs. The last term in (B4) is totally independent of
δRo. Concerning the term η (Ro + δRo, t− δs), second-
order expansion around Ro (as δs approaches zero)

η (Ro + δRo, t− δs) = η (Ro, t) + δRo ·∇η (Ro, t)

− δs ∂tη (Ro, t) +
1

2
δR†

oHess[η] (Ro, t) δRo + ...

is required in accordance with Itô stochastic calculus. In-
deed

1

2
δR†

oHess[η] (Ro, t) δRo = δsD∇2η (Ro, t) + ...

and higher-order terms are of the order O(δs||δWo||),
O(δs2). Thus we can establish that leading terms in η
are at most linear with respect to the stochastic incre-
ment δRo. Hence, F is a linear functional of δRo as
δs vanishes. According to the above definition of δRo,
F is also linear with respect to EV

[
V
∣∣Ro, o

]
, enabling

us to commute F(.) and EV [.] in (9) and to define the

embedded increment δR̃o.
For the next increment, i.e. between Rδs and Rδs +

δRδs, the stochastic functional is

F (Rδs + δRδs, t− 2δs) = η (Rδs + δRδs, t− 2δs)

+ δs k (Ro) (η
⋆ (Ro, t)− η (Ro, t)) + δs k (Ro + δRo)

× (η⋆ (Ro + δRo, t− δs)− η (Ro + δRo, t− δs))

Here too, η is linear with respect to δRδs and the leading
order in the last terms δs k η⋆ and −δs k η is independent
of δRδs. Hence, F is linear with respect to EV

[
V
∣∣Ro, o

]
,

allowing us to commute F(.) and EV [.] and to define

the embedded increment δR̃δs. This construction then
has to be repeated until a boundary/initial condition is
encountered, after N steps. Then, as N → ∞, that is

δs → 0, the sum R̃Nδs of these embedded stochastic
increments defines the following Itô integral

R̃T = R̃o+

∫ T

o

ds
(
V |R̃s, s

)
ds+

√
2D

∫ T

o

dWs (B5)

which may be represented as the stochastic differential
equation (8).

Appendix C: Statistical estimation within Fig. 3

In Fig. 3, we solve the electron concentration c sub-
mitted to the stationary drift-diffusion transport 0 =
−∇ · (−D∇c(r)−µE(r)c(r)) coupled to Gauss equation
∇ ·E(r) = 0 describing the electrostatic field in the solid.
In order to compare statistical estimations to an analytic
solution of the coupled confined system, the porous ge-
ometry is here embedded within a particular solution

c∞(r) =
√

D/µ
(
erf

(
rx
√

µ/2D
)
+ erf

(
ry
√

µ/2D
))

+
√
D/µ erfi

(
rz
√
µ/D

)
E∞(r)= rxx̂+ ryŷ − 2rzẑ

of the free space coupled system{
0 = −∇ · (−∇c∞(r)− µE∞(r)c∞(r)) ; r ∈ R3

∇ ·E∞(r)= 0 ; r ∈ R3

In other words, boundary conditions are chosen to be
c(r ∈ ∂Ω) = c∞(r) and E(r ∈ ∂Ω) = E∞(r) at the
porous surface.
Maruyama-Monte-Carlo numerical estimation of the

concentration c is evaluated at location (rx = 1.05,
ry = 1.05, rz = 0.9) within the porous semiconduc-
tor by sampling 103 main paths of c and considering
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Maruyama-discretized stochastic paths (δs = 4.10−4 s,
µ = 1 m2.V−1.s−1 and D = 1 m2.s−1). Results are plot-

ted against the analytic solution for several geometric re-
finements (i.e increasing number of triangles describing
the porous geometry).
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