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Abstract: This study presents a review of prognostic methods applied to automotive proton exchange membrane fuel cell
(PEMFC). PEMFC durability is strongly affected when it is subjected to automotive load cycling (ALC). ALC is normally
composed of four operation modes such as start-up, idle, transient high-current demand and shutdown. All of these operation
modes drastically change the internal variables of the system like temperature, pressure, relative humidity etc. causing
degradation of the fuel cell components in a short time. Prognostic methods could be a possible solution to tackle the PEMFC's
low durability issue because they allow predicting the remaining useful life of the system in order to apply preventive
maintenance plans. Therefore, the objective of this study is to review the prognostic techniques applied to PEMFC under ALC.
In the first part of this study, a summary of PEMFC degradation mechanisms caused by ALC is realised based on literature
review. In the second part, the prognostic methods review for automotive PEMFCs is carried out and a general synthesis and
future challenges are given in the third part of the study.

1 Introduction
The low-temperature operation, high energy density (high
autonomy), low-noise level generated and zero CO2 emissions to
the atmosphere are some of the positive features of proton
exchange membrane fuel cell (PEMFC). All of these characteristics
have motivated engineers to use PEMFC in different applications
such as transport [1], stationary [2] or electronic portable devices
[3]. Transport application is interesting because it could improve
the quality of air and the comfort of citizens by reducing the noise
level produced by the conventional gasoline/diesel transport.
However, PEMFC stack presents generally two drawbacks which
block the industrial development of this technology: a short
lifetime under automotive load cycling (ALC) and the high cost of
manufacturing of its components.

The US Department of Energy (ODE) [4] defines the objectives
in terms of energy cost and a lifetime of automotive PEMFC so
that it can be competitive against conventional transport. The target
cost should be around $30 kW and the lifetime target should be:
5000 h for vehicles and 20,000 h for buses.

The PEMFC lifetime strongly depends on the material of the
components [electrodes, membrane, gas diffusion layer (GDL) and
bipolar plates], the gas contaminants and the working conditions
imposed by the used load profile. An automotive load profile
normally leads to serious difficulties for the thermal, gasses and the
water management system of PEMFC [5]. These difficulties can
induce to reversible degradations such as flooding or drying
membrane condition [6, 7] and irreversible degradations such as
membrane rupture, platinum dissolution, carbon corrosion, GDL
deformation, etc. [8–10]. All of these reversible and irreversible
degradations accelerate the normal deterioration of the system [11].

Four principal modes are normally identified in a regular ALC:
the start-up/shutdown, idle, high current demand and load variation
in a short time [12]. These modes directly influence on the
operation conditions and thus on the PEMFC durability if there is
not an adequate thermal, gas and water management. However,
start-up/shutdown and fast load variation cycles seem to be the two
modes which could affect in greater proportion the fuel cell (FC)
lifetime [13]. One study realised under laboratory conditions
confirms that start-up/shutdown and fast load variation cycles

contribute to 44 and 28% to the PEMFC degradation, respectively
[14]. This can be due to the fact that PEMFC presents a low power
dynamic and thus it cannot accept high-power demand in a short
period of time [15].

Prognostic and health management (PHM) strategy presents a
potential solution to extend automotive PEMFC durability. This
strategy is principally based on three activities: data collection,
analysis and decision-making. Data collection concerns the system
characterisation and data processing. Analysis realises two
important tasks: the diagnostic and prognostic. Diagnostic
determines the actual state of health (SoH) of the system and the
failures are classified. Prognostic predicts the future evolution and
declare the remaining useful life (RUL) of the system. For the third
activity, all of the information is evaluated in order to make
decisions regarding the planning of preventive maintenance actions
[16]. Based on this, PHM strategy decreases the costly reparation
working and teaches how to better operate the system in order to
avoid the expected faults.

Nowadays, prognostic is considered as a key activity of the
PHM strategy because it can provide the RUL of the system,
therefore, some prevention actions and energy management
strategies can be applied. This could improve the performance,
extend the lifetime and reduce the repairing works of FCs. Three
approaches are identified to forecast the automotive PEMFC RUL:
data-driven, model-based and hybrid approaches. The data-driven
approach uses intelligent computation methods such as neural
network [17], machine learning (ML) [18], neuro-fuzzy inference
system [19] or relevance vector machine (RVM) [20], to train a
behavioural model based on degradation data. Model-based uses
less degradation data but it requires deep knowledge about the
degradation mechanisms of the system in order to develop a
physical model. Moreover, the physical model parameters should
be identified. Hybrid method combines the physical model with
intelligent computation methods.

Considering the low durability and the high interest of PEMFC
for transport applications, a publication that makes a review of
prognostic methods applied to FC vehicle load cycles is lacking.
Therefore, this paper puts in evidence the actual state of the art of
prognostic applied only to automotive PEMFC. This works reviews
each technique concerning: the achieved prediction horizon (PH),
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the used health indicator and the accuracy of the performed
prognostic. To achieve this aim, the paper is organised as follows:
Section 2 presents the main degrading factors of the PEMFC
structure caused by driving cycles. Section 3 presents the concepts
of prognostic, SoH and RUL then the works on prognostic methods
under ALC are reviewed. Section 4 presents a general synthesis of
the review and the future challenges. Section 5 presents the
conclusions.

2 PEMFC degradation in automotive applications
PEMFC can reach a lifetime of 30.000 h when it is subjected to
constant power profiles. However, this energy source drastically
accelerates its degradation process under vehicle and
humidification and thermal load cycling, in this case, the PEMFC
lifetime is reduced to <5.000 h [4]. A classical ALC is
characterised by start-up/shutdown cycling, idle cycling, high-
power demand cycling and fast load changing cycling as is
presented in Fig. 1. The humidification and thermal cycling
represent the temperature and relative humidity (RH) variations
during operation influenced by the used profile load. Both the load
and the thermal-RH cycling impact directly the PEMFC structure
(membrane, electrodes, GDL and bipolar plates) contributing to
materials deterioration and thus the system ageing.

2.1 Variable load cycling

Start-up and shutdown repetitions can lead to a high differential
potential, which provokes carbon corrosion [22]. This irreversible
degradation occurs in the presence of a H2 − O2 atmosphere at the
anode due to stop modes for a long time which cause the reactant
crossover phenomenon. This phenomenon consists of the cross of
oxygen gases through the membrane from cathode to anode. When
hydrogen is introduced into the anode side due to the start-up
mode, the hydrogen cannot occupy all the active area because of
the presence of oxygen. At that time, a high potential [close to the
open-circuit voltage (OCV) value] occurs in the cathode side which
leads to a carbon (C) corrosion [10, 12, 23]. A similar phenomenon
occurs during the shutdown if the anode is filled with oxygen.

Idle cycling can also affect the PEMFC durability, especially if
the FC vehicle has to stop for a long time in this case, the PEMFC
is only providing the auxiliaries power demand. This power

demand is generally low and thus all the cells of the stack
experiment a high voltage (0.9–0.95 V) close to the OCV
condition. OCV condition impacts directly over the electrodes
causing dissolution of platinum (Pt) particles and carbon support
corrosion. Moreover, these Pt particles are deposited over the
polymer membrane forming a Pt band [9]. Therefore, the effective
electrochemical surface area (ECSA) and the membrane protonic
conductivity are reduced. These irreversible degradations can
rapidly cause a high drop of the PEMFC performance.

PEMFC can suffer from gas starvation due to its limited power
dynamic [24]. The gas starvation phenomenon occurs in the
presence of fast load changing cycles and when the system presents
poor H2/O2 supply management [25]. This phenomenon causes
carbon support corrosion of the catalytic layer and the reduction of
the effective ECSA area. Then, these degradations lead to
electrochemical reaction losses.

High current demand tends to cause local hot spots over the
membrane by the temperature rise. In this way, hot spots can
provoke pinholes in the membrane and Pt particle sintering
affecting the effective ECSA area of electrodes. High potential
cycling under low RH of the reactant gases causes corrosion of the
Pt/C electrodes and GDL degradation [5].

2.2 Humidification and thermal cycling

Humidification and thermal cycling in an automotive PEMFC are
generally caused by the variable load cycling. Water and thermal
management subsystems are necessary to buffer the temperature
and hydration state against variable loads. In one hand, if there is
poor thermal management, i.e. a high operation temperature, more
than 80°C, the system will present serious issues regarding the
performance and component deterioration. In terms of
performance, the PEMFC reduces its power dynamic response and
increases the start-up time [26]. In terms of component
deterioration, the high temperature can cause membrane thinning
and promote the Pt particle growth [27, 28]. In the other hand, if
there is inadequate water management, the PEMFC will also face
difficulties regarding components degradation and performance
losses caused by flooding and drying conditions.

Flooding condition, which is caused by a bad purge
management strategy, can block the GDL pores. When GDL pores
are blocked the reactant gas from the bipolar plates cannot reach
the catalytic layer and the apparent active surface can decrease
inducing a loss of performance. Moreover, the water excess
accelerates the corrosion of electrodes, the GDL and the membrane
[29]. Membrane drying is caused, primarily, by insufficient
humidification, water evaporation and the electro-osmosis effect
[30]. This drying condition can affect the normal process inside the
PEMFC stack such as reduction of protonic conductivity through
the membrane. Moreover, experimental results show that a
dehydrated membrane is more sensitive to hole creation, which can
facilitate the membrane fracture [9]. A synthesis of the main ALC
effects on the PEMFC components is summarised in Table 1. 

Fig. 1  Classic ALC [21]
 

Table 1 Synthesis of the ALC effects on the PEMFC structure
Cycle Operation condition Degradation type PEMFC component Ref.
start-up/shutdown high potential, OCV carbon corrosion, Pt dissolution Pt/C electrodes  [22, 31]

 [12, 32]
 [10]

idle OCV, high potential Pt particles dissolution Pt/C electrodes and membrane  [9, 33]
Pt particles deposition over the membrane  [34]

fast load variations high current, high temperature carbon support corrosion, active surface loss Pt/C electrodes, GDL  [25, 32]
GDL structure deformation  [35]

high current demand high current and high temperature pinholes creation in the membrane Pt/C electrodes and membrane  [5, 36]
Pt particle sintering

thermal high temperature and low RH protonic conductivity loss, membrane fracture membrane  [9, 37]
low temperature and high RH GDL pores blocked, active surface loss GDL, Pt/C electrodes, membrane  [29, 38]

electrodes corrosion
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3 Prognostic methods under ALC
This section first introduces the prognostic, the SoH and the RUL
definition. Second, the prognostic methods are reviewed and are
classified into three categories: model-based, data-based and
hybrids as is well summarised in Table 2. 

3.1 Introduction to prognostic

Before reviewing the work on prognostic methods under ALC, the
concept of prognostic is introduced in this subsection. Moreover,
the two principal steps to do prognostic are presented afterwards.

3.1.1 Definition: The concept of prognostic is based on the
strategy ‘predict to prevent’ instead of ‘fail to fix’ used by
diagnostic. This basic idea of prognostic allows to design
preventive maintenance schemes in order to improve the safety,
reliability, performance and reduce the repair cost of the system.
That is why the prognostic activity has recently gained much of
interest for academy and industry.

In the literature, there are several definitions of prognostic [56],
but some authors are not too clear and to confuse the concept of
prognostic with diagnostic [57, 58]. In order to normalise the
concept of prognostic, this paper considers the proposed definition
which is given by the International Organization for
Standardization: prognostic is an estimation of time to failure and
risk for one or more existing and future failures modes [59].
Accordingly, prognostic is a process whose main objective is to
estimate the RUL before a failure occurs based on the actual SoH
of the system.

3.1.2 Prognostic process: Regardless of the approach used (data-
driven, model based or hybrid approach), the prognostic process is
divided into two phases: the learning phase and the prediction

phase. During the learning phase, a degradation model is trained
using parameter measurements of interest from sensors. The
degradation model is adjusted to the real system in order to
estimate the current SoH of the system. The SoH of the system is
linked to a selected health indicator, this index can be directly
related to the component deterioration such as a degradation
mechanism, e.g. the electrode degradation or indirectly related to
the studied fault such as the voltage. The training phase finalise
when no more historical data are available which corresponds to
the time of prediction beginning tp . Once the degradation model
is trained, this is used to estimate the system evolution until the
chosen failure criterion tf  is reached, this period of time is also
known in the literature as the PH. The RUL can be obtained by the
difference between tf and tp. The entire process is presented in
Fig. 2. 

3.2 Model-based method

Model-based prognostics can be classified into three categories:
Bayesian filter approach (BFA), empirical models based on the
operation conditions and component degradation models based on
the physical knowledge of the system [60].

3.2.1 Bayesian filter approach: Bayesian filtering approaches
such as particle filter (PF) or Kalman filters (KFs) are widely used
in literature to predict the PEMFC RUL [61–63]. However, PF
presents some disadvantages in the degradation prediction of
PEMFC under ALC. PF has the particularity of being able to
handle non-linear models with non-Gaussian noise but it is
computationally costly. To overcome this issue, KFs such as the
extended KF (EKF) and the unscented KF (UKF) are more used for
automotive PEMFC.

A methodology used by Celaya et al. [64] for electrolytic
capacitor prognosis is adapted for PEMFC lifespan prediction. The
principal steps of this methodology are presented in Fig. 3. The
first step consists of collecting data from the real PEMFC to adapt
a degradation model and to validate the results of the proposed
method. The second step is related to selecting the ageing
parameters to be estimated. The third step is dedicated to building
the deterioration model based on the selected ageing parameters.
The two latter steps, the SoH and the RUL estimation are normally
carried out by using the EKF or UKF algorithm combined with the
degradation model.

Bressel et al. [39] presented the first work on PEMFC RUL
estimation using BFA under an automotive data set of 175 h
obtained in the laboratory. The authors propose an empirical
degradation model based on the EKF algorithm to estimate the
SoH and the RUL of an eight-cells PEMFC stack of CEA Liten.
The PEMFC is subjected to a driving cycle aiming at simulating
the power demand of an electric vehicle. The degradation models
are linear and describe the evolution of the internal resistance and
the limit current. However, both health indicators are lumped in
one empirical parameter to be estimated. The algorithm is able to
estimate the RUL after 40 h of operation by following a linear
degradation pattern. Moreover, this algorithm only takes 22 s to

Table 2 Review summary
Method Approach/technique Health indicator Citations
model-based BFA voltage (internal resistance, limit current) Bressel et al. [39]

voltage (empirical parameters) Chen et al. [40], Zhang et al. [41]
EMBOC voltage Pei et al. [42, 43], Chen et al. [21]

voltage Lu et al. [44], Hu et al. [45], Zhang et al. [5]
CDM membrane conductivity Mayur et al. [46], Han et al. [47]

ECSA degradation Mayur et al. [48]
data-based wavelet-extreme learning machine power Javed et al. [49]

recurrent neural network voltage Ma et al. [50]
echo state network voltage Vichard et al. [51]

grey neural network + window moving method voltage Chen et al. [52]
hybrid LPV model + echo state network voltage Li et al. [53, 54]

ML + genetic algorithm voltage Chen et al. [55]
 

Fig. 2  Prognostic process
 

Fig. 3  Methodology of BFA
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predict the RUL and presents a PH of 30 h. However, at the time
between 80 and 100 h the prognostic results are under estimated.
This is due to the fact that the proposed method uses linear models
which are not in function of the operation conditions and only
considers two ageing parameters. Moreover, the prognostic results
are compared against ageing data which are obtained under
laboratory conditions.

Zhang et al. [41] propose to use two different physical models,
one is employed for describing the FC voltage by the supplied
current and the second one is fed by periodic measurements from
physical characterisations in order to acquire reliable information
about the SoH evolution of the system. The selected SoH indicator
in this work concerns the voltage. The prognostic procedure is
accomplished using PF, then the prediction results from each filter
are aggregated to obtain an ensemble of estimations. Prognostic
results show that the fusion methodology presents better
performance than using the models separately during a PH of 900 
h, i.e. from 100 to 1000 h. However, during the time from 500 to
700 h the RUL prediction goes out of the accuracy bounds.
Moreover, the authors use simulated deterioration data to validate
the proposed method because of the lack of available real data.

Chen et al. [40] present a degradation model based on the UKF
algorithm considering a real load profile. This load profile
corresponds to collected data from an FC electric vehicle called
MobyPost which completes the normal postal delivery mission in
the actual road. The authors select three empirical voltage
degradation models: a linear, a logarithmic and an exponential [65,
66]. Empirical parameters related to the voltage degradation are
considered as SoH indexes. The logarithmic model presents the
best performance to estimate the PEMFC SoH and it is chosen by
the authors to predict the PEMFC degradation. The model is
trained during 40 h and it covers a prognostic horizon of 10 h.
However, the algorithm cannot describe the dynamic degradation
of voltage and its trend is not well predicted.

3.2.2 Empirical model based on the operation conditions
(EMBOC): Several authors accomplish the PEMFC lifetime
prediction using EMBOCs as presented in Fig. 4. The operation
conditions correspond to vehicle typical operation conditions, e.g.
start-up and shutdown conditions, idle condition, high-power
condition and fast load changing conditions. The proposed method
presents the advantage of updating its degradation model
considering the measured voltage changes during the vehicle
operating conditions.

Pei et al. [42] propose a linear degradation model whose
parameters are performance deterioration rates caused by load
change cycling, start-stop cycling, idle condition and high-power
load condition. These parameters are obtained using laboratory
measurements. Then, the proposed model is validated against real
data measured from an FC bus. The authors use the cell voltage as
a health indicator. Although the proposed method can estimate the
RUL of the FC in different operation modes, the method cannot
describe the PEMFC degradation evolution in time and presents a
high cost, i.e. there is a need of spending many hours in laboratory
to identify the model parameters, 80 h for the start–stop test, 50 h
for the idle test, 80 h for the load-changing test and 5 h and 30 min
for the high-power load test.

Chen et al. [21] consider a similar method applied by Pei et al.
[42] to estimate the PEMFC lifespan. Therefore, the voltage is
considered as FC degradation index as well. The authors use the
linear ageing model, which depends on the start–stop condition, the
high-power condition, the load-changing condition and the idle
condition. The model parameters are measured in laboratory
considering the same PEMFC stack used by a real FC bus. The
model can predict the FC degradation evolution after 200 h in real
operation conditions and present a PH of 500 h. However, the
predicted RUL shows a linear degradation trend and thus the
dynamic degradation of the FC voltage is not well estimated.

Zhang et al. [5] also present a lifetime prediction based on a
linear empirical model. The empirical degradation model is in
function of the load profile characteristics and based on a steady
state electrochemical model. To run the model, the authors select
data from the literature of voltage degradation rates at different

load profiles to be used as the reference. The proposed method is
only able to estimate an approximated value of the voltage
degradation rate but it cannot describe the system ageing evolution.
Moreover, the proposed method involves data from other types of
PEMFC, which are made of other materials and components.
Therefore, the prediction results are only approximations.

Lu et al. [44] propose a semi-empirical voltage deterioration
model for a 5 kW PEMFC stack under a bus driving cycle. The
degradation model considers a linear degradation rate of the
internal resistance and the leakage current density parameters with
the operation time. This model can describe the stack voltage
degradation for 824 h but its prediction shows a linear trend.
Moreover, the ageing tests used to validate the model results are
performed under laboratory conditions.

Hu et al. [45] present a voltage degradation model to predict the
lifetime of a PEMFC adapted on a hybrid bus. This model is
composed of three parts: a linear, a logarithmic and an exponential
part. Moreover, a degradation rate parameter is included into the
model to take into account the effect of start-up/shutdown and the
high-current demand cycles on the system deterioration. The model
is validated during 200 h and the results show that it can closely
reproduce the voltage evolution of the FC. However, 14-days of
data are needed for the training phase and the models are too
simplistic.

Pei et al. [43] propose a new estimation method based on their
precedent work [42]. This prediction method consists of two non-
linear formulas: the first one considers the hydrogen crossover
variation and the second one is based on the system time response
under automotive conditions. The authors validate the second
formula using experimental data of two buses in different scenarios
and considering the average cell voltage as SoH indicator. Results
show that the method can correctly predict the tendency of the cell
voltage deterioration with a horizon of 3000 h for both scenarios,
but, its dynamic degradation is not well estimated.

3.2.3 Component degradation model (CDM): This method uses
knowledge about the system and its mechanisms of degradation
(the membrane degradation or the catalytic layer degradation)
through the use of physics models. Moreover, the CDM method
can provide prognosis results for long-term under realistic loads
such as automotive applications.

Mayur et al. [46] present a PEMFC ageing prediction using a
two-dimensional (2D) multi-physic cell model, which is applied to
the New European Driving Cycle (NEDC). The model describes
membrane degradation in terms of protonic conductivity
decreasing. The authors assume a conductivity degradation that is
linearly dependent on the local O2 partial pressure in the cathode
catalyst layer. This assumption is based on the known membrane
degradation mechanism which is started by the O2 crossover
phenomenon from cathode to anode side [9], which depends
linearly on the oxygen partial pressure. To predict the PEMFC
RUL, the authors analyse the cell degradation state by simulating
the FC providing the NEDC power demand. The simulations are
finished until the PEMFC degrading fails to power the NEDC
cycle. The prediction results show that the proposed approach can
estimate the PEMFC ageing for >5.000 h. However, the model
describes a quasi-linear membrane degradation due to the model
assumption of being in the function of the partial pressure.
Moreover, this model requires at least 30 h to simulate the
membrane degradation under only one NEDC cycle.

Mayur et al. [48] used the same model as presented before [46]
and use a time upscaling methodology to reduce the time of
simulation for a faster PEMFC lifespan prediction. The authors use
the 2D multi-physics model to predict the PEMFC lifetime under
two driving cycles: the World harmonised light vehicles test cycle
(WLTC) and the NEDC cycle. The multi-physics model can
describe the ECSA degradation over the lifetime of the FC. The

Fig. 4  Methodology using an EMBOCs
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authors consider the end of life of the FC when the cell is not able
to power the cycle demand anymore. The voltage prediction results
show that when the PEMFC is subjected to the NEDC cycle the FC
presents a faster degradation than considering the WLTC cycle.
This is due to the fact that the NEDC cycle presents longer near-
OCV operations. Moreover, the prediction results show that the
proposed approach can capture the non-linearity of the cell
degradation for >520 h. The limitation of this prediction method is
the complexity of the proposed model and the fact that the
prediction is performed for one single FC.

In [47], Han et al. presented a degradation model to predict the
durability of a FC stack under three different driving cycles. This
model considers the hydrogen/oxygen supply system and the
PEMFC stack. The proposed method is more focused on estimating
the degradation rate than on predicting the ageing evolution in time
of the system.

3.3 Data-based method

Data-driven approach normally uses intelligent computation
methods such as: neural network, ML, Neuro-fuzzy inference
system or RVM, to build a degradation model and be able to
estimate the ageing trend and the RUL of the PEMFC as is shown
in Fig. 5. 

Javed et al. [49] present the first prognostic application using a
data-driven approach under a dynamic power profile. The authors
develop an ensemble structure of summation wavelet-extreme
learning machine models in order to do long-term SoH predictions
of the stack. The application uses the power as the health indicator
and the results show that the method presents a high precision,
especially when it is initiated at 800 up to 1200 h, i.e. it achieves a
PH of 400 h. However, when the proposed application uses less
degradation data (600 h) for the training phase, the prognostic
results do not have high precision as mentioned before.

Ma et al. [50, 67] proposed to use a long short-term memory
recurrent neural network (LSTM-RNN) to estimate the ageing
trend of three different types of PEMFC stacks. The LSTM-RNN is
compared against a conventional neural network and an RVM. The
results validate the superiority of LSTM-RNN technique against
the other mentioned techniques. The proposed method can predict
the tendency and the dynamic degradation of the FC during 4000 h,
but, this method uses only the voltage as a health indicator of the
system. Moreover, this work uses a cyclic current profile to
simulate the operation modes of a real driving cycle.

Chen et al. [52] used a grey neural network and a moving
window method to forecast the PEMFC deterioration. Moreover,
the authors utilise the same degradation data presented in [40] to
validate their proposal considering the voltage as a health indicator.
The proposed method can predict the FC degradation during 50 h,
however, the prediction results do not present a high accuracy
when they are subjected to driving real conditions.

In [51], Vichard et al. utilised a degradation model based on
echo state network (ESN) to predict the PEMFC stack RUL under
start/stop cycles and variable temperature conditions. This
proposed method is evaluated using a 5000 h durability test and the
stack voltage is considered as the SoH index. The model is able to
reproduce the variation and the tendency of the voltage during ca.
2.000 h, however, at least 60% (3.000 h) of data are required for
the training phase.

3.4 Hybrid method

Hybrid methods combine the two principal characteristics from
model and data-based approach, i.e. they consider physical models
and the intelligent computation techniques presented before. In
general, this approach selects a physical model to describe the
system degradation, then the model is trained by applying
computation techniques and using ageing data. The trained model
is used for validation and then for predicting the PEMFC RUL. All
of these steps are summarised in Fig. 6. 

Chen et al. [55] present a prediction method based on the
wavelet analysis, ML and the genetic algorithm applied for the
Mobypost (a 1 kW fuel-cell electric vehicle) under real operation
conditions. The proposed method can describe the trend and the
dynamic degradation of the stack voltage, but the method does not
show high accuracy. In addition, the authors present only a
prediction window of 10 h.

Li et al. [53] utilised an LPV model to describe the non-linear
and time-varying properties of the PEMFC system. For the
prognostic task, an ESN is implemented and the voltage is
considered as a health indicator. The results are validated using
experimental data from a 1500 h test. The prognostic method can
estimate the degradation trend during ∼700 h but it cannot track
the dynamic ageing presented by the stack. In [54], the same
authors propose to improve their prediction results, without
modifying the LPV model and the SoH index, using an ensemble
ESN instead of a conventional ESN. The method presents an
acceptable (within the prediction boundaries defined by the
authors) RUL prediction during the last 350 h of the experimental
test. A comparative analysis of the precedent prognostic methods is
presented in Table 3. 

4 General synthesis and future challenges
This review shows the progress in the last years on the automotive
PEMFC prognostic area. Three methods are found in literature to
prognostic the PEMFC lifetime under ALC: model-based, data-
driven and hybrid methodss. It is important to note that the model-
based method is commonly applied for transport applications
because it requires less deterioration data than data-driven and
hybrid approaches. All the proposed methods present promising
results of RUL prediction, however, there are still too many
challenges to overcome.

• The maximum predicted horizon is obtained by using the CDM
method (>5.000 h), however, this prognostic is performed for
one single FC. In terms of PEMFC stack and considering a non-
linear degradation pattern (real deterioration data), the
maximum PH achieved corresponds to 2.000 h, which is
obtained by the ESN in [51].

• All the reported works based on Bayesian filtering (UKF and
EKF) use empirical models. Moreover, these models are linear,
logarithmic or exponential. The algorithm may lead to better
prognostic results if a CDM is considered.

• Although the voltage is a parameter easily measurable and
commonly used as is well shown in Table 3, the stack voltage is
not enough to measure and distinguish the damages caused by
all the different degradation mechanisms which occur in the
PEMFC, e.g. the membrane degradation, the active layer
degradation etc. A voltage drop is the result of multiple failures
of the system. Therefore, the prognostic results could be

Fig. 5  Data-driven methodology
 

Fig. 6  Hyrbid methodology
 

Table 3 Comparison between the three presented
prognostic methods

Model
based

Data based Hybrid

physical knowledge high low high
cell or stack prognostic stack stack stack
max. PH under real conditions 3.000 h 4.000 h 350 h
can it capture the PEMFC non-
linear degradation?

yes yes no
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improved if the health indicator is directly related to the FC
component degradation.

• Only a few of the mentioned works use field-based data to
prognostic the automotive PEMFC lifetime. The other ones use
ageing data measured in the laboratory. The degradation
observed in realistic environmental conditions is different from
those observed in the laboratory.

• As there is a lack of PEMFC ageing data under automobile load
cycling, some authors validate their prognostic results assuming
a linear degradation pattern. However, the decreasing tendency
of the PEMFC voltage is not a monotonic function [39, 46].

• As it is mentioned in the previous section about the needed of
historical system information for data-driven approach, some
authors decide to use simulated data in order to implement and
validate their methods.

• Data-driven and hybrid methods show a high performance in
terms of precision during the RUL prediction process as it is
presented in [50]. However, to do that, at least 60% of ageing
data are needed to train the model and to obtain acceptable
results.

• As is well known, hybrid methods benefit from the advantages
from model-based and data-driven approaches, however,
disadvantages are included too, i.e. degradation data under
automotive conditions and good physical knowledge about the
system are required, therefore, hybrid methods could be tough
for PEMFC lifetime prediction under ALC.

• The PEMFC prediction using an EMBOCs is expensive, i.e. it is
necessary to spend many hours in the laboratory to identify the
model parameters. As well, CDM methods present the constraint
for commercial systems RUL prognostic to obtain experimental
data, e.g. ECSA or membrane degradation and will be able to
directly validate its estimation results.

• More efforts need to be devoted to the work on the accelerated
stress test (AST) for PEMFC under ALC in order to reduce the
time and cost of the ageing test. Moreover, this may allow the
academic community to perform more research on PEMFC
RUL prognostic under vehicle load cycling. As well, data-driven
and hybrid approaches, which require a large amount of data,
may have more participation in this area.

• For newly designed or commercial automotive FCs where there
is not too much available historical data to build a degradation
model, required for data-driven approach, model-based methods
seem to be the best solution to predict the RUL of recent
systems as they do not need a large amount of data to perform
prognostic.

5 Conclusion
This review presents the recent works on prognostic methods for
automotive PEMFC. First, the main degrading factors of PEMFC
caused by automobile load cycles are presented. Second, the
prognostic definition is introduced and three prognosis methods are
identified: model-based, data-driven and hybrid approach.
Moreover, the current limitations about their proposed
methodologies, the degradation models and the PHs are analysed.
Last, the general synthesis and future challenges are provided.
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