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HENNINGS TQFTS FOR COBORDISMS DECORATED WITH
COHOMOLOGY CLASSES

MARCO DE RENZI, JULES MARTEL, AND BANGXIN WANG

Abstract. Starting from an abelian group G and a factorizable ribbon Hopf
G-bialgebra H, we construct a TQFT JH for connected framed cobordisms be-
tween connected surfaces with connected boundary decorated with cohomology
classes with coefficients in G. When restricted to the subcategory of cobor-
disms with trivial decorations, our functor recovers a special case of Kerler–
Lyubashenko TQFTs, namely those associated with factorizable ribbon Hopf
algebras. Our result is inspired by the work of Blanchet–Costantino–Geer–
Patureau, who constructed non-semisimple TQFTs for admissible decorated
cobordisms using the unrolled quantum group of sl2, and by that of Geer–Ha–
Patureau, who reformulated the underlying invariants of admissible decorated
3-manifolds using ribbon Hopf G-coalgebras. Our work represents the first
step towards a homological model for non-semisimple TQFTs decorated with
cohomology classes that appears in a conjecture by the first two authors.

1. Introduction

The interplay between the algebraic structure of monoidal categories and the
topological properties of low-dimensional geometric objects provides a cornerstone
for the field of quantum topology. One way to frame this interaction is that quantum
topology is a discipline that develops an algebraic approach, based on generators
and relations, to low-dimensional topology. In particular, one of its purposes is to
produce topological invariants of manifolds, and of maps between manifolds, out
of algebras, their representations, and the monoidal categories they form. A more
ambitious goal is typically to organize all these invariants into coherent structures
known as a TQFTs (Topological Quantum Field Theories).

In this paper, we provide a TQFT construction that produces functors defined
over categories of cobordisms decorated with cohomology classes. In order to do
this, we fix an abelian group G, and we introduce the notion of a ribbon Hopf
G-bialgebra (see Section 3.1), by generalizing Ohtsuki’s colored ribbon Hopf alge-
bras [Oh93] and (the abelian case of) Virelizier’s ribbon Hopf G-coalgebras [Vi00].
Roughly speaking, such a ribbon Hopf G-bialgebra H is given by a family of vector
spaces Hβ

α parametrized by two indices α, β ∈ G. The direct sum

H⊕
0 =

⊕
α∈G

Hα
0

is naturally a ribbon Hopf algebra, and so is H0
0 . The main example of ribbon

Hopf G-bialgebra we will consider in this paper arises from the quantum group of
sl2 with G = C/2Z, and is introduced in Section 5 by adapting the example dis-
cussed in [GHP22]. We also consider the category 3CobG of G-decorated connected
framed cobordisms (see Section 2), whose morphisms come equipped with cohomol-
ogy classes with G-coefficients. Here is our main result, see also Theorem 4.2.
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2 M. DE RENZI, J. MARTEL, AND B. WANG

Theorem 1.1. Every factorizable1 ribbon Hopf G-bialgebra H induces a braided
monoidal functor

JH : 3CobG → H⊕
0 -mod .

As an immediate consequence, when restricted to the subcategory 3Cob of cobor-
disms decorated with the trivial cohomology class, our functor recovers Kerler and
Lyubashenko’s TQFT associated with the factorizable ribbon Hopf algebra H0

0 ,
compare with Corollary 4.3.

Corollary 1.2. If H is a factorizable ribbon Hopf G-bialgebra, then the TQFT JH
of Theorem 1.1 fits into the commutative diagram of braided monoidal functors

3Cob H0
0 -mod

3CobG H⊕
0 -mod

J
H0

0

ι ρ

JH

where JH0
0

is the Kerler–Lyubashenko TQFT, ι is the inclusion functor, and ρ is
the restriction functor.

1.1. State of the art. As their name suggests, TQFTs have a physical interpre-
tation, and they were first axiomatized in mathematical terms by Atiyah [At88],
who defined them, broadly speaking, as monoidal functors from categories of cobor-
disms to categories of modules over a given ring or field. Morphisms in categories
of cobordisms are manifolds (possibly equipped with embedded links or other dec-
orations) whose boundary is decomposed into an incoming part, or source, and an
outgoing one, or target. The monoidal structure for cobordisms is traditionally in-
duced by disjoint union, according to Atiyah’s definition, although other meaningful
frameworks exist (like the one considered in this paper, for instance). The first full-
fledged construction of TQFTs was performed by Turaev [Tu94] using semisimple
modular categories. Turaev’s work generalized and extended previous results by
Reshetikhin and Turaev [RT91], who first defined invariants of 3-manifolds using
semisimple quotients of categories of representations of ribbon Hopf algebras such
as quantum groups. Their construction was inspired by previous work of Witten
on the Jones polynomial and Chern–Simons quantum field theory [Wi89], so the
resulting invariants are now known as WRT invariants (for Witten–Reshetikhin–
Turaev). Since the semisimplicity assumption played a crucial role in Turaev’s con-
struction, the associated functors are sometimes referred to as semisimple TQFTs.
The first construction of topological invariants of closed 3-manifolds built from
possibly non-semisimple ribbon Hopf algebras is due to Hennings [He96]. In his
approach, Hennings requires some assumptions on ribbon Hopf algebras, which
need to be unimodular and twist non-degenerate. The resulting invariants were
deeply generalized by Lyubashenko [Ly94] to families of representations of map-
ping class groups of surfaces using potentially non-semisimple modular categories,
such as categories of representations of factorizable ribbon Hopf algebras. Later,
Kerler and Lyubashenko extended these mapping class group representations to
EQTFTs (Extended TQFTs) for connected cobordisms [KL01]. In particular, such
ETQFTs contain TQFT functors defined on a category of cobordisms whose objects
are connected surfaces with connected boundary, whose morphisms are connected
cobordisms between them, and whose monoidal structure is induced by boundary
connected sum. Such functors are called Kerler–Lyubashenko TQFTs in this paper.

More recently, strong invariants of closed 3-manifolds decorated with cohomol-
ogy classes, known as CGP invariants, were constructed by Costantino, Geer, and

1See Section 3.2 for a definition.
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Patureau in [CGP12]. This was done using the theory of modified traces and relative
modular categories, which are a non-semisimple graded generalization of modular
categories. These invariants were extended to TQFTs, known as BCGP TQFTs,
by Blanchet, Costantino, Geer, and Patureau [BCGP14] for the unrolled quantum
group of sl2, and to ETQFTs by the first author [De17] for general relative modular
categories. Both approaches follow the universal construction of Blanchet, Habeg-
ger, Masbaum, and Vogel [BHMV95] to produce functors defined on categories
of so-called admissible cobordisms decorated with cohomology classes. By contrast
with Kerler and Lyubashenko’s framework, such categories feature disconnected ob-
jects, and disjoint union as tensor product. As we shall discuss later, cohomology
classes should not be seen as a technical nuisance of the theory, but rather witness
the richness of such invariants. Modified traces were later integrated in Hennings
and Lyubashenko’s constructions to obtain invariants, known as renormalized Hen-
nings and renormalized Lyubashenko invariants respectively, that extend to discon-
nected admissible cobordisms on the level of both TQFTs [DGGPR19] and ETQFTs
[De21]. More recently, constructions exploiting non-semisimple spherical categories
were also developed, see [CGPV23].

1.2. Main results. As it is clear from the previous discussion, several approaches
to the construction of non-semisimple TQFTs are now available. In the present
work, we will essentially follow Kerler and Lyubashenko, but we will generalize their
construction to obtain a monoidal functor defined on the category 3CobG of con-
nected framed cobordisms decorated with cohomology classes with G-coefficients.
As our main tool, we will use a factorizable ribbon Hopf G-bialgebra H, see The-
orem 4.2. For cobordisms decorated with the trivial cohomology class, our functor
restricts to the one associated by Kerler and Lyubashenko’s construction to the
factorizable ribbon Hopf algebra H0

0 , see Corollary 4.3.
To motivate our interest in this generalized construction, we highlight the fact

that, for the CGP invariants associated with the unrolled quantum group of sl2,
the dependence on a cohomology class with C/2Z-coefficients was crucially used to
recover the classification of lens spaces [BCGP14, Proposition 6.24]. It is known
that this cannot be done using WRT invariants, and it is currently not known
whether this can be done using renormalized Lyubashenko invariants associated
with the small quantum group of sl2.

Furthermore, a TQFT functor automatically yields representations of mapping
class groups of the objects of the corresponding cobordism category. It is well-known
that representations coming from semisimple TQFTs associated with quantum sl2
are never faithful, since Dehn twists are always sent to matrices of finite order.
This obstruction vanishes for representations arising from all non-simimple TQFTs
associated with quantum sl2. This observation makes them candidates for tack-
ling the question of linearity of mapping class groups, since no non-trivial elements
have currently been found in the kernels of these representations. Working with
manifolds endowed with cohomology classes requires either looking at twisted rep-
resentations or restricting to diffeomorphisms that fix a given cohomology class.
In first approximation, it is completely acceptable to restrict to representations of
Torelli subgroups, since their elements fix every cohomology class, and since such
subrgoups are at the heart of the linearity problem (indeed, by their very definition,
they constitute precisely the part of the mapping class group that is not detected
by the standard homological representation). Since these groups are of finite type,
finitely many different cohomology classes can in principle be used to detect finite
families of generating diffeomorphisms. In such a situation, a continuity argument
in C/2Z could be used to deduce the existence of a single cohomology class detect-
ing every element of the Torelli group. This observation motivates the interest in
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representations of Torelli groups that depend on the choice of a cohomology class
with C/2Z-coefficients. We notice however that, in order to apply such a continuity
argument, we should first prove that these representations depend continuously on
the evaluation of the cohomology class against a finite basis of the homology of the
surface.

In [DM22], the first two authors have proposed a completely different perspec-
tive on Lyubashenko’s mapping class groups representations associated with small
quantum sl2, by developing a model based on twisted homology groups of configu-
ration spaces. Such a model also provides a homological construction of the action
of quantum sl2. This framework is promising for studying faithfulness of mapping
class group representations, since it is the same that was used by Bigelow [Bi00]
to prove linearity of braid groups. For punctured discs, the fact that homologi-
cal representations are isomorphic to quantum representations (possibly decorated
with cohomology classes) was proved in [Ma20]. In [DM22, Section 6.3.1], homo-
logical representations in higher genus are upgraded to twisted representations for
surfaces endowed with cohomology classes, and [DM22, Conjecture 6.6] states that
such representations should also arise from a non-semisimple TQFT construcion.
The functor of Theorem 4.2 yields precisely the representations that, according to
our expectation, should provide the quantum counterpart to such twisted homo-
logical representations. Now that these representations have actually been con-
structed, we rephrase the conjecture in Section 5.4, to be studied in a future paper.
The homological setup pinpoints bases in which coefficients of these representations
depend on the cohomology class as polynomials over the integers (see [DM22, Sec-
tion 6.3.1]). This integrality property is a crucial strength of semisimple TQFTs,
see for instance the discussion of [DM22, Section 1.2]. Its first appearance in a
non-semisimple context is [DM22, Corollary 6.3], and a polynomial dependence of
BCGP representations in the coefficients of the cohomology class has not been es-
tablished in general yet (although an analytic dependence has been observed in
specific cases).

In the present paper, we use as our main tool for the construction a factorizable
ribbon Hopf G-bialgebra H. In some sense, such an algebraic structure is the ap-
propriate one for encoding cohomology classes with G-coefficients on cobordisms.
The inspiration for this algebraic setup comes from the work of Virelizier [Vi00] and
Geer, Ha, and Patureau [GHP22] on ribbon Hopf group-coalgebras. In order to con-
struct a TQFT functor, the notion of a ribbon Hopf group-bialgebra is required, as
explained in Section 4. In the case of unrolled quantum groups, an improved version
of the invariants provided by our TQFTs was defined in [GHP20] using modified
integrals, and it was shown to recover the corresponding CGP invariants. Applying
the universal construction to these invariants would thus immediately yield TQFT
functors, as it was shown in [De17]. However, the invariants of [GHP20] can be ex-
tended to a larger category of admissible decorated cobordisms than the one used
for BGCP TQFTs, by allowing embedded bichrome graphs as defined in [GHP20,
Section 5.1]. The TQFTs resulting from the application of the universal construc-
tion to this larger category of admissible decorated cobordisms are expected to be
larger than BCGP TQFTs, and our functors would correspond to the restriction of
these larger TQFTs to the category of connected cobordisms, by analogy with the
relation established in the absence of decorations in [DM22, Appendix C].

1.3. Structure of the paper. In Section 2, we introduce the category 3CobG of
connected framed cobordisms decorated with cohomology classes with coefficients
in an abelian group G. This will provide the source of our TQFT functor. In
Subsection 2.1, we propose a diagrammatic model for these decorated cobordisms
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based on the category TanG of G-labeled top tangles in G-labeled handlebodies. We
establish an equivalence between the categories TanG and 3CobG in Subsection 2.2.

In Section 3, we introduce the algebraic structure that we will use to define
a braided monoidal functor on TanG. Namely, we introduce the notion of Hopf
group-bialgebras in Section 3. We define ribbon structures in Subsection 3.1, and
we introduce the condition of factorizability in Subsection 3.2. These are the Hopf
G-bialgebra version of the structure and properties required for the construction of
Kerler and Lyubashenko’s TQFTs.

In Section 4, we consider a factorizable Hopf G-bialgebra H, and we construct a
braided monoidal functor JH : 3CobG → H⊕

0 -mod. In order to do this, we present
an algorithm to define the image of a G-labeled top tangle. In Subsection 4.1, we
show that the result is invariant under diagrammatic relations in TanG correspond-
ing to G-labeled versions of Kirby moves for surgery presentations. This yields a
proof of Theorem 4.2. In Subsection 4.2, we state and prove Corollary 4.3, which
shows that JH restricts to the Kerler–Lyubashenko TQFT when labels are all zero.

In Section 5, we give an important example of a factorizable ribbon Hopf G-
bialgebra arising from the quantum group of sl2 for G = C/2Z. The TQFT func-
tor it induces thus depends on cohomology classes with coefficients in the same
group appearing in the construction of Blanchet–Costantino–Geer–Patureau. In
Subsections 5.1, 5.2, and 5.3 we provide bases for state spaces and define ribbon
structure, integrals, and cointegrals. Proposition 5.7 shows that the resulting Hopf
G-bialgebra is factorizable, and thus can be used to construct a TQFT functor.
Finally, in Subsection 5.4, we recall the conjecture relating mapping class groups
representations arising from JH in the case of sl2 to homological representations.

2. Decorated connected framed cobordisms

In this section, we fix an abelian group G, and we introduce the category 3CobG

of G-decorated connected framed cobordisms. Decorations will be given by coho-
mology classes with G-coefficients, and the definition will generalize the category
of connected cobordisms between connected surfaces with connected boundary in-
troduced by Crane–Yetter and Kerler [CY94, Ke01].

Let G be an abelian group. The category 3CobG of G-decorated connected framed
cobordisms is defined as follows:

⋄ Objects of 3CobG are triples Σ = (Σ,ϑ,L) where
◦ Σ is a connected surface with one boundary component;
◦ ϑ ∈ H1(Σ;G) is a cohomology class;
◦ L ⊂ H1(Σ;R) is a Lagrangian subspace with respect to the inter-

section form.
⋄ Morphisms of 3CobG from Σ = (Σ,ϑ,L) to Σ′ = (Σ′, ϑ′,L′) are equiv-

alence classes of triples M = (M,ω, n), where
◦ M is a connected 3-dimensional cobordism from Σ to Σ′;
◦ ω ∈ H1(M ;G) is a cohomology class satisfying ι∗−M (ω) = ϑ and

ι∗+M (ω) = ϑ′ for the inclusions ι−M : Σ ↪→ M and ι+M : Σ′ ↪→ M
determined by the boundary identifications;

◦ n is an integer, called the signature defect.
Two triples M = (M,ω, n) and M ′ = (M ′, ω′, n′) are equivalent if n = n′,
and there exists a diffeomorphism f : M → M ′ satisfying f ◦ ι±M = ι±M ′

and f∗(ω′) = ω.
⋄ The composition

M ′ ◦M ∈ 3CobG(Σ,Σ′′)
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of morphisms M ∈ 3CobG(Σ,Σ′) and M ′ ∈ 3CobG(Σ′,Σ′′) is the equiv-
alence class of the triple

(M ∪Σ′ M ′, ω ∪ϑ′ ω′, n+ n′ − µ(M∗(L),L′, (M ′)∗(L′′))),

where:
◦ ω ∪ϑ′ ω′ is the unique cohomology class satisfying

ι∗M (ω ∪ϑ′ ω′) = ω, ι∗M ′(ω ∪ϑ′ ω′) = ω′,

for the inclusions ιM : M ↪→ M ∪Σ′ M ′ and ιM ′ : M ′ ↪→ M ∪Σ′ M ′,
whose existence and uniqueness is guaranteed by the Mayer–Vietoris
sequence

· · · H0(Σ′;G) H1(M ∪Σ′ M ′;G)

H1(M ;G)⊕H1(M ′;G) H1(Σ′;G) · · ·

∂∗

(ι∗M , ι∗
M′ ) ι∗+M − ι∗−M′

by remarking that ∂∗ is the zero map;
◦ M∗(L) and (M ′)∗(L′′) are Lagrangian subspaces of H1(Σ

′;R) ob-
tained by pushing forward L through M and by pulling back L′′

through M ′, respectively, and µ is the Maslov index, see [BD21, Sec-
tion 2.2] for more details.

⋄ The identity
idΣ ∈ 3CobG(Σ,Σ)

of an object Σ ∈ 3CobG is given by

(Σ × [0, 1], ϑ× [0, 1], 0),

where ϑ× [0, 1] = π∗(ϑ) for the projection π : Σ × [0, 1] → Σ.

Remark 2.1. When G = 0, then 3CobG is naturally isomorphic to Crane and
Yetter’s category 3Cob of connected framed cobordisms between connected surfaces
with connected boundary [CY94, Ke01].

2.1. Labeled top tangles in labeled handlebodies. In this section, we intro-
duce the category TanG of G-labeled top tangles in G-labeled handlebodies, which,
as we will show, is equivalent to the category 3CobG. By contrast with 3CobG,
though, TanG is naturally a braided monoidal category. It is a generalization of the
category of bottom tangles in handlebodies introduced by Habiro [Ha05].

For every non-negative integer g ⩾ 0, we specify a connected 3-dimensional
handlebody Mg ⊂ R3 of genus g, obtained by attaching g copies B1, . . . , Bg of the
3-dimensional 1-handle B = D1 ×D2 to the bottom face [0, 1]×2 × {0} of the cube
[0, 1]×3. We represent graphically Mg through the projection to R× {0} × R as

We denote by Σg the connected surface of genus g with one boundary component
appearing as the bottom face of Mg, which is obtained from the square [0, 1]×2×{0}
by performing 1-surgery along g pairs of discs, and we denote by {a1, b1, . . . , ag, bg}
the set of curves represented above, which form a standard basis of H1(Σg).
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A G-labeled handlebody is a standard connected handlebody Mg equipped with
a G-labeling of its 1-handles, given by a label βi ∈ G attached to its 1-handle Bi

for every integer 1 ⩽ i ⩽ g.
A G-labeled top tangle in an G-labeled handlebody, sometimes simply called a top

tangle, is an oriented framed G-labeled tangle T = A′
1∪ . . . A′

g′ ∪C1∪ . . .∪Ch inside
a connected G-labeled handlebody Mg satisfying the following list of conditions:

⋄ The set of boundary points of T is composed of 2g′ points uniformly
distributed on the top line [0, 1]× { 1

2} × {1} ⊂ Mg;
⋄ For every 1 ⩽ j ⩽ g′, an arc component A′

j of T joins the (2j)th boundary
point to the (2j − 1)th one;

⋄ For every 1 ⩽ ℓ ⩽ h, we have
g∑

i=1

lk(ai, Cℓ)βi +

g′∑
j=1

lk(Â′
j , Cℓ)α

′
j +

h∑
k=1

lk(Ck, Cℓ)γk = 0, (1)

where βi ∈ G is the label of the 1-handle Bi of Mg, where α′
j ∈ G is the

label of the arc component A′
j of T , whose plat closure is denoted Â′

j ,
where γk ∈ G is the label of the circle component Ck of T , and where
lk(Cℓ, Cℓ) stands for the framing of Cℓ.

The source s(T ) of a top tangle T is

s(T ) = (ααααααααααααααααα, βββββββββββββββββ) = (α1, β1, . . . , αg, βg) ∈ G×2g,

where

αℓ :=

g′∑
j=1

lk(Â′
j , aℓ)α

′
j +

h∑
k=1

lk(Ck, aℓ)γk (2)

and βℓ is the label of the 1-handle Bℓ of Mg for every integer 1 ⩽ ℓ ⩽ g. The target
t(T ) of a top tangle T is

t(T ) = (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) = (α′
1, β

′
1, . . . , α

′
g′ , β′

g′) ∈ G×2g′
,

where α′
ℓ is the label of the arc component A′

ℓ of T and

β′
ℓ :=

g∑
i=1

lk(ai, Â
′
ℓ)βi +

g′∑
j=1

lk(Â′
j , Â

′
ℓ)α

′
j +

h∑
k=1

lk(Ck, Â
′
ℓ)γk (3)

for every integer 1 ⩽ ℓ ⩽ g′.
Here is an example of a top tangle, together with its projection:

In this example, the source is (α1, β1, α2, β2) with

α1 = 2α′
2, α2 = α′

1 + α′
2,

the target is (α′
1, β

′
1, α

′
2, β

′
2, α

′
3, β

′
3) with

β′
1 = α′

2 + α′
3, β′

2 = α′
1 + α′

2 + α′
3 + γ, β′

3 = α′
1 + α′

2,
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and α′
2 = 0. Notice that, up to isotopy, we can always represent top tangles using

regular diagrams, that are diagrams in which every 1-handle D1×D2 intersects the
tangle T in D1 × P ⊂ D1 ×D2, where P ⊂ D1 is a finite set of points that remain
distinct under the projection.

Remark 2.2. We will see later that G-labeled top tangles correspond to 3-dimen-
sional cobordisms decorated with cohomology classes. Under this correspondence,
G-labelings encode the evaluation of a cohomology class with coefficients in G
against 1-dimensional homology classes determined by meridians of the tangle and
by longitudes of the handles.

We consider top tangles up to framed G-Kirby moves of the following type:

↭ (K1)

↭ (K2)

↭ (K3)

These operations can be performed inside any solid torus S1 ×D2 arbitrarily em-
bedded into Mg.

The category TanG of G-labeled top tangles in G-labeled handlebodies is the cat-
egory defined as follows:

⋄ Objects of TanG are finite sequences (ααααααααααααααααα, βββββββββββββββββ) = (α1, β1, . . . , αg, βg) ∈ G×2g

for g ⩾ 0.
⋄ Morphisms of TanG from (ααααααααααααααααα, βββββββββββββββββ) ∈ G×2g to (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) ∈ G×2g′

are isotopy
classes of top tangles T with source (ααααααααααααααααα, βββββββββββββββββ) and target (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′).

⋄ The composition

T ′ ◦ T ∈ TanG((ααααααααααααααααα, βββββββββββββββββ), (α
′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′, β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′))

of morphisms T ∈ TanG((ααααααααααααααααα, βββββββββββββββββ), (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′)), T ′ ∈ TanG((α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′), (α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′, β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′)) is
obtained by considering an open tubular neighborhood N(T̃ ) in Mg of the
subtangle T̃ = A1 ∪ . . . ∪ Ag′ of T composed of all arc components, by
gluing vertically its complement Hg ∖ N(T̃ ) to Mg′ , identifying the top
base of Mg ∖N(T̃ ) with the bottom base of Mg′ as prescribed by the top
tangle T̃ , and then by shrinking the result into Mg.
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⋄ The identity id(ααααααααααααααααα,βββββββββββββββββ) ∈ TanG((ααααααααααααααααα, βββββββββββββββββ), (ααααααααααααααααα, βββββββββββββββββ)) of an object (ααααααααααααααααα, βββββββββββββββββ) ∈ TanG is
given by

id(ααααααααααααααααα,βββββββββββββββββ) :=

Here is an example of a composition of top tangles:

◦ =

In this example, we are composing a top tangle whose source (α1, β1, α2, β2) and
target (α′, β′) satisfy

α1 = α2 = α′, β′ = β1 + β2 − α′ + 2γ, 2α′ + γ = 0

with a top tangle whose source (α′, β′) and target (α′′
1 , β

′′
1 , α

′′
2 , β

′′
2 ) satisfy

α′ = α′′
1 + α′′

2 , β′′
1 = β′ + α′′

2 , β′′
2 = β′ + α′′

1 .

The category TanG can be given the structure of a braided monoidal category:
⋄ The tensor product

(ααααααααααααααααα, βββββββββββββββββ) ♮(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) ∈ TanG

of objects (ααααααααααααααααα, βββββββββββββββββ), (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) ∈ TanG is given by their concatenation.
⋄ The tensor product

T ♮ T ′ ∈ TanG((ααααααααααααααααα, βββββββββββββββββ) ♮(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′), (α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′, β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′) ♮(α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′, β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′))

of morphisms T ∈ TanG((ααααααααααααααααα, βββββββββββββββββ), (α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′α′′, β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′β′′)), T ′ ∈ TanG((α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′), (α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′α′′′, β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′β′′′))
is obtained by gluing horizontally Mg to Mg′ , identifying the right side of
Mg with the left side of Mg′ as prescribed by the identity map, and then
by shrinking the result into Mg+g′ .

⋄ The tensor unit is the empty sequence ∅ ∈ TanG.
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⋄ The braiding c(ααααααααααααααααα,βββββββββββββββββ),(α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′
α′,β

′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′
β′) ∈ TanG((ααααααααααααααααα, βββββββββββββββββ) ♮(α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′), (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) ♮(ααααααααααααααααα, βββββββββββββββββ)) of ob-

jects (ααααααααααααααααα, βββββββββββββββββ), (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′) ∈ TanG is given by

c(ααααααααααααααααα,βββββββββββββββββ),(α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′
α′,β

′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′
β′) :=

Here is an example of a tensor product of top tangles:

♮ =

In this example, we are tensoring a top tangle whose source (α, β) and target
(α′′

1 , β
′′
1 , α

′′
2 , β

′′
2 ) satisfy

α = α′′
1 + α′′

2 , β′′
1 = β + α′′

2 , β′′
2 = β + α′′

1

with a top tangle whose source (α′
1, β

′
1, α

′
2, β

′
2) and target (α′′′, β′′′) satisfy

α′
1 = α′

2 = α′′′, β′′′ = β′
1 + β′

2 − α′′′ + 2γ, 2α′′′ + γ = 0.

Remark 2.3. When G = 0, then TanG is naturally isomorphic to the category Tan
of framed top tangles in handlebodies [BD21, BBDP23]. Indeed, notice that, even
though morphisms in Tan are given by unoriented tangles, there is always a unique
orientation for arc components that is compatible with our convention for Tan0,
and 0-labeled closed components can be given any arbitrary orientation thanks to
move (K3).

2.2. Equivalence of categories. We consider now the surgery functor

χ : TanG → 3CobG

sending every object (ααααααααααααααααα, βββββββββββββββββ) = (α1, β1, . . . , αg, βg) ∈ G×2g of TanG to the object

Σ(ααααααααααααααααα,βββββββββββββββββ) := (Σg, ϑ(ααααααααααααααααα,βββββββββββββββββ),Lg)

of 3CobG, where
⋄ ϑ(ααααααααααααααααα,βββββββββββββββββ) ∈ H1(Σg;G) is the cohomology class determined by

ϑ(ααααααααααααααααα,βββββββββββββββββ)(ai) = αi, ϑ(ααααααααααααααααα,βββββββββββββββββ)(bi) = βi

for every integer 1 ⩽ i ⩽ g,
⋄ Lg ⊂ H1(Σg;R) is the Lagrangian subspace given by ker ι∗−Mg

for the
inclusion ι−Mg : Σg ↪→ Mg,
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and sending every morphism T in TanG((ααααααααααααααααα, βββββββββββββββββ), (α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′)) to the morphism

M(T ) := (M(T ), ωT , σ(T ∖ T̃ ))

in 3Cob(Σ(ααααααααααααααααα,βββββββββββββββββ),Σ(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′,β
′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′

β′)), where
⋄ M(T ) is the cobordism obtained from Mg by carving out an open tubular

neighborhood N(T̃ ) in Hm of the open subtangle T̃ = A′
1 ∪ . . .∪A′

g′ of T
composed of all arc components, and by performing 2-surgery along the
closed subtangle T ∖ T̃ = C1∪ . . .∪Ch composed of all circle components,

⋄ ωT ∈ H1(M(T );G) is the cohomology class determined by

ωT (bi) = βi, ωT (a
′
j) = α′

j , ωT (ck) = γk

for all integers 1 ⩽ i ⩽ g, 1 ⩽ j ⩽ g′, 1 ⩽ k ⩽ h, where a′j and ck denote
positive meridians of the arc component A′

j and of the circle component
Ck of T , respectively, and where α′

j , γk ∈ G denote the respective labels;
⋄ σ(T ∖ T̃ ) is the signature of the linking matrix of (T ∖ T̃ ) ⊂ Mg ⊂ R3.

Proposition 2.4. The surgery functor χ : TanG → 3CobG is an equivalence.

Proof. Since, for every g ⩾ 0, the set of curves {a1, b1, . . . , ag, bg} provides a basis
of H1(Σg), then χ is essentially surjective on objects, as a direct consequence of the
classification of surfaces. Furthermore, every cobordism M from Σg to Σg′ can be
obtained from

M0 := M




by 2-surgery along some framed link L, and every cohomology class ω ∈ H1(M ;G)
determines a label ω(ck) ∈ G for every positive meridian ck of every component
Ck of L. These labels have to satisfy Equation (1) because the longitude of Ck

determined by the framing is null-homologous in M0(L). This shows that χ is
full. Finally, two G-labeled top tangles T and T ′ in TanG determine diffeomorphic
cobordisms under χ if and only if they are related by a finite sequence of framed
G-Kirby moves (K1)–(K3), as follows from [Ro97, Theorem 1]. This shows χ is
faithful. □

Remark 2.5. Thanks to Remarks 2.1 and 2.3, and to [Ke01, Theorem 2.2], if G = 0,
then Tan ∼= Tan0 is generated by the finite list of morphisms described in [Ke01,
Equations (46)–(50)], compare with [BBDP23, Figure 3.4.3]. In fact, in this case,
a complete algebraic presentation of Tan is given in [BBDP23, Corollary B & The-
orem C]. It is clear then that, for an arbitrary abelian group G, a list of generators
for TanG is obtained by considering all possible G-labelings of generators of Tan.
In other words, the list of morphisms represented in Figure 1, for all α, β, γ ∈ G,
provides generators for TanG.

3. Hopf group-bialgebras

In this section, we introduce the notion of Hopf group-bialgebras, which gen-
eralize Ohtsuki’s colored Hopf algebras [Oh93], which are a special case of Hopf
group-coalgebras, as introduced by Turaev [Tu10] and Virelizier [Vi00].

Let G be an abelian group. A Hopf G-bialgebra is a family H = {Hβ
α | α, β ∈ G}

of vector spaces over a field k equipped with
⋄ a product µ = {µβ,γ

α : Hβ
α ⊗Hγ

α → Hβ+γ
α | α, β, γ ∈ G},
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Figure 1. Generators of TanG, with α, β, γ ∈ G.

⋄ a unit η = {η0α : k → H0
α | α ∈ G},

⋄ a coproduct ∆ = {∆γ
α,β : Hγ

α+β → Hγ
α ⊗Hγ

β | α, β, γ ∈ G},
⋄ a counit ε = {εα0 : Hα

0 → k | α ∈ G},
⋄ an antipode S = {Sβ

α : Hβ
α → H−β

−α | α, β ∈ G}.
For all α, β, γ, δ ∈ G, these data satisfy

µβ+γ,δ
α ◦ (µβ,γ

α ⊗ idHδ
α
) = µβ,γ+δ

α ◦ (idHβ
α
⊗ µγ,δ

α ), (H1)

µ0,β
α ◦ (η0α ⊗ idHβ

α
) = idHβ

α
= µβ,0

α ◦ (idHβ
α
⊗ η0α), (H2)

(∆δ
α,β ⊗ idHδ

γ
) ◦∆δ

α+β,γ = (idHδ
α
⊗∆δ

β,γ) ◦∆δ
α,β+γ , (H3)

(εβ0 ⊗ idHβ
α
) ◦∆β

0,α = idHβ
α
= (idHβ

α
⊗ εβ0 ) ◦∆

β
α,0, (H4)

∆γ+δ
α,β ◦ µγ,δ

α+β = (µγ,δ
α ⊗ µγ,δ

β ) ◦ (idHγ
α
⊗ τHγ

β ,Hδ
α
⊗ idHδ

β
) ◦ (∆γ

α,β ⊗∆δ
α,β), (H5)

εα+β
0 ◦ µα,β

0 = εα0 ⊗ εβ0 , (H6)

∆0
α,β ◦ η0α+β = η0α ⊗ η0β , (H7)

ε00 ◦ η00 = idk, (H8)

µ−β,β
α ◦ (Sβ

−α ⊗ idHβ
α
) ◦∆β

−α,α = η0α ◦ εβ0 = µβ,−β
α ◦ (idHβ

α
⊗ Sβ

−α) ◦∆
β
α,−α, (H9)

where τHγ
β ,Hδ

α
: Hγ

β ⊗ Hδ
α → Hδ

α ⊗ Hγ
β is the standard transposition. We will use

the shorthand notation

ηα = η0α, 1α = ηα(1), εα = εα0

for every α ∈ G,
xy = µβ,γ

α (x⊗ y)

for all x ∈ Hβ
α , y ∈ Hγ

α, and

z(1,α1) ⊗ z(2,α2) = ∆β
α1,α2

(z) if n = 2

z(1,α1) ⊗ . . .⊗ z(n,αn) = z(1,α1) ⊗ . . .⊗ z(n−2,αn−2) ⊗∆β
αn−1,αn

(z(n−1,αn−1+αn))

= ∆β
α1,α2

(z(1,α1+α2))⊗ z(2,α3) ⊗ . . .⊗ z(n−1,αn) if n > 2

for every z ∈ Hβ
α1+...+αn

.

Remark 3.1. If H = {Hβ
α | α, β ∈ G} is a Hopf G-bialgebra, then H0

α is an algebra
and Hα

0 is a coalgebra for every α ∈ G. In particular, H0
0 is a Hopf algebra.
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Furthermore,

H⊕ =

H⊕
α =

⊕
β∈G

Hβ
α

∣∣∣∣∣ α ∈ G


is a Hopf G-coalgebra, and H⊕

α is an algebra for every α ∈ G. We will write

(Hβ
α)

× = (H⊕
α )× ∩Hβ

α , Z(Hβ
α) = Z(H⊕

α ) ∩Hβ
α

for all α, β ∈ G to denote the intersection of Hβ
α with the set of invertible elements

and with the center of H⊕
α , respectively.

Proposition 3.2. For all α, β, γ ∈ G, the antipode satisfies

Sβ+γ
α (xy) = Sγ

α(y)S
β
α(x), (H10)

S0
α(1α) = 1−α (H11)

(Sγ
α+β(z))(1,−α) ⊗ (Sγ

α+β(z))(2,−β) = Sγ
α(z(2,α))⊗ Sγ

β (z(1,β)), (H12)

εα(Sα
0 (w)) = ε−α(w). (H13)

for all x ∈ Hγ
α, y ∈ Hγ

β , z ∈ Hγ
α+β, w ∈ Hα

0 .

Proof. Equations (H10)–(H13) are the Hopf G-bialgebra version of [Ka95, Theo-
rem III.3.4.(a)], and the reader can directly adapt the proof from there. Notice
that the Hopf G-coalgebra version of these properties is [Vi00, Lemma 1.1]. □

3.1. Ribbon structures. If G is a ring such that 2 ∈ G×, which justifies the
notation 1

2 = 2−1 ∈ G×, then a ribbon Hopf G-bialgebra is a Hopf G-bialgebra
H = {Hβ

α | α, β ∈ G} equipped with

⋄ an R-matrix R = {R
β
2 ,α2
α,β =

∑
i

(R′
i)

β
2
α ⊗(R′′

i )
α
2

β ∈ (H
β
2
α ⊗H

α
2

β )× | α, β ∈ G},

⋄ a ribbon element v = {v−α
α ∈ Z(H−α

α )× | α ∈ G}.
For all α, β, γ ∈ G, these data satisfy:∑

i

(R′
i)

β
2
α x(1,α) ⊗ (R′′

i )
α
2

β x(2,β) =
∑
i

x(2,α)(R
′
i)

β
2
α ⊗ x(1,β)(R

′′
i )

α
2

β , (R1)

∑
i

(R′
i)

β+γ
2

α ⊗∆
α
2

β,γ((R
′′
i )

α
2

β+γ) =
∑
j,k

(R′
j)

γ
2
α (R

′
k)

β
2
α ⊗ (R′′

k)
α
2

β ⊗ (R′′
j )

α
2
γ , (R2)

∑
i

∆
γ
2

α,β((R
′
i)

γ
2

α+β)⊗ (R′′
i )

α+β
2

γ =
∑
j,k

(R′
j)

γ
2
α ⊗ (R′

k)
γ
2

β ⊗ (R′′
j )

α
2
γ (R′′

k)
β
2
γ , (R3)

(v−α
α )2 = u−α

α Sα
−α(u

α
−α), (R4)

∆
−(α+β)
α,β (v

−(α+β)
α+β )

=
∑
i,j

(v−α
α S

β
2
−α((R

′
i)

β
2
−α)(R

′′
j )

− β
2

α ⊗ v−β
β (R′′

i )
−α

2

β S
α
2

−β((R
′
j)

α
2

−β)), (R5)

ε0(v00) = 1, (R6)

S−α
α (v−α

α ) = vα−α (R7)

for all x ∈ Hγ
α+β and y ∈ Hβ

α , and for the Drinfeld element

u−α
α :=

∑
i

S
α
2
−α((R

′′
i )

α
2
−α)(R

′
i)

−α
2

α .

The latter determines a pivotal element

g = {g0α ∈ H0
α | α ∈ G}
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defined by
g0α := u−α

α (v−1)αα.

We will adopt Einstein’s notation by suppressing sums, and also use the shorthand
notation gα = g0α for every α ∈ G.

Remark 3.3. If H = {Hβ
α | α, β ∈ G} is a ribbon Hopf G-bialgebra, then:

(i) Using the notation of Remark 3.1, H⊕ = {H⊕
α | α ∈ G} is a ribbon Hopf

G-coalgebra2 in the sense of [Vi00, Section 6.4], and in particular H⊕
0 is

a ribbon Hopf algebra;
(ii) The antipode S of a ribbon Hopf G-bialgebra is always invertible in the

sense that Sβ
α : Hβ

α → H−β
−α is a linear isomorphism for all α, β ∈ G, as a

direct consequence of [Vi00, Lemma 6.5.(c)].

Proposition 3.4. For all α, β, γ ∈ G, the R-matrix and the pivotal element satisfy∑
i,j,k

(R′
i)

β
2
α (R

′
j)

γ
2
α ⊗ (R′′

i )
α
2

β (R′
k)

γ
2

β ⊗ (R′′
j )

α
2
γ (R′′

k)
β
2
γ

=
∑
i,j,k

(R′
j)

γ
2
α (R

′
k)

β
2
α ⊗ (R′

i)
γ
2

β (R
′′
k)

α
2

β ⊗ (R′′
i )

β
2
γ (R

′′
j )

α
2
γ , (R8)

∑
i

ε
α
2

(
(R′′

i )
α
2
0

)
(R′

i)
0
α = 1α =

∑
i

ε
α
2

(
(R′

i)
α
2
0

)
(R′′

i )
0
α, (R9)

(
R

β
2 ,α2
α,β

)−1

=
∑
i

S
β
2
−α

(
(R′

i)
β
2
−α

)
⊗ (R′′

i )
−α

2

β

=
∑
i

(R′
i)

− β
2

α ⊗ (S
−α

2

β )−1
(
(R′′

i )
α
2

−β

)
, (R10)

∑
i

S
β
2
α

(
(R′

i)
β
2
α

)
⊗ S

α
2

β

(
(R′′

i )
α
2

β

)
= R

− β
2 ,−α

2

−α,−β , (R11)

(u−1)αα = (u−α
α )−1 =

∑
i

(R′
i)

α
2
α S

−α
2

−α (S
α
2
α ((R′′

i )
α
2
α )), (R12)

u−α
α x(u−1)αα = S−β

−α

(
Sβ
α(x)

)
, (R13)

∆0
α,β (gα+β) = gα ⊗ gβ , (R14)

ε0 (g0) = 1, (R15)

gαxg
−1
α = S−β

−α

(
Sβ
α(x)

)
(R16)

for every x ∈ Hβ
α .

Proof. Equations (R8)–(R11) are the Hopf G-bialgebra version of [Ka95, Theo-
rem VIII.2.4], and the reader can directly adapt the proof from there. Notice that
the Hopf G-coalgebra version of these properties is [Oh93, Proposition 1.4]. Equa-
tions (R12) and (R13) are standard properties of the Drinfeld element, and can
be adapted from [Ka95, Proposition VIII.4.1]. Notice that the Hopf G-coalgebra
version of these properties appears in [Vi00, Lemma 6.5]. Equations (R14)–(R16)
are standard properties of the pivotal element, and can be adapted from [Ka95,
Propositions VIII.4.5 & VIII.4.1] using the defining axioms of the ribbon element.
Notice that the Hopf G-coalgebra version of these properties appears in [GHP22,
Definition 2.1]. □

2Notice that our ribbon element v corresponds to the inverse of Virelizier’s ϑ.



HENNINGS TQFTS FOR COBORDISMS DECORATED WITH COHOMOLOGY CLASSES 15

3.2. Factorizability. A ribbon Hopf G-bialgebra H = {Hβ
α | α, β ∈ G} is factor-

izable if it can be equipped with
⋄ a left integral λ = {λ0

α : H0
α → k | α ∈ G},

⋄ a two-sided cointegral Λ = {Λα
0 : k → Hα

0 | α ∈ G}.
For all α, β ∈ G, these data are required to satisfy

λ0
β(x(2,β))x(1,α) = λ0

α+β(x)1α, (I1)

yΛβ
0 = εα(y)Λα+β

0 , (I2)

Sα
0 (Λ

α
0 ) = Λ−α

0 , (I3)

λ0
0(Λ

0
0) = 1, (I4)

Dα,0(λ
0
−α ◦ S0

α) = Λα
0 (I5)

for all x ∈ H0
α+β and y ∈ Hβ

0 , where

Dα,β : (Hβ
α)

∗ → Hα
β

f 7→ f((R′′
i )

β
2
α (R

′
j)

β
2
α )(R

′
i)

α
2

β (R′′
j )

α
2

β

is the Drinfeld map. We will use the shorthand notation

λα = λ0
α, Λα = Λα

0 (1)

for every α ∈ G.

Remark 3.5. If H = {Hβ
α | α, β ∈ G} is a factorizable ribbon Hopf G-bialgebra,

then:
(i) H0

0 is a factorizable ribbon Hopf algebra in the sense of [He96, Section 7],
thanks to [Ke96, Theorem 5];

(ii) Every left integral λ⊕ = {λ⊕
α : H⊕

α → k | α ∈ G} for the Hopf G-
coalgebra H⊕

α , in the sense of [Vi00, Section 3.1], determines a left integral
λ = {λα : H0

α → k | α ∈ G} for H, where λα is the restriction of λ⊕
α to

H0
α ⊂ H⊕

α for every α ∈ G.

Proposition 3.6. If H = {Hβ
α | α, β ∈ G} is a factorizable ribbon Hopf G-

bialgebra, then, for all α, β ∈ G, the left integral satisfies

λα(x(1,α))x(2,β) = λα+β(x)g
2
β , (I6)

λα(yz) = λα

(
zS−β

−α

(
Sβ
α(y)

))
, (I7)

λα(wg
−1
α ) = λ−α(S

0
α(w)g

−1
−α) (I8)

for all x ∈ H0
α+β, y ∈ Hβ

α , x ∈ H−β
α , w ∈ H0

α.

Proof. The first claim is the Hopf G-bialgebra version of [Ra12, Theorem 10.2.2.(b)].
Similarly, Equations (I6) and (I7) are the Hopf G-bialgebra version of [Ra12, The-
orem 10.5.4.(b) & (e)], at least up to the Hopf G-bialgebra version of [Ra12, Ex-
ercise 10.2.1], see also [EGNO15, Theorem 7.18.12]. Remark that the Hopf G-
coalgebra version of these properties is a direct consequence3 of [Vi00, Lemma 4.1
& Theorem 4.2]. To deduce Equations (I6)–(I8) from there, the Hopf G-bialgebra
version of [KR93, Theorem 1] is also needed. □

3Notice that our pivotal element g coincides with Virelizier’s spherical grouplike element G,
and not with its square g, called the distinguished grouplike element. Also Radford denotes by g

the square of our pivotal element.
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4. Construction of the TQFT functor

Let H = {Hβ
α | α, β ∈ G} be a factorizable ribbon Hopf G-bialgebra over a field

k. We will now construct a braided monoidal TQFT functor

JH : TanG → H⊕
0 -mod .

On the level of objects, for every finite sequence

(ααααααααααααααααα, βββββββββββββββββ) = (α1, β1, . . . , αg, βg) ∈ G×2g,

let us set

JH(ααααααααααααααααα, βββββββββββββββββ) := H(ααααααααααααααααα,βββββββββββββββββ) =

g⊗
i=1

HHHHHHHHHHHHHHHHH βi

αi
, (4)

where, for all α, β ∈ G, the H⊕
0 -module HHHHHHHHHHHHHHHHH β

α is given by the vector space Hβ
α

equipped with the adjoint action

x ▷ y = x(1,α)yS
γ
−α(x(2,−α))

for all x ∈ Hγ
0 and y ∈ HHHHHHHHHHHHHHHHH β

α.
On the level of morphisms, the definition requires some more preparation. First

of all, suppose that, for a fixed regular diagram of a top tangle, the number of
strands of running along a β-labeled 1-handle B is k, with orientations and labels

(σσσσσσσσσσσσσσσσσ, ξξξξξξξξξξξξξξξξξ) = ((σ1, ξ1), . . . , (σk, ξk)) ∈ ({+,−} ×G)×k.

Our convention here is that positive strands are those that run along B from right
to left, and we set α = σ1ξ1 + . . . + σkξk. Let us agree that inserting a bead with
label x ∈ HHHHHHHHHHHHHHHHH β

α on the 1-handle B means considering the (k − 1)-iterated oriented
coproduct

∆β
(σσσσσσσσσσσσσσσσσ,ξξξξξξξξξξξξξξξξξ)

(x) := xσ1

(1,ξ1)
⊗ . . .⊗ xσk

(k,ξk)
∈

k⊗
i=1

Hσiβ
ξi

,

xσi

(i,ξi)
:=

{
x(i,ξi) ∈ Hβ

ξi
if σi = +,

Sβ
−ξi

(x(i,−ξi)) ∈ H−β
ξi

if σi = −,
∀ 1 ⩽ i ⩽ k,

and then decorating the diagram around B as shown:

When k = 0, we add by convention a multiplicative factor of εβ(x) in front of the
whole diagram. Here is an example of bead insertion:

7→
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In this example, we are inserting a bead with label x ∈ HHHHHHHHHHHHHHHHH β
α for α = −ξ1+ξ2. Using

this operation, let us define, for a fixed regular diagram of a top tangle

T ∈ TanG((ααααααααααααααααα, βββββββββββββββββ), (α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′, β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′)),

a linear map4

JH(T ) : H(ααααααααααααααααα,βββββββββββββββββ) → H(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′,β
′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′

β′).

In order to do this, let us consider a vector

x1 ⊗ . . .⊗ xg ∈ H(ααααααααααααααααα,βββββββββββββββββ).

First, we insert a bead with label xi ∈ HHHHHHHHHHHHHHHHH βi

αi
on the 1-handle Bi of Mg for every

integer 1 ⩽ i ⩽ g. Next, we insert beads labeled by components of the R-matrix
around crossings, as shown:

7→ 7→

7→ 7→

7→ 7→

7→ 7→

Then, we insert beads labeled by pivotal elements around right-oriented extrema,
as shown:

7→ 7→

Notice that this step has to be applied also to all the right-oriented minima that
should appear inside 1-handles. Next, we collect all beads sitting on the same
component in one place, by sliding them along the strand without changing their
order, and we multiply everything together according to the rule

=

In the end, we are left with a top tangle B(T ) carrying at most a single bead on
each of its components. The linear map JH(T ) : H(ααααααααααααααααα,βββββββββββββββββ) → H(α

′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′
α′,β

′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′
β′) is determined

by

JH(T )(x1 ⊗ . . .⊗ xg) =

(
h∏

k=1

λγk
(ykg

−1
γk

)

)
x′
1 ⊗ . . .⊗ x′

g′ ∈ H(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′,β
′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′

β′) (5)

4We will need to show later that JH(T ) is indeed well-defined, meaning that it does not
depend on the chosen diagram, that it is invariant invariant under G-Kirby moves, and that it is
an H⊕

0 -intertwiner.
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for every x1 ⊗ . . .⊗ xg ∈ H(ααααααααααααααααα,βββββββββββββββββ), where

B(T ) =

Lemma 4.1. In Equation (5), we have indeed

x′
j ∈ HHHHHHHHHHHHHHHHH

β′
j

α′
j
, yk ∈ HHHHHHHHHHHHHHHHH 0

γk

for all 1 ⩽ j ⩽ g′ and 1 ⩽ k ⩽ h.

Proof. The arc component A′
ℓ of T runs along the 1-handle Bi of Mg an alge-

braic total of lk(ai, Â
′
ℓ) times, thus picking up beads whose lower degrees are all

α′
ℓ, and whose total upper degree is lk(ai, Â

′
ℓ)βi. Afterwards, it crosses the arc

component A′
j and the closed component Ck of T an algebraic total of 2lk(Â′

j , Â
′
ℓ)

and of 2lk(Ck, Â
′
ℓ) times, respectively, thus picking up beads whose lower degree is

always α′
ℓ, and whose total upper degree is lk(Â′

j , Â
′
ℓ)α

′
j and lk(Ck, Â

′
ℓ)γk, respec-

tively. Then, it picks up pivotal elements with lower degree α′
ℓ and upper degree 0.

Since products preserve lower degrees and add up upper degrees, we deduce that
x′
ℓ ∈ HHHHHHHHHHHHHHHHH

β′
ℓ

α′
ℓ
, as follows from Equation (3). The same argument applied to the circle

component Cℓ of T shows that yℓ ∈ HHHHHHHHHHHHHHHHH 0
γk

, as follows from Equation (1). □

Theorem 4.2. Equations (4) and (5) define a braided monoidal functor

JH : TanG → H⊕
0 -mod .

4.1. Proof of the invariance. Let us prove our main result.

Proof of Theorem 4.2. We need to show that:
⋄ JH(T ) is independent of the regular diagram representing T ;
⋄ JH(T ) is invariant under framed G-Kirby moves on T ;
⋄ JH(T ′ ◦ T ) = JH(T ′) ◦ JH(T ) and JH(id(ααααααααααααααααα,βββββββββββββββββ)) = idJH(ααααααααααααααααα,βββββββββββββββββ);
⋄ JH(T ) is an H⊕

0 -intertwiner;
⋄ JH(T ♮ T ) = JH(T )⊗ JH(T ′) and JH(∅) = k;
⋄ JH(c(ααααααααααααααααα,βββββββββββββββββ),(α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′,β
′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′

β′)) = cJH(ααααααααααααααααα,βββββββββββββββββ),JH(α
′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′,β
′β′β′β′β′β′β′β′β′β′β′β′β′β′β′β′

β′).
Invariance under framed Reidemeister moves follows from the Hopf G-bialgebra
version of the standard argument that shows the isotopy invariance of Lawrence’s
universal invariant of links, using Equations (R4), (R10), and (R8), compare with
the proof of [Oh93, Theorem 4.1]. Here, we also have to check that 1-handles are
dinatural with respect to crossings and extrema. For what concerns crossings, we
need to compare the following tangles:
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The two configurations lead to the same result, as a consequence of Equations (R1)
and (R10), and the identity for the other crossings is proved similarly. For what
concerns maxima, we need to compare the following tangles:

Again, the two configurations lead to identical results, as a consequence of Equa-
tion (H9), and the identity for the other orientation is proved similarly. The same
goes for maxima, which lead us to compare the following tangles:

Next, we need to prove invariance under framed G-Kirby moves. The proof is
essentially the same as the one for [BD22, Theorem 3.1]. Indeed, in order to prove
invariance under (K1), let us start by comparing the following tangles:

The two configurations lead to the same result, as a consequence of Equation (I5),
since

λα

(
S0
−α

(
(R′

i)
0
−α

)
S0
−α

(
(R′′

j )
0
−α

))
(R′

j)
−α

2
0 (R′′

i )
−α

2
0

= λα

(
S0
−α

(
(R′′

j )
0
−α(R

′
i)

0
−α

))
(R′

j)
−α

2
0 (R′′

i )
−α

2
0

= Λ−α.

This means that

⇝
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Then the invariance follows from Equations (I2), (R9), and (R15). For what con-
cerns (K2), we have

⇝

Then the invariance follows from Equation (I1). Finally, for what concerns (K3),
we use the handle trick, which amounts to replace the left-hand tangle with the
right-hand one, here below:

As usual, we are assuming that α = σ1ξ1+ . . .+σkξk. Notice that the two configu-
rations lead to the same result, as a consequence of the invariance under (K1) and
(K2). Therefore, we can always assume that the circle component whose orienta-
tion we want to reverse is entirely contained in the unit cube [0, 1]×3 ⊂ R3. Then,
up to isotopy, we can assume that the knot is written as the closure of an upward-
oriented braid (recall that we already explained that the result of the algorithm is
invariant under isotopies). For a braid closure, reversing the orientation amounts
to replacing each bead labeled by x ∈ Hβ

α with a bead labeled by Sβ
α(x) ∈ H−β

−α .
This means that

⇝

Then the invariance follows from Equation (I8).
Next, we need to prove that JH is a functor. The fact that it respects composi-

tions can be proved using the handle trick once again, while the fact that it respects
identities is clear from the algorithm.

Next, we need to prove that JH(T ) is an H⊕
0 -intertwiner. Thanks to Remark 2.5,

it is enough to check this for generators of TanG. A computation shows that those
appearing in Figure 1 are sent to:

⋄ a product

µµµµµµµµµµµµµµµµµβ,γ
α : HHHHHHHHHHHHHHHHH β

α ⊗HHHHHHHHHHHHHHHHH γ
α → HHHHHHHHHHHHHHHHH β+γ

α

x⊗ y 7→ xy;

⋄ a unit
ηηηηηηηηηηηηηηηηηα : k → HHHHHHHHHHHHHHHHH 0

α

1 7→ 1α;
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⋄ a coproduct
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

γ
α,β : HHHHHHHHHHHHHHHHH

γ
α+β → HHHHHHHHHHHHHHHHH γ

α ⊗HHHHHHHHHHHHHHHHH
γ
β

x 7→
∑
i

x(1,α)S
0
−α((R

′′
i )

0
−α)⊗ ((R′

i)
−α

2
0 ▷ x(2,β));

⋄ a counit
εεεεεεεεεεεεεεεεεα : HHHHHHHHHHHHHHHHH α

0 → k
x 7→ εα(x);

⋄ an antipode

SSSSSSSSSSSSSSSSS β
α : HHHHHHHHHHHHHHHHH β

α → HHHHHHHHHHHHHHHHH−β
−α

x 7→
∑
i

(R′′
i )

0
−αS

β
α((R

′
i)

−α
2

0 ▷ x);

⋄ an inverse antipode

(S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1S−1)βα : HHHHHHHHHHHHHHHHH β
α → HHHHHHHHHHHHHHHHH−β

−α

x 7→
∑
i

(S−1)βα((R
′
i)

−α
2

0 ▷ x)(R′′
i )

0
−α;

⋄ a ribbon element
vvvvvvvvvvvvvvvvv−α
α : k → HHHHHHHHHHHHHHHHH−α

α

1 7→ v−α
α ;

⋄ an inverse ribbon element

(v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1v−1)αα : k → HHHHHHHHHHHHHHHHH α
α

1 7→ (v−α
α )−1;

⋄ a counit
λλλλλλλλλλλλλλλλλα : HHHHHHHHHHHHHHHHH 0

α → k
x 7→ λα(x).

For ribbon Hopf algebras, which correspond to the case G = 0, it was first proved
in [Ma91] that (the analogue of) these linear maps intertwine tensor powers of the
adjoint action, see also [Ma95, Example 9.4.9]. Let us check this for the coproduct
and the antipode, and leave the remaining generators to the reader. For all x ∈ Hδ

0

and y ∈ HHHHHHHHHHHHHHHHH
γ
α+β , we have

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
γ
α,β(x ▷ y)

= ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
γ
α,β(x(1,α+β)yS

δ
−α−β(x(2,−α−β)))

=
∑
i

x(1,α)y(1,α)S
δ
−α(x(4,−α))S

0
−α((R

′′
i )

0
−α)⊗ ((R′

i)
−α

2
0 ▷ (x(2,β)y(2,β)S

δ
−β(x(3,−β)))

=
∑
i

x(1,α)y(1,α)S
δ
−α((R

′′
i )

0
−αx(3,−α))⊗ (((R′

i)
−α

2
0 x(2,0)) ▷ y(2,β))

=
∑
i

x(1,α)y(1,α)S
δ
−α(x(2,−α)(R

′′
i )

0
−α)⊗ ((x(3,0)(R

′
i)

−α
2

0 ) ▷ y(2,β))

=
∑
i

x(1,α)y(1,α)S
0
−α((R

′′
i )

0
−α)S

δ
−α(x(2,−α))⊗ (x(3,0) ▷ ((R

′
i)

−α
2

0 ▷ y(2,β)))

=
∑
i

(x(1,0) ▷ (y(1,α)S
0
−α((R

′′
i )

0
−α)))⊗ (x(2,0) ▷ ((R

′
i)

−α
2

0 ▷ y(2,β)))

= x ▷∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
γ
α,β(y),
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where the second equality follows from Equation (H12), the third and fifth ones
from Equation (H10), and the fourth one from Equation (R1). Similarly, for all
x ∈ Hγ

0 and y ∈ HHHHHHHHHHHHHHHHH β
α, we have

SSSSSSSSSSSSSSSSS β
α(x ▷ y)

= SSSSSSSSSSSSSSSSS β
α(x(1,α)yS

γ
−α(x(2,−α)))

=
∑
i

(R′′
i )

0
−αS

β
α((R

′
i)

−α
2

0 ▷ (x(1,α)yS
γ
−α(x(2,−α))))

=
∑
j,k

(R′′
k)

α
2
−α(R

′′
j )

−α
2

−α Sβ
α((R

′
k)

−α
2

α x(1,α)yS
γ
−α(x(2,−α))S

−α
2

−α ((R′
j)

−α
2

−α ))

=
∑
k

(R′′
k)

α
2
−α(u

α
−α)

−1S−γ
α (Sγ

−α(x(2,−α)))S
−α

2 +β+γ
α ((R′

k)
−α

2
α x(1,α)y)

=
∑
k

(R′′
k)

α
2
−αx(2,−α)(u

α
−α)

−1S
−α

2 +β+γ
α ((R′

k)
−α

2
α x(1,α)y)

=
∑
k

x(1,−α)(R
′′
k)

α
2
−α(u

−1)−α
−αS

−α
2 +β+γ

α (x(2,α)(R
′
k)

−α
2

α y)

= x ▷ SSSSSSSSSSSSSSSSS β
α(y),

where the third equality follows from Equation (R2), the fourth and sixth ones from
Equations (H10) and (R12), and the fifth one from Equation (R13).

Finally, we need to prove that JH is braided monoidal. Notice however that the
fact that JH respects tensor products, tensor unit, and braiding is clear from the
algorithm. □

4.2. Relation with the Kerler–Lyubashenko TQFT. If H = {Hβ
α | α, β ∈ G}

is a factorizable ribbon Hopf G-bialgebra over a field k, then, thanks to Remark 3.5,
H0

0 is a ribbon Hopf algebra. In particular, H0
0 induces a Kerler–Lyubashenko

TQFT
JH0

0
: Tan → H0

0 -mod

thanks to the construction of [KL01], see also [DM22, Sections 4.2.3 & 4.2.4]. Notice
that the inclusion 0 ↪→ G induces an inclusion functor

ι : Tan → TanG,

and similarly the inclusion H0
0 ↪→ H⊕

0 induces a restriction functor

ρ : H⊕
0 -mod → H0

0 -mod .

Corollary 4.3. The diagram of braided ribbon functors

3Cob H0
0 -mod

3CobG H⊕
0 -mod

J
H0

0

ι ρ

JH

is commutative.

Proof. The proof is almost clear, except for the fact that the algorithm presented in
[DM22, Section 4.2.4] is given in terms of unoriented top tangles in handlebodies,
instead of oriented (0-labeled) top tangles in (0-labeled) handlebodies. The two
recipes do not coincide, but it turns out that they yield the same result. Indeed,
this is true when the two algorithms are applied to the oriented generators obtained
from Figure 1 by setting all labels equal to 0, on one hand, and to their unoriented
unlabeled version, on the other hand. Then, since both procedures produce braided
monoidal functors, their result must coincide for arbitrary top tangles too. □
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5. Quantum sl2

Let us consider the primitive rth root of unity q = e
2πi
r , where r ⩾ 3 is an

integer, and let us set r′ := r/ gcd(2, r). For every α ∈ C, and for all positive
integers k ⩾ ℓ ⩾ 0, we recall the notation

qα := e
2απi

r , {α} := qα − q−α, [k] :=
{k}
{1}

, [k]! :=

k∏
j=1

[j],

[
k
ℓ

]
:=

[k]!

[ℓ]![k − ℓ]!
.

The unrestricted quantum group U = Uqsl2 is the C-algebra with generators

{E,F,Kα | α ∈ C}
and relations

Er′ = F r′ = 0, KαKβ = Kα+β ,K0 = 1,

KαEK−α = q2αE, KαFK−α = q−2αF, [E,F ] =
K −K−1

q − q−1
.

Now U admits a Hopf algebra structure obtained by setting

∆(E) = E ⊗K + 1⊗ E, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,

∆(Kα) = Kα ⊗Kα, ε(Kα) = 1, S(Kα) = K−α.

Let us set G = C/2Z and Uᾱ := U/(K
r
2 − q

αr
2 ) for every ᾱ ∈ G, where α ∈ C is

any representative of ᾱ. Next, let us consider the subalgebra uᾱ of Uᾱ generated by
{E,F,K}, and set uβ̄ᾱ := uᾱK

β for every β̄ ∈ G, where β ∈ C is any representative
of β̄. Then u := {uβ̄ᾱ | ᾱ, β̄ ∈ G} inherits the structure of a Hopf G-bialgebra. A
Poincaré–Birkhoff–Witt basis for uβ̄ᾱ is given by

{EℓFmKn+β | 0 ⩽ ℓ,m, n ⩽ r′ − 1}.

Remark 5.1. When r ≡ 1 (mod 2), a Poincaré–Birkhoff–Witt basis for u0ᾱ = uᾱ is
given by

{EℓFmK
n
2 | 0 ⩽ ℓ,m, n ⩽ r − 1},

because Kn = q
αr
2 Kn− r

2 for every r−1
2 < n ⩽ r − 1. In this case,

uᾱ+1 → uᾱ

E 7→ E

F 7→ F

K
1
2 7→ −K

1
2

is an isomorphism of C-algebras, and uβ̄+1
ᾱ = uβ̄ᾱ.

5.1. Integral bases. For all α, β ∈ C, let us set

T β
α :=

1

r′

r′−1∑
b=0

q−αbKb+β .

Lemma 5.2. In uβ̄ᾱ we have

T β
αE = q2βET β

α−2, T β
αF = q−2βFT β

α+2,

T β
αK = KT β

α = T β+1
α = qαT β

α , T β
αT

β′

α′ = δα,α′T β+β′

α
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Proof.

T β
αE =

1

r′

r′−1∑
b=0

q−αbKb+βE =
q2β

r′

r′−1∑
b=0

q−(α−2)bEKb+β = q2βET β
α−2,

T β
αF =

1

r′

r′−1∑
b=0

q−αbKb+βF =
q−2β

r′

r′−1∑
b=0

q−(α+2)bFKb+β = q−2βFT β
α+2,

T β
αK =

1

r′

r′−1∑
b=0

q−αbKb+1+β = KT β
α = T β+1

α

=
qα

r′

q−αr′qαr
′
Kβ +

r′−1∑
b=1

q−αbKb+β


= qαT β

α ,

T β
αT

β′

α′ =
1

r′

r′−1∑
b=0

q−αbKb+βT β′

α′ =
1

r′

r′−1∑
b=0

q−αbKbT β+β′

α′ =
1

r′

r′−1∑
b=0

q−αbqα
′bT β+β′

α′

= δα,α′T β+β′

α □

Notice that, for every integer 0 ⩽ b ⩽ r − 1 and all complex numbers α, β ∈ C,
we have

r′−1∑
a=0

q(2a+α)bT β
2a+α =

r′−1∑
a,c=0

q(2a+α)bq−(2a+α)cKc+β

=

r′−1∑
c=0

r′−1∑
a=0

q2a(b−c)

 qα(b−c)Kc+β

=

r′−1∑
c=0

δb,cq
α(b−c)Kc+β

= Kb+β . (6)

If, for every integer 0 ⩽ a ⩽ r − 1, we set

F (a) :=
{1}a

[a]!
F a,

then
{EℓF (m)T β

2n+α | 0 ⩽ ℓ,m, n ⩽ r′ − 1}

is a basis of uβ̄ᾱ for any pair of representatives α, β ∈ C of ᾱ, β̄ ∈ G.

5.2. Computations in integral bases. First of all, we compute coproducts and
antipodes in integral bases.

Lemma 5.3. For all integers 0 ⩽ a, b, c ⩽ r − 1 we have

∆
(
F (a)EbT β

α

)
=

r′−1∑
c=0

a∑
i=0

b∑
j=0

[
b
j

]
q(a−α)i+bj−2c(i+j)−(i+j)2

F (a−i)EjT β
2c+α ⊗ F (i)Eb−jT β

−2c, (7)

S
(
F (a)EbT β

α

)
= (−1)a+bq(a−b−α−1)(a−b)T−β

−αE
bF (a). (8)
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Proof. [KS97, Chapter 3, Proposition 5] gives

∆
(
F ℓKmEn

)
=

ℓ∑
i=0

n∑
j=0

[
ℓ
i

] [
n
j

]
qi(ℓ−i)−j(n−j)F ℓ−iKm−iEj ⊗ F iKm+jEn−j ,

S
(
F ℓKmEn

)
= (−1)ℓ+nqℓ(ℓ−1)−n(n−1)EnKℓ−m−nF ℓ.

Furthermore

∆
(
T β
α

)
=

1

r′

r′−1∑
b=0

q−αb∆
(
Kb+β

)
=

1

r′

r′−1∑
b=0

q−αbKb+β ⊗Kb+β

=
1

r′

r′−1∑
a,b=0

q2abT β
2a+α ⊗Kb+β =

r′−1∑
a=0

T β
2a+α ⊗ T β

−2a,

S
(
T β
α

)
=

1

r′

r′−1∑
b=0

q−αbS
(
Kb+β

)
=

1

r′

r−1∑
b=0

q−αbK−b−β =
1

r′

r−1∑
b=0

qαbKb−β = T−β
−α .

Using this, it easy to check the claim. □

Finally, we provide formulas for commutators.

Lemma 5.4. For all integers 0 ⩽ a, b,m ⩽ r − 1, we have

F (a)EbT β
α =

min{a,b}∑
k=0

[
b
k

]
{a− b− α; k}Eb−kF (a−k)T β

α , (9)

T β
αF

(a)Eb =

min{a,b}∑
k=0

[
b
k

]
{−a+ b− α; k}T β

αE
b−kF (a−k), (10)

where {n; k} :=
∏k−1

j=0{n− j} for all integers 0 ⩽ k ⩽ n.

Proof. If we apply the algebra isomorphism ω : u00 → u00 defined by

ω(E) = F, ω(F ) = E, ω(K) = K−1,

to [KS97, Equation (5), Section 3.1.1], we obtain

F aEb =

min{a,b}∑
k=0

[
a
k

] [
b
k

]
[k]!Eb−kF a−k

k−1∏
j=0

qa−b−jK−1 − q−a+b+jK

{1}

 .

which means that

F (a)EbT β
α =

min{a,b}∑
k=0

[
b
k

]
Eb−kF (a−k)

k−1∏
j=0

qa−b−jK−1 − q−a+b+jK

T β
α

=

min{a,b}∑
k=0

[
b
k

]
{a− b− α; k}Eb−kF (a−k)T β

α .

This implies

T β
αF

(a)Eb = F (a)EbT β
α+2a−2b =

min{a,b}∑
k=0

[
b
k

]
{−a+ b− α; k}Eb−kF (a−k)T β

α+2a−2b

=

min{a,b}∑
k=0

[
b
k

]
{−a+ b− α; k}T β

αE
b−kF (a−k). □
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5.3. Ribbon structure and factorizability. Next, u supports the structure of

a ribbon Hopf G-bialgebra. Indeed, an R-matrix R
β̄
2 , ᾱ2
ᾱ,β̄

∈ u
β̄
2
ᾱ ⊗ u

ᾱ
2

β̄
is given by

R
β̄
2 , ᾱ2
ᾱ,β̄

=

r′−1∑
a,b,c=0

{1}c

[c]!
q

c(c−1)
2 −2(b+ β

2 )(a+
α
2 )Kb+ β

2 Ec ⊗Ka+α
2 F c (11)

for any pair of representatives α, β ∈ C of ᾱ, β̄ ∈ G, as shown in [GHP22, Theo-
rem 4.2]. The R-matrix can also be rewritten as follows:

R
β̄
2 , ᾱ2
ᾱ,β̄

=

r′−1∑
b,c=0

q
c(c−1)

2 −(b+ β
2 )αKb+ β

2 Ec ⊗

r′−1∑
a=0

q−(2b+β)aKa+α
2

F (c)

=

r′−1∑
b,c=0

q
c(c−1)

2 −(b+ β
2 )αKb+ β

2 Ec ⊗ T
α
2

2b+βF
(c) (12)

=

r′−1∑
a,c=0

q
c(c−1)

2 −(a+α
2 )β

r′−1∑
b=0

q−(2a+α)bKb+ β
2

Ec ⊗Ka+α
2 F (c)

=

r′−1∑
a,c=0

q
c(c−1)

2 −(a+α
2 )βT

β
2
2a+αE

c ⊗Ka+α
2 F (c). (13)

A pivotal element gᾱ ∈ u0ᾱ is given by

gᾱ := K1−r′ ,

with compatible ribbon element v−ᾱ
ᾱ := u−ᾱ

ᾱ (gᾱ)
−1 ∈ u−ᾱ

ᾱ .
Furthermore, a left integral λα ∈ (u0ᾱ)

∗ is given by

λα

(
EℓFmKn

)
= δℓ,r′−1δm,r′−1χ r

2Z (n+ 1)

√
r′[r′ − 1]!

{1}r′−1
qα(n+1−r′),

λα

(
EℓF (m)T 0

2n+α

)
=

{1}m

r′[m]!

r′−1∑
b=0

q−(2n+α)bλα

(
EℓFmKb

)
= δℓ,r′−1δm,r′−1

q(2n+α)(1−r′)
√
r′

for every α ∈ C, where we denote by χA the indicator function of A ⊂ C, defined
as

χA(z) =

{
1 if z ∈ A,

0 if z ̸∈ A.

This is a direct consequence of [GHP22, Theorem 4.2] and Remark 3.5.

Remark 5.5. Similarly, we have

λα

(
F (ℓ)EmT 0

2n+α

)
=

min{ℓ,m}∑
k=0

[
m
k

]
{ℓ−m− 2n− α; k}λα

(
Em−kF (ℓ−k)T 0

2n+α

)
= δℓ,r′−1δm,r′−1

q(2n+α)(1−r′)
√
r′

,

λα

(
F ℓEmKn

)
=

r′−1∑
a=0

q(2a+α)n[ℓ]!

{1}ℓ
λα

(
F (ℓ)EmT 0

2a+α

)
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= δℓ,r′−1δm,r′−1
[r′ − 1]!√
r′{1}r′−1

r′−1∑
a=0

q(2a+α)n+(2a+α)(1−r′)

= δℓ,r′−1δm,r′−1χ r
2Z (n+ 1)

√
r′[r′ − 1]!

{1}r′−1
q(n+1−r′)α.

Lemma 5.6. A two-sided cointegral Λα ∈ uᾱ0 is given by

Λα :=
{1}r′−1

√
r′[r′ − 1]!

r′−1∑
a=0

Er′−1F r′−1Ka+α =
√
r′Er′−1F (r′−1)Tα

0

for every α ∈ C.

Proof. Thanks to Lemma 5.3, we have

S (Λα) =
√
r′S

(
F (r′−1)Er′−1Tα

0

)
=

√
r′T−α

0 Er′−1F (r′−1) = Λ−α.

Since

EΛα = 0 = ε(E)Λα,

ΛαF = 0 = ε(F )Λα,

KΛα = Λα = ε(K)Λα,

the claim follows. □

Proposition 5.7. If r′ is odd, then

Dᾱ,0

(
λ−α ◦ S0

ᾱ

)
= Λα.

Proof.

Dᾱ,0

(
λ−α ◦ S0

ᾱ

)
=

r′−1∑
a,b,c,d=0

q
c(c−1)

2 +
d(d−1)

2 −(a+b)αλ−α

(
S0
ᾱ

(
KaF (c)KbEd

))
T

α
2
2aE

cT
α
2

2bF
(d)

=

r′−1∑
a,b,c,d=0

q
c(c−1)

2 +
d(d−1)

2 −(a+b)α

{1}c

[c]!
q−2ac+cαλ−α

(
S0
ᾱ

(
F cKa+bEd

))
EcT

α
2

2(a−c)T
α
2

2bF
(d)

=

r′−1∑
a,b,c,d=0

q
c(c−1)

2 +
d(d−1)

2 −(a+b−c)α−2ac {1}c

[c]!

(−1)c+dqc(c−1)−d(d−1)λ−α

(
EdK−a−b+c−dF c

)
δ2(a−c),2bE

cTα
2bF

(d)

=

r′−1∑
b,c,d=0

(−1)c+dq
3c(c−1)

2 − d(d−1)
2 −2bα−2(b+c)c {1}c

[c]!

q2(2b+d)c−2dαλ−α

(
EdF cK−2b−d

)
EcF (d)Tα

2(b+d)

=
√
r′(−1)2(r

′−1)qr
′(r′−1)Er′−1F (r′−1)Tα

0

=
√
r′Er′−1F (r′−1)Tα

0 . □
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5.4. Relation with homological representations. Let us suppose from now on
that r ⩾ 3 is odd, and let Σg be the surface of genus g with one boundary component
considered in Section 2.1. In [DM22, Theorem 6.1], the first two authors constructed
an isomorphism

ΦV
g : HV (r)

g → (uuuuuuuuuuuuuuuuu0
0)

⊗g,

where H
V (r)
g is a vector space built from the twisted homology of configuration

spaces of Σg. This isomorphism was shown to intertwine commuting actions of
the mapping class group Mod(Σg) and of the small quantum group u00. On the
one hand, the action of Mod(Σg) on H

V (r)
g is essentially the natural one obtained

by lifting homeomorphisms to the corresponding regular covers, up to a correction
on coefficients which is analogue, for odd values of r, to the one given in [BPS21,
Theorem D]. On the other hand, the action on (uuuuuuuuuuuuuuuuu0

0)
⊗g is the one determined by

Lyubashenko’s representations [Ly94, Section 4], which are part of the Kerler–
Lyubashenko TQFT JH0

0
of Corollary 4.3 for H = u. It turns out that H

V (r)
g

can be deformed using a cohomology class ϑ ∈ H1(Σg;C), as explained in [DM22,
Section 6.3.1]. The resulting vector space Hϑ(r)

g carries an action of the Torelli sub-
group I(Σg) < Mod(Σg) that was conjectured to be isomorphic to the representa-
tion that would arise from a construction generalizing Kerler–Lyubashenko TQFTs
to cobordisms equipped with cohomology classes, see [DM22, Conjecture 6.6]. One
of the goals of the present work was to build these generalized Kerler–Lyubashenko
TQFTs, as a first step towards extending the isomorphism ΦV

g to the case of repre-
sentations depending on cohomology classes. We rephrase [DM22, Conjecture 6.6]
more precisely in this section.

In [DM22, Section 6.3.1], the authors define twisted homology groups5

HX
n,g := HBM

n (Xn,g, Yn,g;φ
X
n,g),

where
⋄ Xn,g is the configuration space of n unordered points in Σg (see [DM22,

Equation (1)]),
⋄ Yn,g is a specific subset of the boundary ∂Xn,g (see [DM22, Equation (4)]),
⋄ φX

n,g : Z[πn,g] → EndZ[q,X±1](W
X
g ) is an action (see [DM22, Equation (31)])

of the fundamental group πn,g of Xn,g onto a module WX
g over a polyno-

mial ring Z[q,X±1].
This twisted version of the homology of the pair (Xn,g, Yn,g) naturally admits the
structure of a Z[q,X±1]-module (see [DM22, Appendix A.1]).

The polynomial ring appearing above is

Z[q,X±1] := Z[q, s±1
1 , t±1

1 , . . . , s±1
g , t±1

g ],

where the formal variables sj , tj can be intepreted as the evaluations of a coho-
mology class against the homology classes aj , bj of Section 2.1 for every integer
1 ⩽ j ⩽ g. Indeed, every cohomology class ϑ ∈ H1(Σg;C) ∼= HomZ(H1(Σg);C)
determines a ring homomorphism

Z[q,X±1] → C

(sj , tj) 7→ (qϑ(aj), qϑ(bj)),

where qz = e
2zπi

r for every z ∈ C. If we consider the submodule H
X(r)
g ⊂ HX

n,g

spanned by small embedded cycles, as defined in [DM22, Definition 2.3.1], then the
vector space

Hϑ(r)
g := HX(r)

g ⊗Z[q,X±1] C

5HBM
∗ stands for Borel–Moore homology.
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is endowed with a projective representation

ρ̄ϑ(r)g : I(Σg) → PGLC

(
Hϑ(r)

g

)
of the Torelli subgroup I(Σg) ⊂ Mod(Σg), as explained in [DM22, Section 6.3.1].

Now, let us fix a cohomology class ϑ ∈ H1(Σg;C) and the corresponding ob-
ject Σϑ̄ := (Σg, ϑ̄,Lg) of 3CobC/2Z, where ϑ̄ ∈ H1(Σg;C/2Z) is the image of ϑ,
and Lg is the Lagrangian subspace introduced in Section 2.2. Let us consider a
diffeomorphism f ∈ I(Σg), and let Σϑ̄ × [0, 1]f := (Σg × [0, 1]f , π

∗(ϑ̄), 0) be the
mapping cylinder of f , which is a morphism in 3CobC/2Z (see [DM22, Section 4.2.3]
for a precise definition), where π : Σg × [0, 1] → Σg is the projection onto the first
factor. Notice that f∗(ϑ̄) = ϑ̄, since f ∈ I(Σg). The functor Ju provides a family
of projective representations

ρ̄u,ϑ̄g : I(Σg) → PGLC(Ju(Σϑ̄))

f → Ju(Σϑ̄ × [0, 1]f )

parametrized by cohomology classes ϑ̄ ∈ H1(Σg;C/2Z) and by roots of unity
q = e

2πi
r . In [DM22, Section 4.2.3] we explain why this is actually a projective

representation, by looking at compositions of elements of I(Σg), and also why it
is not in general a linear representation. Notice that, here, the fact that f is an
element of the Torelli subgroup is crucial, otherwise Σϑ̄×[0, 1]f would not be an en-
domorphism of Σϑ̄. We expect these representations to agree with the homological
construction.

Conjecture 5.8. There is an isomorphism

Φϑ
g : Hϑ(r)

g → u(ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a),ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b))

that intertwines the actions of I(Σg) and u⊕0 , where

(ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a)ϑ̄(a), ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)ϑ̄(b)) = (ϑ̄(a1), ϑ̄(b1), . . . , ϑ̄(ag), ϑ̄(bg)) ∈ (C/2Z)2g.

In Conjecture 5.8, the action of u⊕0 on H
ϑ(r)
g has not been defined yet, but should

be a natural extension of the action of u00 on the twisted homology group of [DM22,
Theorem 6.1].

This conjecture is motivated by the fact that, when ϑ is the trivial cohomology
class, an isomorphism ΦV

g was constructed in [DM22, Theorem 6.1]. We expect all
the computations involved in the proof to admit a generalization to the decorated
case on both sides of the isomorphism. We expect this conjecture to imply, thanks
to the integrality properties of homological representations, that the quantum rep-
resentations ρ̄u,ϑ̄g are integral when computed in the integral bases of Section 5.1,
in the sense that their coefficients can be restricted to the polynomial ring Z[q, qϑ]
(defined in [DM22, Conjecture 6.6]). This would imply a polynomial dependence
in q and a polynomial dependence in coefficients of the cohomology class ϑ. To the
best of our knowledge, this is not known for TQFT functors decorated with coho-
mology classes. The representations ρ̄u,ϑ̄g would then form a family that depends
polynomially on the cohomology class ϑ̄, and that admit both a TQFT formulation,
on one hand, and a homological intepretation, on the other.
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