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HOMOLOGICAL CONSTRUCTION OF QUANTUM REPRESENTATIONS OF MAPPING
CLASS GROUPS

MARCO DE RENZI AND JULES MARTEL

Abstract. We provide a homological model for a family of quantum representations of mapping class groups aris-
ing from non-semisimple TQFTs (Topological Quantum Field Theories). Our approach gives a new geometric point
of view on these representations, and it gathers into one theory two of the most promising constructions for investi-
gating linearity of mapping class groups. More precisely, if Σg,1 is a surface of genus g with 1 boundary component,
we consider a (crossed) action of its mapping class group Mod(Σg,1) on the homology of its configuration space
Confn(Σg,1) with twisted coefficients in the Heisenberg quotient Hg of its surface braid group π1(Confn(Σg,1)).
We show that this action intertwines an action of the quantum group of sl2, that we define by purely homological
means. For a finite-dimensional linear representation of Hg (depending on a root of unity ζ), we tweak the con-
struction to obtain a projective representation of Mod(Σg,1). Finally, we identify, by an explicit isomorphism, a
subrepresentation of Mod(Σg,1) that is equivalent to the quantum representation arising from the non-semisimple
TQFT associated with quantum sl2 at ζ. In the process, we provide concrete bases and explicit formulas for the
actions of all the standard generators of Mod(Σg,1) and of quantum sl2 on both sides of the equivalence, and answer
a question by Crivelli, Felder, and Wieczerkowski. We also make sure that the restriction of these representations
to the Torelli group I(Σg,1) are integral, in the sense that the actions have coefficients in the ring of cyclotomic
integers Z[ζ], when expressed in these bases.

1. Introduction

Let Σ be a non-exceptional surface1. Its mapping class group Mod(Σ) is the group of self-diffeomorphisms of
Σ, considered up to isotopy. When Σ has boundary, we require self-diffeomorphisms and isotopies to restrict to
the identity on it. A long-standing open problem concerning mapping class groups is the following.

Question 1.1. Is Mod(Σ) linear?

This question already appears in the appendix to Birman’s book [Bi74, Problem 30], as well as in Margalit’s
recent paper [Ma18, Question 1.1], which collects problems, questions, and conjectures about mapping class groups.
In order to establish linearity, one would need to look for a faithful finite-dimensional representation, that is, for
an injective homomorphism from Mod(Σ) to a matrix group GLk(V ), where V is a finite-dimensional vector space
over a field k.

Question 1.1 can be justified by the observation that mapping class groups enjoy several properties that are
typical byproducts of linearity (for instance, they are residually finite, see [FM12, Theorem 6.11]). However,
expecting a positive answer is legitimate only if we have good candidates, namely if we are able to construct linear
representations that have reasonable chances of being faithful. This is the general motivation for the present work,
which investigates two (families of) representations of a very different kind (or at least so it would seem): twisted
homological representations based on configuration spaces of surfaces (referred to as homological representations
here), and quantum representations arising from non-semisimple TQFTs2 (referred to as quantum representations
in the following). These provide, to the best of our knowledge, the two most important classes of candidates, in
the current state-of-the-art.

1.1. Homological representations. A natural approach to the construction of mapping class group representa-
tions consists in exploiting the fact that Mod(Σ) acts on the homology of Σ. However, the kernel of this action

1A surface is exceptional if it admits self-diffeomorphisms that are homotopic but not isotopic, see for instance [FM12, Section 1.4]
2Short for Topological Quantum Field Theories.
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2 M. DE RENZI AND J. MARTEL

is the Torelli group of Σ, which is known to be a big part of Mod(Σ), when Σ is not a torus. It contains, for
instance, all separating Dehn twists, as well as all bounding pair maps.

The first example of a homological representation other than the standard one is probably the Burau represen-
tation of the braid group Bm on m strands, which can be defined as the mapping class group of the disc with m
punctures D2

m. This is a special case of the Magnus representation of Mod(Σ), for a surface Σ with one boundary
component [Ma39]. The idea consists in understanding Mod(Σ) as the group of automorphisms of the fundamental
group of Σ (thanks to the Dehn–Nielsen–Baer Theorem, see [FM12, Theorem 8.1]), and to use Fox’s differential
calculus for automorphisms of π1(Σ), which is a free group in this case. It turns out that the resulting mapping
class group action is equivalent to a lifted action on the homology of the maximal abelian cover of Σ [Su05a], so
it provides a first step towards twisted homological representations. The Burau representation of Bm is known
to be faithful for m ∈ {2, 3}, but not for m > 5 [Bi99], with the case m = 4 remaining very mysterious. For a
positive genus surface Σ with one boundary component, the Magnus representation is not faithful. Its kernel is not
negligible, and has been well characterized [Su02, Su05b]. Roughly speaking, it is parametrized by pairs of simple
closed curves in Σ with symplectic pairing 0. Magnus representations enjoy symplectic transvections formulas (see
for instance [Su05b, Theorem 4.2]), inherited from their homological definition, that can be generalized to the
representations considered in this paper, as explained in [DM]. These formulas imply that the action of separating
Dehn twists on twisted homologies has infinite order, which is not a common property. The same will apply also
to the representations appearing in this paper.

Another idea is to consider the homology of the configuration space of n points in Σ, denoted Confn(Σ), rather
than the homology of Σ itself. This results in a family of representations parametrized by the integer n > 1.
For general surfaces Σ (with one boundary component), this idea first appeared in the work of Moriyama [Mo07],
in the case of ordered configurations. The kernel of the nth representation in this family is the nth term in the
Johnson filtration of the mapping class group, which is never trivial. Still, since the total intersection of all the
terms in the Johnson filtration is trivial, Moriyama representations are said to be asymptotically faithful. Indeed,
all representations based on the homology of configuration spaces of surfaces inherit this property, as do the ones
of the present work.

In the case of punctured discs D2
m and braid groups Bm, the idea of considering homology of configuration

spaces had already appeared before Moriyama’s work. Indeed, in [La90], Lawrence introduced an action of Bm

on a twisted version (in the same spirit of Magnus representations) of the homology of Confn(D2
m), that is, using

maximal abelian covers. The result is again a family of representations parametrized by the integer n > 1 that
recovers, for n = 1, the Burau representation (which is not globally faithful). Nevertheless, Lawrence representations
rose to fame ten years after their construction, thanks to the following spectacular result, independently proven by
Bigelow and Krammer.

Theorem 1.2 (Bigelow [Bi00, Theorem 1.1], Krammer [Kr02, Theorem B]). For n = 2, and for all m > 0, the
Lawrence representation of Bm is faithful. In particular, braid groups are linear.

Thus, braid groups form the first infinite family of positive answers to Question 1.1. This substantiates the
claim that representations based on the twisted homology of configuration spaces of surfaces with one boundary
component provide very good candidates. Indeed, Bigelow’s proof uses extensively the twisted homological nature
of these representations, by showing that a natural twisted homological pairing (in the maximal abelian cover of
Conf2(D2

m)) detects geometrical intersection between arcs in D2
m. Using the same setup, it was later shown that

mapping class groups of punctured spheres and of the closed genus 2 surface are also linear [BB01]. Bigelow even
computed matrices for braid generators that were used by Krammer for his proof, together with a Garside structure
that is specific to braid groups. In this direction, actions of mapping class group generators on our representations
are also computed in this paper.

One can imagine extending Bigelow’s result to positive genus surfaces by studying representations of Mod(Σ)
on the twisted homology of Confn(Σ). This provides the framework for the homological representations studied
in this paper. However, for Σ of positive genus, twisting to the level of the maximal abelian cover is no longer
sufficient. Indeed, Lawrence representations are never faithful, see for instance the footnote to [Ma18, Question 1.2],
and some of Suzuki’s kernel elements might also persist. It should be noted that Lawrence representations are
not even defined on the whole mapping class group of Σ, since twisted homology is not functorial with respect
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to arbitrary diffeomorphisms. Here, we will consider projective representations of Mod(Σ) on the homology of
Confn(Σ) twisted by non-abelian representations of the surface braid group π1(Confn(Σ)) that factor through its
Heisenberg quotient. The study of mapping class group actions at the level of the Heisenberg cover of Confn(Σ)
was first explored in [BPS21]. This is a setup where Bigelow’s strategy has a chance to work, as will be investigated
in [DM].

At a higher categorical level, faithful representations of mapping class groups have been constructed in [LOT10].
These representations are a categorification of the ones on the standard homology of the surface, and their definition
is given in terms of bordered Floer homology. Therefore, the approach is geometric, and is based on arcs inside
surfaces, in the same spirit of the homological calculus developed in this paper. The faithfulness of these categorical
actions can be seen as a promising sign for the question of linearity of twisted homological representations.

1.2. Quantum representations. A completely different strategy for obtaining mapping class group representa-
tions comes from quantum topology, where these are typically one of the byproducts of a deeper construction.
Indeed, TQFTs can be thought of as linear representations of categories of cobordisms, and they naturally contain
quantum invariants of knots, links, and 3-manifolds, as well as quantum representations of mapping class groups of
surfaces. Generally speaking, TQFTs provide a highly organized categorical framework for understanding these dif-
ferent invariants as coherent layers of a unified theory, and constitute tools for performing functorial computations
based on cut-and-paste methods.

TQFTs are typically constructed from algebraic ingredients that come with their own fully developed theory, and
in particular with plenty of concrete examples. Such algebraic tools are usually provided by quantum groups and
Hopf algebras, by their representation theory, and more generally by abstract notions modeled on the properties
of these algebraic structures, such as modular categories. Therefore, another relevant feature of quantum topology
is that its constructions are typically very general, and can be applied in a wide range of settings.

The first family of quantum representations of mapping class groups to appear in the literature is due to
Reshetikhin and Turaev [RT91, Section 4.6], and it made big waves. Although the construction can be performed
starting from any modular fusion category, as explained in [Tu94, Chapter IV, Section 4], the best studied case is
the one corresponding to the semisimple quotient of the category of representations of the small quantum group
of sl2 at a root of unity of order r > 3. It can be easily seen that these mapping class group representations
send every Dehn twist to a matrix of order at most r, so in particular they are never faithful. However, they are
asymptotically faithful, in the sense that, for a fixed surface Σ, the intersection of the kernels of these representations
for all r > 3 is trivial (modulo the center, which is non-trivial only for the genus 2 surface, in which case its only
non-trivial element is the hyperelliptic involution). This was first proved by Andersen [An02, Theorem 1], using
gauge theoretic methods, and shortly afterwards by Freedman, Walker, and Wang [FWW02, Theorem 1.1], using
the skein theoretic approach of Lickorish [Li93] and Blanchet, Habegger, Masbaum, and Vogel [BHMV95]. In
particular, the main ingredient of the second proof is the fact that the mapping class group Mod(Σ) acts faithfully
on the curve complex of Σ. This kind of argument seems to be one of the best suited for studying faithfulness
of quantum representations. As we will see, our diagrammatic approach to computations naturally features the
action of Mod(Σ) on the curve complex of Σ.

Although small quantum groups at roots of unity provide modular fusion categories that can be used to obtain
quantum representations of mapping class groups, following Reshetikhin and Turaev, their categories of represen-
tations are never semisimple. Therefore, the first step in the original construction is always a quotient operation
that sacrifices a great deal of algebraic information. Lyubashenko and Majid were the first to come up with an
alternative construction that did not require semisimplicity, see [LM94, Theorem 1.1] for the torus, and [Ly94,
Section 4] for arbitrary genus surfaces. In the case of sl2, their quantum representations were studied by Kerler,
who already showed faithfulness for the torus at all values of r, see [Ke94, Conjecture 1] and [Ke96, Theorem 15].
What is clear from this result is that the shift to the non-semisimple setting pays off, since no single quantum
representation had any hope of being faithful, in the semisimple case of Reshetikhin and Turaev.

This indication was then reinforced by [DGGPR20, Proposition 5.1], where it was shown that, again in the case
of small quantum sl2, and for all values of r, Lyubashenko’s representations send every essential Dehn twist (both
separating and non-separating ones) to a matrix of infinite order. This kind of phenomenon was actually not new to
non-semisimple quantum topology. Indeed, it was first observed by Blanchet, Costantino, Geer, and Patureau, see
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[BCGP14, Theorems 1.3 & 1.4], in the context of a more sophisticated family of quantum representations arising
from the TQFTs constructed out of the unrolled quantum group of sl2. The hope that these non-semisimple
TQFTs would yield faithful mapping class group representations had indeed even been made explicit in [BCGP14,
Questions 1.5 & 1.7]. An advantage of this construction is that the corresponding quantum invariants depend
holomorphically on a family of complex variables parametrizing the choice of a cohomology class with coefficients
in C/2Z, see [CGP12, Section 3.5]. This property has been used effectively to show faithfulness of the resulting
quantum representations of the mapping class group of the sphere with four punctures [Ma20b, Theorem 1], and to
establish irreducibility of the corresponding quantum representations of Kauffman bracket skein algebras of closed
surfaces [KK22, Theorem 1.3]. As we will explain, our construction can be deformed using a set variables that
can be interpreted as evaluations of a cohomology class, and the resulting representations depend polynomially on
these parameters. This means our framework is also well-suited for applying these kinds of arguments.

Despite these promising features of non-semisimple TQFTs, the original semisimple construction of Reshetikhin
and Turaev remains the most studied to date. Indeed, the interest in semisimple quantum representations extends
far beyond linearity questions. For instance, the Andersen–Masbaum–Ueno Conjecture [AMU05, Question 1.1]
predicts that the collection of all the semisimple quantum representations of Mod(Σ) arising from quantum sl2
detects the dynamical nature of diffeomorphisms of Σ with respect to the Nielsen–Thurston classification, and
even measures the stretching factor of pseudo-Anosov maps. A homological approach like ours could be useful for
recovering such dynamical information from non-semisimple TQFTs, as suggested by the results of [BB06].

Furthermore, a major strength of semisimple quantum representations and TQFTs is provided by their integrality
properties. Indeed, the approach of Reshetikhin and Turaev can be refined to obtain TQFTs with coefficients in the
ring of cyclotomic integers associated with the root of unity underlying the construction, see [Gi01, GM04, BCL10].
For quantum representations of mapping class groups, this has important consequences: in [KS15], the property is
used to answer a question by Looijenga on generators of homologies of finite covers of surfaces, while in [GM16],
it is used to study in detail some representations of symplectic groups over finite fields. In this paper, we recover
non-semisimple quantum representations from homology, and in the process we establish their integrality for Torelli
subgroups. Indeed, by their own very nature, homological bases pinpoint the precise spot where actions are integral,
since only integral coefficients are allowed at any given stage of the homological construction. These integrality
properties were not known to hold in the non-semisimple framework, at least to the best of our knowledge.

1.3. Isomorphism in low genus. Even though Question 1.1 is generally stated in the case of closed surfaces,
this paper will focus on surfaces with one boundary component. Notice that there are explicit relations between
the two families of mapping class groups (see for instance the capping homomorphism of [FM12, Proposition 3.19]
and the Birman exact sequence of [FM12, Theorem 4.6]). Although we will not study them here, these relations
suggest that tackling the question of linearity for surfaces with boundary might also be important. Indeed, this
was even crucial in the case of genus 0 and 2.

The study of surfaces with a single boundary component starts with punctured discs and braid groups. As it
was mentioned, by interpreting Bm as the mapping class group Mod(D2

m), Lawrence defined twisted homological
representations that were later shown to be faithful by Bigelow and Krammer. Another (maybe more common)
definition of braid groups identifies Bm with the Artin group with generators {σi | 1 6 i 6 m− 1} and relations

σiσj = σjσi ∀ |i− j| > 2, σiσjσi = σjσiσj ∀ |i− j| = 1.

This algebraic definition underlies the construction of a very large family of representations of Bm based on
R-matrices and representations of quantum groups, see for instance [Ka95, Section X.6]. These quantum represen-
tations of braid groups constitute one of the main building blocks for quantum representations of mapping class
groups, and for TQFTs in general.

Recently, the second author has shown that Lawrence representations recover a family of quantum representa-
tions of braid groups associated with quantum sl2 in a wide generality, see [Ma20a, Theorem 1.5] (an isomorphism
in a smaller subcase was previously established by Jackson and Kerler [JK09]). The equivalence includes an ac-
tion of quantum sl2 on the twisted homology of Confn(Dm) that is built by purely homological means, and that
commutes with the homological action of Bm. This paper will generalize this result, thus extending the explicit
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relation between homological and quantum representations of mapping class groups to all surfaces. The equivalence
will still feature a commuting action of quantum sl2 defined by the same homological operators.

Hints for the first step in this generalization can be found in the work of Crivelli, Felder, and Wieczerkowski.
Indeed, in [FW91], an action of the mapping class group Mod(T1) of the torus T1 with 1 boundary component is
introduced on a “vector space of homology cycles with twisted coefficients on configuration spaces of T1”, which is
generated by families of non-intesecting loops in T1 subject to certain relations. In [CFW93a, Conjecture 6.1], it is
conjectured that these vector spaces should in fact be understood as twisted homologies of configuration spaces of
T1, as their name suggests. In [CFW93b], the action of Mod(T1) is transported to the restricted quantum group
of sl2 by means of an explicit isomorphism, and similarities with the representation defined by Lyubashenko and
Majid in [LM94] are remarked. Notice that Kerler and Lyubashenko also seemed to expect an interesting relation
between the two approaches, see [Ke96, Section 3.5] and [Ly94]. Therefore, our work (see Theorem 1.3) will also
give a homological status to the construction of Crivelli, Felder, and Wieczerkowski by answering their conjecture,
confirming the relation with quantum representations, and generalizing the result to higher genus surfaces.

1.4. Main constructions and results. In this paper, we establish an explicit isomorphism between two specific
families of homological and quantum representations of mapping class groups. More precisely, we fix a compact,
connected, oriented surface Σg,1 of genus g, with 1 boundary component. On the one hand, on the homological side,
we consider a projective action of Mod(Σg,1) on a family of finite-dimensional specializations, denoted3 HV

n,g (see
Definition 2.28), of twisted homology groups of configuration spaces Confn(Σg,1), denotedHH

n,g (see Definition 2.5).
On the other hand, on the quantum side, we focus on the family of projective representations of Mod(Σg,1) obtained
from the non-semisimple TQFT associated with the small quantum group uζsl2 at the root of unity ζ = e

2πi
r for

r > 3 odd (see Section 2.3.1). Our main contributions are the following:
(i) We construct homologically an action of an integral version of the quantum group Uqsl2 on

HH
g =

⊕
n>0

HH
n,g,

see Theorem 2.20. These twisted homology groups have coefficients in the Heisenberg group ring Z[Hg]
of Section 2.1.2, which, in particular, features q among its generators.

(ii) We define a homomorphism from Mod(Σg,1) to PGLrg (C) that induces a projective action of Mod(Σg,1)
on the twisted homology group HV

n,g obtained from HH
n,g by specializing q to ζ, and by correspondingly

representing Hg into GLrg (Z[ζ]), see Theorem 2.30. We also remark that the direct sum of these actions
of Mod(Σg,1) naturally commutes with the action of Uζsl2 on

HV
g =

⊕
n>0

HV
n,g,

which is obtained from the one of Uqsl2 on HH
g by specialization.

(iii) We explicitly compute the two actions with respect to convenient bases of these twisted homologies, and we
exhibit an explicit Z[ζ]-linear isomorphism between a finite-dimensional subspace of HV

g , denoted H
V (r)
g ,

and uζsl
⊗g
2 . Finally, we show in Theorem 6.1 that this linear isomorphism identifies these homological

actions with the gth tensor power of the adjoint representation of uζsl2, denoted ad⊗g, and with the
corresponding projective representation of Mod(Σg,1) of Lyubashenko, respectively. In the process, we
provide explicit formulas also for the quantum versions of the actions of these two groups, that might be
of independent interest.

(iv) We obtain, as a direct consequence, that the non-semisimple quantum representation associated with uζsl2
is integral when restricted to the Torelli group I(Σg,1), meaning that the coefficients of the corresponding
action actually belong to Z[ζ], when these are computed in the convenient bases considered above, see
Corollary 6.3. This property, which was already known in the semisimple case and led to important
results, appears to be new on the non-semisimple side.

3It should be pointed out that, hidden from the notation, there is a secret dependence of HV
n,g on an odd integer parameter r > 3.
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We point out that, up to minor differences, the homological representations considered here should coincide with
those constructed in [BPS21], where the twisted homology groups HH

n,g were introduced, together with their finite-
dimensional Schrödinger specializations corresponding to HV

n,g. An implicit procedure for uncrossing the mapping
class group action on HV

n,g is given in [BPS21, Theorem C], although the result is only discussed for even roots of
unity. In this paper, we focus on odd roots of unity, and we use an explicit uncrossing morphism, inspired from
similar formulas provided by [CFW93b] in the case of the torus, see Equation (19). On the quantum side, the
quantum representations considered here were first defined in [Ly94], and later shown to be part of a family of
non-semisimple TQFTs in [DGGPR20]. The results listed above are summarized by the following statement.

Theorem 1.3. The uζ-module isomorphism

ΦVg : HV (r)
g → ad⊗g

defined in Equation (29) induces a commutative diagram

Mod(Σg,1)

PGLuζ (H
V (r)
g )

PGLuζ (ad⊗g)

ρ̄V (r)
g

ΦVg ◦_ ◦ (ΦVg )−1

ρ̄
uζ
g

providing an isomorphism between the homological representation ρ̄
V (r)
g of Theorem 2.32 and the quantum repre-

sentation ρ̄uζg of Proposition 4.2.

As a consequence of Theorem 1.3, both families of tools (quantum and homological ones), and all arguments for
tackling faithfulness, are now gathered into one coherent theory, where they can be used and developed jointly.

In the process of establishing this result, Proposition 2.9 provides a basis for the twisted homology of the
configuration space Confn(Σg,1), which is presented by labeled diagrams in the surface Σg,1. It should be noted
that this basis persists under all twisting, meaning that, for instance, it remains a basis under all specializations of
the variable q to any root of unity. Furthermore, Proposition 2.13 provides computation rules for these diagrams
that translate identities coming from homological calculus. It is by means of these diagrammatic rules that we
obtain explicit formulas for the homological action of Dehn twists, in Section 3.2. The isomorphism between
mapping class group representations is then established by comparing homological equations with those expressing
the quantum action of Dehn twists in (tensor powers of) integral bases of ad⊗g, which are derived in Section 5.2.

We also stress the fact that our result provides a homological model for all tensor powers of the adjoint represen-
tation of uζsl2, which we identify with finite-dimensional subrepresentations of some infinite-dimensional represen-
tations obtained by specializing Uqsl2-modules with coefficients in Heisenberg group rings. These representations
have the remarkable property of intertwining actions of (subgroups of) mapping class groups, and thus seem to be
a fragment of a non-semisimple TQFT defined by homological means, whose state spaces are infinite-dimensional.
Understanding these representations, and unveiling such a TQFT, will be the subject of future work.

Finally, we highlight Section 6.3.1, where we construct homological representations of Torelli groups using a
slightly different choice of twisted coefficients, obtained by perturbing our original representation of the Heisenberg
group Hg using a set of 2g formal variables. These parameters can be specialized, and interpreted as evaluations
of a cohomology class on the surface Σg,1. The resulting twisted homology groups still support an action of the
Torelli subgroup of Mod(Σg,1) that intertwines an action of the quantum group Uζsl2. This allows us to conjecture
that the resulting homological representations are equivalent to quantum representations arising from another
non-semisimple TQFT due to Blanchet, Costantino, Geer, and Patureau [BCGP14].

1.5. Structure of the paper. The first part of this paper is devoted to the action of Mod(Σg,1) on the twisted
homology of the configuration space Confn(Σg,1). Defining twisted homology requires choosing a representation of
the surface braid group, which is the fundamental group of Confn(Σg,1). This is done in Section 2.1. The structure
of the resulting twisted homology is discussed in Section 2.2, with an explicit basis defined in terms of diagrams
representing twisted homology classes given in Section 2.2.2, and diagrammatic rules for computations presented
in Section 2.2.3. Since the natural action of Mod(Σg,1) on Confn(Σg,1) simultaneously affects twisted coefficients,
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we have to uncross it appropriately. This is achieved (projectively) in Theorem 2.30, in Section 2.4.2. Before doing
this, we also construct a homological action of the quantum group Uqsl2 on the direct sum, over all n > 0, of
these twisted homologies. This action commutes with the projective one of the mapping class group, and is the
subject of Theorem 2.20, in Section 2.3. Its construction involves a purely homological definition of the operators
corresponding to the generators of Uqsl2, which give a surprising new point of view on the representation theory
of quantum groups.

In Section 3, we compute these homological actions explicitly with respect to the bases given by Proposition 2.9
and Remark 2.29. This is done both for the generators of the quantum group Uqsl2, on the one hand, and for those
of the mapping class group Mod(Σg,1), on the other. These computations are based on our graphical calculus at
all stages: bases are composed of diagrams, and diagrammatic rules are extensively used.

In Section 4, we recall how to construct projective representations of Mod(Σg,1) out of a factorizable ribbon
Hopf algebra H. These are the byproducts of a non-semisimple TQFT that can be built out of the transmutation
of H, which is a braided Hopf algebra in the category of left H-modules, whose underlying object is the adjoint
representation of H. The setup is recalled in Section 4.1, while the TQFT construction is explained in Section 4.2.
In particular, the category 3Cob\ of framed connected cobordisms between connected surfaces, due to Crane,
Yetter, and Kerler, is recalled in Section 4.2.1. Then, Habiro’s diagrammatic notation for morphisms of 3Cob\,
based on top tangles in handlebodies, is recalled in Section 4.2.2. In Section 4.2.4, an algorithm for computing
the TQFT associated with the transmutation of H is explained in terms of a diagrammatic calculus whose flavor
is quite different from the homological one (being much more algebraic, and much less topological). This leads to
Proposition 4.2, which provides formulas for the action of generators of the mapping class group in Hopf algebraic
terms. These formulas will be then computed for the small quantum group uζsl2 at an odd root of unity ζ, whose
definition is recalled in Section 4.3.

In Section 5, we compute quantum actions with respect to bases in the explicit case of uζsl2. Namely, we fix a
(carefully) chosen basis of state space ad⊗g of the surface Σg,1, and we compute explicitly the action of generators
of the small quantum group uζsl2, on the one hand, and of generators of the mapping class group Mod(Σg,1), on
the other. These computations are much more algebraic in nature than the corresponding homological ones.

Our main result is Theorem 6.1, which is proved in Section 6. It identifies homological representations with
quantum ones. Namely, we give a simple explicit isomorphism between twisted homologies and state spaces of
surfaces, which is a diagonal correspondence between the chosen bases on both sides. This isomorphism intertwines
the two mapping class group actions: the quantum one arising from non-semisimple TQFTs, on one side, and the
twisted homological one, on the other. It also intertwines the two actions of the small quantum group of sl2: the
tensor power of the adjoint representation, on the quantum side, and the newly-defined twisted homological one,
on the homological side. Our result allows us to deduce integrality properties for the non-semisimple quantum
representations of Torelli groups, as explained in Corollary 6.3. We also conjecture that a generalization of our
construction should recover the representations of Blanchet, Costantino, Geer, and Patureau, see Conjecture 6.6.

Sections 2 and 3 only deal with twisted homologies of configuration spaces of surfaces. On the other hand,
Sections 4 and 5 are only concerned with quantum representations of mapping class group arising from non-
semisimple TQFTs. Therefore, each pair of sections can be read independently.

Acknowledgments. J.M. is very grateful to R. Detcherry for many invaluable discussions on homological repre-
sentations in general, and to Q. Faes for fruitful remarks on their computations and on mapping class groups. J.M.
thanks A. Beliakova for inviting him to Zürich, which greatly contributed to the progress on this project. Part
of this work was achieved while J.M. was supported by the project “AlMaRe” (ANR-19-CE40-0001-01). M.D. is
grateful to G. Massuyeau for inviting him to Dijon, thus allowing this project to start. M.D. was supported by
Grant n. 200020_207374 of the Swiss National Science Foundation (SNSF). Both authors were supported by the
National Center of Competence in Research (NCCR) SwissMAP. Both authors are thankful to A. Beliakova and
C. Blanchet for organizing a workshop on this topic, and to CIRM for hosting the event. No spleens were used in
the making of this project.
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2. Homological representations of mapping class groups

Let Σg,1 denote the compact connected surface of genus g with 1 boundary component, represented as follows:

In this picture, 2g embedded discs are identified in pairs through reflections along g dotted vertical axes. When
g = 1, we will drop the numbering, and simply represent Σ1,1 as shown:

We recall that, for every integer n > 1, the configuration space of n undordered points in Σg,1, also called the nth
configuration space of Σg,1, is defined as

Xn,g := Confn(Σg,1) = {(x1, . . . , xn) ∈ Σ×ng,1 | ∀ 1 6 i < j 6 n xi 6= xj}/Sn, (1)

where the symmetric group Sn acts by permutation of coordinates. Elements of Xn,g are denoted x = {x1, . . . , xn}.
For n = 0, we set X0,g := ∅. Notice that Xn,g is a non-compact connected 2n-dimensional manifold.

In Section 2.2, we will construct twisted homology groups of Xn,g. Then, we will equip them with an action
of the quantum group of sl2, in Section 2.3, and with a commuting projective action of the mapping class group
of Σg,1, in Section 2.4. Since twisted homology requires a representation of the (group ring of the) fundamental
group of Xn,g, we will first need to introduce Heinsenberg group representations, in Section 2.1.

2.1. Heisenberg representations of surface braid groups. In this section, we will construct and study rep-
resentations of surface braid groups onto so-called Heisenberg groups.

2.1.1. Surface braid groups. Let us fix a basepoint ξξξξξξξξξξξξξξξξξ = {ξ1, . . . , ξn} ∈ ∂Xn,g in the boundary ofXn,g of the following
form:

The nth braid group of Σg,1 is the fundamental group

πn,g := π1(Xn,g, ξξξξξξξξξξξξξξξξξ).

An explicit presentation of πn,g can be found in [BG05, Theorem 2.1], based on [Be01, Theorem 1.1]. Let us recall
it here for convenience. For all n > 1, the group πn,g is generated by

{σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj | 1 6 i 6 n− 1, 1 6 j 6 g},
where:
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(i) σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi keeps all coordinates fixed except for the ith and (i+ 1)th ones, which move along the following paths:

(ii) αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj keeps all coordinates fixed except for the last one, which moves along the following path:

(iii) βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj keeps all coordinates fixed except for the last one, which moves along the following path:

These generators satisfy the following complete list of relations4

(BR1) [σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, σjσjσjσjσjσjσjσjσjσjσjσjσjσjσjσjσj ] = 1 for all 1 6 i, j 6 n− 1 such that |i− j| > 2;
(BR2) σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi ∗ σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1 ∗ σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi = σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1 ∗ σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi ∗ σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1σi+1 for every 1 6 i 6 n− 2;
(CR1) [σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ] = [σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ] = 1 for all 1 6 i 6 n− 2 and 1 6 j 6 g;
(CR2) [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1] = [βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1 ∗ βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ∗ σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1] = 1 for every 1 6 j 6 g;

(CR3) [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk ∗ σ
−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1] = [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk ∗ σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1] = [βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk ∗ σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1] = [βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk ∗ σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1] = 1 for all

1 6 j < k 6 g;
(SCR) σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 ∗ βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj = βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ∗ σ

−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1σ−1
n−1 ∗ αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1 for every 1 6 j 6 g.

This presentation is obtained from [BG05, Theorem 2.1] by setting

σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi = σn−i+1, αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj = δ2g−2j+1, βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj = δ−1
2g−2j+2

for all integers 1 6 i 6 n − 1 and 1 6 j 6 g. Notice that relation (CR3) is equivalent to the one appearing in
[BG05, Theorem 2.1] thanks to relation (CR2). When n = 1, there is no standard braid generator σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, and π1,g

reduces to the fundamental group π1(Σg,1, ξ), which is the free group with generators αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj for 1 6 j 6 g. In
general, it is useful to fix names for a few other elements of πn,g. For all integers 1 6 j 6 g and 1 6 k 6 g − 1, we
set

α̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃j := β−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
j ∗ αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk := αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1αk+1 ∗ α̃−1

kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
kα̃
−1
k , δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj :=

{
α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1 if j = 1,

γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1 ∗ . . . ∗ γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1 ∗ α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1 if 2 6 j 6 g.
(2)

4Our convention for path concatenation is fixed in Appendix A.1.
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Graphically, α̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃j , γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk, and δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj are given by

respectively.

Remark 2.1. Notice that
{σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj | 1 6 i 6 n− 1, 1 6 j 6 g}

is also a system of generators of πn,g. Indeed, for every 1 6 k 6 g − 1, we have

γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk = δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1δk+1 ∗ δ−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
kδ
−1
k ,

and, for every 1 6 j 6 g, we can recursively obtain
α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1 = δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1,

α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1α̃1 = β−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1β
−1
1 ∗ δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1δ1 ∗ β1β1β1β1β1β1β1β1β1β1β1β1β1β1β1β1β1,

αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj = γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1γj−1 ∗ α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1α̃j−1 if 2 6 j 6 g,

α̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃j = β−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
j ∗ αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj if 2 6 j 6 g.

2.1.2. Heisenberg groups. Our next goal is to represent (by a surjective homomorphism) the surface braid group
πn,g onto some simpler group (although we will actually work with group rings). Our choice for the latter is the
Heisenberg group associated with Σg,1, which is richer than the abelianization of πn,g, and will allow us to recover
the action of a quantum group. For every integer g > 1 and every commutative ring R, the Heisenberg group of
genus g with coefficients in R is the group Hg(R) of matrices of the form

1 2aT c
0 Ig 2b
0 0 1

 ∈ GLg+2(R)

∣∣∣∣∣ a =

a1

...
ag

 , b =

b1...
bg

 ∈ Rg, c ∈ R
 .

Notice that Hg(R) is not a commutative group, since1 2aT c
0 Ig 2b
0 0 1

1 2a′T c′

0 Ig 2b′

0 0 1

 =

1 2(a+ a′)T c+ c′ + 4a · b′
0 Ig 2(b+ b′)
0 0 1

 .
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The group Hg := Hg(Z) is called the discrete Heisenberg group. Let us fix the elements

q :=

1 0T 1
0 Ig 0
0 0 1

 , αj :=

1 2eT
j 0

0 Ig 0
0 0 1

 , βj :=

1 0T 0
0 Ig 2ej
0 0 1

 , (3)

where ej denotes the column vector of size g whose kth entry is δj,k.

Lemma 2.2. The discrete Heisenberg group Hg is isomorphic to the group with generators

{q, αj , βj | 1 6 j 6 g}
and the following complete list of relations:
(DC1) [q, αj ] = [q, βj ] = 1 for every 1 6 j 6 g;
(DC2) [αj , αk] = [αj , βk] = [βj , αk] = [βj , βk] = 1 for all 1 6 j < k 6 g;
(DSC) [αj , βj ] = q4 for every 1 6 j 6 g.

Proof. It can be easily verified that relations (DC1)–(DSC) are satisfied in Hg. Then, it is sufficient to check that1 2aT c
0 Ig 2b
0 0 1

 7→ qc−4a·bαaβb

defines the inverse homomorphism, where

αa := αa11 · · ·αagg , βb := βb11 · · ·βbgg .
Notice that a product 1 2aT c

0 Ig 2b
0 0 1

1 2a′T c′

0 Ig 2b′

0 0 1


is sent to

qc−4a·bαaβbqc
′−4a′·b′αa

′
βb
′

= qc+c
′−4(a·b+a′·b+a′·b′)αa+a′βb+b

′
= qc+c

′+4a·b′−4(a+a′)·(b+b′)αa+a′βb+b
′
,

which is the image of 1 2(a+ a′)T c+ c′ + 4a · b′
0 Ig 2(b+ b′)
0 0 1

 . �

The following statement was already proved, with slightly different conventions, in [BGG11, Lemma 4.4], and
it was used in [BPS21, Proposition 7 & Corollary 8] in order to define twisted homology groups.

Lemma 2.3. There exists a unique ring homomorphism ϕH
n,g : Z[πn,g]→ Z[Hg] satisfying

σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi 7→ σ := −q−2, αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj 7→ αj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj 7→ βj .

Proof. In order to check that the assignment gives well-defined homomorphisms, we simply need to verify that
relations (BR1)–(SCR) are satisfied by −q−2, αj , βj for every integer 1 6 j 6 g. These are easy computations,
which are left to the reader. Notice that, when n = 1, the surface braid group πn,g reduces to the fundamental
group of Σg,1, which is a free group, so there is nothing to check in this case. �

The following observation is not crucial for the present work. It is useful, however, for interpreting the twisted
homology groups defined in Section 2.2 in terms of standard homology groups of the corresponding regular covers,
see for instance Remark 2.11.

Remark 2.4. When n > 2, we have a commutative diagram

Z[πn,g] Z[Hg]

Z[πn,g/Kn,g]

ϕH
n,g

ϕπ/Kn,g
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where ϕπ/Kn,g is induced by the projection to the quotient of πn,g with respect to the normal subgroup Kn,g / πn,g
with generators

{[σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1, σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi], [σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1, αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ], [σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1σn−1, βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ] | 1 6 i 6 n− 2, 1 6 j 6 g}.
Indeed, ϕH

n,g clearly vanishes on Z[Kn,g], and it is easy to see that πn,g/Kn,g is isomorphic to the group with
generators

{σ, αj , βj | 1 6 j 6 g}
and the following complete list of relations:
(QC1) [σ, αj ] = [σ, βj ] = 1 for every 1 6 j 6 g;
(QC2) [αj , αk] = [αj , βk] = [βj , αk] = [βj , βk] = 1 for all 1 6 j < k 6 g;
(QSC) [αj , βj ] = σ−2 for every 1 6 j 6 g.

The analogous statement holds for n = 1, provided we define K1,g / π1,g as the normal subgroup generated by the
following list of elements:

(i) [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ][αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk, βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk]−1 for all integers 1 6 j, k 6 g;
(ii) [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk], [αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk], [βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk], [βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk] for all integers 1 6 j < k 6 g;

(iii) [[αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ], αkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαkαk], [[αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj , βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj ], βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk] for all integers 1 6 j, k 6 g.

2.2. Discrete Heisenberg homology. We are ready to define homology groups of Xn,g twisted by the homo-
morphism ϕH

n,g, but first, we need to specify a relative part in the boundary of Xn,g. To this end, let us denote by
∂−Σg,1 the subset of ∂Σg,1 represented by the magenta arc

and let us consider the submanifold

Yn,g := {x = {x1, . . . , xn} ∈ Xn,g | ∃ 1 6 i 6 n xi ∈ ∂−Σg,1} (4)

of ∂Xn,g.

Definition 2.5. For every integer n > 1, the nth discrete Heisenberg homology group of Σg,1 is the Z[Hg]-module

HH
n,g := HBM

n (Xn,g, Yn,g;ϕ
H
n,g),

where Xn,g and Yn,g are defined in Equations (1) and (4) respectively, and ϕH
n,g is defined in Lemma 2.3. For

n = 0, we set
HH

0,g := Hg.
The total discrete Heisenberg homology group of Σg,1 is the direct sum

HH
g :=

⊕
n>0

HH
n,g.

We highlight the fact that, instead of standard singular homology, we are using Borel–Moore homology (see
Appendix A.2) with twisted coefficients (see Appendix A.1).
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2.2.1. Diagrammatic notation. We represent twisted homology classes in HH
n,g using diagrams composed of em-

bedded disjoint curves in the surface Σg,1 labeled by integers, and equipped with paths connecting them to the
base point ξξξξξξξξξξξξξξξξξ ∈ ∂Xn,g. Such diagrams are a generalization to positive genus surfaces of the those introduced for
punctured discs in [Ma20a, Section 3.1]. Let us explain how to represent elements of HH

n,g this way. First of all,
let us denote by

∆k := {(t1, . . . , tk) ∈ Rk | 0 < t1 < . . . < tk < 1}
the standard open k-dimensional simplex in Rk, which we can think of as the configuration space of k (ordered)
points in the open interval ]0, 1[.

Definition 2.6. An embedded twisted cycle of dimension n > 0 in Σg,1 is a 4-tuple (m,Γ ,k, x̃) where:
(i) m > 0 is an integer;

(ii) Γ is an m-multisimplex, which is given by an ordered family (Γ1, . . . , Γm) of disjoint proper embeddings
Γ1, . . . , Γm : [0, 1]→ Σg,1 such that Γ` embeds {0, 1} into ∂−Σg,1 for 1 6 ` 6 m.

(iii) k is an m-partition of n, which is given by an ordered family k = (k1, . . . , km) ∈ Nm of integers satisfying
k1 + . . .+ km = n, and which provides a labeling of the components of the m-multisimplex Γ .

(iv) x̃ is a thread of the k-labeled m-multisimplex Γ , which is given by an ordered family (x̃1, . . . , x̃n) of
disjoint embeddings of x̃1, . . . , x̃m : [0, 1] → Σg,1 satisfying x̃i(0) = ξi and x̃i(1) ∈ Γ k(∆k( 1

2 , . . . ,
1
2 )) for

all integers 1 6 i 6 n, where

∆k : ]0, 1[
×n → ∆k1 × . . .×∆km

is the homeomorphism defined in Equation (6), and

Γ k : ∆k1 × . . .×∆km → Xn,g

is the embedding defined in Equation (7).

We can represent an embedded twisted cycle (m,Γ ,k, x̃) diagrammatically by drawing dashed-dotted curves
that follow the images of the proper embeddings Γ1, . . . , Γm, oriented from 0 to 1, and carrying the labels k1, . . . , km
respectively, and by drawing solid curves that follow the thread x̃. We will often use multiple colors for a multi-
simplex, in order to help the reader distinguish different components, but we will always reserve the color red for
the thread. Here is an example of a diagram of an embedded twisted cycle for n = 5 and g = 1:

(5)

The rest of this section is devoted to explaining how to interpret these diagrams as relative homology classes in
HBM
n (Xn,g, Yn,g;ϕ

π
n,g), where ϕπ : Z[πn,g]→ Z[πn,g] denotes the identity (or equivalently inHBM

n (Xn,g, Yn,g;ϕ
π/K),

where ϕπ/Kn,g : Z[πn,g] → Z[πn,g/Kn,g] denotes the ring homomorphism introduced in Remark 2.11). If we forget
threads, then an embedded twisted cycle still determines a relative homology class, but one in HBM

n (Xn,g, Yn,g)
instead of HBM

n (Xn,g, Yn,g;ϕ
π
n,g). Indeed, every m-multisimplex Γ = (Γ1, . . . , Γm), together with an m-partition

k = (k1, . . . , km) of n, induces an embedding of the form

]0, 1[
×n

∆k1 × . . .×∆km Xn,g,
∆k Γk



14 M. DE RENZI AND J. MARTEL

where ∆k identifies the open hypercube ]0, 1[
×n with the product of simplices ∆k1 × . . . ×∆km , and Γ k embeds

the latter into Xn,g. More precisely, for every integer k > 0, we have a homeomorphism

∆k : ]0, 1[
×k → ∆k

(t1, . . . , tk) 7→ (∆k
1(t1), . . . ,∆k

k(tk)),

where ∆k
1(t1) := t1 and, recursively, ∆k

i (ti) := ti(1−∆k
i−1(ti−1)) + ∆k

i−1(ti−1) for all integers 1 < i 6 k. Therefore,
we can define the homeomorphism

∆k : ]0, 1[
×n → ∆k1 × . . .×∆km (6)

(t1, . . . , tn) 7→ (∆k
1 (t1), . . . ,∆k

n(tn)),

where, if i = k1 + . . .+ k`−1 + i` for some integers 1 6 ` 6 m and 1 6 i` 6 k`, then ∆k
i := ∆k`

i`
, and similarly, we

can define the embedding

Γ k : ∆k1 × . . .×∆km → Xn,g, (7)

(t1, . . . , tn) 7→ {Γk1 (t1), . . . , Γkn (tn)}

where, if i = k1 + . . . + k`−1 + i` for some integers 1 6 ` 6 m and 1 6 i` 6 k`, then Γki := Γ`. Since faces of
simplices are sent either to infinity (that is, to one of the diagonals of Σ×ng,1 corresponding to the collision of two
coordinates, or particles) or to Yn,g, the embedding Γ k ◦∆k determines a Borel–Moore cycle in Xn,g relative to
Yn,g. Indeed, in Borel–Moore homology, open submanifolds whose boundary goes to infinity are always cycles.
Then, we will denote the homology class of Γ k ◦∆k by

Γ (k) ∈ HBM
n (Xn,g, Yn,g).

Next, let us explain how to use threads to lift homology classes from HBM
n (Xn,g, Yn,g) to HBM

n (Xn,g, Yn,g;ϕ
π
n,g).

Recall that, by definition, a thread of a k-labeled m-multisimplex Γ determines a path x̃ : [0, 1]→ Xn,g from ξξξξξξξξξξξξξξξξξ to
Γ k(∆k(( 1

2 , . . . ,
1
2 )). In other words, a thread is a point x̃ ∈ X̃n,g in the fiber p̃−1(Γ k(∆k( 1

2 , . . . ,
1
2 ))). Notice that

a thread also naturally determines a permutation ϑx̃ ∈ Sn, together with an associated map

ϑx̃ : ]0, 1[
×n → ]0, 1[

×n

(t1, . . . , tn) 7→ (tϑx̃(1), . . . , tϑx̃(n)),

where ϑx̃(i) is the unique integer satisfying x̃i(1) = Γkϑx̃(i)(∆
k
ϑx̃(i)(

1
2 )). Therefore, it determines uniquely a lift

Γ̃ kx̃ : ∆k1 × . . .×∆km → X̃n,g

of Γ k : ∆k1 × . . . × ∆km → Xn,g satisfying Γ̃ kx̃(∆k( 1
2 , . . . ,

1
2 )) = x̃. Clearly, the embedding Γ̃ kx̃ ◦∆k ◦ ϑ−1

x̃ still
determines a Borel–Moore cycle in X̃n,g relative to p̃−1(Yn,g). Then, we will denote the corresponding homology
class by

Γ̃ x̃(k) ∈ HBM
n (Xn,g, Yn,g;ϕ

π
n,g),

although most of the time we will drop the thread x̃ from the notation.

Remark 2.7. Notice that the thread x̃ serves a double role: not only it specifies a lift Γ̃ kx̃ of the embedding Γ k,
but it also dictates, via the permutation ϑx̃, how the components of the hypercube ]0, 1[

×n are distributed onto it.
Thus, in HBM

n (Xn,g, Yn,g;ϕ
π
n,g), we have

Γ̃ x̃′(k) = sgn(ϑx̃ ◦ ϑ−1
x̃′ )(x̃′ ∗ x̃−1) · Γ̃ x̃(k),

where sgn : Sn → {+1,−1} denotes the sign, or parity, of permutations.

In order to keep our graphical notation as light as possible, let us adopt the following convention: whenever
we label a component of a red thread by k, the picture should be understood as representing k disjoint parallel
red components in the surface, starting at k consecutive points of ξξξξξξξξξξξξξξξξξ, and ending at k distinct neighboring points
along a single component of a multisimplex. Such a labeled thread will be called a multithread. Furthermore, from
now on, whenever we draw a single unlabeled component of a red multithread ending at a point of a k-labeled
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component of a multisimplex (which represents therefore an embedded k-dimensional simplex), the red component
should be understood as carrying the label k. For example, we have

=

Remark 2.8. In the notation of Remark 2.11, an embedded twisted cycle also defines a relative homology class in
HBM
n (Xn,g, Yn,g;ϕ

π/K
n,g ) given by Γ̂ kx̃ ◦∆k ◦ ϑx̃, where

Γ̂ kx̃ : ]0, 1[
×n → X̂n,g

denotes the unique lift of Γ k : ]0, 1[
×n → Xn,g sending ( 1

2 , . . . ,
1
2 ) to the projection of x̃ to X̂n,g = X̃n,g/Kn,g.

This lift is clearly the projection of Γ̃ kx̃ to X̂n,g.

2.2.2. Structure and bases. For all a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ N×g, let us set

|a+ b| =
g∑
j=1

(aj + bj).

If |a+ b| = n, meaning that (a, b) is a 2g-partition of n, then let us consider the relative homology class

Γ̃ (a, b) ∈ HBM
n (Xn,g, Yn,g;ϕ

π
n,g)

corresponding to the embedded twisted cycle represented by

Γ̃ (a, b) := (8)

where green and blue colors are only used to clearly distinguish arcs. Notice that we will not explicitly refer to the
multithread in the notation, in order to keep it as light as possible. The next statement is a direct generalization
of [Ma20a, Proposition 3.6], which is based on [Bi00, Lemma 3.1]. The result was already proved in [BPS21,
Theorem A.(a)], but we repeat here the sketch of a proof, for convenience of the reader.

Proposition 2.9. The Z[πn,g]-module HBM
n (Xn,g, Yn,g;ϕ

π
n,g) is free with basis{

Γ̃ (a, b)
∣∣∣ a, b ∈ N×g, |a+ b| = n

}
,

while HBM
k (Xn,g, Yn,g;ϕ

π
n,g) = {0} for all k 6= n.

Sketch of proof. The surface Σg,1 retracts onto a wedge of 2g circles, which can be embedded into Σg,1 as (the solid
version of) the blue and green curves appearing in the definition of Γ̃ (a, b) above, together with the magenta interval
∂−Σg,1. This gives a basis of HBM

n (Xn,g, Yn,g;ϕ
π
n,g) following Bigelow’s trick [Bi00, Lemma 3.1], by extending the

retraction to configuration spaces, and applying excision. �
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Remark 2.10. Since HBM
k (Xn,g, Yn,g;ϕ

π
n,g) is a free Z[πn,g]-module for all k > 0, then we have

HBM
k (Xn,g, Yn,g;ϕ

M
n,g)
∼= HBM

k (Xn,g, Yn,g;ϕ
π
n,g)⊗Z[πn,g ] Mn,g

for every left Z[πn,g]-module Mn,g determined by ϕMn,g : Z[πn,g] → EndZ(Mn,g), see Remark A.2. In other words,
the relative twisted homology of (Xn,g, Yn,g) with coefficients in any left Z[πn,g]-module Mn,g is also concentrated
in degree n. Furthermore, if Mn,g is a free R-module with basis {m1, . . . ,mk} over some ring R, and ϕMn,g takes
values in EndR(Mn,g) (meaning that Mn,g is a (Z[πn,g], R)-bimodule), then a basis of HBM

n (Xn,g, Yn,g;ϕ
M
n,g) as a

free R-module is given by {
Γ̃ (a, b)⊗mi

∣∣∣ a, b ∈ N×g, |a+ b| = n, 1 6 i 6 k
}
.

Remark 2.11. If p̂ : X̂n,g → Xn,g denotes the regular cover corresponding to the normal subgroup Kn,g / πn,g of
Remark 2.4, then the proof of Proposition 2.9 can be easily adapted to show that HBM

k (Xn,g, Yn,g;ϕ
π/K
n,g ) is a free

Z[Hg]-module for all k > 0. This yields a natural isomorphism

HH
n,g
∼= HBM

n (Xn,g, Yn,g;ϕ
π/K
n,g )⊗Z[πn,g/Kn,g ] Z[Hg].

Roughly speaking, the twisted homology group HH
n,g is nothing else than the standard homology group of a regular

cover of Xn,g with extended coefficients (namely, we can multiply by a square root of −σ, called q−1).

Corollary 2.12. The Z[Hg]-module HH
n,g is free with basis{
Γ̃ (a, b)

∣∣∣ a, b ∈ N×g, |a+ b| = n
}
.

2.2.3. Diagrammatic calculus. The diagrammatic notation that was introduced in Section 2.2.1 comes with a set
of rules. These are a diagrammatic translation of the rules of homological calculus, meaning that they allow us
to manipulate diagrams without changing the corresponding twisted homology class. These rules are a direct
generalization, to positive genus surfaces, of the ones derived in [Ma20a, Section 4.2]. They provide a complete
picture for the homological model developed in this paper, in the sense that they are sufficient to perform all the
computations we will carry out in the following.

These diagrammatic rules involve quantum integers, factorials, and binomials. If Z[q, q−1] denotes the ring of
integral Laurent polynomials in the free variable q, then, for every integer n ∈ Z, and for all positive integers
k > ` > 0, we recall the notation

{n}q := qn − q−n, [n]q :=
{n}q
{1}q

, [k]q! :=

k∏
j=1

[j]q,

[
k
`

]
q

:=
[k]q!

[`]q![k − `]q!
.

Proposition 2.13. Diagrams representing embedded twisted cycles corresponding to elements of HH
n,g satisfy the

following list of relations:
Cutting rule. For every integer 0 6 k 6 n we have

=

k∑
`=0

(C)

where the pair of dotted red arcs on the right-hand side of the equality runs parallel in surface;
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Fusion rule. For all integers 0 6 k, `, k + ` 6 n we have

= ⊗
[
k + `
k

]
q

qk` (F)

where the pairs of dotted red arcs and of dotted blue arcs on the left-hand side of the equality run parallel
in surface;

Orientation rule. For every integer 0 6 k 6 n we have

= (−1)k (O)

Permutation rule. For all integers 0 6 k, ` 6 n we have

= ⊗ q2k` (P)

where the left-most pairs of dotted red arcs on both sides of the equality run parallel in surface;
Braid rule. For every integer 0 6 k 6 n we have

= ⊗ ϕH
n,g((β ∗ α

−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i))
k (B)

where the dotted red arcs α and β are disjoint from the rest of the multithread, intersect each other only twice,
transversely and with opposite sign, at α(0) = β(0) = ξi for some 1 6 i 6 n and at α(1) = β(1), and where
(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i) ∈ πn,g keeps all coordinates of ξξξξξξξξξξξξξξξξξ fixed except for the ith one, which moves along β ∗ α−1.

These rules can be established in the exact same way as in [Ma20a, Section 4.2], where analogue relations are
proved in the case of discs. Indeed, all modifications actually happen inside a disc embdedded into Σg,1 (only
the last rule requires a remark on surface braids). Still, we give elements of proofs in Appendix B. We will make
extensive use of these rules while performing computations, and we will always add the initials of the rules that
are being applied on top of every equality involving them.

2.3. Homological representations of quantum sl2. For a fixed genus g, we will now equip the direct sum of the
Heisenberg homology groups HH

n,g (taken over all possible numbers of configuration points) with an action of the
quantum group of sl2. This representation of quantum sl2 will be defined in terms of homological operators, and
computed by means of homological calculus. Later, we will show that a Z[ζ]-linear version of this representation
contains a finite-dimensional submodule that will be identified with the adjoint representation of the small version
of quantum sl2.
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2.3.1. Quantum sl2. Let us consider the ring Z[q, q−1] of integral Laurent polynomials in the free variable q. Let
Uq = Uqsl2 be the Z[q, q−1]-algebra with generators {E,F (k),K,K−1 | k ∈ N} and relations

F (k)F (`) =

[
k + `
k

]
q

F (k+`), KK−1 = K−1K = 1,

KEK−1 = q2E, KF (k)K−1 = q−2kF (k), [E,F (k+1)] = F (k)(q−kK − qkK−1).

Notice that
(F (1))k = [k]q!F

(k). (9)
This is an integral version of quantum sl2, in the sense that it has coefficients in a ring of integral Laurent

polynomials, rather than in a field. It lies somewhat between Lusztig’s integral version [Lu88] and De Concini–
Procesi’s one [DP93], since it involves divided powers of the standard generator F , which are denoted F (k), but not
those of E. It was introduced by Habiro in [Ha06] (up to a minor difference), and was already related to homology
(in the precise form reported here) in [JK09, Ma20a].

Let us also consider the primitive rth root of unity ζ = e
2πi
r , where r > 3 is an odd integer, and the Z[ζ]-

algebra Uζ = Uq ⊗ Z[ζ] obtained by specializing q = ζ. Let Ūζ = Ūζsl2 be the Z[ζ]-subalgebra of Uζ generated by
{E,F (1),K}. Notice that, in Ūζ , Equation (9) implies (F (1))r = 0, since [r]ζ ! = 0.

2.3.2. Homological action of quantum sl2 generators. Let us construct linear operators E, F(1), and K on the
total discrete Heisenberg homology HH

g following the pattern

· · · HH
n−1,g HH

n,g HH
n+1,g · · ·

E E E

F(1) F(1) F(1)

K K K

For every n > 0, let us consider the triple Xn,g ⊃ Yn,g ⊃ Zn,g, where
Zn,g := {x = {x1, . . . , xn} ∈ Yn,g | ∃ 1 6 i < j 6 n xi, xj ∈ ∂−Σg,1}.

Now let x0 be the leftmost point of ∂−Σg,1, and let us consider the map

addx0
: Xn−1,g/Yn−1,g → Yn,g/Zn,g

[xxxxxxxxxxxxxxxxx] 7→

{
[{x0} ∪ xxxxxxxxxxxxxxxxx] if xxxxxxxxxxxxxxxxx ∈ Xn−1,g r Yn−1,g,

[Zn,g] if xxxxxxxxxxxxxxxxx ∈ Yn−1,g.

Notice that addx0 is a homeomorphism. We want to lift it to (the corresponding quotient of) the universal cover
p̃ : X̃n,g → Xn,g, whose points x̃̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x are isotopy classes (relative to endpoints) of configurations of paths starting at
ξξξξξξξξξξξξξξξξξ ∈ ∂Xn,g. Therefore, since we need to choose a point in the fiber of x0, we let x̃0 denote the simple path in
∂Σg,1 starting at ξn, ending at x0, and running counterclockwise (up to parametrization it is unique). Then, let
us consider the map

addx̃0
: X̃n−1,g/p̃

−1(Yn−1,g)→ p̃−1(Yn,g)/p̃
−1(Zn,g)

[x̃̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x] 7→

{
[{x̃0} ∪ x̃̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x] if x̃̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x ∈ X̃n−1,g r p̃−1(Yn−1,g),

[p̃−1(Zn,g)] if x̃̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x̃x ∈ p̃−1(Yn−1,g).

Notice that we can avoid parametrization issues by requiring, without loss of generality, that every configuration
of paths does not to intersect the boundary of Xn,g outside of its ends. The map addx̃0

is then a lift of addx0
to

universal covers, and is again a homeomorphism.
The long exact sequence of the triple considered above is

· · · HBM
n (Xn,g, Zn,g;ϕ

H
n,g) HH

n,g HBM
n−1(Yn,g, Zn,g;ϕ

H
n,g) · · ·∂∗
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where ∂∗ denotes the connection homomophism, and HBM
∗ (Yn,g, Zn,g;ϕ

H
n,g) denotes the homology of the complex

CBM
∗ (Yn,g, Zn,g;ϕ

H
n,g) := lim←−

K∈K(Yn,g)

C∗(p̃
−1(Yn,g), p̃

−1(Zn,g ∪ (Yn,g rK)))⊗Z[πn,g ] Z[Hg],

in the notation of Appendix A.2.

Definition 2.14. For every integer n > 1, the operator

E : HH
n,g →HH

n−1,g

is the composition

HH
n,g HBM

n−1(Yn,g, Zn,g;ϕ
H
n,g) HH

n−1,g,
(−1)n−1∂∗ delx̃0

where delx̃0
is the unique map fitting in the commutative diagram of isomorphisms

HBM
n−1(Yn,g, Zn,g;ϕ

H
n,g) HBM

n−1(Yn,g/Zn,g, Zn,g/Zn,g;ϕ
H
n,g)

HH
n−1,g HBM

n−1(Xn−1,g/Yn−1,g, Yn−1,g/Yn−1,g;ϕ
H
n−1,g)

∼

delx̃0

∼
(add−1

x̃0
)∗

with horizontal arrows given by identifications of relative homologies of good pairs.

Roughly speaking, the operator E computes the boundary map ∂∗, followed by some standard homological
identifications.

Definition 2.15. For all integers n, k > 0, the operator

F(k) : HH
n,g →HH

n+k,g

is the Z[Hg]-linear map sending the basis vector Γ̃ (a, b) of HH
n,g to the vector

⊗ q
k(k−1)

2 +2kg

of HH
n+k,g.

Notice that the definition of the operator F(k) is actually independent of the choice of the basis of HH
n,g. Indeed,

if ∂+Σg,1 denotes the subset of ∂Σg,1 represented by the orange arc

then, up to isotopy, we can make sure that every relative homology class in HH
n,g avoids a fixed collar of the

submanifold
∂Xn,g r Yn,g = {x = {x1, . . . , xn} ∈ Xn,g | ∃ 1 6 i 6 n xi ∈ ∂+Σg,1}

in Xn,g, and we can insert the curve defining the operator F(k) inside such fixed collar.
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Definition 2.16. For every integer n > 0, the operator

K : HH
n,g →HH

n,g

is the scalar multiple of the identity sending σ̃⊗h to σ̃⊗q−2(n+g)h for all homology classes σ̃ ∈ HBM
n (Xn,g, Yn,g;ϕ

π
n,g)

and coefficients h ∈ Z[Hg].

2.3.3. Proof of quantum sl2 relations. Now that homological operators E,F(k) and K have been defined, we can
show that they satisfy relations for generators of Uq.

Proposition 2.17. For all integers k, ` > 0 we have

F(k) ◦F(`) =

[
k + `
k

]
q

F(k+`).

Proof. This is an immediate consequence of the fusion rule in Proposition 2.13. Indeed, we have

⊗ q
k(k−1)

2 +2kg+
`(`−1)

2 +2`g

(F)
= ⊗

[
k + `
k

]
q

q
(k+`)(k+`−1)

2 +2(k+`)g. �

Remark 2.18. Notice that relations

K ◦K−1 = K−1 ◦K = idHH
n,g
,

K ◦E ◦K−1 = q2E,

K ◦F(k) ◦K−1 = q−2kF(k)

are clearly satisfied for every integer k > 0.

Proposition 2.19. For every integer k > 0 we have

E ◦F(k+1) −F(k+1) ◦E = F(k) ◦
(
q−kK − qkK−1

)
.

Proof. If we denote by
Φ̃(k + 1)× Γ̃ (a, b) : ]0, 1[

×(n+k+1) → X̃n,g

the relative homology class satisfying

F(k+1)(Γ̃ (a, b)) =
(

Φ̃(k + 1)× Γ̃ (a, b)
)
⊗ q

(k+1)k
2 +2(k+1)g,

then we have

∂∗

(
Φ̃(k + 1)× Γ̃ (a, b)

)
= ∂∗(Φ̃(k + 1))× Γ̃ (a, b) + (−1)k+1Φ̃(k + 1)× ∂∗(Γ̃ (a, b)).

This means that(
E ◦F(k+1) −F(k+1) ◦E

)
(Γ̃ (a, b))
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= (−1)n+k delx̃0

(
∂∗

(
Φ̃(k + 1)× Γ̃ (a, b)

))
⊗ q

(k+1)k
2 +2(k+1)g

− Φ̃(k + 1)× (−1)n−1 delx̃0(∂∗(Γ̃ (a, b)))⊗ q
(k+1)k

2 +2(k+1)g

= (−1)n+k delx̃0

(
∂∗

(
Φ̃(k + 1)× Γ̃ (a, b)

)
− (−1)k+1Φ̃(k + 1)× ∂∗(Γ̃ (a, b))

)
⊗ q

(k+1)k
2 +2(k+1)g

= (−1)n+k delx̃0

(
∂∗(Φ̃(k + 1))× Γ̃ (a, b)

)
⊗ q

(k+1)k
2 +2(k+1)g.

It remains to compute ∂∗(Φ̃(k + 1))× Γ̃ (a, b), and to apply delx̃0 to it.
On one hand, we have

=

(B)
= ⊗

g∏
j=1

[β−1
j , α−1

j ]

(P)
= ⊗ q−2(n+k+2g),

where the second and third equalities follow from an application of the braid and permutation rules in Proposi-
tion 2.13, respectively.
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On the other hand, we have

(P)
= ⊗ q2n,

by applying the permutation rule in Proposition 2.13.
In the end, we have

(E ◦F(k+1) −F(k+1) ◦E)(Γ̃ (a, b)) = F(k)
(
Γ̃ (a, b)⊗ qk+2g(q−2(n+k+2g) − q2n)

)
= F(k)

(
Γ̃ (a, b)⊗ (q−k−2(n+g) − qk+2(n+g))

)
. �

Theorem 2.20. HH
g is a Uq-module, with action of E, F (k), and K given by the operators E, F(k), and K

respectively.

Proof. Comparing with the definition of Uq given in Section 2.3.1, the first claim is a direct consequence of Propo-
sitions 2.17 and 2.19, together with Remark 2.18. �

Notice that, since the operators E, F(k), and K are Z[Hg]-linear, HH
g is in fact a (Z[Hg], Uq)-bimodule.

2.4. Homological representations of mapping class groups. Let us consider the mapping class group of
Σg,1, denoted Mod(Σg,1). By definition, it is the group of positive self-diffeomorphisms of Σg,1 fixing the boundary
pointwise, modulo isotopies fixing the boundary pointwise (see Appendix A.3). As proved in [Li64], it is generated
by the positive Dehn twists

{ταj , τβj , τγk | 1 6 j 6 g, 1 6 k 6 g − 1}
along the simple closed curves

In this section, we will linearize the Heisenberg homology group HH
n,g, and equip it with a projective action of the

mapping class group Mod(Σg,1).
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2.4.1. Mapping class subgroup representations with Heisenberg coefficients. First of all, notice that Mod(Σg,1)

embeds into Mod(X̃n,g) via

Mod(Σg,1) ↪→ Mod(Xn,g) ↪→ Mod(X̃n,g),

f 7→ f×n 7→ f̃×n

where, by abuse of notation, f×n{x1, . . . , xn} := {f(x1), . . . , f(xn)} for all {x1, . . . , xn} ∈ Xn,g, and f̃×n denotes
the unique lift of f×n ◦ p̃ fixing the constant path in the fiber p̃−1(ξξξξξξξξξξξξξξξξξ). This induces an action of Mod(Σg,1) onto
both Z[πn,g] and HBM

n (Xn,g, Yn,g;ϕ
π
n,g). For every f ∈ Mod(Σg,1), let

(f×n)∗ ∈ Aut(Z[πn,g]), (f̃×n)∗ ∈ Aut(HBM
n (Xn,g, Yn,g;ϕ

π
n,g))

denote the associated automorphisms of Z[πn,g] and of HBM
n (Xn,g, Yn,g;ϕ

π
n,g) respectively. For all integers n > 1,

let us also define

MH
0,g := Mod(Σg,1), MH

n,g :=
{
f ∈ Mod(Σg,1) | ϕH

n,g ◦ (f×n)∗ = ϕH
n,g

}
, MH

g :=
⋂
n>0

MH
n,g.

Proposition 2.21. There exists a Z[Hg]-linear action of MH
n,g on the nth discrete Heisenberg homology HH

n,g of
Definition 2.5 given by the homomorphism

ρHn,g : MH
n,g → GLZ[Hg ](H

H
n,g)

defined by
ρHn,g(f)(σ̃ ⊗ h) = (f̃×n)∗(σ̃)⊗ h

for all diffeomorphisms f ∈ MH
n,g, homology classes σ̃ ∈ HBM

n (Xn,g, Yn,g;ϕ
π
n,g), and coefficients h ∈ Z[Hg]. Fur-

thermore, the direct sum, for n > 0, of these representations defines a Z[Hg]-linear action

ρHg : MH
g → GLUq (H

H
g )

of MH
g on the total discrete Heisenberg homology HH

g by invertible Uq-module endomorphisms.

Proof. The first claim follows directly from Proposition A.4.(i), by letting the embedding Mod(Σg,1) ↪→ Mod(Xn,g)
play the role of the homomorphism χ : F → Mod(X), and the group ring Z[Hg] play both the role of the ring R
and of the R-module M .

The fact that the action of MH
g commutes with the action of Uq follows immediately from the homological

definition of the operators E, F(k), and K, in Section 2.3.2. Indeed, the first one is essentially the connection
homomorphism in the long exact sequence of a triple of spaces which is preserved by every diffeomorphism in
MH
g . Similarly, the second one essentially amounts to a cross product with the homology class of a multisimplex

contained in a collar of the boundary, which is also fixed by every diffeomorphism in MH
g . Finally, the operator K

acts by a scalar on every subrepresentation HH
n,g. �

Remark 2.22. Let us provide a few comments about this action.
(i) The group MH

g is identified with the Chillingworth subgroup of Mod(Σg,1) in [BPS21, Proposition 27].
The same definition given above yields an action of the whole mapping class group that is not Z[Hg]-linear,
but rather a crossed representation, as explained in [BPS21, Theorem A.(b)].

(ii) By enlarging coefficients to Z[HgoAut(Hg)], it is possible to extend this action to a Z[HgoAut(Hg)]-linear
representation of Mod(Σg,1). The procedure is explained in [DM], where a tautological C-linearization,
induced by a C-linear representation of HgoAut(Hg), is also considered. This naturally yields a C-linear
representation of Mod(Σg,1).

(iii) Even though the C-linear representation of HgoAut(Hg) of the previous point is faithful, it is also shown
in [DM] that a faithful C-linear representation of Z[Hg] cannot exist. This implies that the process of
C-linearization might increase the kernel of the mapping class group representation.
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2.4.2. Mapping class group representations with complex coefficients. Let us now consider the primitive rth root of
unity ζ = e

2πi
r , where r > 3 is an odd integer. Our next goal is to obtain a C-vector space fromHH

n,g by representing
Z[Hg], and to equip it with a (projective) C-linear action of the whole mapping class group Mod(Σg,1), rather than
just a subgroup. We will first look for a representation of Hg, which will induce a representation of the group ring
Z[πn,g] into EndC(Vg) for some finite-dimensional C-vector space Vg, and then we will look for a homomorphism
from Mod(Σg,1) to PGLC(Vg). This will extend the Z[Hg]-linear representation of MH

n,g defined in Proposition 2.21
to a C-linear projective one of Mod(Σg,1).

When n = 1, let us consider the matrices A(1)
1 , B

(1)
1 ∈Mr×r(Z[ζ]) defined as

A
(1)
1 :=


1 0 · · · 0

0 ζ4 . . .
...

...
. . . . . . 0

0 · · · 0 ζ4(r−1)

 , B
(1)
1 :=



0 0 · · · 0 1

1 0
. . . 0

0
. . . . . . . . .

...
...

. . . . . . 0 0
0 · · · 0 1 0


. (10)

When n > 1, notice that

Mrn×rn(Z[ζ]) ∼= Mr×r(Mrn−1×rn−1(Z[ζ])) ∼= Mrn−1×rn−1(Z[ζ])⊗Mr×r(Z[ζ]).

Then, let us consider the matrices A(n)
1 , B

(n)
1 , . . . , A

(n)
n , B

(n)
n ∈Mrn×rn(Z[ζ]) defined, for all 1 6 j 6 n− 1, as

A
(n)
j :=


A

(n−1)
j 0 · · · 0

0 A
(n−1)
j

. . .
...

...
. . . . . . 0

0 · · · 0 A
(n−1)
j

 , B
(n)
j :=


B

(n−1)
j 0 · · · 0

0 B
(n−1)
j

. . .
...

...
. . . . . . 0

0 · · · 0 B
(n−1)
j

 , (11)

A(n)
n :=


Irn−1 0 · · · 0

0 ζ4Irn−1

. . .
...

...
. . . . . . 0

0 · · · 0 ζ4(r−1)Irn−1

 , B(n)
n :=



0 0 · · · 0 Irn−1

Irn−1 0
. . . 0

0
. . . . . . . . .

...
...

. . . . . . 0 0
0 · · · 0 Irn−1 0


. (12)

In other words, we are setting

A
(n)
j := A

(n−1)
j ⊗ Ir, B

(n)
j := B

(n−1)
j ⊗ Ir, A(n)

n := Irn−1 ⊗A(1)
1 , B(n)

n := Irn−1 ⊗B(1)
1 .

Let us abuse notation from now on, and denote A(n)
j and B(n)

j simply by Aj and Bj respectively, for every n > 1.

Lemma 2.23. The family of matrices A1, B1, . . . , An, Bn ∈Mrn×rn(Z[ζ]) defined by Equations (10)–(12) satisfies
the following list of properties:

(i) They either commute or ζ4-commute, more precisely:

AjAk = AkAj , AjBk = ζ4δj,kBkAj , BjBk = BkBj ; (13)

(ii) They have order r:

Ar1 = Br1 = . . . = Arn = Brn = Irn ∈ GLrn(Z[ζ]); (14)

(iii) Their centralizer in GLrn(Z[ζ]) is the subgroup of invertible scalar matrices:

CGLrn (Z[ζ]) (A1, B1, . . . , An, Bn) = (Z[ζ])×. (15)
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Proof. The claim is easily established by induction on n > 1.
When n = 1, Equation (13) follows from an easy computation. Equation (14) is clear. To check Equation (15),

remark that any matrix commuting with A1 has to be diagonal, and that any diagonal matrix commuting with B1

has to have a single eigenvalue.
When n > 1, Equations (13)–(15) are an immediate consequence of the induction hypothesis. �

Now, thanks to Lemma 2.23, we can endow the C-vector space Vg := Crg with a left Z[πn,g]-module structure
determined by the C-linear representation

ϕVn,g : Z[πn,g]→ EndC(Vg) (16)

σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi 7→ −ζ−2Irg

αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj 7→ Aj

βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj 7→ Bj

This should be compared with [GH14, Theorem 2.6]. Notice that, in order to infer that ϕVn,g is well-defined, we
only need Equations (13) and (14). Equation (15), which states that Vg is a simple Z[πn,g]-module, will only be
crucial later, in order to define a projective representation of Mod(Σg,1) on the Borel–Moore homology of Xn,g

with local coefficients in Vg, using Proposition A.6.

Lemma 2.24. For all integers 1 6 j 6 g and 1 6 k 6 g − 1 we have

ϕVn,g(α̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃j) = ζ4Aj , ϕVn,g(γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk) = ζ−4A−1
k Ak+1, ϕVn,g(δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj) = ζ−4(j−1)Aj , (17)

where α̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃jα̃j, γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk, and δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj are defined in Equation (2).

The proof is a direct computation based on Equations (2) and (13), which is left to the reader.
Let us now consider the free group

Fg := 〈ταj , τβj , τγk | 1 6 j 6 g, 1 6 k 6 g − 1〉, (18)

and the homomorphism

ψVg : Fg → GLC(Vg) (19)

ταj 7→
r−1∑
`=0

ζ−2`(`−1)A`j ,

τβj 7→
r−1∑
`=0

ζ−2(`+1)`B`j ,

τγk 7→
r−1∑
`=0

ζ−2(`+1)`A−`k A`k+1,

where A1, B1, . . . , Ag, Bg ∈ GLrg (Z[ζ]) are defined in Equations (10)–(12). Notice that we are not claiming that

{ταj , τβj , τγk | 1 6 j 6 g, 1 6 k 6 g − 1}
generates a free subgroup of Mod(Σg,1), because it does not. We are merely considering the free group of formal
words in these Dehn twists, and instead of introducing new symbols for the corresponding free generators, we abuse
notation a little.

Remark 2.25. We point out that

ψVg (ταj )
−1 =

1

r

r−1∑
`=0

ζ2(`+1)`A`j , ψVg (τβj )
−1 =

1

r

r−1∑
`=0

ζ2`(`−1)B`j , ψVg (τγk)−1 =
1

r

r−1∑
`=0

ζ2`(`−1)A−`k A`k+1, (20)

so that in fact the image of ψVg is actually contained in GLrg (Z[ζ, 1
r ]).
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Proposition 2.26. The homomorphisms ϕVn,g : Z[πn,g] → EndC(Vg) and ψVg : Fg → GLC(Vg), defined in Equa-
tions (16) and (19) respectively, satisfy, for all f ∈ Fg and γ ∈ πn,g, the identity

ψVg (f) ◦ ϕVn,g(γ) = ϕVn,g((f
×n)∗(γ)) ◦ ψVg (f) (21)

Proof. It is sufficient to establish Equation (21) for a fixed pair of sets of generators of Fg and of πn,g. Then,
thanks to Remark 2.1, it is sufficient to check it for all

f ∈ {ταj , τβj , τγk | 1 6 j 6 g, 1 6 k 6 g − 1}
and all

γ ∈ {σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi, βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj | 1 6 i 6 n, 1 6 j 6 g}.
First of all, (τ×nαj )∗(βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj) = αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj ∗ βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj , since it is given by

Next, (τ×nβj )∗(δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj) = β−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
jβ
−1
j ∗ δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj , since it is given by

Furthermore, (τ×nγk )∗(βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk) = βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk ∗ γ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
kγ
−1
k and (τ×nγk )∗(βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1) = γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk ∗ βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1, since they are given by

respectively. Clearly, in all other cases, (f×n)∗(γ) is simply given by γ.
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Therefore, the claim is a direct consequence of Equations (13). Indeed, we have

ϕVn,g((τ
×n
αj )∗(βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj))ψ

V
g (ταj ) = ϕVn,g(αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj)ϕ

V
n,g(βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj)ψ

V
g (ταj ) = AjBj

(
r−1∑
`=0

ζ−2`(`−1)A`j

)

=

(
r−1∑
`=0

ζ−2`(`−1)−4`A`+1
j

)
Bj =

(
r−1∑
`=0

ζ−2(`+1)`A`+1
j

)
Bj

=

(
r−1∑
m=0

ζ−2m(m−1)Amj

)
Bj = ψVg (ταj )ϕ

V
n,g(βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj).

Next, we have

ϕVn,g((τ
×n
βj

)∗(δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj))ψ
V
g (τβj ) = ϕVn,g(βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj)

−1ϕVn,g(δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj)ψ
V
g (τβj ) = ζ−4(j−1)B−1

j Aj

(
r−1∑
`=0

ζ−2(`+1)`B`j

)

= ζ−4(j−1)

(
r−1∑
`=0

ζ−2(`+1)`+4`B`−1
j

)
Aj = ζ−4(j−1)

(
r−1∑
`=0

ζ−2`(`−1)B`−1
j

)
Aj

= ζ−4(j−1)

(
r−1∑
m=0

ζ−2(m+1)mBmj

)
Aj = ψVg (τβj )ϕ

V
n,g(δjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδjδj).

Similarly, we have

ϕVn,g((τ
×n
γk

)∗(βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk))ψVg (τγk) = ϕVn,g(βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk)ϕVn,g(γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk)−1ψVg (τγk) = ζ4BkAkA
−1
k+1

(
r−1∑
`=0

ζ−2(`+1)`A−`k A`k+1

)

=

(
r−1∑
`=0

ζ−2(`+1)`+4`A−`+1
k A`−1

k+1

)
Bk =

(
r−1∑
`=0

ζ−2`(`−1)A−`+1
k A`−1

k+1

)
Bk

=

(
r−1∑
m=0

ζ−2(m+1)mA−mk Amk+1

)
Bk = ψVg (τγk)ϕVn,g(βkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβkβk).

Finally, we have

ϕVn,g((τ
×n
γk

)∗(βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1))ψVg (τγk) = ϕVn,g(γkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγkγk)ϕVn,g(βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1)ψVg (τγk) = ζ−4A−1
k Ak+1Bk+1

(
r−1∑
`=0

ζ−4(`+1)`A−`k A`k+1

)

=

(
r−1∑
`=0

ζ−2(`+1)`−4(`+1)A−`−1
k A`+1

k+1

)
Bk+1 =

(
r−1∑
`=0

ζ−2(`+2)(`+1)A−`−1
k A`+1

k+1

)
Bk+1

=

(
r−1∑
m=0

ζ−2(m+1)mA−mk Amk+1

)
Bk+1 = ψVg (τγk)ϕVn,g(βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1βk+1). �

Corollary 2.27. There exists a homomorphism ψ̄Vg : Mod(Σg,1) → PGLC(Vg) that fits into the commutative
diagram

Fg GLC(Vg)

Mod(Σg,1) PGLC(Vg)

ψ
V
g

ψ̄
V
g

Proof. If f ∈ Fg satisfies [f ] = [id] ∈ Mod(Σg,1), then Equation (21) implies

ψVg (f) ◦ ϕVn,g(γ) = ϕVn,g((f
×n)∗(γ)) ◦ ψVg (f) = ϕVn,g(γ) ◦ ψVg (f)



28 M. DE RENZI AND J. MARTEL

for every γ ∈ πn,g, which means

ψVg (f) ∈ CGLrn (Z[ζ]) (A1, B1, . . . , An, Bn) = (Z[ζ])×

thanks to Equation (15). �

Definition 2.28. For every integer n > 1, the nth modular Heisenberg homology group of Σg,1 is the C-vector
space

HV
n,g := HBM

n (Xn,g, Yn,g;ϕ
V
n,g),

where ϕVn,g is defined in Equation (16). For n = 0, we set

HV
0,g := Vg.

The total modular Heisenberg homology group of Σg,1 is the direct sum

HV
g :=

⊕
n>0

HV
n,g.

Remark 2.29. A basis of HV
n,g is given by{
Γ̃ (a, b)⊗ vc

∣∣∣ a, b ∈ N×g, |a+ b| = n, c ∈ (Z/rZ)×g
}
,

where {vc | c ∈ (Z/rZ)×g} is the canonical basis of Vg = Crg in which matrices of Lemma 2.23 were written,
meaning we have

Ajvc = ζ4cjvc, Bjvc = vc+ej

for every integer 1 6 j 6 g, where we recall that ej denotes the column vector of size g whose kth entry is δj,k.

The next statement should be compared with [BPS21, Theorems 62 & 70], where an implicit version of the
homomorphism ψ̄Vg : Mod(Σg,1)→ PGLC(Vg) is used for even roots of unity (and lifted to a linear representation
of the stably universal central extension of Mod(Σg,1)).

Theorem 2.30. There exists a projective action of Mod(Σg,1) on the nth modular Heisenberg homology HV
n,g of

Definition 2.28 determined by the commutative diagram

Fg GLC(HV
n,g)

Mod(Σg,1) PGLC(HV
n,g)

ρ
V
n,g

ρ̄
V
n,g

where
ρVn,g(f)(σ̃ ⊗ v) = (f̃×n)∗(σ̃)⊗ ψVg (f)(v)

for all diffeomorphisms f ∈ Fg, homology classes σ̃ ∈ HBM
n (Xn,g, Yn,g;ϕ

π
n,g), and coefficients v ∈ Vg. Furthermore,

the direct sum, for n > 0, of these representations defines a projective action

ρ̄Vg : Mod(Σg,1)→ PGLUζ (H
V
g )

of Mod(Σg,1) on the total modular Heisenberg homology HV
g by invertible Uζ-module endomorphisms, considered

up to non-zero scalars.

Proof. The first claim follows directly from Proposition A.6, by considering the homomorphism

χn,g : Fg → Mod(Xn,g).

f 7→ f×n

Notice that Mod(Σg,1) ∼= Fg/ kerχn,g, and that Equations (33) and (34) are satisfied thanks to Proposition 2.26
and to Lemma 2.23.(iii) respectively. �
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2.4.3. Finite-dimensional mapping class group representations. We say an embedded twisted cycle (m,Γ ,k, x̃) of
dimension n in Σg,1 is small if the m-partition k = (k1, . . . , km) of n satisfies 0 6 ki 6 r − 1 for all integers
1 6 i 6 m.

Definition 2.31. The small Heisenberg homology of Σg,1 is the C-vector spaceHV (r)
g ⊂HV

g spanned by homology
classes of small embedded twisted cycles.

Theorem 2.32. H
V (r)
g is a Ūζ-submodule of HV

g with basis{
Γ̃ (a, b)⊗ vc

∣∣∣ a, b ∈ {0, 1, . . . , r − 1}×g, c ∈ (Z/rZ)×g
}
,

and the projective representation ρ̄Vg : Mod(Σg,1)→ PGLUζ (H
V
g ) of Theorem 2.30 restricts to a projective action

ρ̄V (r)
g : Mod(Σg,1)→ PGLŪζ (H

V (r)
g ),

of Mod(Σg,1) on the small Heisenberg homology H
V (r)
g by invertible Ūζ-module endomorphisms, considered up to

non-zero scalars.

Proof. First of all, notice that H
V (r)
g is clearly invariant for the operators E, F(1), and K. Indeed, E can only

decrease labels of small multisimplices, while F(1) always adds a component of label 1 to every small labeled
multisimplex, and K acts diagonally. In particular, all of them preserve the property of being small.

For what concerns the basis, notice that the proposed set is clearly contained in H
V (r)
g , and it is free thanks to

Remark 2.29. To see that it generates HV (r)
g , notice that the (image of the) multisimplex underlying all homology

classes in this free set is a deformation retract of Σg,1. This means we can reduce every small embedded twisted
cycle to a linear combination of homology classes of this form using the rules of Proposition 2.13. In particular,
thanks to the fusion rule, every label exceeding r − 1 comes with a vanishing binomial coefficient in front.

Finally, all diffeomorphisms clearly preserve the property of being small too. �

The C-vector space H
V (r)
g is thus endowed with commuting actions of uζ and of Mod(Σg,1). The main goal of

this paper is to identify these module structures respectively with the gth tensor power of the adjoint representation
of uζ and with a projective representation of Mod(Σg,1) first introduced by Lyubashenko in [Ly94], which can be
recovered from the non-semisimple TQFT constructed from uζ in [DGP17, DGGPR19], as shown in [DGGPR20].

In a future work, we will investigate these intertwined actions at the higher level of HH
g , since Uq-modules with

Z[Hg]-coefficients seem to be interesting and new in the literature.

Remark 2.33. The reader should notice that the fact that the actions of the mapping class group and of the
quantum group commute is a straightforward consequence of the purely homological definition of the operators E,
F(k), and K. This gives a new simple and conceptual proof of this important property which, on the quantum side,
follows from the transmutation procedure introduced by Majid [Ma91]. On the other hand, we will see later that
Er acts by 0. This behavior is not apparent yet on the homological side, and should be established by computation,
while it will be a direct consequence of the algebraic definition of the small quantum group uζ of Section 4.3, on
the quantum side.

In order to find a more intrinsic characterization of the small Heisenberg homology H
V (r)
g ⊂ HV

g of Defini-
tion 2.31, we might want to focus on the standard version of homology, rather than the Borel–Moore one. The
main difficulty is that we cannot apply the proof of Proposition 2.9, which provides bases that persist under all
choices of twisted coefficients. Nevertheless, let us set

HH,†
n,g := Hn(Xn,g, Yn,g;ϕ

H
n,g), HH,†

g :=
⊕
n∈N

HH,†
n,g ,

and similarly

HV,†
n,g := Hn(Xn,g, Yn,g;ϕ

V
n,g), HV,†

g :=
⊕
n∈N

HV,†
n,g ,
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There exist natural maps

ιHg : HH,†
g →HH

g , ιVg : HV,†
g →HV

g

induced by inclusions of chain complexes, since standard chains are also Borel–Moore chains. We conjecture the
following characterization of HV (r)

g .

Conjecture 2.34. H
V (r)
g = ιVg

(
HV,†
g

)
.

Let us explain where this expectation comes from, by first introducing special embedded twisted cycles repre-
sented by

ιHg

(
Γ̃ †(a, b)

)
:=

for every 2g-partition (a, b) of n. Notice that the only difference between these diagrams and the ones appearing
in Equation (8) is that, here, blue and green curves are solid, instead of being dashed-dotted. We adopt the
convention that a solid curve labeled by an integer k should represent k parallel copies, in the surface Σg,1, of the
solid curve. Therefore, these diagrams represent closed hypercubes embedded into Xn,g, with faces embedded into
Yn,g. In particular, they also define standard cycles, and we denote by Γ̃ †(a, b)⊗ v the associated vectors in HV,†

g,n

for every vector v ∈ Vg.
Remark 2.35. Whenever aj > r or bj > r for some 1 6 j 6 g, we have

ιVg

(
Γ̃ †(a, b)⊗ vm

)
= ιHg

(
Γ̃ †(a, b)

)
⊗ vm ∝

 g∏
j=1

[aj ]ζ ![bj ]ζ !

 Γ̃ (a, b)⊗ vm = 0,

as a straightforward consequence of the fusion rule in Proposition 2.13.

In [DM], it will be shown that there exists a bilinear form

〈_,_〉Hg : HH
n,g ⊗HH,†

n,g → Z[Hg]
which is left non-degenerate (meaning that the left radical is trivial), as a direct consequence of Proposition 2.9
and of the identity

〈Γ̃ (a, b), Γ̃ †(a′, b′)〉Hg = δ(a,b),(a′,b′),

where δ is the Kronecker symbol for 2g-partitions of n. Since the cycles Γ̃ (a, b) form a Z[Hg]-basis of HH
g , the

family
{Γ̃ †(a, b) | a, b ∈ N×g, |a+ b| = n}

yields a free Z[Hg]-submodule of HH,†
n,g . It is not clear that this should coincide with the whole HH,†

n,g . Nevertheless,
if we set

HV (r),†
g := 〈Γ̃ †(a, b)⊗ vm|a, b,m ∈ N×g〉C ⊂HH,†

g ,

then Remark 2.35 immediately yields to following result.

Proposition 2.36. The small Heisenberg homology satisfies

HV (r)
g = ιVg

(
HV (r),†
g

)
.

This provides the first part of the answer to Conjecture 2.34. This characterization of HV (r)
g (as the image of

a subspace of the standard homology) is still artificial, but if one could show that H
V (r),†
g actually spans HV,†

g ,
Conjecture 2.34 would find a positive answer. A possibility would be to show that twisted Borel–Moore and
standard homologies are generically isomorphic for configuration spaces of surfaces, with a notion of genericity
that would have to be suitably characterized. For punctured discs, this is indeed the case, see [Ko86].
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3. Computation of homological actions

In this section, we compute the homological action of (some of) the generators of Uq and of Mod(Σg,1) on HH
n,g

and on HV
g , respectively. Both these actions were defined in Section 2, in Theorems 2.20 and 2.30, respectively. We

compute them in the homological bases provided by Corollary 2.12 and by Remark 2.29, respectively. These are
defined by diagrams representing embedded twisted cycles, that were introduced in Definition 2.6. The formulas
we obtain here will be later used to identify these homological representations with quantum ones, that will be
recalled in Section 4, and explicitly computed in Section 5. We will focus on the action of Uq in Section 3.1, and
on the one of Mod(Σg,1) in Section 3.2. Many of these formulas involve quantum multinomials, which are defined,
for all positive integers k > 0 and `1, . . . , `j > 0 satisfying `1 + . . .+ `j 6 k, as[

k
`1, . . . , `j

]
q

:=
[k]q!

[`1]q! · · · [`j ]q![k − `1 − . . .− `j ]q!
.

3.1. Homological action of quantum sl2. Let us consider the linear map

F̃(k) : HH
n,1 →HH

n+k,1

sending every basis vector Γ̃ (a, b) with a+ b = n to

Lemma 3.1. For all integers a, b, k > 0 we have

F̃(k)(Γ̃ (a, b)) = q−(k+3)k−(2a+b)k
k∑
j=0

k−j∑
i=0

(−1)jΓ̃ (a+ i, b+ k − i)

⊗
[
a+ i
a

]
q

[
b+ k − i
b, j

]
q

qij+(a+b)i+(2b+k+3)jβiαj . (22)

Proof. Using Proposition 2.13 and Remark B.1, we obtain

F̃(k)(Γ̃ (a, b)) =
(C)
=

k∑
j=0

(C)
=

k∑
j=0

k−j∑
i=0

=

k∑
j=0

k−j∑
i=0
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(H)
(B)
=

k∑
j=0

k−j∑
i=0

⊗ q−i(i−1)−(k−j−i)(k−j−i−1)[β−1, α−1]k−j−i(α−1βα)iαj

(P)
= q−k(k−1)

k∑
j=0

k−j∑
i=0

⊗ q−2i2−(j+1)j−2ij+2(i+j)k−2(k−j−i)(a+b+i+j)−2a(i+j)−4(k−j−i)−4iβiαj

= q−(k+3)k−2(a+b)k
k∑
j=0

k−j∑
i=0

(−1)jΓ̃ (a+ i, b+ k − i)

⊗
[
a+ i
a

]
q

[
b+ k − i
b, j

]
q

qai+bj+(b+j)(k−j−i)+(j+3)j+2ij+2b(i+j)βiαj . �

For every vector a = (a1, . . . , ag) with integer coordinates a1, . . . , ag > 0 and every integer 1 6 j 6 g let us set

|a| :=
g∑
k=1

ak, |a|<j :=

j−1∑
k=1

ak, |a|>j :=

g∑
k=j+1

ak.

Lemma 3.2. For all vectors a = (a1, . . . , ag), b = (b1, . . . , bg) with integer coordinates a1, . . . , ag, b1, . . . , bg > 0
we have

E(Γ̃ (a, b)) =

g∑
j=1

Γ̃ (a− ej , b)⊗
(
q2bj − q−2(aj−bj−1)αj

)
q2|a+b|>j

+ Γ̃ (a, b− ej)⊗
(

1− q2(bj−1)βj

)
q2|a+b|>j ,

F(1)(Γ̃ (a, b)) =

g∑
j=1

Γ̃ (a+ ej , b)⊗ [aj + 1]q
(
−qaj + q−aj−4βj

)
q−2|a+b|<j+2(g−2(j−1))

+ Γ̃ (a, b+ ej)⊗ [bj + 1]q
(
q−2aj−bj−4 − q−2aj+bjαj

)
q−2|a+b|<j+2(g−2(j−1)),

K(Γ̃ (a, b)) = Γ̃ (a, b)⊗ q−2|a+b|−2g.
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Proof. First of all, using Proposition 2.13, we obtain

(P)
= ⊗ q2bj+2|a+b|>j

Furthermore, we obtain

=
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(B)
=

⊗ αj

(P)
= ⊗ q−2(aj−bj−1)+2|a+b|>jαj

Similarly, we obtain

(P)
= ⊗ q2|a+b|>j
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Finally, we obtain

=

(B)
=

⊗ βj

(P)
= ⊗ q2(bj−1)+2|a+b|>jβj
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Therefore, Definition 2.14 gives

E(Γ̃ (a, b)) =

g∑
j=1

Γ̃ (a− ej , b)⊗
(
q2bj − q−2(aj−bj−1)αj

)
q2|a+b|>j

+ Γ̃ (a, b− ej)⊗
(

1− q2(bj−1)βj

)
q2|a+b|>j .

Next, if we define F
(1)
j (Γ̃ (a, b)) to be

then, using Proposition 2.13 and Lemma 3.1, we obtain

F
(1)
j (Γ̃ (a, b))

(B)
= ⊗

j−1∏
k=1

[β−1
k , α−1

k ]

(P)
= ⊗ q−2|a+b|<j−4(j−1)
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(C)
= ⊗ q−2|a+b|<j−4(j−1)

+ ⊗ q−2|a+b|<j−4(j−1)

(O)
(F)
(22)
= − Γ̃ (a+ ej , b)⊗ [aj + 1]qq

aj−2|a+b|<j−4(j−1) + Γ̃ (a+ ej , b)⊗ [aj + 1]qq
−aj−4−2|a+b|<j−4(j−1)βj

+ Γ̃ (a, b+ ej)⊗ [bj + 1]q
(
q−2aj−bj−4 − q−2aj+bjαj

)
q−2|a+b|<j−4(j−1).

Therefore, Definition 2.15 gives

F(1)(Γ̃ (a, b))
(C)
=

g∑
j=1

Γ̃ (a+ ej , b)⊗ [aj + 1]q
(
−qaj + q−aj−4βj

)
q−2|a+b|<j+2(g−2(j−1))

+ Γ̃ (a, b+ ej)⊗ [bj + 1]q
(
q−2aj−bj−4 − q−2aj+bjαj

)
q−2|a+b|<j+2(g−2(j−1)).

Finally, the last equality follows directly from Definition 2.16. �

3.2. Homological action of mapping class groups. Let us compute now the projective action of Dehn twists
on the total modular Heisenberg homology groupHV

g . Notice that the projective representation ρ̄Vg : Mod(Σg,1)→
PGLUζ (H

V
g ) of Theorem 2.30 is highly local in nature. In other words, the fact that the support of ταj and τβj is

contained in the jth summand Σ1,1 inside Σg,1 ∼= Σ\ g
1,1 is mirrored from the fact that ψVg (ταj ) and ψVg (τβj ) only

act on the jth factor of Vn,g = (Cr)⊗g, and similarly for τγk . In other words, it is enough to compute the projective
action of τα = τα1

and τβ = τβ1
on HV

1 , together with the one of τγ = τγ1 on HV
2 . Let us start from the genus 1

surface.

Lemma 3.3. For all integers 0 6 a, b, c 6 r − 1 we have

ρV1 (τα)
(
Γ̃ (a, b)⊗ vc

)
∝ ζ2(c+1)c

b∑
i=0

Γ̃ (a+ i, b− i)⊗
[
a+ i
a

]
ζ

ζaivc+i.
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Proof. Using Proposition 2.13 and Remark B.1, we obtain

ρV1 (τα)
(
Γ̃ (a, b)⊗ vc

)
= ⊗ ψVg (τα)vc

(C̃)
=

b∑
i=0

⊗

(
r−1∑
`=0

ζ−2`(`−1)A`

)
vc

(B)
=

b∑
i=0

⊗

(
r−1∑
`=0

ζ−2`(`−1)+4c`

)
Bivc

(F)
= i

r−1
2
√
rζ2(c+1)c+ r+1

2

b∑
i=0

Γ̃ (a+ i, b− i)⊗
[
a+ i
a

]
ζ

ζaivc+i,

where the last equality uses the identity
r−1∑
`=0

ζ−2`(`−1)+4c` = i
r−1
2
√
rζ2(c+1)c+ r+1

2 ,

see for instance [BD21, Equation (B.18)]. �

Lemma 3.4. For all integers 0 6 a, b, c 6 r − 1 we have

ρV1 (τβ)
(
Γ̃ (a, b)⊗ vc

)
∝

a∑
i=0

r−1∑
j=0

(−1)iΓ̃ (a− i, b+ i)⊗
[
b+ i
b

]
ζ

ζ(i+1)i−2(j+1)j−(2a−b−4c)ivc+j .

Proof. Using Proposition 2.13 and Remark B.1, we obtain

ρV1 (τβ)
(
Γ̃ (a, b)⊗ vc

)
= ⊗ ψVg (τβ)vc
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(C̃)
=

a∑
i=0

⊗

(
r−1∑
`=0

ζ−2(`+1)`B`

)
vc

=

a∑
i=0

r−1∑
`=0

⊗ ζ−2(`+1)`vc+`

(H)
(B)
=

a∑
i=0

r−1∑
`=0

⊗ ζ−2(`+1)`−i(i−1)(B−1A)ivc+`

(P)
=

a∑
i=0

r−1∑
`=0

⊗ ζ−2(`+1)`−3i(i−1)−2i(a−i)B−iAivc+`

(O)
(F)
=

a∑
i=0

r−1∑
`=0

(−1)iΓ̃ (a− i, b+ i)⊗
[
b+ i
b

]
ζ

ζbi−2(`+1)`−i(i−3)−2ai+4i(c+`)vc−i+`

=

a∑
i=0

r−1∑
j=0

(−1)iΓ̃ (a− i, b+ i)⊗
[
b+ i
b

]
ζ

ζbi−2(i+j+1)(i+j)−i(i−3)−2(a−2c)i+4i(i+j)vc+j ,

where the last equality follows from the change of variable ` = i+ j. �

Let us move on to the genus 2 surface.

Lemma 3.5. For all integers 0 6 a1, b1, c1, a2, b2, c2 6 r − 1 we have we have

ρV2 (τγ)
(
Γ̃ (a1, b1; a2, b2)⊗ v(c1,c2)

)
∝ ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
j1=0

k1−j1+`∑
i1=0

(−1)j1+`+i2+k2

Γ̃ (a1 + i1, b1 − i1 + `; a2 − `+ j2, b2 − j2)⊗
[
a1 + i1
a1

]
ζ

[
b1 − i1 + `
b1 − k1, j1

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
k1 + i2 + j2
k1, j2, k2

]
ζ

ζk1(k1−2)+(`+1)`+i1j1−i1k1−j1k1+j1`−k1`+k1i2+k1j2−`i2−2`j2+i2k2+2j2k2

ζ(a1+b1)i1+(2b1+4c1+3)j1−(3b1+4c1)k1+(b1−a2)`−(4b1+4c1+a2+3)i2−(4b1+4c1+a2+4)j2−(2a2−4c2−1)k2v(c1+i1,c2+j2).

Due to the technical nature of this computation, we postpone a detailed proof to Appendix E.1.
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4. Quantum representations of mapping class groups

A Hopf algebra over a field k is a k-vector space H equipped with a family of k-linear maps composed of a unit
η : k → H, a product µ : H ⊗ H → H, a counit ε : H → k, a coproduct ∆ : H → H ⊗ H, and an antipode
S : H → H. These structure morphisms are subject to a well-known list of axioms, that the reader can find in
[Ka95, Definitions III.1.1, III.2.2, & III.3.2]. For all elements x, y ∈ H, we will use the short notation µ(x⊗y) = xy
(for the product), η(1) = 1 (for the unit), and ∆(x) = x(1) ⊗ x(2) (for the coproduct, which hides a sum).

In Section 4.1, we will recall the algebraic setup required for the definition of quantum representations of mapping
class groups based on Hopf algebras. Then, in Section 4.2, we will recall how to represent diagrammatically
connected cobordisms, and how to compute their image under a TQFT by means of a diagrammatic calculus
that is very different from the one introduced in Section 2.2 (which is more homological, and less algebraic). In
particular, we will provide, in Proposition 4.2, explicit formulas for the action of generators of mapping class groups
in Hopf algebraic terms. Finally, in Section 4.3, we will discuss the example of the small quantum group of sl2,
which is the one we will relate to homology later on.

4.1. Factorizable ribbon Hopf algebras. In this section, we recall the main pieces of structure and properties
of Hopf algebras required for the construction of quantum representations of mapping class groups.

4.1.1. Ribbon structures and factorizability. A ribbon structure on H is given by an R-matrix R = R′i⊗R′′i ∈ H⊗H
(which hides a sum) and by a ribbon element v ∈ H, see [Ka95, Definitions VIII.2.2. & XIV.6.1]. We denote with
u ∈ H the Drinfeld element and with M ∈ H⊗H the M-matrix associated with the R-matrix R, which are defined
by u = S(R′′i )R′i and by M = R′′jR

′
i ⊗ R′jR′′i respectively (with sums hidden in both notations). We also denote

with g ∈ H the unique pivotal element compatible with v, which is given by g = uv−1.
A left integral λ ∈ H∗ of H is a linear form on H satisfying λ(x(2))x(1) = λ(x)1 for every x ∈ H, and a left

cointegral Λ ∈ H of H is an element of H satisfying xΛ = ε(x)Λ for every x ∈ H, see [Ra12, Definition 10.1.1 &
10.1.2]. Recall that, if H is finite-dimensional, then a left integral and a left cointegral exist, they are unique up
to scalar, and we can lock together their normalizations by requiring

λ(Λ) = 1,

as follows from [Ra12, Theorem 10.2.2]. Now, recall that a finite-dimensional Hopf algebra H is unimodular if
S(Λ) = Λ, compare with [Ra12, Definition 10.2.3]. If H is unimodular, [Ra12, Theorem 10.5.4.(e)] implies that the
left integral λ satisfies

λ(xy) = λ(yS2(x)) (23)
for all x, y ∈ H, see also [EGNO15, Theorem 7.18.12].

The Drinfeld mapD : H∗ → H of a ribbon Hopf algebraH is the linear map determined byD(f) := (f⊗idH)(M)
for every f ∈ H∗, where M is the M-matrix of H. By definition, H is factorizable if D is a linear isomorphism.
This happens if and only if λ(R′jR

′′
i )R′′jR

′
i is a cointegral, see [Ke96, Theorem 5] and [BD21, Proposition 7.1], and

we fix the normalization of both λ and Λ by asking that

λ(R′jR
′′
i )R′′jR

′
i = Λ.

4.1.2. Adjoint representations. Let us denote by H-mod the category of finite-dimensional left H-modules. If H
is finite-dimensional, then its adjoint representation ad ∈ H-mod is given by the k-vector space H itself, equipped
with the adjoint action

x . y = x(1)yS(x(2))

for all x ∈ H and y ∈ ad. This H-module coincides with the end

ad =

∫
X∈H-mod

X ⊗X∗,

which is defined as the universal dinatural transformation with target

(_⊗_∗) : H-mod×(H-mod)op → H-mod

(X,Y ) 7→ X ⊗ Y ∗,



HOMOLOGICAL CONSTRUCTION OF QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 41

see [Ma71, Section IX.5] for a definition. Roughly speaking, ad can be equipped with a dinatural family of
intertwiners

jX : ad→ X ⊗X∗

x 7→
n∑
a=1

(x · va)⊗ fa

for every H-module X, where {va ∈ X|1 6 a 6 n} and {fa ∈ X∗|1 6 a 6 n} are dual bases for X and X∗

respectively. Dinaturality means that (f ⊗ idX∗) ◦ jX = (idY ⊗ f∗) ◦ jY for every intertwiner f : X → Y , and
these structure morphisms make ad into the initial object of the category of dinatural transformations with target
(_⊗_∗), see for instance [BD20, Proposition A.2].

4.2. Quantum representations of mapping class groups. In this section, we recall the construction of quan-
tum representations of mapping class groups from TQFTs.

4.2.1. Connected cobordism category. For each connected surface Σg,1, we specify a Lagrangian subspace Lg ⊂
H1(Σg,1;R), defined as the subspace generated by {α1, . . . , αg, ∂}, where αj denotes the homology class of the
corresponding simple closed curve in Σg,1 for every integer 1 6 j 6 g, following the notation of Section 2.4, and ∂
denotes the homology class of the boundary of Σg,1.

The category 3Cob\ of connected framed cobordisms between connected surfaces is defined as follows:
� Objects of 3Cob\ are connected surfaces Σg,1 with one boundary component.
� Morphisms of 3Cob\ from Σg,1 to Σg′,1 are pairs (M,n), where M is the diffeomorphism class of a

connected 3-dimensional cobordism M from Σg,1 to Σg′,1, and n ∈ Z is an integer, called the signature
defect.

� The composition
(M ′, n′) ◦ (M,n) ∈ 3Cob\(Σg,1, Σg′′,1)

of morphisms (M,n) ∈ 3Cob\(Σg,1, Σg′,1), (M ′, n′) ∈ 3Cob\(Σg′,1, Σg′′,1) is given by

(M ∪Σg′,1 M
′, n+ n′ − µ(M∗(Lg),Lg′ , (M

′)∗(Lg′′))),

where M∗(Lg) and (M ′)∗(Lg′′) are Lagrangian subspaces of H1(Σg′,1;R) obtained by pushing forward
Lg through M and by pulling back Lg′′ through M ′, respectively, and where µ is the Maslov index, see
[BD21, Section 2.2] for more details.

4.2.2. Top tangles in handlebodies. Let us recall Habiro’s graphical notation for connected framed cobordisms
between connected surfaces, which we adapt from [Ha05, Section 14.4]. For every g ∈ N, we consider a connected
3-dimensional handlebody Hg ⊂ R3 of genus g, obtained by attaching g copies of the 3-dimensional 1-handle
D1×D2 to the bottom face [0, 1]×2×{0} of the cube [0, 1]×3. We represent graphically Hg through the projection
to R× {0} × R as

Notice that Habiro reads cobordisms from top to bottom, while we read them from bottom to top. For all g, g′ ∈ N,
a top (g, g′)-tangle T , sometimes simply called a top tangle, is an unoriented framed tangle inside the connected
3-dimensional handlebody Hg. Its set of boundary points is composed of 2g′ points uniformly distributed on the
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top line [0, 1] × { 1
2} × {1} ⊂ Hg. For every 1 6 j 6 g, a component of T joins the (2j)th and the (2j − 1)th

boundary points. Here is an example of a top (2, 3)-tangle, together with its projection:

Every top (g, g′)-tangle T represents a connected framed cobordism (M(T ), n(T )) from the surface Σg,1 to the
surface Σg′,1. The cobordism M(T ) is obtained from Hg by carving out an open tubular neighborhood N(T̃ ) in
Hg of the subtangle T̃ of T composed of all its arc components, and by performing 2-surgery along the framed
link T r T̃ composed of all its circle components, as prescribed by the framing. The signature defect n(T ) is the
signature of the linking matrix of the framed link T r T̃ ⊂ Hg ⊂ R3. Therefore, top tangles in handlebodies can
be considered up to framed Kirby moves of the following type:

! (K1′)

! (K2)

! (K3)

Move (K1′) is performed inside a ball D3 embedded into Hg, while the remaining ones are performed inside a solid
torus S1 ×D2 embedded into Hg. Notice that move (K1′) is a framed version of the first Kirby move, which we
need to restrict to if we want to take signature defects into account (just like we need to restrict to the framed
version of the first Reidemeister move, when we want to keep track of framings of tangles).

The composition of a top (g, g′)-tangle T with a top (g′, g′′)-tangle T ′ is the top (g, g′′)-tangle T ′ ◦T obtained by
considering an open tubular neighborhood N(T̃ ) in Hg of the subtangle T̃ of T composed of all its arc components,
by gluing vertically the complement Hg r N(T̃ ) to Hg′ , identifying the top base of Hg r N(T̃ ) with the bottom
base of Hg′ as prescribed by the top tangle T̃ , and then by shrinking the result into Hg. Here is an example of the
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composition of a top (2, 1)-tangle with a top (1, 2)-tangle:

Similarly, the tensor product of a top (g, g′′)-tangle T and a top (g′, g′′′)-tangle T ′ is the top (g+g′, g′′+g′′′)-tangle
T ⊗ T ′ obtained by gluing horizontally Hg to Hg′ , identifying the right face of Hg with the left face of Hg′ as
prescribed by the identity map, and then by shrinking the result into Hg+g′ . We can even define a braiding given
by

cg,g′ :=

Thus, top tangles in handlebodies can be organized as the morphisms of a braided monoidal category that is
equivalent to 3Cob\, see for instance [BD21, Proposition 4.2]. In particular, also 3Cob\ is a braided monoidal
category, whose tensor product is induced by boundary connected sum. It is proved in [BP11, Theorem 5.5.4] that
3Cob\ is in fact the free braided monoidal category generated by a factorizable BPH algebra5, the surface Σ1,1

(although we will not need this result, nor this notion, in the following).

4.2.3. TQFTs and quantum representations. If H admits a ribbon structure, then its adjoint representation can
be given the structure of a braided Hopf algebra in H-mod. This dates back to the work of Majid [Ma91], who
called the result the transmutation of H. When H is also factorizable, then its transmutation is a factorizable BPH
algebra in H-mod, see [BD21, Proposition 7.3]. The following result is essentially a consequence of the construction
of [KL01], compare with [BD21, Theorem 7.4].
Theorem 4.1 (Kerler–Lyubashenko). IfH is a factorizable ribbon Hopf algebra, then there exists a braided monoidal
functor

JH : 3Cob\ → H-mod

sending every surface Σg,1 to the H-module ad⊗g.

As explained in Appendix C, the functor JH : 3Cob\ → H-mod can also be seen as part of the non-semisimple
TQFT constructed in [DGP17, Section 3] and in [DGGPR19, Section 4], see [DGGPR20, Appendix C] for a
discussion of the equivalence between the two different approaches.

5Short for Bobtcheva–Piergallini Hopf algebra, in the terminology of [BD21].
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If f ∈ Mod(Σg,1) is a positive diffeomorphism, then we denote with Σg,1 × [0, 1]f its mapping cylinder, which is
the cobordism obtained from the cylinder Σg,1 × [0, 1] by specifying the identity of Σg,1 as the outgoing boundary
identification, and f as the incoming one. Mapping cylinders behave well under gluing, in the sense that

Σg,1 × [0, 1]f ′ ∪Σg,1 Σg,1 × [0, 1]f ∼= Σg,1 × [0, 1]f ′◦f .

Then, the quantum representation associated with the factorizable ribbon Hopf algebra H and the surface Σg,1 is
the homomorphism

ρ̄Hg : Mod(Σg,1)→ PGLk(ad⊗g) (24)
[f ] 7→ [JH(Σg,1 × [0, 1]f , 0)].

The fact that this representation is only projective, instead of k-linear, follows from the fact that the composition
of two mapping cylinders with zero signature defect needs not have zero signature defect. However, it turns out
that, for every cobordism M , we have

JH(M,n) = λ(v)−nJH(M, 0).

Since the scalar λ(v) ∈ k is always invertible for a factorizable ribbon Hopf algebra H, forgetting about signature
defects yields a homomorphism with target PGLk(ad⊗g). This can be lifted to a linear representation with target
GLk(ad⊗g), but the source needs to be changed to a central extension of Mod(Σg,1) that takes Maslov indices into
account, see for instance [DGGPR20, Appendix A]. Notice however that PGLk(ad⊗g) is a linear group, since its
action by conjugation on GLk(ad⊗g) is faithful. Therefore, faithfulness of ρ̄Hg would still directly imply linearity of
Mod(Σg,1).

4.2.4. Diagrammatic calculus. Let us recall a useful algorithm for the computation of the TQFT functor JH :
3Cob\ → H-mod, that can also be found in [BD21, Section 8.2]. The procedure is based on singular diagrams of
framed tangles, which are obtained from regular diagrams by discarding framings, and forgetting the difference
between overcrossings and undercrossings. On the set of singular diagrams, we consider the equivalence relation
generated by all singular versions of the usual local moves corresponding to ambient isotopies of framed tangles,
except for the first Reidemeister move. In particular, two equivalent singular diagrams represent homotopic tangles,
but not all homotopies are allowed. In order to compute the intertwiner JH(M(T ), n(T )) : ad⊗g → ad⊗g

′
associated

with a top (g, g′)-tangle T , we start by considering a vector

x1 ⊗ . . .⊗ xg ∈ ad⊗g

and a regular diagram of T . First of all, if the number of strands of T running along the jth 1-handle of Hg is kj ,
we insert beads labeled by components of the (kj − 1)th iterated coproduct (xj)(1)⊗ . . .⊗ (xj)(kj) for every integer
1 6 j 6 g, as shown:

When kj = 0, we add a multiplicative factor of ε(xj) in front of T . Next, we pass to the singular version of T ,
while also inserting beads labeled by components of the R-matrix as shown:

7→ 7→
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Then, we attach a complementary 2-handle canceling each 1-handle of Hg, as shown:

7→

Next, we need to collect all beads sitting on the same strand in one place, which has to be next to the leftmost
endpoint, for components which are not closed. As we slide beads past maxima, minima, and crossings, we change
their labels according to the rule

= =

= =

Next, we pass from our singular diagram to an equivalent one whose singular crossings all belong to singular
versions of twist morphisms, and we replace them with beads labeled by pivotal elements according to the rule

= =

This is indeed possible, because we started from a top tangle. Finally, we collect all remaining beads, changing
their labels along the way as before, and we multiply everything together according to the rule

=

In the end, we are left with a planar tangle B(T ) carrying at most a single bead on each of its components. The
intertwiner JH(M(T ), n(T )) : ad⊗g → ad⊗g

′
satisfies

JH(M(T ), n(T ))(x1 ⊗ . . .⊗ xg) =

(
g∏
i=1

λ(yixi)

) k∏
j=1

λ(zj)

x′1 ⊗ . . .⊗ x′g′

for every x1 ⊗ . . .⊗ xg ∈ ad⊗g, where

B(T ) =

More details can be found in [BD21, Section 8.2].

4.2.5. Action of Dehn twists. Let γ± denote the knot γ ×
{

1
2

}
inside Σg,1 × [0, 1] with framing ±1 relative to the

surface Σg,1 ×
{

1
2

}
. It is a classical remark, see for instance the proof of [Li62, Theorem 2], that there exists an

isomorphism of cobordisms
Σg,1 × [0, 1]τ±1

γ

∼= (Σg,1 × [0, 1])(γ∓),

where the cobordism (Σg,1 × [0, 1])(γ∓) is obtained from the cylinder Σg,1 × [0, 1] by performing surgery along the
framed knot γ±, with both incoming and outgoing boundary identifications induced by the identity of Σg,1.
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Proposition 4.2. The quantum representation ρ̄Hg : Mod(Σg,1) → PGLk(ad⊗g) of Equation (24) fits into the
commutative diagram

Fg GLk(ad⊗g)

Mod(Σg,1) PGLk(ad⊗g)

ρ
H
g

ρ̄
H
g

where Fg is defined by Equation (18), and ρHg : Fg → GLk(ad⊗g) is defined by

ρHg (ταj )(x1 ⊗ . . .⊗ xg) = x1 ⊗ . . .⊗ xj−1 ⊗ v−1xj ⊗ xj+1 ⊗ . . .⊗ xg,
ρHg (τβj )(x1 ⊗ . . .⊗ xg) = λ(v(2)xj)

(
x1 ⊗ . . .⊗ xj−1 ⊗ S(v(1))⊗ xj+1 ⊗ . . .⊗ xg

)
,

ρHg (τγk)(x1 ⊗ . . .⊗ xg) = x1 ⊗ . . .⊗ xk−1 ⊗ xkS(v−1
(1))⊗ v

−1
(2)xk+1 ⊗ xk+2 ⊗ . . .⊗ xg

for all x1 ⊗ . . .⊗ xg ∈ ad⊗g.

Proof. First of all, the mapping cylinder Σg,1 × [0, 1]ταj is represented by

where the equality follows from move (K2). Now, the algorithm for the computation of JH gives

=

because
R′′i S

2(R′i)g = u−1g = v−1.

Notice that
= λ(v)

only contributes an invertible scalar, which can be ignored. Next, the mapping cylinder Σg,1×[0, 1]τβj is represented
by

where the equality follows from move (K2). Now, the algorithm for the computation of JH gives

= =

because
S(R′i)S

2(R′′i )g = S(u)g = S(g−1u) = S(v) = v.
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Finally, the mapping cylinder Σg,1 × [0, 1]τγk is represented by

where the equality follows from move (K2). Then, the algorithm for the computation of JH gives

= =

and we can discard again the scalar coefficient λ(v). �

4.3. Small quantum sl2. In this section, we recall the ribbon Hopf algebra structure on the small quantum group
uζ = uζsl2 at a root of unity ζ of order r > 3 odd. This example, and the quantum representations of mapping
class groups it induces, will be given a homological model in Section 6.

4.3.1. Hopf algebra structure. We start by recalling that, in Section 2.3.1, we fixed an odd integer 3 6 r ∈ Z and
the primitive rth root of unity ζ = e

2πi
r . The small quantum group uζ = uζsl2, first defined by Lusztig in [Lu90],

is the C-algebra with generators {E,F (1),K} and relations

Er = (F (1))r = 0, Kr = 1, KEK−1 = ζ2E, KF (1)K−1 = ζ−2F (1), [E,F (1)] = K −K−1.

Notice that uζ can be identified with the quotient of the quantum group Ūζ of Section 2.3.1 obtained by setting
Er = 0 and Kr = 1. Notice also that the presentation given here is equivalent to the one given in [DGP17,
DGGPR19, BD21], which can be obtained by replacing the generator F (1) with the generator

F :=
F (1)

{1}ζ
.

Now uζ admits a Hopf algebra structure obtained by setting

∆(E) = E ⊗K + 1⊗ E, ε(E) = 0, S(E) = −EK−1,

∆(F (1)) = K−1 ⊗ F (1) + F (1) ⊗ 1, ε(F (1)) = 0, S(F (1)) = −KF (1),

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1.

Remark that Lusztig considers the opposite coproduct, while we are using the one of Kassel [Ka95, Section VII.1].

4.3.2. Integral basis. For every integer 0 6 a 6 r − 1, let us set

Ta :=
1

r

r−1∑
b=0

ζ2abKb.

Lemma 4.3. {Ta | 0 6 a 6 r− 1} is an orthogonal family of projectors onto eigenspaces for the left regular action
of K on uζ , meaning that:

(i) TaE = ETa+1, TaF (1) = F (1)Ta−1, TaK = KTa = ζ−2aTa;
(ii) TaTb = δa,bTa.
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Proof. Point (i) is checked as follows:

TaE =
1

r

r−1∑
b=0

ζ2abKbE =
1

r

r−1∑
b=0

ζ2ab+2bEKb = ETa+1,

TaF
(1) =

1

r

r−1∑
b=0

ζ2abKbF (1) =
1

r

r−1∑
b=0

ζ2ab−2bF (1)Kb = F (1)Ta−1,

TaK =
1

r

r−1∑
b=0

ζ2abKb+1 =
1

r

r−1∑
c=0

ζ2a(c−1)Kc = ζ−2aTa.

Point (ii) is checked as follows:

TaTb =
1

r

r−1∑
c=0

ζ2acKcTb =
1

r

r−1∑
c=0

ζ2ac−2bcTb = δa,bTb. �

Notice that, for every integer 0 6 a 6 r − 1, we have

Ka =
r−1∑
b=0

ζ−2abTb. (25)

If for every integer 0 6 a 6 r − 1 we set

F (a) :=
(F (1))a

[a]ζ !
,

then the integral basis of uζ , which is defined as

{E`TmF (n) | 0 6 `,m, n 6 r − 1},
is clearly a basis of uζ , thanks to [Lu90, Theorem 5.6], and to Equation (25).

Remark 4.4. The name integral basis is motivated by Appendix D.1, where all computations performed in this
basis turn out to have coefficients in Z[ζ].

4.3.3. Ribbon structure and factorizability. Next, uζ supports the structure of a ribbon Hopf algebra. Indeed, an
R-matrix R = R′i ⊗R′′i ∈ uζ ⊗ uζ is given by

R =

r−1∑
a,b=0

ζ
a(a−1)

2 K−bEa ⊗ TbF (a) =

r−1∑
a,b=0

ζ
a(a−1)

2 TbE
a ⊗K−bF (a), (26)

compare with [Ma95, Example 3.4.3]. Furthermore, a pivotal element g ∈ uζ is given by g := K. Then, it is proved
in [Ka95, Proposition XIV.6.5] that v := ug−1 ∈ uζ is a compatible ribbon element with inverse v−1 = u−1g ∈ uζ ,
where u := S(R′′i )R′i ∈ uζ is the Drinfeld element associated with R, whose inverse is u−1 = R′′i S

2(R′i) ∈ uζ .
Explicit formulas for v and v−1 can be found in Lemma D.2.

A non-zero left integral λ of uζ is given by

λ(EaF (b)Tc) =
ζ−2c

√
r
δa,r−1δb,r−1, (27)

and a non-zero two-sided cointegral Λ of uζ satisfying λ(Λ) = 1 is given by

Λ :=
√
rEr−1F (r−1)T0. (28)

The ribbon Hopf algebra uζ is factorizable, as first shown in [Ly94, Corollary A.3.3], see also [Ma95, Example 3.4.3].

5. Computation of quantum actions

In this section, we compute explicitly the quantum action of generators of the small quantum group uζ and
of the mapping class group Mod(Σg,1) on the gth tensor power ad⊗g of the adjoint representation of uζ , whose
definition was recalled in Section 4.1.2.
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5.1. Tensor powers of the adjoint representation. Let us start by computing (tensor powers of) the left
adjoint action of uζ with respect to (tensor powers of) the integral basis of Section 4.3.2.

Lemma 5.1. For all integers 0 6 `,m, n 6 r − 1 we have

E . (E`TmF
(n)) = ζ2(m−n)E`+1TmF

(n) − ζ2(m−n+1)E`+1Tm+1F
(n) − {2m− n+ 1}ζζ2(m−n+1)E`TmF

(n−1),

F (1) . (E`TmF
(n)) = −[n+ 1]ζζ

−2(`−n)E`TmF
(n+1) + [n+ 1]ζE

`Tm+1F
(n+1) − [`]ζ{`− 2m− 1}ζE`−1TmF

(n),

K . (E`TmF
(n)) = ζ2(`−n)E`TmF

(n).

Proof. Using the definition of uζ from Section 4.3, together with Lemma D.3, we obtain

E . (E`TmF
(n)) = EE`TmF

(n)K−1 − E`TmF (n)EK−1

(44)
= E`+1TmF

(n)K−1 − E`TmEF (n)K−1 − {2m− n+ 1}ζE`TmF (n−1)K−1

= ζ2(m−n)E`+1TmF
(n) − E`ETm+1F

(n)K−1 − {2m− n+ 1}ζζ2(m−n+1)E`TmF
(n−1)

= ζ2(m−n)E`+1TmF
(n) − ζ2(m−n+1)E`+1Tm+1F

(n) − {2m− n+ 1}ζζ2(m−n+1)E`TmF
(n−1),

F (1) . (E`TmF
(n)) = −K−1E`TmF

(n)KF (1) + F (1)E`TmF
(n)

(43)
= −ζ−2(`−n)E`TmF

(n)F (1) + E`F (1)TmF
(n) − [`]ζ{`− 2m− 1}ζE`−1TmF

(n)

= −[n+ 1]ζζ
−2(`−n)E`TmF

(n+1) + E`Tm+1F
(1)F (n) − [`]ζ{`− 2m− 1}ζE`−1TmF

(n)

= −[n+ 1]ζζ
−2(`−n)E`TmF

(n+1) + [n+ 1]ζE
`Tm+1F

(n+1) − [`]ζ{`− 2m− 1}ζE`−1TmF
(n),

K . (E`TmF
(n)) = KE`TmF

(n)K−1 = ζ2(`−n)E`TmF
(n). �

Recall that, in Section 3.1, for every vector a = (a1, . . . , ag) with integer coordinates a1, . . . , ag > 0 and every
integer 1 6 j 6 g, we set

|a| =
g∑
k=1

ak, |a|<j =

j−1∑
k=1

ak, |a|>j =

g∑
k=j+1

ak.

Lemma 5.2. For all vectors ` = (`1, . . . , `g), m = (m1, . . . ,mg), n = (n1, . . . , ng) with integer coordinates
`1, . . . , `g,m1, . . . ,mg, n1, . . . , ng > 0 we have

E . (E`TmF
(n)) =

g∑
j=1

ζ2|`−n|>j
(
ζ2(mj−nj)E`+ejTmF

(n) − ζ2(mj−nj+1)E`+ejTm+ejF
(n)

− {2mj − nj + 1}ζζ2(mj−nj+1)E`TmF
(n−ej)

)
,

F (1) . (E`TmF
(n)) =

g∑
j=1

ζ−2|`−n|<j
(
−[nj + 1]ζζ

−2(`j−nj)E`TmF
(n+ej) + [nj + 1]ζE

`Tm+ejF
(n+ej)

− [`j ]ζ{`j − 2mj − 1}ζE`−ejTmF (n)
)
,

K . (E`TmF
(n)) = ζ2|`−n|E`TmF

(n).

Proof. Since

E(1) ⊗ . . .⊗ E(g) =

g∑
j=1

1⊗j−1 ⊗ E ⊗K⊗g−j ,

(F (1))(1) ⊗ . . .⊗ (F (1))(g) =

g∑
j=1

(K−1)⊗j−1 ⊗ F (1) ⊗ 1⊗g−j ,

K(1) ⊗ . . .⊗K(g) = K⊗g,
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we obtain

E . (E`TmF
(n)) =

g∑
j=1

(
j−1⊗
k=1

E`kTmkF
(nk)

)
⊗
(
E . (E`jTmjF

(nj))
)
⊗

 g⊗
k=j+1

K . (E`kTmkF
(nk))

 ,

F (1) . (E`TmF
(n)) =

g∑
j=1

(
j−1⊗
k=1

K−1 . (E`kTmkF
(nk))

)
⊗
(
F (1) . (E`jTmjF

(nj))
)
⊗

 g⊗
k=j+1

E`kTmkF
(nk)

 ,

K . (E`TmF
(n)) =

g⊗
j=1

(
K . (E`jTmjF

(nj))
)
.

Then the claim follows directly from Lemma 5.1. �

5.2. Quantum action of mapping class groups. Let us compute now the projective action of Dehn twists on
tensor powers of the adjoint representation ad⊗g. Notice that, just like in the homological case, the projective
representation ρ̄uζg : Mod(Σg,1)→ PGLuζ (ad⊗g) of Proposition 4.2 is again highly local in nature. Therefore, it is
enough to compute the projective action of τα and τβ on ad, together with the one of τγ on ad⊗2. Let us start
from the genus 1 surface.

Lemma 5.3. For all integers 0 6 `,m, n 6 r − 1 we have

ρ
uζ
1 (τα)

(
E`TmF

(n)
)

= ζ2(m+1)m
r−1∑
i=0

[
n+ i
n

]
ζ

ζ
(i+3)i

2 +2miE`+iTm+iF
(n+i).

Proof. Using Proposition 4.2 and Lemma D.2, together with the fact that the inverse ribbon element v−1 ∈ uζ is
central, we obtain

ρ
uζ
1 (τα)

(
E`TmF

(n)
)

= v−1E`TmF
(n) = E`v−1TmF

(n)(42)=

r−1∑
a,b=0

ζ
(a+3)a

2 +2(a+b+1)bE`EaF (a)TbTmF
(n)

=

r−1∑
a,b=0

ζ
(a+3)a

2 +2(a+b+1)bδb,mE
`+aF (a)TmF

(n) =

r−1∑
a=0

ζ
(a+3)a

2 +2(a+m+1)mE`+aTm+aF
(a)F (n)

= ζ2(m+1)m
r−1∑
a=0

[
n+ a
n

]
ζ

ζ
(a+3)a

2 +2maE`+aTm+aF
(n+a). �

Lemma 5.4. For all integers 0 6 `,m, n 6 r − 1 we have

ρ
uζ
1 (τβ)

(
E`TmF

(n)
)
∝

r−1∑
i,j=0

[
`
i

]
ζ

ζ−
i(i−5)

2 −2j(j−1)−2ij+(`+2m−n)i+2`jE`−iTm+jF
(n−i).

Proof. First of all, using Lemmas D.1 and D.2, we obtain

S(v(1))⊗ v(2)

(39)
(37)
=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a
[
a
j

]
ζ

ζ−
(a+3)a

2 +2(a−b+1)b+(a+2b)i+aj−2c(i+j)−(i+j)2S(F (a−i)EjTb−c)⊗ F (i)Ea−jTc

(38)
=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a
[
a
j

]
ζ

ζ−
(a+3)a

2 +2(a−b+1)b−(i+j)2+(a+2(b−c))i+(a−2c)j

(−1)a+i+jζ(a+2b−2c−i−j−1)(a−i−j)T−b+cE
jF (a−i) ⊗ F (i)Ea−jTc

=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)i+j
[
a
j

]
ζ

ζ
a(a−5)

2 −2b(b−1)+4ab−2ac−(a−1)i−(a+2b−1)jT−b+cE
jF (a−i) ⊗ F (i)Ea−jTc.
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Furthermore, we compute

λ(F (i)Ea−jTcE
`TmF

(n))
(23)
= ζ−2iλ(Ea−jE`T`+cTmF

(n)F (i)) =

[
n+ i
n

]
ζ

ζ−2iδc,−`+mλ(E`+a−jTmF
(n+i))

=

[
n+ i
n

]
ζ

ζ−2iδc,−`+mλ(E`+a−jF (n+i)Tm−n−i)
(27)
=

[
n+ i
n

]
ζ

ζ−2m+2n

√
r

δc,−`+mδi,r−n−1δj,`+a−r+1

=

[
r − 1
n

]
ζ

ζ−2m+2n

√
r

δc,−`+mδi,r−n−1δj,`+a−r+1 = (−1)n
ζ−2m+2n

√
r

δc,−`+mδi,r−n−1δj,`+a−r+1,

where the last equality uses the identity
[r − 1]ζ !

[r − n− 1]ζ !
= (−1)n[n]ζ !.

Then, using Proposition 4.2, we obtain

ρ
uζ
1 (τα)

(
E`TmF

(n)
)

= λ(v(2)E
`TmF

(n))S(v(1))

= (−1)n
ζ−2m+2n

√
r

r−1∑
a,b,c=0

a∑
i,j=0

(−1)i+j
[
a
j

]
ζ

ζ
a(a−5)

2 −2b(b−1)+4ab

ζ−2ac−(a−1)i−(a+2b−1)jδc,−`+mδi,r−n−1δj,`+a−r+1T−b+cE
jF (a−i)

= (−1)n
ζ−2m+2n

√
r

r−1∑
a,b=0

(−1)`+n+a

[
a

`+ a− r + 1

]
ζ

ζ
a(a−5)

2 −2b(b−1)+4ab

ζ2a(`−m)+(a−1)(n+1)−(a+2b−1)(`+a+1)T−`+m−bE
`+a−r+1F (n+a−r+1)

= (−1)`
ζ`−2m+n

√
r

r−1∑
a,b=0

(−1)a
[

a
`+ a− r + 1

]
ζ

ζ−
(a+3)a

2 +2(a−b)b+(`−2m+n)a−2`bE`+a−r+1Tm+a−b+1F
(n+a−r+1).

If we change variables by setting i = r − a− 1 and j = a− b− r + 1, we obtain

ρ
uζ
1 (τα)

(
E`TmF

(n)
)

= (−1)`
ζ`−2m+n

√
r

r−1∑
i,j=0

(−1)i
[
r − i− 1
`− i

]
ζ

ζ−
(i+1)(i−2)

2 −2(i+j)(j−1)−(`−2m+n)(i+1)+2`(i+j)E`−iTm+jF
(n−i).

Now the identity [
r − n− 1

k

]
ζ

= (−1)k
[
n+ k
n

]
ζ

yields

ρ
uζ
1 (τα)

(
E`TmF

(n)
)

= (−1)`
ζ`−2m+n

√
r

r−1∑
i,j=0

(−1)`
[
`
i

]
ζ

ζ−
(i+1)(i−2)

2 −2(i+j)(j−1)−(`−2m+n)(i+1)+2`(i+j)E`−iTm+jF
(n−i)

=
ζ√
r

r−1∑
i,j=0

[
`
i

]
ζ

ζ−
i(i−5)

2 −2j(j−1)−2ij+(`+2m−n)i+2`jE`−iTm+jF
(n−i). �

Let us move on to the genus 2 surface.
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Lemma 5.5. For all integers 0 6 `1,m1, n1, `2,m2, n2 6 r − 1 we have

ρ
uζ
2 (τγ)

(
E`1Tm1

F (n1) ⊗ E`2Tm2
F (n2)

)
∝ ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)

r−1∑
j1=0

r−j1−1∑
i1=0

r−i1−j1−1∑
k2=0

i1+j1∑
b=−k2

b+k2∑
i2=0

(−1)b[
i1 + j1 + k2

i1, j1

]
ζ

[
`2 + k2

b− i2 + k2

]
ζ

[
n1 − b+ j1
n1 − i1

]
ζ

[
n2 + i2
n2

]
ζ

{2m1 − n1 + i1 + j1; i1}ζ{−`2 + 2m2 + b; b− i2 + k2}ζ

ζ
(i1+j1+k2+3)(i1+j1+k2)

2 −(i1+j1+k2−1)b+2(m1−n1+2(`2−m2))(i1+j1)+2(`2−m2)k2

E`1+j1Tm1+j1F
(n1+j1−b) ⊗ E`2−b+i2Tm2+i2F

(n2+i2).

Again, due to the technical nature of this computation, we postpone a detailed proof to Appendix E.2.

6. Identification between homological and quantum representations

In this section, we establish our main result, and discuss a few generalizations.

6.1. Main result: isomorphism of representations. Let us fix a positive integer g > 1, for the genus of Σg,1,
and an odd integer r > 3, for the order of the primitive rth root of unity ζ = e

2πi
r .

Recall that, in Definition 2.28, we introduced a direct sumHV
g of twisted homology groups that we later endowed

with commuting actions of the quantum group Uζ and of the mapping class group Mod(Σg,1), see Theorem 2.20.
These actions were computed in particular homological bases in Sections 3.1 and 3.2, respectively. The following
result provides an explicit isomorphism between a finite-dimensional linear subspace H

V (r)
g ⊂ HV

g and ad⊗gζ .
What is remarkable about this linear isomorphism is that it intertwines the homological actions of Ūζ (which
is a subalgebra of Uζ) and of Mod(Σg,1) with the quantum actions that, on the target space, arise from the
non-semisimple TQFT associated with uζ (which is a quotient of Ūζ). These quantum actions were computed in
Sections 5.1 and 5.2, respectively.

First, for all vectors a = (a1, . . . , ag), b = (b1, . . . , bg), and c = (c1, . . . , cr) with integer coordinates, we set

Nj(aj , bj , cj) := ζ2(aj+bj)(j−1)+
aj(aj−1)

2 +2ajbj−2(bj−1)cj ∈ Z[ζ],

N(a, b, c) :=
∏

16j<k6g

ζ2(aj+bj)(ak+bk)

g∏
j=1

Nj(aj , bj , cj) ∈ Z[ζ],

where

k̄ = (kg, . . . , k1), ι(k) = (r − k1 − 1, . . . , r − kg − 1)

for every k = (k1, . . . , kg).

Theorem 6.1. The linear isomorphism

ΦVg : HV (r)
g → ad⊗g (29)

Γ̃ (a, b)⊗ vc 7→ N(a, b, c)Eι(b̄)Tc̄F
(ā)

is a uζ-module isomorphism, where the basis of HV (r)
g is given in Section 2.4.3, while the one of ad⊗g is given in

Section 4.3.2. Furthermore, it defines an isomorphism between the homological representation

ρ̄V (r)
g : Mod(Σg,1)→ PGLuζ (H

V (r)
g )

of Theorem 2.32 and the quantum representation

ρ̄
uζ
g : Mod(Σg,1)→ PGLuζ (ad⊗g)

of Proposition 4.2.
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Proof. First of all, in order to show that ΦVg intertwines the homological action of Ūζ on H
V (r)
g with the quantum

one of its quotient uζ on ad⊗g, we simply need to compare the computations of Lemma 3.2 with those of Lemma 5.2.
On the one hand, Lemma 3.2 gives

E
(
Γ̃ (a, b)⊗ vc

)
=

g∑
j=1

ζ2|a+b|>j
(
Γ̃ (a− ej , b)⊗ {aj − 2cj − 1}ζζ−aj+2bj+2cj+1vc

+Γ̃ (a, b− ej)⊗
(
vc − ζ2bj−2vc+ej

))
,

F(1)
(
Γ̃ (a, b)⊗ vc

)
=

g∑
j=1

ζ−2|a+b|<j+2(g−2(j−1))
(
Γ̃ (a+ ej , b)⊗ [aj + 1]ζ

(
−ζajvc + ζ−aj−4vc+ej

)
−Γ̃ (a, b+ ej)⊗ [bj + 1]ζ{bj + 2cj + 2}ζζ−2aj+2cj−2vc

)
,

K
(
Γ̃ (a, b)⊗ vc

)
= Γ̃ (a, b)⊗ q−2|a+b|−2gvc.

On the other hand, Lemma 5.2 gives

E . (Eι(b̄)Tc̄F
(ā)) =

g∑
j=1

ζ−2|a+b|<j−2(j−1)
(
ζ−2(aj−cj)Eι(b̄−ēj)Tc̄F

(ā) − ζ−2(aj−cj−1)Eι(b̄−ēj)Tc̄+ējF
(ā)

+ {aj − 2cj − 1}ζζ−2(aj−cj−1)Eι(b̄)Tc̄F
(ā−ēj)

)
,

F (1) . (Eι(b̄)Tc̄F
(ā)) =

g∑
j=1

ζ2|a+b|>j+2(g−j)
(
−[aj + 1]ζζ

2(aj+bj+1)Eι(b̄)Tc̄F
(ā+ēj) + [aj + 1]ζE

ι(b̄)Tc̄+ējF
(ā+ēj)

− [bj + 1]ζ{bj + 2cj + 2}ζEι(b̄+ēj)Tc̄F (ā)
)
,

K . (Eι(b̄)Tc̄F
(ā)) = q−2|a+b|−2gEι(b̄)Tc̄F

(ā).

Now the claim follows from the computations
N(a, b, c)

N(a− ej , b, c)
= ζ2|a+b|<j+2|a+b|>j+aj+2bj+2j−3,

N(a, b, c)

N(a, b− ej , c)
= ζ2|a+b|<j+2|a+b|>j+2aj−2cj+2j−2,

N(a, b, c)

N(a, b− ej , c+ ej)
= ζ2|a+b|<j+2|a+b|>j+2aj+2bj−2cj+2j−6,

N(a, b, c)

N(a+ ej , b, c)
= ζ−2|a+b|<j−2|a+b|>j−aj−2bj−2j+2,

N(a, b, c)

N(a+ ej , b, c+ ej)
= ζ−2|a+b|<j−2|a+b|>j−aj−2j ,

N(a, b, c)

N(a, b+ ej , c)
= ζ−2|a+b|<j−2|a+b|>j−2aj+2cj−2j+2.

Next, in order to show that ΦVg simultaneously intertwines the homological and the quantum projective actions
of Mod(Σg,1) on H

V (r)
g and on ad⊗g, respectively, we need to compare the computations of Lemmas 3.3–3.5 with

those of Lemmas 5.3–5.5, one by one. First, Lemma 5.3 gives

ρ
uζ
1 (τα)

(
Er−b−1TcF

(a)
)
∝ ζ2(c+1)c

r−1∑
i=0

[
a+ i
a

]
ζ

ζ
(i+3)i

2 +2icEr−(b−i)−1Tc+iF
(a+i).
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Now the claim follows from the computation
N(a, b, c)

N(a+ i, b− i, c+ i)
= ζ−

(i+3)i
2 +(a−2c)i.

Next, Lemma 5.4 gives

ρ
uζ
1 (τβ)

(
Er−b−1TcF

(a)
)
∝

r−1∑
i,j=0

[
r − b− 1

i

]
ζ

ζ−
i(i−5)

2 −2j(j−1)−2ij−(a+b−2c+1)i−2(b+1)jEr−(b+i)−1Tc+jF
(a−i)

=

r−1∑
i,j=0

(−1)i
[
b+ i
b

]
ζ

ζ−
i(i−3)

2 −2j2−2ij−(a+b−2c)i−2bjEr−(b+i)−1Tc+jF
(a−i).

Now the claim follows from the computation
N(a, b, c)

N(a− i, b+ i, c+ j)
= ζ

(3i−1)i
2 +2ij−(a−2(b+c))i+2(b−1)j .

Finally, Lemma 5.5, together with Lemma D.4, give

ρ
uζ
2 (τγ)

(
Eι(b2)Tc2F

(a2) ⊗ Eι(b1)Tc1F
(a1)
)

= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)
r−1∑
j2=0

r−j2−1∑
i2=0

r−i2−j2−1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
i1=0

(−1)`[
k1 + i2 + j2

i2, j2

]
ζ

[
r − b1 + k1 − 1
k1 − i1 + `

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
a1 + i1
a1

]
ζ

{−a2 + 2c2 + i2 + j2; i2}ζ{b1 + 2c1 + `+ 1; k1 − i1 + `}ζ

ζ
(k1+i2+j2+3)(k1+i2+j2)

2 −(k1+i2+j2−1)`−2(2(b1+c1)+a2−c2+2)(i2+j2)−2(b1+c1+1)k1

Eι(b2−j2)Tc2+j2F
(a2−`+j2) ⊗ Eι(b1−i1+`)Tc1+i1F

(a1+i1)

(45)
= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

r−1∑
j2=0

r−j2−1∑
i2=0

r−i2−j2−1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
i1=0

i2∑
k2=0

k1−i1+`∑
j1=0

(−1)j1+`+i2+k2

[
k1 + i2 + j2

i2, j2

]
ζ

[
b1 − i1 + `
k1 − i1 + `

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
a1 + i1
a1

]
ζ[

i2
k2

]
ζ

ζ(a2−2c2−i2−j2)(i2−2k2)+
i2(i2−1)

2 −(i2−1)k2

[
k1 − i1 + `

j1

]
ζ

ζ−(b1+2c1+`+1)(`−i1+k1−2j1)+
(`−i1+k1)(`−i1+k1−1)

2 −(`−i1+k1−1)j1

ζ
(k1+i2+j2+3)(k1+i2+j2)

2 −(k1+i2+j2−1)`−2(2(b1+c1)+a2−c2+2)(i2+j2)−2(b1+c1+1)k1

Eι(b2−j2)Tc2+j2F
(a2−`+j2) ⊗ Eι(b1−i1+`)Tc1+i1F

(a1+i1)



HOMOLOGICAL CONSTRUCTION OF QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS 55

= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

r−1∑
j2=0

r−j2−1∑
i2=0

r−i2−j2−1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
i1=0

i2∑
k2=0

k1−i1+`∑
j1=0

(−1)j1+`+i2+k2

[
k1 + i2 + j2
k1, j2, k2

]
ζ

[
b1 − i1 + `
b1 − k1, j1

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
a1 + i1
a1

]
ζ

ζ
(i1+3)i1

2 +k1(k1−2)+
j2(j2−7)

2 − (`+1)`
2 −i1j1−(i1+j1−j2+`)k1+(j1−j2)`+(k1+k2−`)i2+2j2k2

ζ−(b1+2c1)(i1−2j1+`)+3j1−(3b1+4c1)k1−(4b1+4c1+a2+3)i2−(4b1+4c1+2a2−2c2−1)j2−(2a2−4c2−1)k2

Eι(b2−j2)Tc2+j2F
(a2−`+j2) ⊗ Eι(b1−i1+`)Tc1+i1F

(a1+i1).

Now the claim follows from the computation
N(a1, b1, c1; a2, b2, c2)

N(a1 + i1, b1 − i1 + `, c1 + i1; a2 − `+ j2, b2 − j2, c2 + j2)

= ζ−
(i1+3)i1

2 − (j2+3)j2
2 +3

(`+1)`
2 −j2`+(a1−2c1)i1+(a2−2c2)j2+(2b1+2c1−a2)`. �

6.2. Corollary: integrality of non-semisimple quantum representations. Let us highlight a direct con-
sequence of our results. First of all, let us endow the Z[ζ]-module Wg := (Z[ζ])r

g

with the left Z[πn,g]-module
structure determined by the Z[ζ]-linear representation ϕWn,g : Z[πn,g]→ EndZ[ζ](Wg) determined by Equation (16).
We define for every integer n > 1 the nth integral Heisenberg homology group of Σg,1 as

HW
n,g := HBM

n (Xn,g, Yn,g;ϕ
W
n,g).

Next, recall that the Torelli subgroup of Mod(Σg,1), denoted by I(Σg,1), consists of those diffeomorphisms that act
trivially on the (standard) homology H1(Σg,1). It was proved in [BPS21, Proposition 28] that I(Σg,1) coincides
with the subgroup of Mod(Σg,1) that acts by inner homomorphisms on the quotient πn,g/Kn,g, in the notation of
Remark 2.4. This has the following consequence.

Lemma 6.2. There exists a homomorphism ψ̄Wg : I(Σg,1)→ PGLZ[ζ](Wg) that fits into the commutative diagram

I(Σg,1) PGLZ[ζ](Wg)

Mod(Σg,1) PGLC(Vg)

ψ̄
W
g

ψ̄
V
g

Proof. Thanks to [BPS21, Proposition 28], for every f ∈ I(Σg,1), there exists some ϑn(f) ∈ πn,g such that

ϕVn,g((f
×n)∗(γ)) = ϕVn,g(ϑn(f)) ◦ ϕVn,g(γ) ◦ ϕVn,g(ϑn(f)−1) (30)

for every γ ∈ πn,g. Then, for every f ∈ Fg representing an element of I(Σg,1) < Mod(Σg,1), Equation (21) implies
that

ϕVn,g(ϑn(f)−1) ◦ ψVg (f) ◦ ϕVn,g(γ) = ϕVn,g(γ) ◦ ϕVn,g(ϑn(f)−1) ◦ ψVg (f)

for every γ ∈ πn,g. Thanks to Equation (15), this means that

ϕVn,g(ϑn(f)−1) ◦ ψVg (f) ∈ CGLrn (Z[ζ]) (A1, B1, . . . , An, Bn) = (Z[ζ])×.

Therefore, we can set
ψ̄Wg (f) := [ϕVn,g(ϑn(f))] ∈ PGLrn(Z[ζ])

for every f ∈ I(Σg,1). �

Following Theorem 2.30, we obtain a projective representation

ρ̄Wn,g : I(Σg,1)→ PGLZ[ζ](H
W
n,g)
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for all n ∈ N. Then, Definition 2.31 can be directly generalized to yield

HW (r)
g ⊂HW

g :=
⊕
n>0

HW
n,g.

The proof of Theorem 2.32 can be replicated word-by-word to show that H
W (r)
g is closed under the projective

action of I(Σg,1). Similarly, the Z[ζ]-linear map ΦWg : H
W (r)
g → ad⊗g determined by Equation (29) defines an

integral Z[ζ]-lattice ΦWg (H
W (r)
g ) ⊂ ad⊗g.

Corollary 6.3. The projective action of the Torelli group I(Σg,1) on ΦWg (H
W (r)
g ) ⊂ ad⊗g is integral, in the sense

that
ρ̄
uζ
g (I(Σg,1)) ⊂ PGLrg (Z[ζ]) ∼= PGLZ[ζ](Φ

W
g (HW (r)

g )) ⊂ PGLC(ad⊗g).

Remark 6.4. In order to obtain integrality of the projective action of Mod(Σg,1), we need to find a Z[ζ]-lattice
W ′g ⊂ Vg that is preserved by the image of ψg. Since ψg factors through a finite group, which is only slightly bigger
than a finite symplectic group, this should be a fairly reasonable task. For instance, when g = 1 and r = 3, we can
consider the Z[ζ]-lattice W ′1 with basis

w′1 := (1− ζ2)v1, w′2 := (ζ − ζ2)v1 + (1− ζ2)v2, w′3 := ζ2v1 + ζv2 + v3.

In this basis, we obtain ϕW
′

n,1 : Z[πn,1]→ EndZ[ζ](W
′
1) and ψ̄W

′

1 : Mod(Σ1,1)→ PGLZ[ζ](W
′
1) satisfying

ϕW
′

n,1(ααααααααααααααααα) =

1 1− ζ2 0
0 ζ −1
0 0 ζ2

 , ϕW
′

n,1(βββββββββββββββββ) =

ζ2 0 0
1 1 0
0 1− ζ2 ζ

 ,

ψ̄W
′

1 (τα) =

1 1− ζ2 ζ
0 ζ ζ2

0 0 1

 , ψ̄W
′

1 (τβ) =

 ζ 0 0
−ζ 1 0
−ζ2 0 1

 .

We leave the discussion of the general case, for arbitrary values of g and r, to a future work.

In some sense, the homological model for quantum representations highlights quite naturally the exact place
where their integrality features emerge. These properties have been the subject of some deep investigation in the
semisimple case, see [Gi01, GM04, BCL10].

6.3. Generalizations: an overview.

6.3.1. Recovering other non-semisimple quantum representations. Here, we modify slightly the ring homomorphism
ϕVn,g : Z[πn,g] → EndC(Vg) defined in Equation (16), that was used to linearize Heisenberg group coefficients.
Namely, we consider a list X = (s1, t1, . . . , sg, tg) of 2g formal variables, and we denote by

Z[ζ,X±1] := Z[ζ, s±1
1 , t±1

1 , . . . , s±1
g , t±1

g ],

the ring of Laurent polynomials in these variables. If, for all 1 6 j 6 g, we set

AX
j := sjAj , BX

j := tjBj ,

where the matrices Aj and Bj were recursively defined in Equations (10)–(12), then we can again endow the free
Z[ζ,X±1]-module WX

g := (Z[ζ,X±1])r
g

with a left Z[πn,g]-module structure determined by the Z[ζ,X±1]-linear
representation

ϕX
n,g : Z[πn,g]→ EndZ[ζ,X±1](W

X
g ) (31)

σiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσiσi 7→ −ζ−2Irg

αjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαjαj 7→ AX
j

βjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβjβj 7→ BX
j

This is a well-defined homomorphism because the matrices

AX
1 , B

X
1 , . . . , A

X
g , B

X
g ∈Mrg×rg (Z[ζ,X±1])
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still satisfy Equation (13). They also satisfy (the analogue of) Equation (15), but notice that they no longer satisfy
Equation (14). We define for every integer n > 1 the nth modular Heisenberg homology group of (Σg,1,X) as

HX
n,g := HBM

n (Xn,g, Yn,g;ϕ
X
n,g).

Notice that HX
n,g is again a free Z[ζ,X±1]-module with exactly the same basis of Remark 2.29. Just like in

Lemma 6.2, we can use [BPS21, Proposition 28] to define a homomorphism

ψ̄X
g : I(Σg,1)→ PGLZ[ζ,X±1](W

Z
g [ζ,X±1]).

Then, following Theorem 2.30, we obtain a projective representation

ρ̄Xn : I(Σg,1)→ PGLZ[ζ,X±1](H
X
n,g) (32)

for all n ∈ N. Once again, Definition 2.31 can be directly generalized to yield

HX(r)
g ⊂HX

g :=
⊕
n>0

HX
n,g.

The proof of Theorem 2.32 can be replicated word-by-word to show thatHX(r)
g is closed under the projective action

of I(Σg,1).
For every α ∈ C, let us set

ζα := e
2απi
r .

Then, every cohomology class ω ∈ H1(Σg,1;C) ∼= HomZ(H1(Σg,1),C) determines a ring homomorphism

Z[ζ,X±1]→ C

sj 7→ ζω(αj)

tj 7→ ζω(βj)

where αj and βj denote the homology classes of the usual simple closed curves, meaning those considered in
Section 2.4, and ζω = (ζω(α1), ζω(β1), . . . , ζω(αg), ζω(βg)) ∈ C2g. If we set

Hω(r)
g := HX(r)

g ⊗Z[ζ,X±1] C,
then we obtain a projective representation

ρ̄ω(r)
g : I(Σg,1)→ PGLC

(
Hω(r)
g

)
.

For the zero cohomology class 0 ∈ H1(Σg,1;C), the projective representation ρ̄
0(r)
g coincides with the restriction

of ρ̄V (r)
g in Theorem 2.32, and can therefore be extended to the whole mapping class group Mod(Σg,1). The

interpretation is that diffeomorphisms also act on cohomology classes, and only those that fix ω are assigned
matrices. However, the cohomology class 0 is fixed by all diffeomorphisms.

In general, ρ̄ω(r)
g is a representation of the Torelli group I(Σg,1) that depends on the choice of a cohomology

class ω ∈ H1(Σg,1;C), and we ask the following.

Question 6.5. Does the representation ρ̄ω(r)
g coincide with a quantum representation arising from a non-semisimple

TQFT?

As a candidate, we suggest a graded TQFT similar to the one constructed by Blanchet, Costantino, Geer, and
Patureau in [BCGP14]. Indeed, the unrolled quantum group UHζ = UHζ sl2 at the odd root of unity ζ induces a
graded TQFT, as follows from [De17, Section 6.2] and [DGP18, Theorem 1.3]. We would need to extend this
graded TQFT to the category 3ČobtUHζ

of admissible cobordisms decorated not only with cohomology classes (with

coefficients in C/2Z), but also with bichrome graphs (with labels in UHζ -mod) like those considered in Appendix C.
This corresponds to the approach of [GHP20] to the invariants of [CGP12]. Although this graded TQFT, that we
will denote by VUHζ here, has not appeared in the literature yet, all the ingredients for its construction are already
available. Then, let us consider the closed surface Σg,1 ∪S1 D2 of genus g obtained from Σg,1 by gluing a disc D2

along its boundary, and let P denote the center of D2. We also consider a finite-dimensional weight UHζ -module



58 M. DE RENZI AND J. MARTEL

uHζ lifting the regular representation of uζ (determined by left multiplication of uζ onto itself). Then, we denote
by P(−,uHζ ) the decoration of D2 obtained by giving P negative orientation and label uHζ .

Conjecture 6.6. For every cohomology class ω ∈ H1(Σg,1;C), if ω̄ ∈ H1(Σg,1∪S1 (D2rP );C/2Z) ∼= H1(Σg,1;C/2Z)
denotes its image, then the projective representation

ρ̄ω(r)
g : I(Σg,1)→ PGLQ[ζ,ζω]

(
Hω(r)
g

)
is isomorphic to the projective representation

ρ̄
UHζ
g : I(Σg,1)→ PGLC

(
VUHζ (Σg,1 ∪S1 D2, P(−,uHζ ), ω̄)

)
induced from the non-semisimple graded TQFT VUHζ .

The homological action of the Torelli group still intertwines an action of Ūζ , like in Theorem 2.20, while, on
the quantum side, this property would only follow naturally from a graded version of the construction of Kerler
and Lyubashenko. Indeed, the universal construction of [BHMV95] required by the use of modified traces typically
hides this kind of behavior.

Furthermore, for every cohomology class ω ∈ H1(Σg,1;C), a basis of Hω
g is given by Remark 2.29. We can

compute actions of elements of the Torelli group in this basis by applying the same techniques used in Section 3.2.
The result is a representation of I(Σg,1) of dimension r3g, with polynomial dependence on the list of 2g parameters
(ω(α1), ω(β1), . . . , ω(αg), ω(βg)). One could obtain explicit matrices for images of generators under (32), or try to
apply Bigelow’s strategy to this representation, taking advantage of polynomial coefficients. This very promising
for studying faithfulness of ρ̄Xn (already for n = 2), that would imply linearity of Torelli groups. Conjecture 6.6
would then provide explicit bases for state spaces of non-semisimple TQFTs associated with the unrolled quantum
group UHζ sl2 for all possible choices of cohomology classes (at least for the decorated surfaces appearing in the
statement), thus yielding matrices depending on 2g parameters. Taking limits in these parameters would also
be possible. This would raise the following natural question: can we to construct homologically a TQFT that
associates to every surface Σg,1 the total modular Heisenberg homology HX

g (possibly only for the category of
Lagrangian cobordisms of [CHM07, Section 1.1], which is equivalent to the category of bottom tangles in homology
handlebodies of [Ha05, Section 14.4])? As in Corollary 6.3, such a construction would naturally be integral, and a
positive answer to Conjecture 6.6 would transfer these integrality properties to the quantum representations arising
from the construction of [BCGP14].

Proving Conjecture 6.6 following the same strategy used for Theorem 6.1 would require constructing the appro-
priate TQFT associated with UHζ , that does not exist in the literature yet. Furthermore, generators of the Torelli
group are more complicated than single Dehn twists. For these two reasons, we decided to postpone more detailed
computations.

6.3.2. Linear mapping class group representations. In Theorem 2.30 we defined homological representations of
mapping class groups, which we identified with quantum representations arising from non-semisimple TQFTs in
Theorem 6.1. It is a well-known fact that TQFTs associated with small quantum groups at roots of unity only yield
projective representations of mapping class groups. Here, we explain a standard natural way for obtaining honest
linear representations from these projective ones. Then, in the particular case of the homological representations
of 2.30, we also give a homological method for doing the same. Both methods increase the dimension of the
representation, but we only pay attention to the fact that, if the projective representation is faithful, then so is the
linear one.

We begin with an algebraic method that applies to any projective representation

ρ : G→ PGLn(C),

where G is a group and n > 1 is an integer. Indeed, for all A ∈ PGLn(C) and B ∈Mn×n(C), the adjoint action

adA(B) := ABA−1
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is well-defined, since rescaling A does not affect the operation of conjugation. This induces a linear representation

ad : PGLn(C)→ GLC(Mn×n(C))

A 7→ adA

and since the center of PGLn(C) is trivial, ad is injective. Therefore, if ρ is injective, so is ad ◦ ρ.

Corollary 6.7. If a projective representation of a group is faithful, the group is linear.

In the special case of the homological representations of Theorem 2.30, there is a homological way of obtaining
linear representations. For instance, in [DM] it is shown that a homological representation of a subgroup of
Mod(Σg,1) on the homology of Xn,g with twisted coefficients in Z[Gn,g], for a given quotient Gn,g of πn,g, naturally
extends to an action of the whole Mod(Σg,1) on the homology of Xn,g with twisted coefficients in Z[Gn,g o
Aut(Gn,g)]. Since all generators of πn,g are sent to finite order matrices by ϕVn,g, this means that ϕVn,g factors
through a finite quotient Gn,g of πn,g. Namely, there exists a commutative diagram

Z[πn,g] EndC(Vg)

Z[Gn,g]

ϕVn,g

where Gn,g is a finite group. It turns out that, at least for n > 2, the group Gn,g is isomorphic to the finite
Heisenberg group Hg(Z/rZ), which is a linear group. In particular, Gn,g o Aut(Gn,g) is linear too, by considering
the induced representation. This yields a linear representation of the whole mapping class group Mod(Σg,1). It is
not the case for ϕωn,g, when ω is not the zero cohomology class. Computing by how much the dimension increases
would tell us whether this homological method is less expensive than the algebraic one, or not.

6.3.3. Other roots of unity. In this paper, we have performed constructions and computations only for ζ = e
2πi
r ,

with r > 3 odd. Both the homological and the quantum construction can be carried out for even roots of unity
too, although computations and explicit formulas would change slightly. These variants are not discussed here, but
Theorem 6.1 clearly admits an analogue version for even roots of unity.

6.3.4. Irreducibility of absolute representations. The Uq-module structure on HH
g given by Theorem 2.20 is new,

and has coefficients in Z[Hg]. What is particularly interesting is that HH
g also carries an action of (a subgroup

of) the mapping class group Mod(Σg,1) which intertwines this action of Uq. Furthermore, this can be specialized
and subsequently extended to a projective action of Mod(Σg,1) that recovers the quantum representation arising
from the non-semisimple TQFT associated with the small quantum group uζsl2, thanks to Theorem 6.1. We also
conjecture that its deformations are related to other non-semisimple TQFTs associated with the unrolled quantum
group UHζ sl2, see Conjecture 6.6. We find similarities between the structure of the Uq-module HH

g and that of a
tensor product of universal Verma modules, see for instance [Ma20a, Definition 5.8] (although coefficients here are
extended to Z[Hg]). Jackson and Kerler have studied the action of braid groups over tensor products of universal
Verma modules, and they have decomposed these braid group representations into irreducible summands [JK09].
Each irreducible summand is generated, over the braid group, by a highest weight vector for the action of Uq, namely
by an eigenvector for the action of K which lies in the kernel of the action of E. Since the homological action of E
is implemented by the connection homomorphism of a long exact sequence of a triple (see Definition 2.14), highest
weight vectors come from absolute homology classes (or from homology classes with smaller relative part, see the
long exact sequence just above Defnition 2.14). We hope that the techniques of Jackson and Kerler for decomposing
tensor products of Verma modules into irreducible summands for the action of braid groups might shed light onto
the action of Mod(Σg,1) on HH

g , and that irreducible subrepresentations might be described in terms of absolute
homology groups (or homology groups with smaller relative part), as it was done in [Ma20a, Corollary 7.1].

6.3.5. Other Lie algebras. Theorem 6.1 is an extension of results from [Ma20a], where the braiding of Uqsl2 on
tensor products of universal Verma modules was recovered from the twisted homology of configuration spaces of
punctured discs. Here, on the other hand, we recover homologically quantum representations of mapping class
groups of positive genus surfaces extracted from a non-semisimple TQFT built from uζsl2. In a joint work in
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progress of the second author with S. Bigelow, the results of [Ma20a] are generalized to the quantum group Uqg
associated with a simple Lie algebra g. This requires a decorated version of configuration spaces involving points
labeled by simple roots of g, and the result recovers quantum representations of braid groups associated with Uqg.
In the case of surfaces, we would need to adapt the homomorphism ϕH

n,g to these new configuration spaces labeled
by roots, in order to obtain an analogue of Theorem 6.1 for every simple Lie algebra g.

Appendix A. Homological preliminaries

In this appendix, we recall the tools required for the definition of homological representations of mapping class
groups. Throughout, X will always denote a connected topological space, and R will always denote a ring.

A.1. Twisted homology with local coefficients. Let X be semi-locally simply connected. Let us denote by
p̃ : X̃ → X its universal cover, and by π := π1(X, ξ) its fundamental group with respect to a base point ξ ∈ X.
By definition, every point x̃ ∈ X̃ is the homotopy class of a path x̃ : [0, 1] → X with x̃(0) = ξ, and the left
action of γ ∈ π on x̃ ∈ X̃ by deck transformation is the homotopy class γ · x̃ ∈ X̃ of the concatenation of paths
γ ∗ x̃ : [0, 1]→ X. This is a left action because, in our conventions, α ∗ β stands for “first α, then β”. The complex
C∗(X̃) (where the absence of coefficients stands for Z-coefficients) is thus naturally endowed with a left Z[π]-module
structure, where Z[π] denotes the group ring of π. Let M be a left Z[π]-module, with action of Z[π] determined
by a homomorphism

ϕM : Z[π]→ End(M).

The homology of X with local coefficients in M twisted by ϕM , or simply the twisted homology of X, is defined as
the homology H∗(X;ϕM ) of the complex

C∗(X;ϕM ) := C∗(X̃)⊗Z[π] M,

where the right Z[π]-module structure on C∗(X̃) is determined by

σ̃ · γ := γ−1 · σ̃
for all σ̃ ∈ C∗(X̃) and γ ∈ π. Similarly, if Y ⊂ X is a subspace, then the twisted homology of X relative to Y is
defined as the homology H∗(X,Y ;ϕM ) of the complex

C∗(X,Y ;ϕM ) := C∗(X̃, p̃
−1(Y ))⊗Z[π] M.

Remark A.1. The reader should be careful when deriving the computation rules of Proposition 2.13, since moving
a Z[π]-coefficient from the left tensor factor to the right one involves taking inverses, meaning that

(γ · σ̃)⊗m = σ̃ ⊗ ϕM (γ−1)(m)

for all γ ∈ π, σ̃ ∈ C∗(X̃, p̃−1(Y )), and m ∈M .

We refer the reader to [DK01, Section 5.1] or [Ma, Section 2.1] for an introduction to twisted homology. Notice
that, if M is an R-module and ϕM takes values in the group of R-module endomorphisms EndR(M) (which means
M is a (Z[π], R)-bimodule), then H∗(X,Y ;ϕM ) is naturally an R-module.

If G is a group, and ϕG : Z[π]→ Z[G] is a ring homomorphism, then we abuse notation, and denote by

ϕG : Z[π]→ EndZ[G](Z[G])

also the associated representation induced by left multiplication, meaning that

ϕG(γ)(g) = ϕG(γ)g

for all γ ∈ π and g ∈ G (notice that ϕG(γ) is Z[G]-linear with respect to right multiplication). In particular, we
use the notation H∗(X,Y ;ϕG) every time we have a ring homomorphism ϕG : Z[π] → Z[G]. Then, if K / π is a
normal subgroup, and if ϕπ/K : Z[π]→ Z[π/K] is induced by the projection to the quotient, we have

H∗(X,Y ;ϕπ/K) ∼= H∗(X̂, p̂
−1(Y )),

where p̂ : X̂ → X denotes the regular cover associated with K, see [Ma, Section 2.1, Example 1.(3)]. Therefore,
H∗(X,Y ;ϕπ/K) is endowed with a natural Z[π/K]-module structure induced by the deck transformation group
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of p̂ : X̂ → X, which coincides with π/K. We point this out because the twisted homology groups studied in
this paper are very closely related (with only minor differences) to those considered in [DM], where the theory of
regular covers is extensively exploited in order to derive formulas that could be used to describe the mapping class
group representations constructed here.

Let us finish this section with a remark that is used several times in the paper, and which can be found in [Ma,
Section 2.1, Lemme 6].

Remark A.2. The universal coefficient theorem for twisted homology usually involves a spectral sequence, rather
than the short exact sequence appearing in the untwisted case. However, if C∗ is a complex of R-modules whose
homology is free over R, and M is an R-module, then we have a natural isomorphism

H∗(C∗ ⊗RM) ∼= H∗(C∗)⊗RM.

A.2. Borel–Moore homology. Let X be locally compact. The Borel–Moore homology of X is defined as the
homology HBM

∗ (X) of the complex

CBM
∗ (X) := lim←−

K∈K(X)

C∗(X,X rK),

where K(X) denotes the set of compact subspaces of X, equipped with the partial order induced by inclusion. If
Y ⊂ X is a subspace, then the Borel–Moore homology of X relative to Y is defined as the homology HBM

∗ (X,Y )
of the complex

CBM
∗ (X,Y ) := lim←−

K∈K(X)

C∗(X,Y ∪ (X rK)).

For a homomorphism ϕM : Z[π] → End(M) inducing a Z[π]-module structure on M , the twisted Borel–Moore
homology of X relative to Y is defined as the homology HBM

∗ (X,Y ;ϕM ) of the complex

CBM
∗ (X,Y ;ϕM ) := lim←−

K∈K(X)

C∗(X̃, p̃
−1(Y ∪ (X rK)))⊗Z[π] M.

Remark A.3. Notice that Remark A.2 implies that, if ϕπ : Z[π] → Z[π] denotes the identity, and if the homology
of every complex appearing in the inverse limit defining CBM

∗ (X,Y ;ϕπ) is free over Z[π], then

HBM
∗ (X,Y ;ϕM ) ∼= HBM

∗ (X,Y ;ϕπ)⊗Z[π] M.

A.3. Group actions on twisted homology. Let X be an oriented manifold. If Diff(X) denotes the group
of orientation-preserving self-diffeomorphisms of X fixing the boundary ∂X point-wise, and if Diff0(X) denotes
the normal subgroup of those diffeomorphisms which are isotopic to the identity (trough an isotopy fixing ∂X
point-wise), then the mapping class group of X is the group

Mod(X) := Diff(X)/Diff0(X).

The mapping class group Mod(X) usually acts naturally on the homology of X. However, within the framework
of twisted homology, this is no longer true, or at least the action is no longer completely natural. A topologi-
cal interpretation of these issues is exposed in detail in [DM]. We explain here below how to define actions of
diffeomorphisms on twisted homology that are adapted to our present needs.

We first recall that, if p̃ : X̃ → X denotes the regular cover, then every diffeomorphism f of X fixing the base
point ξ ∈ X can be uniquely lifted (by lifting f ◦ p̃) to a diffeomorphism f̃ of the universal cover X̃ fixing the
base point ξ̃ ∈ X̃ given by the homotopy class of the constant path based at ξ. Let us assume from now on that
∂X 6= ∅, so that we can consider a base point ξ ∈ ∂X and a subspace Y ⊂ ∂X. In particular, every element of
Diff(X) fixes both ξ and Y .

If F is a group, every homomorphism χ : F → Mod(X) lifts to a homomorphism χ̃ : F → Mod(X̃), and we
denote by

χ∗ : F → Aut(Z[π]), χ̃∗ : F → Aut(HBM
∗ (X,Y ;ϕπ))

the associated homorphisms induced by the actions of Mod(X) and Mod(X̃) on Z[π] and HBM
∗ (X,Y ;ϕπ), respec-

tively. We also define
MM :=

{
f ∈ F | ϕM ◦ χ∗(f) = ϕM

}
.
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Proposition A.4. Let χ : F → Mod(X) be a homomorphism andM be an R-module equipped with a representation
ϕM : Z[π]→ EndR(M). If HBM

∗ (X,Y ;ϕπ) is a free Z[π]-module, then:
(i) There exists an R-linear action of MM on HBM

∗ (X,Y ;ϕM ) given by the homomorphism

ρM : MM → GLR(HBM
∗ (X,Y ;ϕM ))

defined by
ρM (f)(σ̃ ⊗m) = χ̃∗(f)(σ̃)⊗m

for all f ∈MM , σ̃ ∈ HBM
∗ (X,Y ;ϕπ), and m ∈M ;

(ii) If M is also equipped with a representation ψ : F → GLR(M) satisfying

ψ(f) ◦ ϕM (γ) = ϕM (χ∗(f)(γ)) ◦ ψ(f) (33)

for all f ∈ F and γ ∈ π, then the R-linear action of MM extends to an R-linear action of F given by the
homomorphism

ρM : F → GLR(HBM
∗ (X,Y ;ϕM ))

defined by
ρM (f)(σ̃ ⊗m) = χ̃∗(f)(σ̃)⊗ ψ(f)(m)

for all f ∈ F , σ̃ ∈ HBM
∗ (X,Y ;ϕπ), and m ∈M .

Both representations are denoted ρM , since one extends the other.

Proof. First of all, notice that, if f is a diffeomorphism of X, and if f̃ lifts f ◦ p̃ to a diffeomorphism of X̃, then

f̃(x̃ · γ) = f̃(x̃) · f∗(γ)

for all x̃ ∈ X̃ and γ ∈ π. Furthermore, thanks to Remak A.2, we have

HBM
∗ (X,Y ;ϕM ) ∼= HBM

∗ (X,Y ;ϕπ)⊗Z[π] M.

Then, let us start from claim (i). For all f ∈MM , σ̃ ∈ HBM
∗ (X,Y ;ϕπ), and m ∈M , the action

ρM (f)(σ̃ ⊗m) = χ̃∗(f)(σ̃)⊗m
is clearly well-defined on the tensor product HBM

∗ (X,Y ;ϕπ) ⊗Z M , so it remains to check that it passes to the
quotient HBM

∗ (X,Y ;ϕπ)⊗Z[π] M . However, by definition, MM corresponds exactly to the subgroup whose action
does pass to the quotient. Indeed, we have

ρM (f) ((σ̃ · γ)⊗m) = (χ̃∗(f)(σ̃) · χ∗(f)(γ))⊗m = χ̃∗(f)(σ̃)⊗ ϕM (χ∗(f)(γ))(m) = χ̃∗(f)(σ̃)⊗ ϕM (γ)(m)

= ρM (f)
(
σ̃ ⊗ ϕM (γ)(m)

)
for all f ∈MM , σ̃ ∈ HBM

∗ (X,Y ;ϕπ), γ ∈ π, and m ∈ M , where we used the definition of MM in order to obtain
the second equality. This is precisely the identity we were looking for.

Next, let us focus on claim (ii). Again, for all f ∈ F , σ̃ ∈ HBM
∗ (X,Y ;ϕπ), and m ∈M , the action

ρM (f)(σ̃ ⊗m) = χ̃∗(f)(σ̃)⊗ ψ(f)(m)

is well-defined on the tensor product HBM
∗ (X,Y ;ϕπ)⊗ZM , so we only need to check that it passes to the quotient

HBM
∗ (X,Y ;ϕπ)⊗Z[π] M . In this case, it is Equation (33) that ensures this happens. Indeed, we have

ρM (f) ((σ̃ · γ)⊗m) = (χ̃∗(f)(σ̃) · χ∗(f)(γ))⊗ ψ(f)(m) = χ̃∗(f)(σ̃)⊗ ϕM (χ∗(f)(γ))(ψ(f)(m))

= χ̃∗(f)(σ̃)⊗ ψ(f)(ϕM (γ)(m)) = ρM (f)
(
σ̃ ⊗ ϕM (γ)(m)

)
for all f ∈ F , σ̃ ∈ HBM

∗ (X,Y ;ϕπ), γ ∈ π, and m ∈M , where we used Equation (33) in order to obtain the second
equality.

Notice that ρM is indeed a representation (meaning a group homomorphism), because homology is functorial,
and because ψ is a homomorphism too. �
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Remark A.5. Let χ : F → Mod(X), ϕM : Z[π] → EndR(M), and ψ : F → GLR(M) be homomorphisms
satisfying the hypotheses of Proposition A.4.(ii), let K / π be a normal subgroup, and suppose that ϕM fits into
the commutative diagram

Z[π] EndR(M)

Z[π/K]

ϕM

ϕπ/K

where ϕπ/Kn,g is induced by the projection π � π/K. Then, if p̂ : X̂ → X denotes the regular cover associated with
K, and if the homology HBM

∗ (X,Y ;ϕπ/K) is free over Z[π/K], we have

HBM
∗ (X,Y ;ϕM ) ∼= HBM

∗ (X,Y ;ϕπ/K)⊗Z[π/K] M.

Notice that Equation (33) automatically implies that χ(f)∗ stabilizes Z[K]. Therefore, by the lifting property of
regular covers, there exists a homomorphism χ̂ : F → X̂ sending every f ∈ F to the unique lift of χ(f) ◦ p̂ fixing
the (projection to X̂ of the) constant path at the base point ξξξξξξξξξξξξξξξξξ. Then, up to isomorphism, the homological action
ρM : F → GLR(HBM

∗ (X,Y ;ϕM )) is given by

ρM (f)(σ̂ ⊗m) = χ̂∗(f)(σ̂)⊗ ψ(f)(m)

for all f ∈ F , σ̂ ∈ HBM
∗ (X,Y ;ϕπ/K), and m ∈M .

In Proposition A.4, we defined an action of the group F on the tensor product between HBM
∗ (X,Y ;ϕπ) and

the Z[π]-module M , assuming that HBM
∗ (X,Y ;ϕπ) is a free Z[π]-module. When this is not the case, a similar

construction can be carried out, but we have to define the action at the level of chain complexes instead.
Proposition A.4 yields in particular a strategy for finding interesting linear representations of F = Mod(Σg,1) in

the case X = Confn(Σg,1). However, since the procedure requires a representation ψ of Mod(Σg,1) into GLR(M)
to start with, it might be hard to apply it in general. Luckily, if the image of ϕM is large enough, then the
linear representation ρM of F descends to a projective representation ρ̄M of F/ kerχ, as it will be explained in
Proposition A.6 below. Then, it is sufficient to apply the previous procedure to a group F whose quotient F/ kerχ
is isomorphic to Mod(Σg,1). This time, the main example to keep in mind arises when F is the free group over a
system of generators for Mod(Σg,1), in which case the homomorphism χ : F → Mod(X) defined by

χ(f)(xxxxxxxxxxxxxxxxx) = {f(x1), . . . , f(xn)}
for every xxxxxxxxxxxxxxxxx = {x1, . . . , xn} ∈ X = Confn(Σg,1) satisfies F/ kerχ ∼= Mod(Σg,1). Notice that defining a linear
representation of F is considerably easier than defining a linear representation of F/ kerχ, in this case.

Proposition A.6. Let χ : F → Mod(X) be a homomorphism andM be an R-module equipped with representations
ϕM : Z[π] → EndR(M) and ψ : F → GLR(M) satisfying Equation (33). If HBM

∗ (X,Y ;ϕπ) is a free Z[π]-module,
and if furthermore

CEndR(M)(ϕ
M (Z[π])) = R×, (34)

meaning that the centralizer of ϕM (Z[π]) in EndR(M) is the group of invertible scalar multiples of the identity
idM , then the R-linear action of F given by Proposition A.4.(ii) descends to an R-projective action

ρ̄M : F/ kerχ→ PGLR(HBM
∗ (X,Y ;ϕM ))

which fits into the commutative diagram

F GLR(HBM
∗ (X,Y ;ϕM ))

F/ kerχ PGLR(HBM
∗ (X,Y ;ϕM ))

ρ
M

ρ̄
M
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Proof. We need to check that
ρM (f) ∝ idHBM

∗ (X,Y ;ϕM )

for every f ∈ kerχ. Notice however that kerχ ⊂ kerχ∗, where χ∗ : F → Aut(Z[π]) is the homomorphism induced
by the natural action of Mod(X) onto Z[π]. Then, the claim follows immediately from the fact that

ψ(f) ◦ ϕM (γ) = ϕM (χ∗(f)(γ)) ◦ ψ(f) = ϕM (γ) ◦ ψ(f),

which implies that ψ(f) belongs to the centralizer of ϕM (Z[π]) in EndR(M). �

Appendix B. Homological computation rules

In Section 2.2.1, we explained how to interpret homologically a particular class of diagrams representing embedded
twisted cycles. In Section 2.2.3, we presented a set of rules for manipulating these diagrams without changing the
homology classes they represent. We claim that all these rules can be straightforwardly deduced from [Ma20a,
Section 4.2], but we give elements of proofs here below.

Sketch of proof of Proposition 2.13. All these rules are established in [Ma20a, Section 4]. Even though the reference
focuses on twisted Borel–Moore homologies of configuration spaces of punctured discs, rather than arbitrary surfaces
of positive genus with one boundary component, most of these diagrammatic rules involve modifications which only
take place inside a disc embedded into the surface, so that the corresponding proofs are exactly the same. We
sketch the arguments here, and give precise references rule by rule:
Cutting rule. This is a direct consequence of [Ma20a, Proposition 4.4], see the diagrammatic equality in [Ma20a,
Example 4.6], which resembles the one considered here. In order to prove the claim, it is convenient to introduce
slightly more general diagrams, where dashed-dotted curves representing multisimplices are allowed to intersect
the boundary of Σg,1 also in their interior. Then, there exists an ambient isotopy of the form [0, 1[×Σg,1 → Σg,1
(which can be extended to Xk,g coordinate-by-coordinate) yielding the equality

=

between standard homology classes (that is, untwisted ones, for which we have not chosen a red multithread yet,
which would specify a lift to the universal cover). If we denote by Γ : [0, 1]→ Σg,1 the 1-multisimplex represented by
the dashed-dotted curves appearing on the right-hand side of the previous equality, then, without loss of generality,
we can assume that

Γ
(

]0, 1[
)
∩ ∂−Σg,1 = Γ

(
1

2

)
.

We can subdivide the k-simplex ∆k into the union

∆k =

k⋃
`=0

∆(`,k),

where every ∆(`,k) on the right-hand side of the equality is the product of an `-simplex with a (k − `)-simplex,
given by

∆(`,k) =

{
(t1, . . . , tk) ∈ Rk

∣∣∣ 0 < t1 < · · · < t` 6
1

2
< t`+1 < · · · < tk < 1

}
.

Up to reparametrization, and also up to another ambient isotopy, this time of the form ]0, 1] × Σg,1 → Σg,1, the
subdivision of ∆k considered above induces the equality

=

k∑
`=0

Again, this equality holds already before homology classes are lifted to the universal cover. Then, it is easy to
check that the red multithreads appearing in the claim are exactly the ones ensuring that the two lifts match.
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Permutation rule. In order to prove the claim, it is convenient to introduce even more general diagrams, where
red multithreads are allowed to self-intersect. In these diagrams, red double points correspond to points in the
surface where the multithread passes at different times, and we keep track of which strand passes after the other
by making them the over-strand and the under-strand, respectively, in a crossing (this corresponds to considering
the link diagram of the red multithread with respect to the standard projection Σg,1 × [0, 1]→ Σg,1, as seen from
above in the [0, 1]-direction). Then, up to isotopy, we have

=

Notice that, if we denote by x̃(k,`) the multithread appearing on the right-hand side of the previous equality, and
by ϑx̃(k,`)

the induced permutation in Sn (following the notation of Section 2.2.1), then we have

sgn(ϑx̃(k,`)
) = (−1)k`.

This means that, if we denote by σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`) ∈ πn,g the standard braid represented by

σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`) =

around the components of the basepoint ξξξξξξξξξξξξξξξξξ that appear in the pictures above, then Remarks 2.7 and A.1 yield

= (−1)k`σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`) · = ⊗ (−1)k`ϕH
n,g(σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)

−1).

Therefore, we simply need to notice that

ϕH
n,g(σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)σ(k,`)) = (−q−2)k`.

Fusion rule. The case ` = 1 is exactly the same as in [Ma20a, Lemma 4.8]. The case ` > 1 is established in
[Ma20a, Corollary 4.11] as a straightforward consequence of [Ma20a, Corollary 4.10], which itself follows directly
from the case ` = 1 by a combinatorial expansion. We will only prove the case ` = 1 here, since the case ` > 1
follows from the same combinatorial argument. Then, let us prove

= ⊗ [k + 1]qq
k. (35)

Notice that the band contained between the k-labeled and the 1-labeled dashed-dotted curve is homeomorphic to
the interior of a rectangle, whose horizontal sides are blue (and identified with the two curves), and whose vertical
sides are magenta (and identified with a pair of arcs in ∂−Σg,1). There exists a vertical deformation retraction of



66 M. DE RENZI AND J. MARTEL

this rectangle onto its k-labeled dashed-dotted horizontal side, and we can extend this to a deformation retraction
of the surface Σ0

g,1 = Σg,1 onto a subsurface Σ1
g,1 ⊂ Σg,1 containing the k-labeled dashed-dotted curve, as shown

in the following picture:

Furthermore, we can safely assume, without loss of generality, there exists a metric on the surface which makes this
deformation into a contraction at all times. Let d be the associated distance, and let us extend the deformation
retraction to Xn,g coordinate-by-coordinate. We also denote by Xt

n,g and by Y tn,g the images of Xn,g and of Yn,g,
respectively, under this deformation retraction at the time t ∈ [0, 1]. Then, for every ε > 0, there exists a time
t ∈ ]0, 1[ at which the deformation retraction maps the `-labeled blue dashed-dotted curve into an ε

2 -neighborhood
of the k-labeled one with respect to the distance d. Since the deformation retraction is a contraction, we obtain
an isomorphism

Hn

(
X0
n,g, Y

0
n,g ∪ (X0

n,g rKε(X
0
n,g))

) ∼= Hn

(
Xt
n,g, Y

t
n,g ∪ (Xt

n,g rKε(X
t
n,g))

)
,

where Kε(Zn,g) := {{z1, . . . , zn} ∈ Zn,g | ∀ i 6= j d(zi, zj) > ε} for every subset Zn,g ⊂ Xn,g. Then, in the
rectangle, every configuration with at least a pair of coordinates that are vertically aligned lies in the relative part
of the homology on the right-hand side. Thus, we can excise the set Etn,g of all configurations of this form, and get
the isomorphism

Hn

(
Xt
n,g, Y

t
n,g ∪ (Xt

n,g rKε(X
t
n,g))

) ∼= Hn

(
Xt
n,g r Etn,g,

(
Y tn,g ∪ (Xt

n,g rKε(X
t
n,g))

)
r Etn,g

)
.

Since in Xt
n,grEtn,g no configuration has vertically aligned coordinates inside the rectangle, the vertical projection

yields an isomorphism

Hn

(
X0
n,g, Y

0
n,g ∪ (Xn,g rKε(X

0
n,g))

) ∼= Hn

(
X1
n,g, Y

1
n,g ∪ (X1

n,g rKε(X
1
n,g))

)
.

Thus, we obtain an isomorphism

ι∗ : HBM
n

(
X1
n,g, Y

1
n,g

)
→ HBM

n

(
X0
n,g, Y

0
n,g

)
induced by the inclusion of pairs, since both families of complements of compact sets X0

n,g rKε(X
0
n,g) and X1

n,g r
Kε(X

1
n,g), indexed by ε > 0, are cofinal. Then, for n = k + 1, let us denote by

Γ 0(k, 1) ∈ HBM
n (X0

n,g, Y
0
n,g), Γ 1(k + 1) ∈ HBM

n (X1
n,g, Y

1
n,g)

the homology classes represented by the diagrams obtained from the left-hand side and from the right-hand side
of Equation (35), respectively, by forgetting red multithreads. Notice that we can subdivide the interval [0, 1[ into
the union of k + 1 intervals

[0, 1[ =

k+1⋃
i=1

[
i− 1

k + 1
,

i

k + 1

[
and consider, for all integers 1 6 i 6 k + 1, the permutation homeomorphism

ϑ(i) : ]0, 1[
×(k+1) → ]0, 1[

×(k+1)

(t1, . . . , tk+1) 7→ (t2, . . . , ti, t1, ti+1, . . . , tk+1).

Therefore, up to decomposing and reparametrizing the first component of the hypercube, the homology class
ι−1
∗ (Γ 0(k, 1)) is the sum of the k + 1 homology classes (Γ 1(k + 1))(i) determined by the k + 1 embeddings

]0, 1[
×(k+1)

]0, 1[
×(k+1)

∆k+1 Xk+1,g,
ϑ(i) ∆k+1 Γ k+1

1
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where we are using the notation introduced in Section 2.2.1 for homeomorphisms between hypercubes and simplices.
If we denote by

ι̃∗ : HBM
n

(
X1
n,g, Y

1
n,g;ϕ

π
n,g

)
→ HBM

n

(
X0
n,g, Y

0
n,g;ϕ

π
n,g

)
the lift of the isomorphism ι∗, where HBM

∗
(
Xt
n,g, Y

t
n,g;ϕ

π
n,g

)
denotes the homology of the complex

CBM
∗
(
Xt
n,g, Y

t
n,g;ϕ

π
n,g

)
:= lim←−

K∈K(Xtn,g)

C∗(p̃
−1(Xt

n,g), p̃
−1(Y tn,g ∪ (Xt

n,g rK)))

in the notation of Appendix A.2, then we have

ι̃−1
∗




=

k+1∑
i=1

=

k+1∑
i=1

⊗ q2(i−1),

where the last equality follows from the proof of the permutation rule. Now the claim follows from
k+1∑
i=1

q2(i−1) = [k + 1]qq
k.

Orientation rule. Changing the orientation of a dashed-dotted curve amounts to reparametrizing the correspond-
ing 1-multisimplex Γ : [0, 1]→ Σg,1 by precomposition with

[0, 1]→ [0, 1]

t 7→ 1− t.
Braid rule. Recalling Remark A.1, we have

= (x̃α ∗ x̃−1
β ) · = ⊗ ϕH

n,g(x̃β ∗ x̃−1
α )

where

x̃α ∗ x̃−1
β =

Then, notice that this braid is of the form

x̃α ∗ x̃−1
β = (α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1)(α ∗ β−1)(i+k−1) ∗ (α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2)(α ∗ β−1)(i+k−2) ∗ . . . ∗ (α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i)(α ∗ β−1)(i).

for some 1 6 i 6 n− k + 1. Indeed, we can start by moving the (i+ k − 1)th component of the basepoint ξξξξξξξξξξξξξξξξξ along
α∗β−1, then proceed to move the (i+k−2)th component (after the previous one parked back at ξξξξξξξξξξξξξξξξξ), and so on, up
until the ith component. Notice that changing the component of the basepoint ξξξξξξξξξξξξξξξξξ that travels along α ∗ β−1 does
not change the braid itself (since this only amounts to conjugating by the central element σ = −q2). Therefore,
we obtain

ϕH
n,g(x̃β ∗ x̃−1

α ) = ϕH
n,g((β ∗ α

−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i)(β ∗ α−1)(i))
k. �
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The additional rules reported here below can be deduced from the previous ones, and are extensively used in
computations.

Remark B.1. Notice that the following additional relations are a direct consequence of the computation rules of
Proposition 2.13:
Hook rule (plus variant). For every integer 0 6 k 6 n we have

= ⊗ qk(k−1) (H)

= ⊗ q−k(k−1) (H̃)

Cutting rule (variant). For every integer 0 6 k 6 n we have

=

k∑
`=0

(C̃)

where the pair of dotted red arcs on the right-hand side of the equality runs parallel in surface.
Indeed, the hook rule (and its variatn) are a direct consequence of the permutation rule, and they can be shown
by induction on the integer k > 1. Similarly, the variant of the cutting rule follows directly from the hook rule.

Appendix C. Relations between TQFTs

In Section 4.2.3, we recalled the construction, due to Kerler and Lyubashenko, of a non-semisimple TQFT
JH : 3Cob\ → H-mod out of a factorizable ribbon Hopf algebra H, following the approach of [BD21]. In this
appendix, we explain how this TQFT can be understood as part of the TQFT constructed in [DGP17, DGGPR19],
thanks to a diagram of functors

3Cob\ H-mod

3ČobtH Vectk

JH

D
2
(−,H) F

VH

(36)

Let us define the categories and functors appearing in this diagram. First of all, F : H-mod→ Vectk denotes the
forgetful functor with target the category of k-vector spaces, which simply forgets the action of H.

Next, the category 3ČobtH of admissible H-decorated cobordisms is defined as follows:
� Objects of 3ČobtH are triples = (Σ,P,L) where Σ is a closed surface, while P ⊂ Σ is a finite set of

oriented framed points labeled by H-modules, and L ⊂ H1(Σ;R) is a Lagrangian subspace.
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� Morphisms of 3ČobtH from = (Σ,P,L) to ′ = (Σ′, P ′,L′) are equivalence classes of admissible
triples M = [M,T, n], where M is a 3-dimensional cobordism from Σ to Σ′, while T ⊂ M is a bichrome
graph6 from P to P ′, and n ∈ Z is a signature defect. A triple (M,T, n) is admissible if every connected
component of M disjoint from the outgoing boundary ∂+M ∼= Σ contains an admissible subgraph of T
(meaning a bichrome graph whose blue edges feature a projective H-module among their labels). Two
triples (M,T, n) and (M ′, T ′, n′) are equivalent if n = n′, and if there exists an isomorphism of cobordisms
f : M →M ′ satisfying f(T ) = T ′.

� The composition
M′ ◦M : → ′′

of morphisms M′ ∈ 3ČobtH( ′, ′′), M ∈ 3ČobtH( , ′) is the equivalence class of the triple

(M ∪Σ′ M ′, T ∪P ′ T ′, n+ n′ − µ(M∗(L),L′,M ′∗(L′′))).

Notice that the admissibility condition we are imposing here on morphisms is different from (but equivalent to) the
one of [DGP17, DGGPR19], in the sense that the requirement only affects connected components of cobordisms
disjoint from the outgoing boundary, instead of those disjoint from the incoming one. In other words, we are
essentially considering the opposite category to the one appearing in the references. The category 3ČobtH is a
symmetric monoidal category, whose tensor product is induced by disjoint union.

Then, the functor D2
(−,H) : 3Cob\ → 3ČobtH sends every surface Σg,1 to the triple

(Σg,1 ∪S1 D2, P(−,H), ι∗(Lg)),

where Σg,1∪S1 D2 denotes the closed surface of genus g obtained from Σg,1 by gluing a disc D2 along its boundary,
P(−,H) denotes the center of the disc with negative orientation and label given by the regular representation H

(determined by left multiplication of H onto itself), and where ι∗ : H1(Σg,1;R) → H1(Σg,1 ∪S1 D2;R) is induced
by inclusion. Similarly, it sends every morphism (M,n) to the equivalence class of the triple

(M ∪S1×[0,1] (D2 × [0, 1]), P(−,H) × [0, 1], n).

Finally, VH : 3Čobt3 → Vectk denotes the TQFT constructed in [DGP17, Section 3], or equivalently in
[DGGPR19, Section 4], see [DGGPR20, Appendix C] for an explanation of the equivalence of the two approaches.
Notice that, since the definition of 3Čobt3 provided above is naturally equivalent to the opposite of the category of
admissible cobordisms considered in all these references, the TQFT VH is naturally isomorphic to the contravariant
TQFT of [DGP17, DGGPR19].

Proposition C.1. The diagram of functors (36) is commutative.

Sketch of proof. In order to show the claim, let us exchange the two algebraic models for covariant and contravariant
state spaces given in [DGGPR19, Section 4.1], and define

Xg,V := HomH( , ad⊗g ⊗ V ), X′g,V := HomH(coad⊗g ⊗ V, P )

for every integer g > 0 and for every H-module V . Here, P denotes the projective cover of the trivial H-module,
while coad denotes the coadjoint representation, which is the k-vector space H∗ equipped with the coadjoint action

(x . f)(y) = f(S(x(1))yx(2))

for all x, y ∈ H and f ∈ coad. This H-module coincides with the coend

coad =

∫ X∈H-mod

X∗ ⊗X,

which is defined as the universal dinatural transformation with source

(_∗ ⊗_) : (H-mod)op ×H-mod→ H-mod

(X,Y ) 7→ X∗ ⊗ Y,

6A bichrome graph is a ribbon graph whose edges can be either red (and unlabeled) or blue (and labeled by H-modules). Similarly,
coupons can be either bichrome (and unlabeled) or blue (and labeled by H-module intertwiners). A precise definition can be found in
[DGGPR19, Section 3.1].
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see [Ma71, Section IX.5] for a definition. Roughly speaking, coad can be equipped with a dinatural family of
intertwiners

iX : X∗ ⊗X → coad

f ⊗ v 7→ f(_ · v)

for every H-module X, where f(_ · v)(x) = f(x · v) for all x ∈ H. Dinaturality means that iX ◦ (f∗ ⊗ idX) =
iY ◦ (idY ∗ ⊗f) for every intertwiner f : X → Y , and these structure morphisms make coad into the terminal object
of the category of dinatural transformations with source (_∗ ⊗_), see for instance [FGR17, Proposition 7.1].

Exchanging the algebraic models for state spaces requires changing the pairing 〈_,_〉g,V : X′g,V ×Xg,V → k
by appropriately using the projection ε : P → instead of the injection η : → P . Now the statement of
[DGGPR19, Lemma 4.1], and its proof, can be straightforwardly translated, and the same goes for [DGGPR19,
Proposition 4.17]. This proves that

VH(D2
(−,H)(Σg,1)) ∼= HomH(H, ad⊗g).

Then, it is easy to see that

HomH(H, ad⊗g)→ ad⊗g

f 7→ f(1)

is a linear isomorphism, because the regular representation H is a free H-module of rank 1. This establishes
commutativity of the diagram at the level of objects.

In order to prove commutativity at the level of morphisms, it is useful to recall the skein description of state
spaces of [DGGPR19, Section 4.7], which provides an isomorphism

ad⊗g → VH(D2
(−,H)(Σg,1))

x1 ⊗ . . .⊗ xg 7→ [Hg, Tx1⊗...⊗xg0]

where, using the diagrammatic conventions of Section 4.2.2, the bichrome graph Tx1⊗...⊗xg is given by

Tx1⊗...⊗xg =

with the vector x1 ⊗ . . . ⊗ xg ∈ ad⊗g also abusively denoting the corresponding intertwiner in HomH(H, ad⊗g).
Then, we need to check that, for every top tangle T representing a framed cobordism (M(T ), n(T )) in 3Cob\, we
have

VH(D(−,H)(M(T ), n(T )))[Hg, Tx1⊗...⊗xg , 0] = JH(M(T ), n(T ))(x1 ⊗ . . .⊗ xg).
Notice that, thanks to [BP11, Theorem 5.5.4], it is sufficient to restrict our attention to the set of generating
morphisms of 3Cob\ given in [BD21, Section 6.3]. Then, using the BPH algebra structure on the end given
in [BD21, Section 7.1], the claim can be established by suitable skein equivalences. For instance, the product
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cobordism yields

.
=

while the coproduct cobordism yields

.
=

and the antipode cobordism yields

.
=

Then, by comparing with the explicit case of the transmutation discussed in [BD21, Section 7.2], it is easy to check
that the algorithm of Section 4.2.4 provides the same computations. We leave details, as well as the rest of the
generating morphisms, to the reader. �

In particular, thanks to [DGGPR20, Theorem 4.4], the quantum representations of Section 4.2 are equivalent
to those defined by Lyubashenko in [Ly94].

Appendix D. Quantum identities

In this section, we collect identities that are used extensively in all quantum computations.
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D.1. Computations in integral bases. First of all, we compute coproducts and antipodes in integral bases.

Lemma D.1. For all integers 0 6 a, b, c 6 r − 1 we have

∆(F (a)EbTc) =

r−1∑
d=0

a∑
i=0

b∑
j=0

[
b
j

]
ζ

ζ(a+2c)i+bj−2d(i+j)−(i+j)2F (a−i)EjTc−d ⊗ F (i)Eb−jTd, (37)

S(F (a)EbTc) = (−1)a+bζ(a−b+2c−1)(a−b)T−cE
bF (a). (38)

Proof. [KS97, Chapter 3, Proposition 5] gives

∆(F `KmEn) =
∑̀
i=0

n∑
j=0

[
`
i

]
ζ

[
n
j

]
ζ

ζi(`−i)−j(n−j)F `−iKm−iEj ⊗ F iKm+jEn−j ,

S(F `KmEn) = (−1)`+nζ`(`−1)−n(n−1)EnK`−m−nF `.

Furthermore

∆(Tc) =
1

r

r−1∑
b=0

ζ2bc∆(Kb) =
1

r

r−1∑
d=0

ζ2bcKb ⊗Kb =
1

r

r−1∑
c,d=0

ζ2b(c−d)Kb ⊗ Td =

r−1∑
d=0

Tc−d ⊗ Td,

S(Tc) =
1

r

r−1∑
b=0

ζ2bcS(Kb) =
1

r

r−1∑
b=0

ζ2bcK−b = T−c.

Using this, it easy to check the claim. �

Next, we derive an explicit formula for the ribbon element and its inverse.

Lemma D.2. The ribbon element v ∈ uζ and its inverse v−1 ∈ uζ are given by

v =

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 +2(a−b+1)bF (a)EaTb (39)

=

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 −2(a+b+1)bEaF (a)Tb, (40)

v−1 =
r−1∑
a,b=0

ζ
(a+3)a

2 −2(a−b+1)bF (a)EaTb (41)

=

r−1∑
a,b=0

ζ
(a+3)a

2 +2(a+b+1)bEaF (a)Tb. (42)

Proof. On one hand, Equation (39) can be obtained by computing the Drinfeld element

u =

r−1∑
a,b=0

ζ
a(a−1)

2 S(K−bF (a))TbE
a =

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 F (a)Ka+bTbE
a =

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 −2(a+b)bF (a)TbE
a

=

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 −2(a+b)bF (a)EaTa+b,

where the first equality follows from

S(K−bF (a)) = (−1)aζ−(a+1)aF (a)Ka+b.
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Since v = uK−1, we obtain

v =

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 −2(a+b)bF (a)EaTa+bK
−1 =

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 −2(a+b)(b−1)F (a)EaTa+b

=

r−1∑
a,b=0

(−1)aζ−
(a+3)a

2 +2(a−b+1)bF (a)EaTb.

Equation (40) follows from the identity S(v) = v, together with Equation (38).
Equation (41) can be obtained by computing the Drinfeld element

u−1 =

r−1∑
a,b=0

ζ
a(a−1)

2 TbF
(a)S2(K−bEa) =

r−1∑
a,b=0

ζ
(a+3)a

2 TbF
(a)K−bEa =

r−1∑
a,b=0

ζ
(a+3)a

2 −2(a−b)bF (a)T−a+bE
a

=

r−1∑
a,b=0

ζ
(a+3)a

2 −2(a−b)bF (a)EaTb,

where the first equality follows from
S2(K−bEa) = ζ2aK−bEa.

Since v−1 = u−1K, we obtain

v−1 =

r−1∑
a,b=0

ζ
(a+3)a

2 −2(a−b)bF (a)EaTbK =

r−1∑
a,b=0

ζ
(a+3)a

2 −2(a−b+1)bF (a)EaTb.

Equation (42) follows from the identity S(v−1) = v−1, together with Equation (38). �

Finally, we provide formulas for commutators.

Lemma D.3. For all integers 0 6 a, b,m 6 r − 1, we have

F (a)EbTc =

min{a,b}∑
k=0

[
b
k

]
ζ

{a− b+ 2c; k}ζEb−kF (a−k)Tc, (43)

TaF
(b)Ec =

min{b,c}∑
k=0

[
c
k

]
ζ

{2a− b+ c; k}ζTaEc−kF (b−k), (44)

where {n; k}ζ :=
∏k−1
j=0{n− j}ζ for all integers 0 6 k 6 n.

Proof. If we apply the algebra isomorphism ω : uζ → uζ defined by

ω(E) = F, ω(F ) = E, ω(K) = K−1,

to [KS97, Equation (5), Section 3.1.1], we obtain

F aEb =

min{a,b}∑
k=0

[
a
k

]
ζ

[
b
k

]
ζ

[k]ζ !E
b−kF a−k

k−1∏
j=0

ζa−b−jK−1 − ζ−a+b+jK

{1}ζ

 .

which means that

F (a)EbTc =

min{a,b}∑
k=0

[
b
k

]
ζ

Eb−kF (a−k)

k−1∏
j=0

ζa−b−jK−1 − ζ−a+b+jK

Tc

=

min{a,b}∑
k=0

[
b
k

]
ζ

{a− b+ 2c; k}ζEb−kF (a−k)Tc.
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This implies

TaF
(b)Ec = F (b)EcTa−b+c =

min{b,c}∑
k=0

[
c
k

]
ζ

{2a− b+ c; k}ζEc−kF (b−k)Ta−b+c

=

min{b,c}∑
k=0

[
c
k

]
ζ

{2a− b+ c; k}ζTaEc−kF (b−k). �

D.2. A formula by Murakami. The following formula holds in Z[q, q−1], where q is a generic parameter, and is
equivalent to [Mu08, Lemma A]. We prove it using quantum calculus, but the reader might guess a homological
diagrammatic proof using computation rules in punctured discs (see [Ma20a, Example 4.6 & Corollary 4.11]).

Lemma D.4. For all n ∈ Z and k ∈ N we have

{n; k}q =

k∑
`=0

(−1)k+`

[
k
`

]
q

q
k(k−1)

2 −n(k−2`)−(k−1)`. (45)

Proof. Equation (45) can be proven by induction on k ∈ N. For k = 0 we have

{n; 0}q = 1 =

0∑
`=0

(−1)`
[
0
`

]
q

q2n`+`.

For k > 0 we have

{n; k}q = {n; k − 1}q{n− k + 1}q =

k−1∑
`=0

(−1)k+`+1

[
k − 1
`

]
q

{n− k + 1}qq
(k−1)(k−2)

2 −n(k−2`−1)−(k−2)`

=

k−1∑
`=0

(−1)k+`+1

[
k − 1
`

]
q

(qn−k+1 − q−n+k−1)q
(k−1)(k−2)

2 −n(k−2`−1)−(k−2)`

=

k−1∑
`=0

(−1)k+`+1

[
k − 1
`

]
q

q
(k−1)(k−2)

2 −n(k−2(`+1))−(k−2)(`+1)−1 +

k−1∑
`=0

(−1)k+`

[
k − 1
`

]
q

q
k(k−1)

2 −n(k−2`)−(k−2)`

=

k∑
`=1

(−1)k+`

[
k − 1
l − 1

]
q

q
(k−1)(k−2)

2 −n(k−2`)−(k−2)`−1 +

k−1∑
`=0

(−1)k+`

[
k − 1
`

]
q

q
k(k−1)

2 −n(k−2`)−(k−2)`

= (−1)k
[
k − 1

0

]
q

q
k(k−1)

2 −nk +

k−1∑
`=1

(−1)k+`

([
k − 1
l − 1

]
q

q−k+` +

[
k − 1
`

]
q

q`

)
q
k(k−1)

2 −n(k−2`)−(k−1)`

+

[
k − 1
k − 1

]
q

q
(k−1)(k−2)

2 +nk−(k−2)k−1.

Now we can use the identity [
k
`

]
q

=

[
k − 1
l − 1

]
q

q−k+` +

[
k − 1
`

]
q

q`,

compare with [Ja96, Section 0.2, Equation (1)]. This yields

{n; k}q = (−1)kq
k(k−1)

2 −nk +

(
k−1∑
`=1

(−1)k+`

[
k
`

]
q

q
k(k−1)

2 −n(k−2`)−(k−1)`

)
+ q−

k(k−1)
2 +nk

=

k∑
`=0

(−1)k+`

[
k
`

]
q

q
k(k−1)

2 −n(k−2`)−(k−1)`. �
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Appendix E. Computations for higher genus surfaces

In this appendix, we provide detailed computations for the homological and quantum actions of the Dehn twist
τγ = τγ1 ∈ Mod(Σ2,1) of Section 2.4, whose results were announced in Sections 3.2 and 5.2, respectively.

E.1. Homological computation. We start with the homological action.

Proof of Lemma 3.5. Using Proposition 2.13 and Remark B.1, we obtain

ρV2 (τγ)
(
Γ̃ (a1, b1; a2, b2)⊗ v(c1,c2)

)

= ⊗ ψVg (τγ)v(c1,c2)

(C̃)
=

a2∑
k2=0

⊗

(
r−1∑
`=0

ζ−2(`+1)`A−`1 A`2

)
v(c1,c2)

(P)
(B)
=

a2∑
k2=0

⊗

(
r−1∑
`=0

ζ−2(`+1)`−4c1`+4c2`

)

ζ2b1k2(A2B
−1
1 A1B1A

−1
2 )k2v(c1,c2)

(C̃)
= i

r−1
2
√
rζ2(c1−c2+1)(c1−c2)+ r+1

2

a2∑
k2=0

b2∑
j2=0

⊗ ζ2b1k2+4(c1+1)k2v(c1,c2)
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(P)
(B)
∝ ζ2(c1−c2+1)(c1−c2)

a2∑
k2=0

b2∑
j2=0

⊗ ζ2(b1+2c1+2)k2+2(b1+a2−k2)j2Bj22 v(c1,c2)

(F)
= ζ2(c1−c2+1)(c1−c2)

a2∑
k2=0

b2∑
j2=0

⊗
[
j2 + k2

j2

]
ζ

ζj2k2−2j2k2+2(b1+a2)j2+2(b1+2c1+2)k2v(c1,c2+j2)

(C)
= ζ2(c1−c2+1)(c1−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

⊗
[
j2 + k2

j2

]
ζ

ζ−j2k2+2(b1+a2)j2+2(b1+2c1+2)k2v(c1,c2+j2)

(P)
(H̃)
(B)
= ζ2(c1−c2+1)(c1−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

⊗
[
j2 + k2

j2

]
ζ

ζ−j2k2+2(b1+a2)j2+2(b1+2c1+2)k2

ζ(i2−k2)(i2−k2−1)+2(a2−i2)(a2−k2−1)+2b1(a2−k2)(B−1
1 A1B1A

−1
2 )a2−k2v(c1,c2+j2)
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(O)
(F)
= ζ2a2(b1+a2−1)+2(c1−c2+1)(c1−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

(−1)i2+k2

⊗
[
i2 + j2
j2, k2

]
ζ

ζ(i2−k2)(j2+k2)

ζ(i2+1)i2+(k2+5)k2−j2k2−2a2i2+2(b1+a2)j2+2(2c1−a2)k2+4(a2−k2)(c1−c2−j2+1)v(c1,c2+j2)

(C)
= ζ2a2(b1+a2−1)+2(c1−c2+1)(c1+2a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

(−1)i2+k2

⊗
[
i2 + j2
j2, k2

]
ζ

ζ(i2+1)i2+i2j2+i2k2−2j2k2−2a2i2+2(b1+a2)j2−(2a2−4c2−1)k2v(c1,c2+j2)

(P)
(H̃)
(B)
= ζ2a2(b1+a2−1)+2(c1−c2+1)(c1+2a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

(−1)i2+k2

⊗
[
i2 + j2
j2, k2

]
ζ

ζ(i2+1)i2+i2j2+i2k2−2j2k2−2a2i2+2(b1+a2)j2−(2a2−4c2−1)k2

ζk1(k1−1)+2(b1−k1)(b1−1)+2b1(a2−i2)(B−1
1 A1B1A

−1
2 )b1v(c1,c2+j2)
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(O)
(F)
= ζ2(b1+a2)(b1+a2−1)+2(c1−c2+1)(c1+2a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

(−1)k1+i2+k2

⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

ζk1(i2+j2)

ζ(k1+1)k1+(i2+1)i2+i2j2+i2k2+2j2k2−2b1k1−2(b1+a2)i2+2(b1−a2)j2−(2a2−4c2−1)k2+4b1(c1−c2−j2+1)v(c1,c2+j2)

(C)
= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

(−1)k1+i2+k2

⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

ζ(k1+1)k1+(i2+1)i2+k1i2+k1j2+i2j2+i2k2+2j2k2−2b1k1−2(b1+a2)i2−2(b1+a2)j2−(2a2−4c2−1)k2v(c1,c2+j2)

(B)
(P)
= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

(−1)k1+i2+k2

⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

ζ(k1+1)k1+(i2+1)i2+k1i2+k1j2+i2j2+i2k2+2j2k2−2b1k1−2(b1+a2)i2−2(b1+a2)j2−(2a2−4c2−1)k2

ζ2(b1+`)(`−i2−j2)(B−1
1 A−1

1 B1)−`+i2+j2v(c1,c2+j2)
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(P)
(B)
(F)
= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

(−1)k1+i2+k2

⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

ζ−(a2−i2)(`−i2−j2)

ζ(k1+1)k1+2`2+(i2+1)i2+k1i2+k1j2−2`i2−2`j2+i2j2+i2k2+2j2k2−2b1k1+2b1`−2(2b1+a2)i2−2(2b1+a2)j2−(2a2−4c2−1)k2

ζ2a1(k1+`)+4(c1+1)(`−i2−j2)A−k1−`1 v(c1,c2+j2)

(O)
(22)
= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)

a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
j1=0

k1−j1+`∑
i1=0

(−1)j1+`+i2+k2

Γ̃ (a1 + i1, b1 − i1 + `; a2 − `+ j2, b2 − j2)⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
a1 + i1
a1

]
ζ

[
b1 − i1 + `
b1 − k1, j1

]
ζ

ζ−(k1+`+3)(k1+`)−(2a1+b1−k1)(k1+`)+i1j1+(a1+b1−k1)i1+(2b1−k1+`+3)j1

ζ(k1+1)k1+2(`+2)`+k1i2+k1j2−`i2−2`j2+i2k2+2j2k2

ζ2(a1−b1)k1+(2a1+2b1+4c1−a2)`−(4b1+4c1+a2+3)i2−(4b1+4c1+a2+4)j2−(2a2−4c2−1)k2

ζ−4c1(k1+`)Bi11 A
j1
1 v(c1,c2+j2)

= ζ2(b1+c1+a2−c2+1)(b1+c1+a2−c2)
a2∑
k2=0

b2∑
j2=0

a2∑
i2=k2

b1∑
k1=0

i2+j2∑
`=−k1

k1+`∑
j1=0

k1−j1+`∑
i1=0

(−1)j1+`+i2+k2

Γ̃ (a1 + i1, b1 − i1 + `; a2 − `+ j2, b2 − j2)⊗
[
k1 + i2 + j2
k1, j2, k2

]
ζ

[
a2 − `+ j2
a2 − i2

]
ζ

[
a1 + i1
a1

]
ζ

[
b1 − i1 + `
b1 − k1, j1

]
ζ

ζk1(k1−2)+(`+1)l+i1j1−i1k1−j1k1+j1`−k1`+k1i2+k1j2−`i2−2`j2+i2k2+2j2k2

ζ(a1+b1)i1+(2b1+3)j1−(3b1+4c1)k1+(b1−a2)`−(4b1+4c1+a2+3)i2−(4b1+4c1+a2+4)j2−(2a2−4c2−1)k2+4c1j1v(c1+i1,c2+j2). �

E.2. Quantum computation. We finish with the quantum action.

Proof of Lemma 5.5. First of all, using Lemmas D.1 and D.2, we obtain

S(v−1
(1))⊗ v

−1
(2)

(41)
(37)
=

r−1∑
a,b,c=0

a∑
i,j=0

[
a
j

]
ζ

ζ
(a+3)a

2 −2(a−b+1)b+(a+2b)i+aj−2c(i+j)−(i+j)2S(F (a−i)EjTb−c)⊗ F (i)Ea−jTc

(38)
=

r−1∑
a,b,c=0

a∑
i,j=0

[
a
j

]
ζ

ζ
(a+3)a

2 −2(a−b+1)b+(a+2b)i+aj−2c(i+j)−(i+j)2

(−1)a+i+jζ(a+2b−2c−i−j−1)(a−i−j)T−b+cE
jF (a−i) ⊗ F (i)Ea−jTc

=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a+i+j

[
a
j

]
ζ

ζ
(3a+1)a

2 +2b(b−1)−2ac−(a−1)i−(a+2b−1)jT−b+cE
jF (a−i) ⊗ F (i)Ea−jTc.
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Then, using Proposition 4.2, we obtain

ρ
uζ
2 (τγ)

(
E`1Tm1F

(n1) ⊗ E`2Tm2F
(n2)
)

= E`1Tm1F
(n1)S(v(1))⊗ v(2)E

`2Tm2F
(n2)

=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a+i+j

[
a
j

]
ζ

ζ
(3a+1)a

2 +2b(b−1)−2ac−(a−1)i−(a+2b−1)j

E`1Tm1
F (n1)T−b+cE

jF (a−i) ⊗ F (i)Ea−jTcE
`2Tm2

F (n2)

=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a+i+j

[
a
j

]
ζ

ζ
(3a+1)a

2 +2b(b−1)−2ac−(a−1)i−(a+2b−1)j

E`1Tm1
Tn1−b+cF

(n1)EjF (a−i) ⊗ F (i)E`2+a−jT`2+cTm2
F (n2)

=

r−1∑
a,b,c=0

a∑
i,j=0

(−1)a+i+j

[
a
j

]
ζ

ζ
(3a+1)a

2 +2b(b−1)−2ac−(a−1)i−(a+2b−1)jδb,−m1+n1−`2+m2δc,−`2+m2

E`1Tm1F
(n1)EjF (a−i) ⊗ F (i)E`2+a−jTm2F

(n2)

=

r−1∑
a=0

a∑
i,j=0

(−1)a+i+j

[
a
j

]
ζ

ζ
(3a+1)a

2 +2(m1−n1+`2−m2+1)(m1−n1+`2−m2)+2(`2−m2)a−(a−1)i+(2m1−2n1+2`2−2m2−a+1)j

E`1Tm1
F (n1)EjF (a−i) ⊗ F (i)E`2+a−jTm2

F (n2).

Using Lemma D.3, we obtain

ρ
uζ
2 (τγ)

(
E`1Tm1

F (n1) ⊗ E`2Tm2
F (n2)

)
(43)
(44)
= ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)

r−1∑
a=0

a∑
i,j=0

j∑
k=0

i∑
h=0

(−1)a+i+j

[
a
j

]
ζ

[
j
k

]
ζ

[
`2 + a− j

h

]
ζ

{2m1 − n1 + j; k}ζ{−`2 + 2m2 − a+ i+ j;h}ζ

ζ
(3a+1)a

2 +2(`2−m2)a−(a−1)i+(2m1−2n1+2`2−2m2−a+1)jE`1Tm1E
j−kF (n1−k)F (a−i) ⊗ E`2+a−j−hF (i−h)Tm2F

(n2)

= ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)
r−1∑
a=0

a∑
i,j=0

j∑
k=0

i∑
h=0

(−1)a+i+j

[
a

j − k, k

]
ζ

[
`2 + a− j

h

]
ζ

[
n1 + a− i− k

n1 − k

]
ζ

{2m1 − n1 + j; k}ζ{−`2 + 2m2 − a+ i+ j;h}ζ

ζ
(3a+1)a

2 +2(`2−m2)a−(a−1)i+(2m1−2n1+2`2−2m2−a+1)j

E`1+j−kTm1+j−kF
(n1+a−i−k) ⊗ E`2+a−j−hTm2+i−hF

(i−h)F (n2)

= ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)
r−1∑
a=0

a∑
i,j=0

j∑
k=0

i∑
h=0

(−1)a+i+j

[
a

j − k, k

]
ζ

[
`2 + a− j

h

]
ζ

[
n1 + a− i− k

n1 − k

]
ζ

[
n2 + i− h

n2

]
ζ

{2m1 − n1 + j; k}ζ{−`2 + 2m2 − a+ i+ j;h}ζ

ζ
(3a+1)a

2 +2(`2−m2)a−(a−1)i+(2m1−2n1+2`2−2m2−a+1)j

E`1+j−kTm1+j−kF
(n1+a−i−k) ⊗ E`2+a−j−hTm2+i−hF

(n2+i−h).
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If we change variables by setting b = −a+ i+ j, i1 = k, j1 = j − k, i2 = i− h, and k2 = a− j, we obtain

ρ
uζ
2 (τγ)

(
E`1Tm1

F (n1) ⊗ E`2Tm2
F (n2)

)
= ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)

r−1∑
j1=0

r−j1−1∑
i1=0

r−i1−j1−1∑
k2=0

i1+j1∑
b=−k2

b+k2∑
i2=0

(−1)b[
i1 + j1 + k2

i1, j1

]
ζ

[
`2 + k2

b− i2 + k2

]
ζ

[
n1 − b+ j1
n1 − i1

]
ζ

[
n2 + i2
n2

]
ζ

{2m1 − n1 + i1 + j1; i1}ζ{−`2 + 2m2 + b; b− i2 + k2}ζ

ζ
(3i1+3j1+3k2+1)(i1+j1+k2)

2 +2(`2−m2)(i1+j1+k2)−(i1+j1+k2−1)(b+k2)+(2m1−2n1+2`2−2m2−i1−j1−k2+1)(i1+j1)

E`1+j1Tm1+j1F
(n1+j1−b) ⊗ E`2−b+i2Tm2+i2F

(n2+i2)

= ζ2(m1−n1+`2−m2+1)(m1−n1+`2−m2)
r−1∑
j1=0

r−j1−1∑
i1=0

r−i1−j1−1∑
k2=0

i1+j1∑
b=−k2

b+k2∑
i2=0

(−1)b[
i1 + j1 + k2

i1, j1

]
ζ

[
`2 + k2

b− i2 + k2

]
ζ

[
n1 − b+ j1
n1 − i1

]
ζ

[
n2 + i2
n2

]
ζ

{2m1 − n1 + i1 + j1; i1}ζ{−`2 + 2m2 + b; b− i2 + k2}ζ

ζ
(i1+j1+k2+3)(i1+j1+k2)

2 −(i1+j1+k2−1)b+2(m1−n1+2(`2−m2))(i1+j1)+2(`2−m2)k2

E`1+j1Tm1+j1F
(n1+j1−b) ⊗ E`2−b+i2Tm2+i2F

(n2+i2). �
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