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Abstract: In order to investigate the coordination chemistry of O-alkyl N-aryl thiocarbamate ligands,
HgI2 was reacted with one equivalent of PrOC(=S)N(H)Ph L in toluene solution to afford the 1D poly-
meric title compound [{IHg(µ-I)}{κ1-PrOC(=S)N(H)Ph}]n CP1. The formation of this iodide-bridged
coordination polymer was ascertained by a single-crystal X-ray diffraction study performed at 100 K,
as well as the formation of an adduct between anilinium chloride and L forming a supramolecular
ribbon of composition [L(PhNH3)(Cl)]. The occurrence of anilinium chloride is due to the partial
hydrolysis of L in the presence of HCl.

Keywords: mercury iodide; thiocarbamate; thione; crystal structure; anilinium salt

1. Introduction

N-aryl-O-alkyl thiocarbamate ROC(=S)N(H)Ar constitute valuable intermediates in
organic synthesis and these organosulfur compounds cover a wide range of applications,
going from biological and pharmacological activity to catalysis [1–6]. Furthermore, they
are also more and more used as ligands in coordination chemistry, since the soft C=S
thione function (according Pearson’s HSAB principle) [7] readily coordinates to numerous
transition metals complexes with Cu(I), Ag(I), Hg(II), Ru(II), Rh(III), etc. [8–11]. Although
most of these complexes are mononuclear, we have recently communicated the character-
ization of the dinuclear species [{I2Bi(µ2-I)2BiI2}{κ1-MeOC(=S)N(H)Ph}4] and that of the
1D-coordination polymers [{Cu(µ2-X)2Cu}{µ2-MeOC(=S)N(H)Ph}2]n (X Br, I) [12–14]. Some
crystallographically characterized complexes ligated by O-alkyl-N-aryl thiocarbamates are
presented in Scheme 1 [2,8,12].

Since some of our previously reported compounds ligated with MeOC(=S)N(H)Ph
present only a limited solubility in common solvents, we decided to synthesize the already
literature-known derivative PrOC(=S)N(H)Ph [15–17], which should assure, due its longer
alkoxy chain, a better solubility. Furthermore, we are not aware of any metal complex
bearing this thione-type ligand L. We therefore reacted HgI2 with O-propyl-N-phenyl
thiocarbamate and describe therein the crystal structure of the isolated coordination poly-
mer. This research is a continuation of our investigations on the coordination chemistry of
thioether and thione-type ligands on Hg(II) centers [18–21].
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al., who obtained this thiocarbamate by the nucleophilic addition of in situ-generated 
sodium propanolate to phenylisothiocyanate, followed by acidic hydrolysis and 
extraction with CHCl3 (Scheme 2) [16]. We applied the same protocol, but instead of 
performing the extraction 1 h after acidic hydrolysis with an excess of 2N HCl, we allowed 
the reaction mixture to stir overnight. According to the protocol in the literature, we then 
partially evaporated the chloroform extract, yielding a large amount of a yellowish, 
somewhat gluey solid. We picked up some yellowish crystals embedded in the crude 
product and noticed after a fast scan that the crystal parameters did not match with those 
reported by Tiekink et al. for crystalline L, which forms a dimer associated through strong 
N-H···S hydrogen bonds, giving rise to an eight-membered thioamide cycle. We therefore 
undertook a full crystal structure determination at 100 K, revealing a co-crystallization of 
L with anilinium chloride in a 1:1 ratio (Figure 1). The chloride anion of this anilinium salt, 
which probably originates partially from the hydrolysis of L after prolonged contact with 
aqueous HCl, interacts via hydrogen bonding with the three H atoms of the protonated 
aniline. The N2-H···Cl distances vary between 2.21 and 2.34 Å (d(N2···Cl1) 3.2087(15) Å; 
d(N2···Cl) 3.1157(14) Å; d(N2···Cl2) 3.1862(15) Å), and are somewhat looser than those 
reported for pure anilinum chloride (2.08–2.14 Å). Note that this latter salt is reported to 
form a layered supramolecular structure with R63(12) rings [22,23]. In the case of 
[L(PhNH3)(Cl)], there is an additional bonding between the N1-H1 group of the 
thiocarbamate and the Cl1 ion of 2.47 Å. Thus, a 1D supramolecular ribbon is generated. 
However, in contrast to the dimeric association reported for pure L, no secondary 
interactions between the thiocarbamate molecules are observed. 

Scheme 1. Examples of some O-alkyl N-aryl thiocarbamate complexes.

2. Results and Discussion

The synthesis of PrOC(=S)N(H)Ph L has already been communicated by Tiekink et al.,
who obtained this thiocarbamate by the nucleophilic addition of in situ-generated sodium
propanolate to phenylisothiocyanate, followed by acidic hydrolysis and extraction with
CHCl3 (Scheme 2) [16]. We applied the same protocol, but instead of performing the
extraction 1 h after acidic hydrolysis with an excess of 2N HCl, we allowed the reaction
mixture to stir overnight. According to the protocol in the literature, we then partially
evaporated the chloroform extract, yielding a large amount of a yellowish, somewhat gluey
solid. We picked up some yellowish crystals embedded in the crude product and noticed
after a fast scan that the crystal parameters did not match with those reported by Tiekink
et al. for crystalline L, which forms a dimer associated through strong N-H···S hydrogen
bonds, giving rise to an eight-membered thioamide cycle. We therefore undertook a full
crystal structure determination at 100 K, revealing a co-crystallization of L with anilinium
chloride in a 1:1 ratio (Figure 1). The chloride anion of this anilinium salt, which probably
originates partially from the hydrolysis of L after prolonged contact with aqueous HCl,
interacts via hydrogen bonding with the three H atoms of the protonated aniline. The
N2-H···Cl distances vary between 2.21 and 2.34 Å (d(N2···Cl1) 3.2087(15) Å; d(N2···Cl)
3.1157(14) Å; d(N2···Cl2) 3.1862(15) Å), and are somewhat looser than those reported for
pure anilinum chloride (2.08–2.14 Å). Note that this latter salt is reported to form a layered
supramolecular structure with R63(12) rings [22,23]. In the case of [L(PhNH3)(Cl)], there is
an additional bonding between the N1-H1 group of the thiocarbamate and the Cl1 ion of
2.47 Å. Thus, a 1D supramolecular ribbon is generated. However, in contrast to the dimeric
association reported for pure L, no secondary interactions between the thiocarbamate
molecules are observed.

The 1H NMR of pure recrystallized L recorded in CDCl3 reveals at ambient tempera-
ture a broad signal at δ 4.56 for the OCH2 group, whereas the CH3 and CH2 resonances
are well resolved, appearing as a triplet and a sextet with a coupling constant of 7.2 Hz.
Furthermore, the broad N-H resonance is found at δ 8.59 ppm. An indication of dynamic
processes occurring in solution is provided by the 1H NMR spectrum of L recorded at
323 K, in which the OCH2 resonance at δ 4.56 appears now as a resolved triplet (Figure 2).
There is also a slight low-field shift in the N-H signal. This dynamic behavior is probably
due to a hindered rotation around the C-N bond, giving rise to conformational isomers. In
the 13C{1H} NMR spectrum of L, the thiocarbonyl carbon is observed at δ 188.9 ppm, and
the oxygen-bonded methylene group is observed at δ 74.8 (Figure 3).
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1.457(2), N1–C1 1.348(2), N1–C2 1.418(2), N2–C11 1.4674(19), C6–C5 1.386(3); C1–O–C8 119.18(12), 
O–C8–C9 112.09(14), O–C1–S 125.73(12), O–C1–N1 112.85(14), N1–C1–S 121.41(13), C1–N1–C2 
131.79(15), C3–C2–N1 125.38(15). N2–H2A···Cl1 159.3, N2–H2B···Cl 171.5; N2–H2C···Cl2 162.6, N1–
H1···Cl1 168.3. Symmetry transformation is used to generate equivalent atoms: 11/2-x, −1/2+y, 1/2-z; 
21/2-x, 1/2 + y, 1/2-z. 
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Figure 1. View of a segment of the supramolecular ribbon of PrOC(=S)NHPh•PhNH3Cl running
along the b axis. Selected bond lengths (Å) and angles (deg). S–C1 1.6697(16), O–C1 1.329(2), O–C8
1.457(2), N1–C1 1.348(2), N1–C2 1.418(2), N2–C11 1.4674(19), C6–C5 1.386(3); C1–O–C8 119.18(12), O–
C8–C9 112.09(14), O–C1–S 125.73(12), O–C1–N1 112.85(14), N1–C1–S 121.41(13), C1–N1–C2 131.79(15),
C3–C2–N1 125.38(15). N2–H2A···Cl1 159.3, N2–H2B···Cl 171.5; N2–H2C···Cl2 162.6, N1–H1···Cl1

168.3. Symmetry transformation is used to generate equivalent atoms: 11/2-x, −1/2+y, 1/2-z; 21/2-x,
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gradually dissolved after 2 h to give a homogenous solution. After layering with heptane, 
yellow-orange crystals were formed. This air-stable product is only partially soluble in 
CDCl3, but the 1H NMR spectrum clearly reveals a shift in the NH signal at δ 9.43 ppm to 
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The hitherto unknown polymeric HgI2 complex [{IHg(µ-I)}{κ1-PrOC(=S)N(H)Ph}]
CP1 shown in Scheme 2 was straightforwardly formed by adding at ambient temperature
an equimolar amount of L to a slurry of HgI2 in toluene. The orange-red suspension
gradually dissolved after 2 h to give a homogenous solution. After layering with heptane,
yellow-orange crystals were formed. This air-stable product is only partially soluble in
CDCl3, but the 1H NMR spectrum clearly reveals a shift in the NH signal at δ 9.43 ppm to a
lower field with respect to uncoordinated L (∆δ 0.84 ppm).

Since according to a survey in the literature only two tetrahedral molecular HgCl2
complexes ligated by thiocarbamates have been crystallographically characterized yet [22,24],
we examined the product crystallizing in the monoclinic space group P21/c by an X-ray
diffraction study performed at 100 K. As shown in Figure 4, a polymeric species has formed,
in which the crystallographically identical coordinated Hg(II) centers are linked mutually
through a µ2-bridging I2 iodido ligand. The Hg···Hg separation of 4.22 Å excludes any
intermetallic interaction.
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Figure 4. View of a segment of CP1 running along the c axis. Selected bond lengths (Å) and angles
(deg). Hg–I1 2.6829(3), Hg–I2 2.9073(3), Hg–I21 2.8421(3), Hg–S 2.5438(9), S–C5 1.710(4), O–C5
1.307(4), O–C6 1.473(4), N–C5 1.333(4), N–C9 1.430(4), C3–C7 1.390(5); I21–Hg1–I2 103.989(9), I1– Hg1–
I2 106.923(9), I1–Hg1–21 116.402(9), S1–Hg1–I21 98.49(2), S1–Hg1–I2 102.18(2), S1–Hg1– I1 126.21(2),
Hg12– I2-Hg 94.509(9), C5–O1–C6 120.0(3), C5–N1–C9 131.7(3), O–C5–S 121.5(3), O–C5–N 115.1(3),
N–C5–S 123.4(3), O–C6–C10 105.9(3). Symmetry transformation is used to generate equivalent atoms:
1+x, 1/2-y, 1/2 z; 2+x, 1/2-y, −1/2+z.

The tetrahedral coordination sphere around each Hg atom is completed by a terminal
I1 ligand and a S-bound thiocarbamate ligand. The Hg–S bond length of 2.5438(9) Å is sig-
nificantly longer than the mean values of 2.44(1) and 2.499(1) Å reported for dichloro-bis(O-
ethylthiocarbamato)mercury and dichloro-bis[O-ethyl(2,6-dimethylphenyl)thiocarbamato]
mercury [22,24]. For comparison, for dinuclear bis[µ-iodo(thiobenzamide)mercury], a
Hg–S bond length of 2.467(2) Å has been determined [25].

The C=S bond is slightly elongated with respect to that of non-ligated PrOC(=S)N(H)Ph
(1.710(4), vs. 1.6697(16) Å). The bridging I2 atoms are quite symmetrically bridging,
with the mean Hg–Ibridg bond distance of 2.875 Å being far longer than the Hg–Iterm one
(2.875 Å vs. 2.6829(3) Å). For the above-mentioned compound asymmetrical iodido-bridged
[{IHg(µ2-I)}{κ1-thiobenzamide]2, the respective Hg–I distances are 2.818(1), 3.201(1) and
2.673(1) Å [25]. At first glance, the 1D architectures of CP1 and copper(I) analogue [{Cu(µ2-
I)2Cu}(µ2-EtOC(=S)N(H)Ph})2]n [15] are somewhat similar, but a closer look reveals some
striking differences. The unidimensional ribbon of [{Cu(µ2-I)2Cu}{µ2-EtOC(=S)N(H)Ph}2]
is doubly bridged by both µ2-I atoms and bridging EtOC(=S)N(H)Ph ligands, bringing the
metal centers into much closer contact. Furthermore, in the Cu(I) polymer chain, the N-H
groups weakly interact with the µ2-I atoms through an intramolecular N-H···I bonding of
2.778 Å, whereas in CP1, the shortest N-H···I contact is 3.143 Å

In the packing, no interchain interactions occur. Furthermore, as shown in Figure 5,
loose intramolecular S···H and O···H contacts occur. Upon further examination of the
molecular arrangement within the solid-state structure, it is noted that the polymer chain
extends along a translational c glide symmetry. This is evident from the bonding of
the HgI2 salts with the respective thiocarbamate ligands. The positions of these ligands
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alternate along the glide plane, while no significant intermolecular interactions, e.g., N1-
H···Hg1, occur.
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3. Experimental Methodology

Synthesis of CP1—To a slurry of HgI2 (454 mg, 1.0 mmol) in 10 mL of toluene, O-propyl
N-phenylthiocarbamate L (195 mg, 1 mmol) was added in several portions. HgI2 dissolved
progressively and the reaction mixture was stirred at room temperature for 2 h. Then, the
solvent was allowed to evaporate partially to about 6 mL. After layering with heptane,
yellow-orange crystals of CP1 were formed and then collected by filtration. Yield: 72%.
Anal. Calc. for C10H13HgI2NOS (M.W. = 649.68 g·mol−1): C, 18.49; H, 2.02; N, 2.16; S,
4.94%. Found: C, 18.32; H, 1.98; N, 2.11; S, 4.76%. IR-ATR: 1230 ν(C=S), 1483 ν(C–N),
1548 ν(N–H), 3281 ν(N–H bonded) cm−1.

Data collection for L and CP1 was performed on Bruker D8 Venture four-circle diffrac-
tometers from Bruker AXS GmbH (Karlsruhe, Germany). CPAD detectors used were
Photon II (MoKα) and Photon III (AgKα) from Bruker AXS GmbH; X-ray sources: Microfo-
cus source IµS; and microfocus source IµS Mo and Ag, respectively, from Incoatec GmbH
with mirror optics HELIOS and a single hole collimator from Bruker AXS GmbH. Programs
used for data collection were APEX4 Suite [26] (v2021.10-0) and integrated programs SAINT
(V8.40A; integration) as well as SADABS (2018/7; absorption correction) from Bruker AXS
GmbH [27]. The SHELX programs were used for further processing [28]. The solution of
the crystal structures was achieved with the help of the program SHELXT [29], the structure
refinement was achieved with SHELXL [30]. The processing and finalization of the crystal
structure data was carried out with program OLEX2 v1.5 [31]. All non-hydrogen atoms
were refined anisotropically. For the hydrogen atoms, the standard values of the SHELXL
program were used with Uiso (H) = –1.2 Ueq(C) for CH2 and CH and with Uiso (H) = –1.5
Ueq(C) for CH3. All H atoms were refined freely using independent values for each Uiso(H).

Crystal data for C16H21ClN2OS L include the following: M = 324.86 g·mol−1, col-
orless crystals, crystal size 0.343×0.287×0.156 mm3, monoclinic, space group P21/n,
a = 10.8275(14) Å, b = 5.6092(8) Å, c = 27.626(3) Å,), α = 90◦, β = 94.473(5)◦, γ = 90◦,
V = 1672.7(4)Å3, Z = 4, Dcalc = 1.290 g/cm3, T = 100 K, λ = 0.71073, R1 = 0.0343,
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Rw2 = 0.0838 for 43376 reflections with I ≥ 2σ(I) and 3412 independent reflections. Largest
diff. peak/hole/e Å−3 0.52/–0.22. A multi-scan absorption correction was applied;
Tmax = 0.4891, Tmin = 0.3440.

Crystal data for C10H13HgI2NOS CP1 include the following: M = 649.66 g·mol−1,
orange crystals, crystal size 0.216 × 0.169 × 0.117 mm3, monoclinic, space group P21/c,
a = 11.0287(7) Å, b = 17.3343(10) Å, c = 8.0027(5)Å), α = 90◦, β = 101.7353(16)◦,
γ = 90◦, V = 1497.93(16)Å3, Z = 4, Dcalc = 2.881 g/cm3, T = 100 K, λ = 0.56086, R1 = 0.0215,
Rw2 = 0.0473 for 73399 reflections with I > = 2σ(I) and 4604 independent reflections.
Largest diff. peak/hole/e Å−3 1.55/–1.15. A multi-scan absorption correction was applied;
Tmax = 0.5624, Tmin = 0.3964.

Data were collected using graphite-monochromated MoKα radiation λ = 0.71073 Å
and AgKα radiation λ = 0.56086 Å. The structures were solved by intrinsic phasing and
refined by full-matrix least-squares against F2. Data have been deposited at the Cambridge
Crystallographic Data Centre as CCDC 2382124 (L) and CCDC 2382127 (CP1) (Supplementary
Materials). The data can be obtained free of charge from the Cambridge Crystallographic Data
Centre via http://www.ccdc.cam.ac.uk/getstructures (accessed on 18 November 2024).

4. Conclusions

We have crystallographically evidenced that the reaction of PrOC(=S)N(H)Ph L with HgI2
in a 1:1 ratio affords the 1D polymeric title compound [{IHg(µ-I)}{κ1-PrOC(=S)N(H)Ph}]n CP1.
We are currently investigating whether changing the metal-to-ligand ratio may lead to a
mononuclear tetrahedral species [HgI2{PrOC(=S)N(H)Ph}2] that is similar to complex A
shown in Scheme 1. We are also extending our investigation to other HgX2 and CdX2 salts.

Supplementary Materials: Crystallographic Data.
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