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ON ONE DIMENSIONAL WEIGHTED POINCARÉ
INEQUALITIES FOR GLOBAL SENSITIVITY ANALYSIS

DAVID HEREDIA, ALDÉRIC JOULIN, OLIVIER ROUSTANT

Abstract. One-dimensional Poincaré inequalities are used in Global Sensi-
tivity Analysis (GSA) to provide derivative-based upper bounds and approxi-
mations of Sobol indices. We add new perspectives by investigating weighted
Poincaré inequalities. Our contributions are twofold. In a first part, we pro-
vide new theoretical results for weighted Poincaré inequalities, guided by GSA
needs. We revisit the construction of weights from monotonic functions, pro-
viding a new proof from a spectral point of view. In this approach, given a
monotonic function g, the weight is built such that g is the first non-trivial
eigenfunction of a convenient diffusion operator. This allows us to reconsider
the “linear standard”, i.e. the weight associated to a linear g. In particular,
we construct weights that guarantee the existence of an orthonormal basis of
eigenfunctions, leading to approximation of Sobol indices with Parseval for-
mulas. In a second part, we develop specific methods for GSA. We study the
equality case of the upper bound of a total Sobol index, and link the sharpness
of the inequality to the proximity of the main effect to the eigenfunction. This
leads us to theoretically investigate the construction of data-driven weights
from estimators of the main effects when they are monotonic, another exten-
sion of the linear standard. Finally, we illustrate the benefits of using weights
on a GSA study of two toy models and a real flooding application, involving
the Poincaré constant and/or the whole eigenbasis.
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1. Introduction

1.1. Motivation
The development of Global Sensitivity Analysis (GSA) of numerical model out-

puts has become increasingly popular in the three last decades. It is by now an
essential international research topic, combining modern mathematical and statis-
tical tools to computer experiments, and has many consequences in engineering for
industry. Recall that the principle of GSA is to quantify the influence of input ran-
dom variables on the output of a multivariate function f : Rd → R which might be
expensive to evaluate since dimension d is large. These variables can represent cal-
culation codes that model complex phenomena or artificial intelligence algorithms
whose functioning is not well understood.

When it comes to quantifying influence or uncertainty, practitioners tend to use
Sobol indices [31, 32] because of their clear interpretation in terms of ANOVA de-
composition, at least under the assumption of independent entries. More precisely,
they are defined according to the Sobol Hoeffding decomposition

f(X) =
∑

I⊂{1,...,d}

fI(XI),

where X = (X1, . . . , Xd) is the d-dimensional random vector of independent inputs
Xi and provided the output random variable f(X) lies in L2. Above each XI is
the random vector formed by the variables Xi with i ∈ I and the terms fI(XI) are
uniquely characterized by the non-overlapping property

E[fI(XI) |XJ ] = 0, for all J ( I,

where by convention E[ · |XJ ] = E[ · ] when J = ∅. Such conditions imply the
orthogonal decomposition of the total variance

Var(f(X)) =
∑

I⊂{1,...,d}

Var(fI(XI)).

In particular, the main effects fi(Xi) carry the influence of each variable individually
and the total contributions are captured by the total effects

f toti (X) =
∑
I3i

fI(XI).

2020 Mathematics Subject Classification. 26D10, 39B62, 37A30, 60J60, 62G05, 62P30, 65C60.
Key words and phrases. Weighted Poincaré inequality, spectral gap, Global Sensitivity Anal-

ysis, Sobol-Hoeffding decomposition, Sobol indices, weighted Derivative-based Global Sensitivity
Measures, Poincaré chaos expansion.



WEIGHTED POINCARÉ INEQUALITIES FOR GLOBAL SENSITIVITY ANALYSIS 3

The latter naturally defines total Sobol indices as the percentage of variance ex-
plained by them:

Stot
i =

Var(f toti (X))

Var(f(X))
∈ [0, 1].

Despite their clear interpretability, the estimation of total Sobol indices requires
numerous calculations, making them an expensive computational tool. When the
derivatives of f are available, other sensitivity indices called DGSM (Derivative-
based Global Sensitivity Measure) reveal to be efficient since they are cheaper to
compute, cf. [33, 34]. As observed in [19] and further studied in detail in [26], Sobol
indices and DGSM are connected by a one-dimensional Poincaré inequality. In other
words, when it is satisfied, such a functional inequality provides an upper bound
of the variance-based index by using the derivative-based one, easier to handle
in practice. Hence DGSM indices can be seen as a credible alternative to Sobol
indices for screening purposes, allowing to identify input variables with minimal
influence when the devoted DGSM indices are sufficiently small (balanced with
the other components appearing in the upper bound). To apply these techniques,
providing some information on the Poincaré constant, i.e., the best constant in the
Poincaré inequality, is of crucial importance. Since in theory it is quite hard to
find explicitly those objects even in our one-dimensional context, some numerical
methods are required. As presented in [26], they are mainly based on a combination
of the spectral interpretation of the Poincaré constant together with an appropriate
finite element discretization which is relevant in the context of small dimension.

Actually, there is absolutely no reason to limit ourselves to bound from above
Sobol indices only by DGSM ones, at least for two reasons. On the one hand there
exists some usual probability measures which do not satisfy the usual Poincaré in-
equality (e.g., heavy-tailed distributions) and on the other hand the DGSM-based
upper bounds might be too large. To overcome this difficulty, we shall use an-
other functional inequality involving the variance and alternative quantities still
constructed with respect to the derivatives of the function f . Hence we are nat-
urally led to introduce appropriate weight functions wi in the DGSM indices. It
gives rise to the notion of weighted DGSM indices

νi,wi = E

[
wi(Xi)

(
∂f

∂xi
(X)

)2
]
,

provided the expectation makes sense, the univariate dependence of the chosen
weights being natural within the present one-dimensional context. Such functional
inequalities are called weighted Poincaré inequalities and yield to the key upper
bound

Stot
i ≤ CP (µi, wi)

νi,wi
Var(f(X))

,

where µi stands for the distribution of the input random variable Xi and the
Poincaré constant CP (µi, wi) depends on the weight wi (the unweighted case cor-
responding to the classical choice wi ≡ 1). Hence it provides an additional degree
of freedom by choosing conveniently the weight to enhance the precision of the
upper bound. In particular it suggests, among other things, the construction of
data-driven weights in order to improve the classical (unweighted) results offered
in [26] when applied to specific models arising in the GSA methodology.
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To conclude with motivations, notice that this framework is not limited to pro-
vide only upper bounds on Sobol indices. Indeed, under slightly additional as-
sumptions, we may consider the spectral interpretation related to the weighted
Poincaré inequalities, giving rise to the so-called Poincaré chaos, somewhat similar
to that emphasized in [21, 27]. See also [1] for another usage of spectral expansions
through Sturm-Liouville operators. Then, all Sobol indices can be expressed as
Parseval identities and truncations of these identities give relevant derivative-based
lower bounds on those indices. Here also, considering a weight in Poincaré inequal-
ities provides an additional degree of freedom that should help to improve these
lower bounds.

To illustrate the strength of weighted Poincaré inequalities in GSA, we provide
in Figure 1 some numerical computations of total Sobol indices and associated
estimated bounds on a GSA standard model (we refer to Section 5 for more details).
We can see that, compared to the results of the unweighted case reported in [26],
using weights clearly improves the accuracy of the upper and lower bounds.

0.2
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0.4

0.5

Q Ks Zv Hd

Upper bounds

Unweighted upp. bounds

Weighted upp. bounds

Total Sobol index
0.2

0.3
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Total Sobol index

Figure 1. Illustration of the benefits of using weights in Poincaré inequalities for
bounding total Sobol indices on the hydrological problem of Section 5.3.

1.2. Contributions and plan
The present work is divided into two main parts: first we provide new theoretical

results for weighted Poincaré inequalities, driven by GSA needs, whereas in a second
time we develop specific applications to GSA. Finally we illustrate numerically our
results on toy models to observe the relevance of our approach and in particular
on a flood model. Here is below a detailed description of our main contributions
together with a plan of the paper.

Section 2 offers an introduction to theoretical aspects of weighted Poincaré in-
equalities and their corresponding spectral interpretation. Then our main contri-
butions on these weighted functional inequalities are contained in Section 3. In a
nutshell, they can be summarized as follows.
Firstly, we revisit the construction of weights presented in [15], offering a new proof
from a spectral point of view and without requiring to the formalism of Stein’s
method. In addition, we provide a necessary and sufficient condition for obtaining
non-vanishing weights. In this construction, given some suitable monotonic func-
tion gi, we determine the weight wi for which gi is the first non-trivial eigenfunction
of a convenient diffusion operator involving wi as diffusion constant. As a result, gi
is essentially the only function to saturate the weighted Poincaré inequality. Fur-
thermore, we provide a numerical method to approximate the weight wi when it
does not admit a closed-form expression, a situation encountered in GSA when the
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distribution of the input variables are non-standard.
Secondly, we further investigate the common weight choice associated to the case
where gi is linear. This case was studied for GSA in [35] by means of a calculus
of variations approach (Euler-Lagrange equations). We expand their list of weights
by including several examples related to truncated or heavy-tailed probability mea-
sures. Beyond this standard, we propose a new way to construct non-vanishing
weights, based on a reference probability measure.
Thirdly, we consider the case where the weighted Poincaré inequality is not satu-
rated, i.e. when the first eigenfunction does not exist. Thanks to the intertwining
approach proposed in [8, 9], we are able to provide the exact value of the Poincaré
constant for original and new examples involving a large class of weights.
In Section 4, we develop GSA-oriented results and in particular data-driven weights.
We study the equality case of the upper bound of a total Sobol index, linking the
sharpness of the inequality to the proximity of the main effect fi with respect to
the eigenfunction gi. This justifies the common weight choice associated to a linear
gi for models that exhibit almost linear main effects. But this also suggests the
construction of data-driven weights from estimators of the main effects when they
are monotonic (and not only linear). In some sense, this is a data-driven version of
the general weight proposed in Section 3. We prove the consistency of this weight
estimator and the associated upper bound.
Our final Section 5 is dedicated to applications. We collect all the previous mate-
rial to study two toy models and a real flooding application, involving the Poincaré
constant and/or the whole eigenbasis. In particular our numerical results on the
flood model reveal to be relevant and exhibit a serious improvement of the ones
established in [26] through the usual (i.e. unweighted) Poincaré inequalities and
Poincaré chaos.

To conclude this introduction, we point out that our approach is limited to one-
dimensional functional inequalities for the moment but it would be very natural to
generalize our results to higher dimensions. A nice first result was presented in the
recent article [13] in which the authors generalize the Stein approach to some multi-
dimensional log-concave probability measures such as moment measures of convex
functions. In some sense this work can be seen as a multi-dimensional extension of
[15] by means of Stein kernel weights, and also of [35] although the methods empha-
sized are somewhat different. Nevertheless this generalization to higher dimension
remains open in full generality and would have many challenging and interesting
consequences from a GSA perspective since then high-dimensional independent in-
puts Xi with non necessarily independent coordinates could be addressed. We hope
that such a direction will be the matter of future research.

2. Background on weighted Poincaré inequalities

We start by briefly introducing some theoretical aspects about one-dimensional
weighted Poincaré inequalities, which are the main protagonists of the present pa-
per.

Given −∞ ≤ a < b ≤ ∞, we denote by C 0,1
+ (a, b) the set of functions that are

continuous and piecewise C 1 (i.e. continuously differentiable) on [a, b] and positive
on (a, b). We define C 1,2

∗ (a, b) as the class of functions f such that f ′ ∈ C 0,1
+ (a, b) or

−f ′ ∈ C 0,1
+ (a, b). We denote P(a, b) the set of probability measures µ on [a, b] with

density (with respect to the Lebesgue measure) ρ ∈ C 0,1
+ (a, b) satisfying ρ(a) > 0
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(resp. ρ(b) > 0) when a (resp. b) is finite. Let W(a, b) be the set of continuous
functions on [a, b], that are piecewise C 1 and positive on (a, b). In the sequel
we systematically refer to functions w ∈ W(a, b) as weights. Note that W(a, b)

differs from C 0,1
+ (a, b) since we do not require weights to be differentiable at the

boundaries. In the case where a and/or b are infinite, we adopt the convention
[−∞, b] = (−∞, b] and/or [a,∞] = [a,∞), to avoid making the distinction every
time. It is of course possible to consider a more general setting, but this one is
relevant and fulfills our purposes.

Let L2(µ) be the space of square-integrable functions with respect to some prob-
ability measure µ ∈ P(a, b) and, given some weight function w ∈ W(a, b), denote
H1(µ,w) the weighted Sobolev space defined as

H1(µ,w) =
{
f ∈ L2(µ)

∣∣w1/2f ′ ∈ L2(µ)
}
,

where f ′ stands for the weak derivative of the function f . We are now in position
to give the definition of a weighted Poincaré inequality.

Definition 2.1. A probability measure µ ∈ P(a, b) satisfies a weighted Poincaré
inequality with weight function w ∈ W(a, b) and constant C > 0 if for every function
f ∈ H1(µ,w) such that

∫ b
a
f dµ = 0 (we say that f is centered), it is true that∫ b

a

f2 dµ ≤ C
∫ b

a

w (f ′)2 dµ. (2.1)

The Poincaré constant, denoted CP (µ,w), is the optimal (i.e., the smallest) con-
stant C for which (2.1) holds. If there exists some non-null function which realizes
the equality in (2.1), we say that it saturates the weighted Poincaré inequality.

In the particular case where w ≡ 1, we are reduced to the classical Poincaré
inequality which has been largely studied in the literature. See for instance [2] for
an introduction to the topic, with precise references and credit.

Actually, such an idea to consider weighted functional inequalities of Poincaré
type takes roots at least in the 70s within the pioneer work of Brascamp and Lieb
[10] in a multi-dimensional log-concave context. Moreover it reveals to have strong
consequences in high-dimensional analysis, in connection with other important func-
tional inequalities, isoperimetry and concentration of measure, cf. for instance the
work of Bobkov and Ledoux [7] about general convex measures including heavy-
tailed distributions, i.e., probability distributions whose tails decay is slower than
exponential. In the one-dimensional case, the analysis can be further explored ei-
ther by considering Hardy-type inequalities and Sturm-Liouville equations [4, 5, 22]
or using Stein’s method as in the papers [15, 29] in which the weight corresponds
to the so-called Stein kernel. Recently, new theoretical guarantees have been pro-
posed in [8, 9] by means of the intertwining technique. Such an approach will be
developed in Section 3.5.

Similarly to the usual one CP (µ, 1), the Poincaré constant CP (µ,w) admits a
dual interpretation related to a convenient diffusion operator. To observe this,
we need to introduce a bit of structure. Denote C∞(a, b) the space of infinitely
differentiable real-valued functions on [a, b] and consider the subspace

C∞N,w(a, b) = {f ∈ C∞(a, b) |w(a)f ′(a)ρ(a) = w(b)f ′(b)ρ(b) = 0} ,
the presence of the index N standing for Neumann boundary conditions adapted
to the presence of the weight w (these are the only boundary conditions we will
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consider throughout this paper). If a and/or b are infinite, the boundary conditions
above are understood as taking the limit a → −∞ and/or b → ∞. Then the
diffusion operator of interest is defined on C∞N,w(a, b) as follows:

Lwf =
1

ρ
(wf ′ρ)

′
= wf ′′ + (w′ + w(log ρ)′) f ′.

Note that this operator involves the weight w as diffusion constant, in contrast to
the canonical operator usually related to the probability measure µ, i.e., the one
constructed with the choice w ≡ 1. Trivial integrations by parts tell us that the
operator −Lw is symmetric on C∞N,w(a, b) ⊂ L2(µ) and non-negative, i.e., for every
f, g ∈ C∞N,w(a, b),∫ b

a

(−Lwf) g dµ =

∫ b

a

w f ′ g′ dµ =

∫ b

a

f (−Lwg) dµ,

and ∫ b

a

(−Lwf) f dµ =

∫ b

a

w (f ′)2 dµ ≥ 0, (2.2)

respectively. If [a, b] is finite and w does not vanish at the boundary, the operator
is said to be regular according to the formalism of Sturm-Liouville problems and
it is essentially self-adjoint in L2(µ), i.e., it admits a unique self-adjoint extension
(still denoted −Lw) with domain D(−Lw) ⊂ L2(µ) in which the space C∞N,w(a, b)
is dense for the operator norm. Otherwise the operator is called singular and to
ensure this essentially self-adjointness property, the metric induced by the operator
(or rather by the so-called carré du champ operator, thus by w) is assumed to be
complete. We refer to [36] for a classical reference about Sturm-Liouville problems
and to Chapter 3 of [2] for the essentially self-adjointness property studied in the
context of general diffusion Markov triples.

Once the (unique) self-adjoint extension is defined, let us introduce some ele-
ments about the eigenvalues and eigenfunctions of the operator −Lw. Roughly
speaking, the eigenvalues correspond to a part of the spectrum σ(−Lw) ⊂ R+

given by the values λ for which there exists a centered function g ∈ D(−Lw) satis-
fying −Lwg = λg, i.e., an eigenfunction associated to λ. Note that our definition
of eigenvalue differs a bit from the usual definition since λ may not be isolated. In
the present context, the first eigenvalue is λ0(−Lw) = 0 and the associated one-
dimensional eigenspace is generated by the constant eigenfunction e0 ≡ 1. If 0 is
isolated in the spectrum, it means that the second element of the spectrum defined
by the variational formula

λ1(−Lw) = inf
f∈H1(µ,w)
f centered

∫ b
a
(−Lwf) f dµ∫ b
a
f2 dµ

, (2.3)

is positive. The quantity λ1(−Lw) (= λ1(−Lw) − λ0(−Lw)) is called the spectral
gap of the diffusion operator −Lw. Note that it may not be an eigenvalue since
the infimum above is not always reached. Using (2.2), we deduce that the Poincaré
constant CP (µ,w) admits the following spectral interpretation:

CP (µ,w) =
1

λ1(−Lw)
.

In this way, finding the Poincaré constant CP (µ,w) is equivalent to identify the
spectral gap λ1(−Lw), a dual interpretation which will be systematically used in
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our paper. Moreover, if the eigenspace related to the spectral gap is non empty, it
is also one-dimensional and a given function e1 (say) is an associated eigenfunction
if and only if it saturates the weighted Poincaré inequality (2.1). In particular it
satisfies for all g ∈ H1(µ,w),∫ b

a

g e1 dµ = CP (µ,w)

∫ b

a

g (−Lwe1) dµ = CP (µ,w)

∫ b

a

w g′ e′1 dµ. (2.4)

To finish this introduction about weighted Poincaré inequalities, we point out
that it is a difficult task in general to give the explicit value of the spectral gap,
except maybe for some particular examples of probability measures and weights.
However there exists a useful method in the present one-dimensional setting which
allows to identify it when the eigenfunction e1 exists. By [12] we know that e1 is the
only eigenfunction of the operator −Lw such that its derivative does not vanish on
(a, b), is of constant sign and satisfies w(a)f ′(a)ρ(a) = w(b)f ′(b)ρ(b) = 0. In other
words, if we find some eigenfunction satisfying these properties, then the associated
eigenvalue is necessarily the spectral gap. Actually, this observation is the main
idea behind our main results to which we turn now.

3. Main results on weighted Poincaré inequalities

3.1. A general result on the construction of weights
In this part, we revisit the formulation of the optimal weight built by means

of the Stein method in [14, Theorem 3.5] (with l = 0) and in [15, Theorem 2.4],
offering a new proof from a spectral point of view. In other words, Theorem 3.1
below determines the weight for which a suitably selected function saturates the
weighted Poincaré inequality. In particular this result extends the weights provided
in [35] with linear saturating functions.
Notice that each weight and corresponding Poincaré constant are uniquely defined
up to a multiplicative constant since CP (µ, kw) = k−1CP (µ,w) for every k > 0. In
this section we adopt the normalization CP (µ,w) = 1.

Theorem 3.1. Let µ ∈ P(a, b) and let g be a centered function in C 1,2
∗ (a, b). If a

(resp. b) is finite we assume that g′(a) 6= 0, or that g′(a) = 0 and g′′(a) 6= 0 (resp.
g′(b) 6= 0, or that g′(b) = 0 and g′′(b) 6= 0). Then

• The function

wg(x) = −
1

g′(x)ρ(x)

∫ x

a

g(y)ρ(y) dy, x ∈ (a, b), (3.1)

belongs to W(a, b). If a is finite, the value of wg(a) depends on g:
– If g′(a) 6= 0, then wg(a) = 0.
– If g′(a) = 0 and g′′(a) 6= 0, then wg(a) = −g(a)/g′′(a) > 0.

The same conclusion holds for wg(b) if b is finite.
• If in addition g ∈ L2(µ) (which is satisfied if a and b are finite), then
the weighted Poincaré inequality (2.1) holds with weight wg and Poincaré
constant CP (µ,wg) = 1. Furthermore, the inequality is saturated by g.

Proof. We start dealing with the regularity of our weight. The definition of wg
in (3.1) provides its continuity on (a, b). We multiply by g′ρ in both sides and
differentiate to obtain

(wgg
′ρ)′ = −gρ, (3.2)
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so that we get on (a, b),

w′g = −
g

g′
− wg

(
g′′

g′
+
ρ′

ρ

)
.

Then, the regularity of g and ρ together with the fact that g′ and ρ do not vanish
on (a, b) show that w′g is piecewise continuous and thus wg is piecewise C 1 on (a, b).

Let us prove now that wg is positive on (a, b). The function g is centered and
increasing, hence limx→a g(x) < 0, limx→b g(x) > 0 and there exists a unique
c ∈ (a, b) such that g(c) = 0. Denoting G(x) :=

∫ x
a
g(y)ρ(y) dy, x ∈ (a, b), we have

the following table:

a c b
G′ - 0 +
G −→ −→

and since limx→aG(x) = limx→bG(x) = 0, we obtain G < 0 and thus wg > 0 on
(a, b).

Next, if a is finite the value wg(a) is defined as the limit of wg(x) when x → a,
guaranteeing its right-continuity at point a (the value wg(b) is obtained identically
when b is finite, providing the left-continuity at b). Namely if g′(a) 6= 0, then
we observe immediately from the definition of wg that wg(a) = 0. Otherwise if
g′(a) = 0 and g′′(a) 6= 0, then we rewrite wg as

wg(x) = −
x− a

(g′(x)− g′(a)) ρ(x)
× 1

x− a

∫ x

a

g(y)ρ(y) dy, x ∈ (a, b),

so that taking the limit x→ a entails that wg(a) = −g(a)/g′′(a).
Finally, to prove that the weighted Poincaré inequality (2.1) is satisfied with

weight wg and Poincaré constant CP (µ,wg) = 1 when g ∈ L2(µ), we consider the
spectral interpretation of the Poincaré constant. Equality (3.2) indicates that g is
an eigenfunction of (minus) the operator

Lwgf =
(wgf

′ρ)′

ρ
,

with associated eigenvalue λ = 1. Furthermore, since the derivative of g does not
vanish on (a, b), then the spectral gap λ1(−Lwg ) coincides necessarily with this
eigenvalue, meaning that

CP (µ,wg) =
1

λ1(−Lwg )
= 1,

and that the weighted Poincaré inequality is saturated by g. The proof of Theorem
3.1 is now complete. �

Notice that the assumptions on g in Theorem 3.1 mimick the properties required
to be an eigenfunction e1 associated to the inverse Poincaré constant. Indeed, first
we know that e1 is centered and is the only eigenfunction (up to a multiplicative
constant) of the operator −Lwg satisfying e′1 > 0 (up to a change of sign). Secondly,
if [a, b] is a finite interval, the possible boundary conditions are consistent with the
values of wg at the boundary (we have wg(a)g′(a)ρ(a) = wg(b)g

′(b)ρ(b) = 0) and
prevent it from exploding.
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As we will see in the sequel, Theorem 3.1 is one of the result on which our
forthcoming numerical study is based and thus will be used many times in our
paper, in particular when dealing with applications to GSA. When the weight wg
provided by (3.1) does not admit a closed-form expression, we will implement a
numerical method that approximates it for any suitable pair of probability measure
µ and function g. This method is further detailed in Section 3.4. Before that, let
us revisit the classical situation where g is a linear function and investigate new
relevant weights provided by Theorem 3.1.

3.2. Revisiting the optimal weight for linear saturating functions
The classical weight wlin (say) used in the literature corresponds in Theorem 3.1

to the linear choice

g(x) = glin(x) = x−
∫ b

a

y ρ(y) dy,

which is often convenient since linear functions saturate the devoted weighted
Poincaré inequality. This weight is given by the formula

wlin(x) = −
1

ρ(x)

∫ x

a

glin(y) ρ(y) dy, x ∈ [a, b].

In particular we will see in Section 4.2 that this choice is optimal when approxi-
mating linear phenomena in the GSA context. Notice that wlin has to vanish at
the boundary (if non empty) since g′lin ≡ 1 does not vanish at the boundary. Fol-
lowing this strategy, the authors in [35] give a list of closed-form expressions for
wlin associated to classical laws, including the uniform, exponential and Gaussian
distributions.

However it is necessary to consider other examples frequently encountered in
GSA problems, typically truncated distributions. Heavy-tailed measures are also
considered, for which the presence of a weight becomes necessary to establish a
Poincaré-type inequality (recall that they do not satisfy the classical one due to
the lack of exponential integrability, see for instance [2]). Table 1 below provides
some of those examples, including two heavy-tailed distributions: the generalized
Cauchy measure µβ of parameter β > 1/2, denoted C(β), whose density is defined
as

ρ(x) =
1

Zβ (1 + x2)β
, x ∈ R,

with Zβ the normalization constant, and the Pareto distribution µz,α with param-
eters z > 0 and α > 0, denoted Par(z, α), with density given by

ρ(x) =
αzα

xα+1
, x ≥ z.

According to Theorem 3.1, both measures satisfy a weighted Poincaré inequality
with their respective weights wlin if they admit a finite second moment. This con-
dition is fulfilled when β > 3/2 and α > 2, respectively. Table 1 also includes
the exact expression of the weight wlin for some truncated probability measures.
We refer to Appendix A for detailed computations. All the weights vanish at the
boundary (when non empty), as expected according to Theorem 3.1. Moreover
they converge pointwise as h→∞ to the weight wlin on the whole space (provided
it is well-defined, i.e. glin is square-integrable), a property which is also true in
full generality. Regarding the truncated versions of C(β) and Par(z, α), we point
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out that the parameters β and α can take any real value since the Lebesgue den-
sity is always continuous on the truncated interval and thus no extra integrability
condition is required.

Probability measure µ Weight wlin

Uniform U(a, b) 1
2
(x− a)(b− x)

Exponential E(γ)
On R+ Truncated on [0, h]
x

γ

1

γ

(
x− h 1− eγx

1− eγh

)
Normal N (m,σ2)

On R Truncated on [m− h,m+ h]

σ2 σ2

(
1− exp

(
(x−m)2

2σ2
− h2

2σ2

))

Gen. Cauchy C(β)

On R Truncated on [−h, h]

For β > 3/2 :

1 + x2

2(β − 1)

For β 6= 1 :
1

2(β − 1)

(
(1 + x2)− (1 + x2)β(1 + h2)−β+1

)
For β = 1 :

1

2
(1 + x2) log

(
1 + h2

1 + x2

)

Pareto Par(z, α)

On [z,∞) Truncated on [z, z + h]

For α > 2 :

x(x− z)
α− 1

For α 6= 1 :
xα+1

α− 1

(
z1−α − (z + h)1−α

z−α − (z + h)−α
(z−α − x−α)− (z1−α − x1−α)

)
For α = 1 :

x2
(
log

(
z + h

z

)
z−1 − x−1

z−1 − (z + h)−1
− log

(x
z

))
Table 1. Examples of weight wlin.

3.3. Beyond wlin: non-vanishing weights on finite intervals
Theorem 3.1 allows the generation of weights with saturating functions beyond

linear ones. Furthermore, it enables to consider non-vanishing weights. This case
is particularly relevant in GSA since then the existence of an orthonormal basis of
eigenfunctions is guaranteed, at least when the interval [a, b] is finite (the associated
Sturm-Liouville problem is regular, cf. [36]).

According to Theorem 3.1, adding the requirement that the desired weight does
not vanish forces the associated saturating function g to satisfy very specific con-
ditions. Namely, in addition to be a centered function in C 1,2

∗ (a, b), g must verify

g′(a) = g′(b) = 0, g′′(a) 6= 0 and g′′(b) 6= 0. (3.3)

A simple way to build such a suitable function is to consider another “reference”
probability measure µ̃ and to look at a function g̃ saturating the corresponding
classical Poincaré inequality. Indeed, g̃ is an eigenfunction for the diffusion operator
related to µ̃ with (non-vanishing) constant weight equal 1, so that g̃ ∈ C 1,2

∗ (a, b)
and satisfies the Neumann conditions g̃′(a) = g̃′(b) = 0. It is easy to deduce that g̃
then also verifies g̃′′(a) = g̃′′(b) = 0. The function g is then obtained by centering
g̃ with respect to µ. We collect all these elements in the following proposition.

Proposition 3.1. Consider two probability measures µ, µ̃ ∈ P(a, b) with (a, b)
finite. Let g̃ be the function saturating the classical Poincaré inequality for µ̃. Then
the function g defined by g(x) = g̃(x) −

∫ b
a
g̃(y)µ(dy) belongs to C 1,2

∗ (a, b) and
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satisfies (3.3). Moreover it generates a non-vanishing weight wg ∈ W(a, b) leading
to a weighted Poincaré inequality for µ.

There are several ways to define µ̃. First, as an extension of wlin, we can define µ̃
on the finite interval [a, b] for which g̃ is close to be linear. In the context of GSA, the
associated weight will be adapted to linear phenomena (as it is the case with wlin),
as explained by the stability argument given in Section 4.2. Since the function glin
saturates the classical Poincaré inequality for the normal distribution on the real
line, the idea is to choose µ̃ as a truncated Gaussian measure highly concentrated
in [a, b]. For instance, we consider for µ̃ the distribution N

(
a+b
2 , σ2

)∣∣
[a,b]

, with vari-
ance σ2 chosen such that P

(
N
(
a+b
2 , σ2

)
∈ [a, b]

)
= 0.95. Then the corresponding

function g̃ is the so-called Kummer function given in terms of an hypergeometric
series, see for instance [26]. As expected, numerical computations suggest that g̃ is
approximately linear except near the boundary since its derivatives vanish at these
points. In the sequel, we denote by wG the weight wg associated to this choice of
µ̃ (by Proposition 3.1) in order to emphasize the role of the Gaussian distribution.

Secondly, another idea is to choose a convenient reference probability measure
µ̃ that allows simple computations. A natural candidate is the uniform distribu-
tion U(a, b). It is well-known that the optimal constant in the classical Poincaré
inequality is CP (µ̃, 1) = (b − a)2/π2 and the corresponding saturating function is
g̃(x) = cos (π(x− a)/(b− a)). We note wU the generated weight.

3.4. Numerical computation
In this short part we provide a numerical method to approximate the weight wg

from any eligible probability measure µ ∈ P(a, b), with [a, b] finite, and function g.
The idea is to solve the Cauchy problem{

(wgg
′ρ)′(x) = −g(x)ρ(x) on (a, b),

(wgg
′ρ)(a) = 0,

and then simply divide the solution by g′ρ. Above ρ stands for the Lebesgue density
of µ. The method is implemented using the R software. To solve the differential
equation we use the Runge-Kutta 4 method (in R, the function rk4 from the
package deSolve [30]) which is very accurate. Indeed, it is known that if h denotes
the size of the uniform partition of the interval [a, b], the approximation error at any
point is of orderO(h4), cf. for instance [11]. Note that the estimated weight vanishes
at points a and b. To prevent inconsistencies when wg(a) 6= 0 or/and wg(b) 6= 0, we
apply smooth corrections near the boundaries. We illustrate the precision of the
numerical method by computing weights for the standard uniform distribution and
a truncated normal one. Figures 2 and 3 below display the theoretical weights wlin,
together with their numerical approximations and the numerical approximations of
wU and wG. To compute wG, we initially approximate the function that generates
it. This is carried out through the finite element method as in [26]. Note that for
the case of the uniform distribution, wU takes the constant value CP (µ, 1) = 1/π2

(so that the probability measure µ and the reference one µ̃ are the same).
Finally, Figure 4 below shows the numerical approximations of wlin, wG and wU

associated to a truncated Gumbel distribution that naturally appears in hydrology
according to extreme value theory (its Lebesgue density is given in Section 5.3).
We do not have a close expression for any of the weights in this case.
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Figure 2. The weights wlin(x) =
1
2x(1− x), wU(x) = 1/π2, their

numerical approximations and the numerical approximation of wG,
associated to the uniform distribution U(0, 1).
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Figure 3. The weight wlin(x) = 1− exp
(
x2/2− 9/2

)
, its numer-

ical approximation and the numerical approximations of wU and
wG, associated to the truncated normal distribution N (0, 1) on the
interval [0, 3].
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Figure 4. Numerical approximations of wlin, wU and wG asso-
ciated to the truncated Gumbel distribution G(0, 1) truncated on
[0, 4].

3.5. When the weighted Poincaré inequality is not saturated
As we have seen previously in Theorem 3.1, our strategy is to construct a weight

such that the functions saturating the corresponding weighted Poincaré inequality
can be identified. In other words, those functions are the eigenfunctions with associ-
ated eigenvalue the spectral gap, i.e., the inverse Poincaré constant, of a convenient
diffusion operator. However, two obstructions may occur within this framework:
on the one hand the weight may not be explicitly computable and on the other
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hand enforcing the existence of those saturating functions reduces drastically the
scope of admissible weights. For instance the latter approach fails when considering
linear functions associated to wlin as in Section 3.2, which are not always square
integrable with respect to heavy-tailed distributions.

In this part, we compute explicitly the Poincaré constant for more general
weights. In particular we have in mind some examples for which the weighted
Poincaré inequality does not admit saturating functions, so that Theorem 3.1 can-
not be applied. To address this problem, the approach we adopt is based on the
intertwining technique emphasized in [8, 9] in the one-dimensional case. Recall
that a given probability measure µ ∈ P(a, b) has density ρ ∈ C 0,1

+ (a, b) which takes
positive values at the boundary and the notation Lw stands for the (self-adjoint
extension of the) operator defined on C∞N,w(a, b) by

Lwf = wf ′′ + (w′ + w(log ρ)′) f ′,

where w ∈ W(a, b) is a weight function.
Let us state first Theorem 4.2 in [8] but adapted to the present context.

Theorem 3.2. Assume that there exists some smooth function h with non vanishing
derivative on (a, b) such that the function

Mw,h :=
(−Lwh)′

h′
, (3.4)

is bounded from below on (a, b) by some positive constant. Then we have the fol-
lowing weighted Poincaré inequality: for every centered function f ∈ H1(µ,w),∫ b

a

f2 dµ ≤
∫ b

a

w (f ′)2

Mw,h
dµ.

In particular it holds

CP (µ,w) ≤
1

inf
(a,b)

Mw,h
. (3.5)

The formula (3.5) can be seen as a generalization to the operator Lw with diffu-
sion constant w of the famous Chen-Wang result [12] on the spectral gap established
by a coupling technique. As such, it has already been used in the Gaussian and
generalized Cauchy cases to derive the exact expression of the Poincaré constants
for some specific weights when there is no saturating function for the underlying
weighted Poincaré inequalities, cf. [9] (in the generalized Cauchy case, it corre-
sponds to parameters β ∈ (1/2, 3/2], the range β > 3/2 being recovered directly in
Table 1). In particular, an interesting choice of functions h (or rather h′ since only
h′ and its derivatives appears in the formula) parametrized by ε ∈ R is h′ε = ρ−ε/w
so that we have on (a, b),

Mw,ε :=Mw,hε = (1− ε)w
(
ε ((log ρ)′)

2 − (log ρ)′′
)
. (3.6)

Then by (3.5) we obtain

CP (µ,w) ≤
1

sup
ε∈R

inf
(a,b)

Mw,ε
. (3.7)

On the one hand when the weight is prescribed a priori, the estimate (3.7) is
convenient in many situations. On the other hand when we look also at some con-
venient weight w, we proceed as follows: compute first the right-hand-side of (3.6)
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(without w) which is expected to be non-negative for some relevant parameter ε,
and then choose the desired weight w in such way that Mw,ε is bounded from be-
low by some positive constant c. If for some reasons we suspect that c = CP (µ,w),
then we try to find some sequence of centered functions (fη) in H1(µ,w), indexed
by some parameter η, such that the Rayleigh quotient

∫ b
a
f2η dµ/

∫ b
a
w (f ′η)

2 dµ con-
verges to c as η converges to some key value η?. In practice the sequence (fη)
and the key value η? are chosen such that the limiting function does not belong to
H1(µ,w).

As announced, let us observe what happens in some classical and less classical
examples, for which we are able to derive the exact value of the Poincaré constant
although there is no function saturating the weighted Poincaré inequality.

Example 3.1. Considering the exponential distribution µγ with parameter γ > 0,
whose density is given on R+ by ρ(x) = γe−γx, we have seen in Section 3.3 that
the choice w(x) = wlin(x) = x/γ is related to linear eigenfunctions of the so-
called Laguerre operator and yields CP (µγ , wlin) = 1, see for instance [2]. In the
unweighted case, there is no function saturating the Poincaré inequality, although
we are able to identify the corresponding Poincaré constant: by [6], it is well known
that CP (µγ , 1) = 4/γ2 (from a spectral point of view, it corresponds to the bottom
of the essential spectrum of the devoted operator) and the classical approach to
obtain the inequality CP (µγ , 1) ≤ 4/γ2 uses a specific integration by part formula
satisfied by µγ . Here we are able to recover the same bound directly with (3.7).
Indeed, in this case the function M1,ε is constant on (0,∞) and has the value
γ2ε(1− ε). Optimizing with respect to ε yields

CP (µγ , 1) ≤
1

sup
ε∈R

γ2ε(1− ε)
=

4

γ2
.

The converse inequality is proved by considering a family of centered functions
fη(x) = eηx − γ/(γ − η), with η < γ/2 so they belong to H1(µγ , 1): we have after
some computations, ∫∞

0
f2η dµγ∫∞

0
(f ′η)

2 dµγ
=

(η − γ)2 − γ(γ − 2η)

η2(η − γ)2
,

and taking above the limit η → γ/2 entails by (2.3) the inequality CP (µγ , 1) ≥ 4/γ2.

Example 3.2. In a somewhat similar unweighted context, we consider the gener-
alized logistic (or skew-logistic) distribution µα of parameter α > 0 on R, namely
with Lebesgue density

ρ(x) =
αe−x

(1 + e−x)α+1
, x ∈ R.

Similarly to the previous example, this probability measure is also log-concave on
the real line, i.e., − log ρ is a convex function on R. When α = 1 we deal with the
classical logistic distribution, which can be seen as a regularized version around the
origin of the Laplace distribution on the real line since ρ(x) ∼ e−|x| as |x| → ∞. In
this case, the authors in [3] proved that CP (µ1, 1) = 4 but there is no corresponding
function saturating the Poincaré inequality. Let us recover this value from (3.7)
and even prove that CP (µα, 1) = 4/α2 for all α ∈ (0, 1] (the case α > 1 could be
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addressed as well, but we are only able to find the bounds 4/α2 ≤ CP (µα, 1) ≤ 4,
as suggested by the computations below). Given some ε ∈ R, we have for all x ∈ R,

M1,ε(x) = ε(1− ε) + 1− ε
(1 + ex)2

(
(α+ 1)(1− 2ε)ex + ε(α2 − 1)

)
.

Choosing 0 ≤ ε ≤ 1/2 entails that M1,ε starts being increasing, then reaches its
maximum and becomes decreasing. In particular this implies that

inf
x∈R

M1,ε(x) = min

{
lim

x→−∞
M1,ε(x), lim

x→∞
M1,ε(x)

}
= ε(1−ε)min{α2, 1} = ε(1−ε)α2.

Optimizing then in ε leads by (3.7) to the desired inequality CP (µα, 1) ≤ 4/α2.
To get the reverse inequality, we choose in (2.3) the centered functions fη(x) =
(1 + e−x)η − 1/(α − η), with η < α/2 to ensure that fη ∈ H1(µα, 1). After
computations, it yields∫

R f
2
η dµα∫

R(f
′
η)

2 dµα
=

α
α−2η −

α2

(α−η)2
2αη2

(α−2η)(α+1−2η)(α+2−2η)

=
(α+ 1− 2η)(α+ 2− 2η)

2(α− η)2
,

and taking the limit η → α/2, we thus obtain CP (µα, 1) ≥ 4/α2.

Example 3.3. Let us concentrate now on the Pareto distribution, which is a (one-
sided) heavy-tailed probability measure somewhat similar to the generalized Cauchy
distribution. Given two parameters z > 0 and α > 0, denote µz,α the probability
measure with Lebesgue density on [z,∞) defined by x 7→ αzα/xα+1. We show that
CP (µz,α, w) = 4/α2 when the weight is w(x) = x2 (in particular it does not depend
on the parameter z, as expected when using a trivial scaling argument). Hence we
can assume in the sequel z = 1. Note that it differs from the weight emphasized in
Table 1. By (3.6) we have for all ε ∈ R,

Mw,ε(x) = (1− ε)x2
(
ε(α+ 1)2 − (α+ 1)

x2

)
, x > 1.

To ensure the positivity of Mw,ε, we choose ε ∈ (1/(α+ 1), 1). Optimizing then in
ε and using (3.7) yields

CP (µ1,α, w) ≤
4

α2
.

To get the converse inequality, choose the centered functions fη(x) = xη−α/(α−η),
with η < α/2 (so that they belong toH1(µ1,α, w)). Indeed after some computations,
we get ∫∞

1
f2η dµ1,α∫∞

1
w (f ′η)

2 dµ1,α

=

α
α−2η −

(
α

α−η

)2
αη2

α−2η

=
1

(α− η)2
,

and since the right-hand side converges to 4/α2 when η → α/2, this proves the de-
sired inequality CP (µ1,α, w) ≥ 4/α2. Again in this situation, the weighted Poincaré
inequality does admit any saturating function. Indeed, if it was the case, then there
would be some smooth non-null centered function f ∈ H1(µ1,α, w) such that{

Lwf(x) = x2f ′′(x) + (1− α)xf ′(x) = −α
2

4 f(x), x > 1,
f ′(1) = 0.

Then one can prove that such a centered function is given by

f(x) = x
α
2

(
1− α

2
log(x)

)
, x ≥ 1,
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but it is not an eigenfunction since f /∈ L2(µ1,α).

Example 3.4. We consider on (0, 1) the probability measure µα with density
ρ(x) = αxα−1 (α > 0) and the asymmetric weight w(x) = x2(1− xα/2), x ∈ [0, 1].
Although the density might vanish at the boundary (or even be not defined at 0), it
causes no trouble for the forthcoming analysis. The same remark holds for the next
example. Notice that when α = 1, µα stands for the uniform distribution. This
time the identity (3.6) is not relevant since infMw,ε ≤ 0 for all ε ∈ R. However
we are able to prove that CP (µα, w) = 4/α2 by using (3.4) with some convenient
function h′. More precisely, since we have

Lwf(x) = x2(1− xα/2)f ′′(x) + x

(
α+ 1−

(
3α

2
+ 1

)
xα/2

)
f ′(x), x ∈ (0, 1),

then considering h′(x) = x−δ with δ ∈ R yields

Mw,h(x) = −(α− δ + 1)(1− δ) +
(
1 +

α

2
− δ
)(3

2
α− δ + 1

)
xα/2, x ∈ (0, 1),

which is non-negative as soon as δ ∈ [1, 1+α/2]. Choosing then δ = 1+α/2 entails
by (3.5) the bound CP (µα, w) ≤ 4/α2.
To obtain the lower bound we consider the function fη(x) = x−η −α/(α− η), with
η < α/2 (so that fη ∈ H1(µα, w)) and compute:∫ 1

0
f2η dµα∫ 1

0
w (f ′η)

2 dµα
=

α
α−2η −

α2

(α−η)2
α2η2

2(α−2η)( 3
2α−2η)

=
3α− 4η

α(α− η)2
.

By taking the limit η → α/2 we establish that CP (µα, w) ≥ 4/α2. Note however
that an associated eigenfunction does not exist since the non-null centered function
f(x) = x−α/2 − 2, which solves the equation

Lwf(x) = −
α2

4
f(x), x ∈ (0, 1),

does not belong to L2(µα).

Example 3.5. As a last example we consider the symmetric beta distribution
on (−1, 1) whose density is ρ(x) = (1 − x2)β−1/Zβ , where β > 0 and Zβ is the
normalization constant Zβ =

∫ 1

−1(1 − x
2)β−1dx. Using the spectral approach, it

is known that µβ satisfies a weighted Poincaré inequality with weight w0(x) =
1 − x2 and Poincaré constant CP (µβ , w0) = 1/2β. In particular linear functions
(through Jacobi polynomials of degree 1), are the saturating functions, see e.g.
[2]. However we wonder if such an inequality still hold with another weight for
which the spectral analysis of the underlying operator does not give immediately
the expression of the Poincaré constant. Actually, we are able to prove below that a
weighted Poincaré inequality holds with weight w(x) = (1−x2)2 and corresponding
Poincaré constant CP (µβ , w) = 1/β2 for β ∈ (0, 1] (for β > 1 we obtain directly
CP (µβ , w) = 1/(2β − 1) since the increasing centered function x 7→ x/

√
1− x2 ∈

L2(µβ) is an eigenfunction associated to the eigenvalue 2β− 1 of the operator −Lw
below). First, as in the previous example, the identity (3.6) does not allow us to
get the desired result so that let us rather use the equation (3.4) with some other
convenient test function h. Since the associated operator is given for all x ∈ (−1, 1)
by

Lwf(x) = (1− x2)2f ′′(x)− 2(β + 1)x(1− x2)f ′(x),
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we obtain by plugging in (3.4) the function h′(x) = (1− x2)δ,

Mw,h(x) = 2(δ + β + 1)(1− (3 + 2δ)x2),

whose minimum on [−1, 1] is reached at x = ±1 and positive as soon as δ ∈
(−1 − β,−1). Choosing finally δ = −1 − β/2 implies by (3.5) the upper bound
CP (µβ , w) ≤ 1/β2.
On the other hand, we consider the function fη(x) = (1 − x2)η − Zη+β/Zβ (with
η > −β/2 to ensure fη ∈ H1(µβ , w)) and compute:∫ 1

−1 f
2
η dµβ∫ 1

−1 w (f ′η)
2 dµβ

=

Z2η+β

Zβ
−
(
Zη+β
Zβ

)2
2η2

2η+β ×
Z2η+β+1

Zβ

.

Then the continuity of a 7→ Za on (0,∞) together with an integration by parts
leading to the following identity: for all a > 0,

Za+1 =
2a

1 + 2a
Za,

entails that we finally have ∫ 1

−1 f
2
η dµβ∫ 1

−1 w (f ′η)
2 dµβ

∼
η→−β/2

1

β2
.

Hence we get the reverse inequality CP (µβ , w) ≥ 1/β2. However for every β ∈ (0, 1]
there is no associated eigenfunction. Indeed, the related problem is to find some
smooth non-null centered function f ∈ H1(µβ , w) such that

Lwf(x) = −β2f(x), x ∈ (−1, 1).

Rewriting f(x) = (1− x2)−β/2g(x), this is equivalent to find some solution g such
that the following Legendre equation equation holds: for all x ∈ (−1, 1),

(1− x2)g′′(x)− 2xg′(x) = −β(β + 1)g(x).

For β ∈ (0, 1), solutions are linear combinations of Legendre functions of the first
and second kind, the first one admitting finite limits at ±1 whereas the second
one, denoted Qβ , is singular at the endpoints ±1, see [24]. In particular we have
the asymptotics Qβ(x) ∼

x→1
− log(1 − x)/2 so that the resulting function f(x) =

(1 − x2)−β/2g(x) does not belong to L2(µβ). Finally for β = 1, solutions to the
Legendre equation are linear (i.e., degree 1 Legendre polynomials) but also in this
case we have f /∈ L2(µβ).
To conclude, let us prove that for every β > 0, the exponent 2 in w(x) = (1−x2)2 is
the largest one leading to a weighted Poincaré inequality. Suppose by contradiction
that there exists some ε > 0 such that wε(x) = (1−x2)2+ε is an admissible weight.
By (2.3) applied to the function fη(x) = (1−x2)η−Zη+β/Zβ , η > −β/2, it follows
that

CP (µ,wε) ≥
Z2η+β −

Z2
η+β

Zβ

4η2 (Z2η+β+ε − Z2η+β+ε+1)
,

which tends to infinity for each fixed ε > 0 as η → −β/2, leading thus to a
contradiction.



WEIGHTED POINCARÉ INEQUALITIES FOR GLOBAL SENSITIVITY ANALYSIS 19

4. Link with global sensitivity analysis

Let us turn our attention to the consequences of weighted Poincaré inequalities
for sensitivity analysis. First we provide the proof of the inequality involving total
Sobol and weighted DGSM indices defined earlier in the introduction. Subsequently
we deal with the equality case and emphasize a stability condition ensuring the
sharpness of the upper bounds and introduce data-driven weights, together with a
uniform consistency result. At the end, we address the Poincaré chaos approach to
produce lower bounds for total Sobol indices.

In the whole section, we consider a random vector X = (X1, . . . , Xd) ∈ Rd of
independent input variables and the output f(X) ∈ L2, where f : Rd → R is some
function referring to the model. Recall that for a set I ⊂ {1, . . . , d} the notation
XI stands for the random vector defined by the variables Xj , j ∈ I. As defined in
the introduction, the total Sobol indices are given by

Stot
i (f(X)) =

Var(f toti (X))

Var(f(X))
,

where
f toti (X) =

∑
I3i

fI(XI) = f(X)− E [f(X) |X−i] , (4.1)

the random vector X−i of dimension d − 1 being defined by X−i := X{1,...,d}\{i}.
Note that the second equality in (4.1), which is important in the forthcoming anal-
ysis, comes from the fact that if I is a superset of {i}, then by the assumptions of
the Sobol-Hoeffding decomposition,

E[fI(XI)|X−i] = E[fI(XI)|XI\{i}] = 0.

Finally, given i ∈ {1, . . . , d} and some convenient non-negative weight wi, we
further assume that (wi(Xi))

1/2 ∂f
∂xi

(X) ∈ L2. Then, the weighted DGSM index
related to the distribution of the input Xi is defined as

νi,wi(f(X)) = E

[
wi(Xi)

(
∂f

∂xi
(X)

)2
]
.

To simplify the notation, we write Stot
i for Stot

i (f(X)) and νi,wi for νi,wi(f(X)).

4.1. Upper bounds for total Sobol indices
The following proposition deals with the inequality announced in the introduc-

tion, linking total Sobol and weighted DGSM indices. It generalizes the result
presented in [19] for classical Poincaré inequalities.

Proposition 4.1. Given i ∈ {1, . . . , d}, assume that the distribution µi of the
input variable Xi belongs to P(ai, bi). Let wi ∈ W(ai, bi) be a weight function and
suppose that µi satisfies the following weighted Poincaré inequality: for all centered
function g ∈ H1(µi, wi),

E
[
g(Xi)

2
]
≤ CP (µi, wi)E

[
wi(Xi)g

′(Xi)
2
]
. (4.2)

We also assume that (wi(Xi))
1/2 ∂f

∂xi
(X) ∈ L2 where f(X) ∈ L2. Then,

Stot
i ≤ CP (µi, wi)

νi,wi
Var(f(X))

. (4.3)
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Proof. For all x−i ∈
∏
j 6=i[aj , bj ], let gx−i be the one-dimensional function

gx−i : xi ∈ [ai, bi] 7→ f toti (x).

Notice that, from (4.1), we can write gx−i(xi) = f(x)−E[f(X) |X−i = x−i]. Under
this form, it is clear that gx−i is a centered function of L2(µi) and verifies

g′x−i
(xi) =

∂f

∂xi
(x).

Under the assumptions on f , this latter equality shows that gx−i belongs toH1(µi, wi).
Then the weighted Poincaré inequality (4.2) applied to gx−i gives

E
(
f toti (X)2|X−i = x−i

)
≤ CP (µi, wi)E

[
wi(Xi)

(
∂f

∂xi
(X)

)2
∣∣∣∣∣X−i = x−i

]
.

Integrating over x−i with respect to the product measure ⊗j 6=iµj and using the
fact that f toti is centered, we get

Var
(
f toti (X)

)
≤ CP (µi, wi)E

[
wi(Xi)

(
∂f

∂xi
(X)

)2
]
.

Dividing by Var(f(X)) concludes the proof. �

4.2. Case of equality in the upper bound and stability
Looking carefully at the proof of Proposition 4.1 above, we observe that a suf-

ficient condition ensuring the equality in (4.3) is that the one-dimensional func-
tion xi 7→ f toti (x) saturates the weighted Poincaré inequality (4.2) for each fixed
x−i ∈ Rd−1. Since the space of saturating functions is one-dimensional (it cor-
responds to the eigenspace related to the spectral gap of the underlying diffusion
operator), the function f toti is then required to be of the following form:

f toti (x) = gi(xi)v(x−i), x ∈ Rd,
where gi ∈ H1(µi, wi) is some one-dimensional function saturating the weighted
Poincaré inequality (4.2) (in particular it is centered with respect to µi) and vi is
a function that only depends on x−i. In this case the function f rewrites as

f(x) = ui(x−i) + gi(xi)vi(x−i), x ∈ Rd,
with ui(x−i) = E[f(X) |X−i = x−i]. The next proposition further provides a
stronger result in terms of stability of the inequality (4.3), at least when the one-
dimensional function considered is close to the function saturating the Poincaré
inequality (4.2) in the space H1(µi, wi) (it corresponds below to the case ε > 0).

Proposition 4.2. Under the notation and assumptions of Proposition 4.1, let fix
i ∈ {1, . . . , d} and let f be of the form f(x) = ui(x−i) + hi(xi)vi(x−i), where
ui, vi are functions depending only on x−i, such that ui(X−i), vi(X−i) ∈ L2, and
hi ∈ H1(µi, wi) is centered with respect to µi. Let further assume that there exists
ε ≥ 0 such that

E
[
wi(Xi) (h

′
i(Xi)− g′i(Xi))

2
]
≤ ε,

where gi is a function saturating the weighted Poincaré inequality (4.2). Then we
have the following stability result:

0 ≤ CP (µi, wi)
νi,wi

Var(f(X))
− Stot

i ≤ CP (µi, wi)
E
[
v2i (X−i)

]
Var(f(X))

ε.
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In particular, if f has the form f(x) = ui(x−i) + gi(xi)vi(x−i), then (4.3) is an
equality.

Proof. Denote V the symmetric bilinear form acting on the space of centered func-
tions in H1(µi, wi) as follows:

V (ϕ,ψ) = CP (µi, wi)E [wi(Xi)ϕ
′(Xi)ψ

′(Xi)]− E [ϕ(Xi)ψ(Xi)] .

By the weighted Poincaré inequality (4.2), the induced quadratic form is non-
negative. Moreover we have

V (hi − gi, hi − gi) = V (hi, hi) + V (gi, gi)− 2V (hi, gi).

Since the function gi saturates (4.2), we have V (gi, gi) = 0 and also V (hi, gi) = 0,
using the variational identity (2.4). Hence we get

0 ≤ V (hi, hi) = V (hi − gi, hi − gi) ≤ CP (µi, wi) ε. (4.4)

Notice that ∂f
∂xi

(x) = h′i(xi) vi(x−i) and f toti (x) = hi(xi)vi(x−i). Then, by inde-
pendence of Xi and X−i, we obtain:

CP (µi, wi)
νi,wi

Var(f(X))
− Stot

i =
E
[
v2i (X−i)

]
Var(f(X))

V (hi, hi).

Combining with (4.4) concludes the proof. �

Although wi can be any general weight in W(ai, bi) a priori, the requirement
that the function gi saturates the weighted Poincaré inequality (4.2) enforces wi to
be proportional to the weight wgi constructed according to Theorem 3.1. Indeed,
it is not difficult to prove that necessarily wi = wgi/CP (µi, wi).

4.3. Data-driven weights for monotonic main effects
Important quantities arising in GSA are the first-order indices, or main effects,

which allow to understand the influence of each variable individually over the model.
For each i ∈ {1, . . . , d}, the main effect fi(Xi) (or simply fi, using a slight abuse of
language) of the input variable Xi is defined as

fi(Xi) = E [f(X) |Xi]− E [f(X)] .

By definition of the conditional expectation, fi(Xi) is the best centered L2 approx-
imation of f(X) by a one-dimensional function depending on Xi. It is thus reason-
able to use fi for building wi. If fi belongs to C 1,2

∗ (ai, bi), implying that fi is strictly
monotonic, a natural candidate for wi is wfi since by Theorem 3.1, fi saturates the
corresponding weighted Poincaré inequality. By Proposition 4.2, this further implies
that the total Sobol indices will be perfectly approximated by weighted DGSM ones
involving the weight wfi for functions of the form f(x) = ui(x−i) + hi(xi)vi(x−i).
Indeed, then we necessarily have fi(xi) = hi(xi)E[vi(X−i)], and (provided that
E[vi(X−i)] 6= 0) hi is proportional to fi, corresponding to an equality case in
Proposition 4.1.
In practice, however, fi is unknown and must be estimated. The idea is to use some
convenient pointwise estimator ŵi of wfi , i.e., ŵi(xi) is an estimator of wfi(xi) for
all xi ∈ [ai, bi]. A natural candidate for this data-driven weight ŵi is obtained
by first approximating fi with a pointwise strictly monotonic estimator f̂i, almost
surely centered with respect to µi, and then considering ŵi = wf̂i . The consistency
of this statistical procedure is proved in the following proposition.
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Proposition 4.3. Given i ∈ {1, . . . , d} and a finite interval [ai, bi], we assume
that µi ∈ P(ai, bi) and that the main effect fi ∈ C 1,2

∗ (ai, bi) satisfies f ′i(a) 6= 0 and
f ′i(b) 6= 0. Moreover we assume that ∂f

∂xi
(X) ∈ L2.

Let (X1, . . . , X
(n)) be an i.i.d. sample generated from X and consider an estimator

f̂i constructed with respect to this sample. We assume the following (almost sure)
hypothesis:

(i) f̂i is centered with respect to µi.
(ii) f̂i ∈ C 1,2

∗ (ai, bi) satisfies f̂i
′
(a) 6= 0 and f̂i

′
(b) 6= 0.

(iii) f̂i converges uniformly to fi on [ai, bi] as n→∞.
(iv) f̂i

′
converges uniformly to f ′i on [ai, bi] as n→∞.

Then almost surely, the data-driven weight ŵi = wf̂i converges uniformly to wfi on
[ai, bi] as n→∞. Moreover, the Monte-Carlo estimator

ν̂i =
1

n

n∑
k=1

ŵi(X
(k)
i )

∣∣∣∣ ∂f∂xi (X(k))

∣∣∣∣2
converges almost surely to νi,wfi as n→∞.

Proof. Using (i) and (ii), the weight ŵi = wf̂i is defined in Theorem 3.1 for all
xi ∈ [ai, bi] by

ŵi(xi) = −
1

f̂i
′
(xi)ρi(xi)

∫ xi

ai

f̂i(y)ρi(y) dy. (4.5)

Since a.s. f̂i converges uniformly to fi on [ai, bi] as n→∞, it follows that a.s. the
sequence xi 7→

∫ xi
ai
f̂i(y)ρi(y) dy also converges uniformly to xi 7→

∫ xi
ai
fi(y) ρi(y) dy

on [ai, bi]. By (ii), f̂i and fi are C 1 on the finite interval [ai, bi]. Since f̂i
′
tends

uniformly to f ′i and f̂i
′
is of constant sign, the function |f̂i

′
| is bounded from below

by a positive constant that does not depend on n. The same argument holds for
|f ′i | as well. Using that ρi is also bounded from below by some positive constant,
this further implies that 1/(f̂i

′
ρi) converges uniformly to 1/(f ′iρi) on [ai, bi]. This

concludes the proof of the desired a.s. uniform convergence of ŵi.
Now the proof of the convergence of the Monte-Carlo estimator ν̂i to the weighted
DGSM index νi,wfi is straightforward: decomposing ν̂i as

ν̂i =
1

n

n∑
k=1

(
ŵi(X

(k)
i )− wfi(X

(k)
i )

) ∣∣∣∣ ∂f∂xi (X(k))

∣∣∣∣2 + 1

n

n∑
k=1

wfi(X
(k)
i )

∣∣∣∣ ∂f∂xi (X(k))

∣∣∣∣2 ,
we observe on the first hand that the first term converge a.s. to 0 (since a.s. ŵi
converges uniformly to wfi on [ai, bi] as n → ∞ and ∂f

∂xi
(X) ∈ L2) whereas on

the other hand the second term converges a.s. to νi,wfi by the strong law of large
numbers. The proof is now complete. �

Note that the assumptions of Proposition 4.3 are rather strong. A difficulty is
to ensure that f̂i

′
can be bounded from below by a positive constant that does not

depend on the sample size n. This is guaranteed by the uniform convergence of the
derivatives f̂i

′
. Notice also that Assumption (iii) may be replaced by

(iii’) there exists some ci ∈ [ai, bi] such that f̂i(ci) converges to fi(ci) as n→∞
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since (iii’) and (iv) imply (iii). This is however a particular case, and we have
chosen to keep here the most general assumption.

Note also that the relevance of the data-driven weight methodology depends
crucially on the construction of the strictly monotonic f̂i which estimates the main
effect fi. In practice it is difficult to provide such a construction ensuring the
monotonicity and the uniform consistency properties at the same time. See however
the paper [23] which explains how to modify a given uniformly consistent estimator
to obtain a monotonic version of it. In particular the uniform consistency property
is preserved with the same rate of convergence.

To achieve the discussion about data-driven weights, we point out that the previ-
ous approach can not be applied in theory when the main effect fi is not monotonic.
Indeed, the weight wfi is not well defined and the required convergence properties
of the estimator f̂i are not guaranteed. However in practice such a procedure can
be adapted when the strictly monotonic estimator f̂i remains close to fi (in the
weighted Sobolev space related to ŵi), so that the numerical results obtained with
the data-driven weight ŵi may be somewhat relevant in this context.

4.4. Approximations of total Sobol indices with Poincaré chaos expan-
sions

In the previous sections, our main objective was to bound from above the total
Sobol indices with the weighted DGSM ones. However when we consider a weight
wi that does not vanish on the finite interval [ai, bi], the associated Sturm-Liouville
problem is regular and the underlying diffusion operator Lwig = (wig

′ρi)
′/ρi admits

a discrete spectral decomposition. Collecting all these decompositions for all i ∈
{1, . . . , d}, such a decomposition considered on the product space leads to the so-
called Poincaré chaos expansion and allows us to expand Var(f toti (X)). As such,
truncating the expansion yields to lower bounds on the total Sobol index Stot

i .
Below we provide further details on this approach involving weights, which is a
simple adaptation of the one presented in [21, 27] and related to classical Poincaré
inequalities.

Before stating our desired expansion, we need to fix some elements. For each
i ∈ {1, . . . , d}, recall that each µi ∈ P(ai, bi) stands for the distribution of the
input variable Xi. Let wi ∈ W(ai, bi) which does not vanish at the boundaries.
Denote (λi,n)n∈N the eigenvalues listed in increasing order of the diffusion operator
−Lwi . We have λi,0 = 0 and λi,1 = 1/CP (µi, wi) is the spectral gap. Let (ei,n)n∈N
be the associated orthonormal basis of eigenfunctions (recall that ei,0 ≡ 1), the
normalization being understood in L2(µi).

In higher dimension we consider the product measure µ = µ1 ⊗ · · · ⊗ µd of the
input vector X. Letting L2(µ) be the space of square-integrable functions on the
cartesian product

∏d
i=1[ai, bi] with respect to µ, we write the scalar product of two

given functions ϕ,ψ ∈ L2(µ) as 〈ϕ,ψ〉 =
∫
ϕψ dµ. Then the diffusion operator re-

lated to µ is the sum of the one-dimensional operators −Lwi , each acting only on the
i-th coordinate of a given multi-dimensional function, the other coordinates being
fixed. Then the collection of all tensor-product functions eα : x 7→

∏d
i=1 ei,αi(xi),

with α = (α1, . . . , αd) ∈ Nd a multi-index, form an orthonormal basis of L2(µ) and
correspond to the eigenfunctions of this multi-dimensional diffusion operator, each
eigenfunction eα being related to the eigenvalue

∑d
i=1 λi,αi . Hence every function

in L2(µ) admits a decomposition in terms of the functions (eα)α∈Nd , known as the
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Poincaré chaos expansion expansion (PoinCE). Applied to the function f , we have

f =
∑
α∈Nd
〈f, eα〉 eα.

Since we have for all x ∈
∏d
i=1[ai, bi],

f toti (x) = f(x)−
∫ bi

ai

f(x1, . . . , xi, . . . , xd)µi(dxi),

its PoinCE has the particular form

f toti =
∑
α∈Nd
αi≥1

〈f, eα〉 eα.

Hence the variance of the random variable f toti (X) can be expanded using Parseval’s
identity:

Var(f toti (X)) =
∑
α∈Nd
αi≥1

〈f, eα〉2. (4.6)

The advantage of using such a basis (eα)α∈Nd rather than any other one resides in
the fact that it provides an alternative expansion in terms of the derivatives of f , in
the spirit of the one-dimensional identity (2.4): for all i ∈ {1, . . . , d} and all n ∈ N,

〈f, ei,n〉 =
1

λi,n
〈wi

∂f

∂xi
, e′i,n〉.

The next proposition summarizes these facts. The proof is somewhat similar to the
one established in [27].

Proposition 4.4. Assume that the weighted DGSM index νi,wi is finite. Then the
Parseval’s identity (4.6) can be rewritten using derivatives as:

Var(f toti (X)) =
∑
α∈Nd
αi≥1

1

λ2i,αi
〈wi

∂f

∂xi
, e′i,αi

d∏
j 6=i

ej,αj 〉2. (4.7)

In practice, the decompositions (4.6) and (4.7) have to be appropriately trun-
cated, leading to approximations of the Sobol index Stot

i . Thus, the key point is
how to choose the truncation and then to estimate the various scalar products.
Certainly, keeping only few terms in the Poincaré chaos expansion might provide
relevant numerical results, as we will observe in Section 5 when dealing with our toy
models and the real flood application. However it is not an easy task in full gener-
ality as soon as the dimension is large since the computational cost is high. A first
step in this direction has been proposed in [21] in the context of classical Poincaré
inequalities using sparse regression. In particular this approach allows to compute
simultaneously the scalar products involved in the decompositions (4.6) and (4.7).
Dealing with the weighted case, we intend to apply the same methodology in a
future work.

As a last remark, we mention that the data-driven approach emphasized in
Section 4.3 is hardly available at this stage when using the Poincaré chaos expansion,
since in the latter case the data-driven weight ŵi is required to be positive on [ai, bi].
In other words, it means that the derivatives of the estimator f̂i should vanish at
the boundary, a property which is hard to guarantee in practice.
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4.5. Summary and guidelines for choosing weights to GSA
Before turning to Section 5 and the applications to various models arising in

GSA, let us for completeness summarize our approach based on weighted Poincaré
inequalities. Recall that for a given i ∈ {1, . . . , d} the total Sobol indices Stot

i can be
bounded from above by an expression involving the weighted DGSM index νi,wi with
an appropriate weight wi (see Section 4.1). Lower bounds on Stot

i are also available
when using the Poincaré chaos expansion, as emphasized in the last section. To do
so, we study the spectral properties of the diffusion operator Lwig = (wig

′ρi)
′/ρi

depending on the weight wi which has to be constructed conveniently.
When no particular knowledge about the model f is provided, the most informa-

tion we can expect may be given by the one-dimensional L2 centered approximation
of f(X) corresponding to the main effect fi(Xi) in the Sobol Hoeffding decomposi-
tion. Then we can tune the (one-dimensional) weight wi such that the first non-null
eigenfunction ei of the operator −Lwi (constructed with respect to wi) is close to fi.
Notice however that this approximation is constrained by the structural properties
of ei, in particular its monotonicity.

In many engineering problems, fi may be approximated by a linear function.
This justifies the idea of choosing wlin (see Section 3.2) by default or its Gaussian
approximation wG (see Section 3.3). Nevertheless, as a first step of GSA, it is
often possible to visualize the main effects and to estimate them from a sample
of small size, see for instance [18]. Thus it is natural to consider the data-driven
weight ŵi built from a strictly monotonic estimator f̂i of fi (see Section 4.3). As
mentioned earlier, we illustrate this data-driven approach only for bounding from
above the total Sobol indices, as their estimation from Poincaré chaos expansions
requires that the derivatives of the estimator f̂i vanishes at the boundary, a property
which is difficult to ensure in practice. A first idea in this direction could be to
use a Gaussian process approach for constraints on boundedness, monotonicity and
convexity, cf. e.g. [20].

5. Applications

5.1. Numerical settings
In this final part, we present numerical applications of our results on two toy

models and a more realistic one given by a flood case. To emphasize the role of
the input variables Xi, i ∈ {1, . . . , d}, we rewrite the weights presented in Section
3 as wi,lin, wi,G and wi,U. In addition to wi,lin and ŵi, we consider also the non-
vanishing weights wi,U and wi,G (see Section 3.3) for comparison purposes when
bounding from above total Sobol indices. For the lower bounds using Poincaré chaos
expansion (understood in this part as approximations), we employ only the weights
wi,G and wi,U, which ensure the existence of an orthonormal basis of eigenfunctions.
We refer to truncations of the infinite sum in (4.6) as derivative-free approximations
(abbreviated Der-free) and to truncations of the one in (4.7) as derivative-based
approximations (abbreviated Der-based). All our numerical results have been done
with the R software [28], and are compared with the ones obtained in the classical
unweighted case. We now give more specific details.
Eigenvalue and eigenfunction estimation, and PoinCE series truncation
The eigenvalues and eigenfunctions are computed using a weighted adaptation of
the function PoincareOptimal from the package sensitivity [17], based on a
finite element discretization. Once this is done, the PoinCE approximations can be
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computed. We approximate each Stot
i with truncations of both sums (4.6) and (4.7)

by considering only few terms, according to the following subset of multi-indices:

Ai =
{
α ∈ Nd

∣∣αi ∈ {1, 2},∑
j 6=i

αj ≤ 1

}
.

In other words, a given α ∈ Ai if and only if αi ∈ {1, 2} and there is at most one
index j 6= i such that αj ≤ 1, all the other ones being null. As we will observe
below, this selection is sufficient to obtain relevant results on the three models.

Weight computation
Recall that in our approach, given i ∈ {1, . . . , d}, a weight wi is constructed from
a strictly monotonic function g which saturates the associated weighted Poincaré
inequality. For wi,lin and wi,U, the function g is explicit. For wi,G, as g satu-
rates a classical (unweighted) Poincaré inequality, we compute it with the function
PoincareOptimal, using a sequence of 500 equally spaced nodes. For ŵi, we
choose g as the monotonic estimator f̂i of fi given by the Shape Constrained Ad-
ditive Model (SCAM) [25] from a sample of size 150. Finally, given g, the weights
wi,lin, wi,G, wi,U and ŵi are approximated with the numerical method described in
Section 3.4, using a sequence of 500 equally spaced nodes.

Monte-Carlo estimation and sample size
Monte-Carlo integration is employed for computing the variance, weighted DGSM,
and PoinCE scalar products, using a sample of input vectors and their correspond-
ing outputs. When the derivatives of the outputs are unknown, we estimate them
using finite differences. We have used a reasonably small sample size of 150 for the
three models considered, whose dimensions are 5 for the two first ones, and 8 for the
flood model. Additionally, due to estimation error in Monte-Carlo simulations, we
have also used a larger sample of size 10 000 when computing the PoinCE approxi-
mations, in order to highlight the benefits of incorporating weights. Furthermore,
we perform 100 bootstrap replicates for each estimation of the upper bounds and
approximations. They are displayed with boxplots to represent confidence intervals.

5.2. Illustration with toy models
The two toy models we consider in this part depend on X = (X1, . . . , X5), a

vector of i.i.d. random variables with common distribution µi being uniform on
(0, 1). As such, for each i ∈ {1, . . . , d}, the weight wi,U takes the constant value
wi,U ≡ CP (µi, 1) = 1/π2 and thus their upper bounds and PoinCE approximations
match with the classical ones. We exclude wi,U in the presentation of our results
below.

A simple polynomial toy model
As a first toy model we propose

f(X) = X1 +X2
2 +X3

3 +X4
4 +X5

5 . (5.1)

Then for every i ∈ {1, . . . , d}, the function f toti coincides with the main effect fi
and we have

f toti (Xi) = fi(Xi) = Xi
i −

1

1 + i
.
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Then the theoretical Sobol index in this case is

Stot
i =

1
2i+1 −

1
(1+i)2∑5

j=1

(
1

2j+1 −
1

(1+j)2

) .
Figure 5 displays the upper bounds for total Sobol indices. We can see that for each
input variable Xi, the data-driven weight ŵi gives the most accurate result. This
is expected because our toy function is a model with separated variables and has
monotonic main effects. Indeed, from Proposition 4.2, the optimal weight is wfi ,
and the upper bound equals the total Sobol index. Furthermore, the estimation of
the main effects is here very accurate, as shown in Figure 6. Note additionally that
the classical (unweighted) upper bounds provides the worst result.
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Figure 5. Upper bounds on the total Sobol indices for the toy
model (5.1). Horizontal red bars indicate the true values.
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Figure 6. Monotonic estimators f̂i of the main effects fi for the
toy model (5.1). In this figure, the output has been recentered.

Next, Figure 7 presents the PoinCE approximations of each total Sobol index.
The estimations using a large sample size indicate that, for each Xi, the weight
wi,G produces the most accurate approximations when comparing with the clas-
sical (unweighted) case. Finally, note that the derivative-based approximations
exhibit considerably less variance than the derivative-free ones. This is because the
derivatives of the function f have less fluctuations than the function itself.

A toy model separating variables, with monotonic main effects.
Let us propose a second toy model admitting interactions between input variables.
Such a model, which might be useful to create toy examples to test the relevance
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Figure 7. PoinCE approximations of the total Sobol indices for
the toy model (5.1), estimated with samples of size 150 (left) and
10 000 (right). Horizontal red bars indicate the true values.

of GSA methodologies, is of the following form:

f(X) =

d∏
i=1

(
hi(Xi)

1 + ai
+ 1

)
, (5.2)

where X = (X1, . . . , Xd) is a vector of independent random variables, a ∈ Rd is
a constant vector with non-negative coordinates and each hi is a one-dimensional
function such that E [hi(Xi)] = 0. Such formulation is inspired by the g-Sobol
function, classical in GSA, defined with the particular choice hi(xi) = 4 |xi − 1/2|−
1. Actually, it is clear that the main effect of each input variable Xi is fi(Xi) =
hi(Xi)/(1 + ai), so that ai determines its main influence. Moreover, ai determines
the total influence as well. Indeed, since

f toti (X) =
hi(Xi)

1 + ai

∏
j 6=i

(
1 +

hj(Xj)

1 + aj

)
,

we thus obtain after some brief computations,

Var(f toti (X)) =
ri

(1 + ai)2

∏
j 6=i

(
1 +

rj
(1 + aj)2

)
,

and

Var(f(X)) =

d∏
j=1

(
1 +

rj
(1 + aj)2

)
− 1,

where ri = E
[
hi(Xi)

2
]
, and one deduces that the total Sobol index Stot

i is small as
ai is large.

We now consider a particular case of (5.2) by choosing hi(xi) = x4i − 1
5 (i =

1, . . . , 5) and a = (1, 2, 4.5, 90, 90). In particular, each main effect fi is monotonic.
Figure 8 presents the upper bounds. Once again, for each variable Xi, the most
efficient weight is ŵi. This illustrates the advantage of the data-driven approach
with models presenting interactions between variables. Note also that for the in-
put variable X1, it provides the unique relevant upper bound (the classical upper
bound in the unweighted case wi = 1 and the one using wi,G with i = 1 do not
appear in the figure as they are greater than one). The precision of these upper
bounds is explained by the accuracy of each estimator f̂i, as we can see in Figure
9. Concerning the PoinCE approximations, the best estimations are once again the
ones provided by the weight wi,G (see Figure 10).
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Figure 8. Upper bounds on the total Sobol indices for the toy
model (5.2). Horizontal red bars indicate the true values.
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Figure 9. Monotonic estimators f̂i of the main effects fi for the
toy model (5.2). In this figure, the output has been recentered.
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Figure 10. PoinCE approximations, estimated with samples of
sizes 150 (left) and 10 000 (right), of the total Sobol indices for the
toy model (5.2). Horizontal red bars indicate the true values.

5.3. Application to a flood model
To finish this work, we consider a simplified flood model commonly used to test

GSA methodologies. It has been addressed, for instance, in [16, 21, 26, 27]. The
outputs of interest are:

• the maximal annual overflow (measured in meters)

S = Zv −Hd − Cb +

(
Q

BKs

√
L

Zm − Zv

) 3
5

.

• the annual cost of the dyke maintenance in million of euros

C = 1S>0 +
(
0.2 + 0.8

(
1− e−

1000
S4

))
1S≤0 +

1

20
max {Hd, 8} .
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The inputs are supposed to be independent random variables, whose distributions
are in accordance with the empirical distributions obtained from measurement cam-
paigns. Details are given in Table 2.

Input Meaning Unit Probability measure
X1 = Q Max. flow rate m3/s Gumbel G(1013, 558)|[500,3000]
X2 = Ks Strickler coefficient — Gaussian N (30, 64)|[15,75]
X3 = Zv Downstream level m Triangular T (49, 50, 51)
X4 = Zm Upstream level m Triangular T (54, 55, 56)
X5 = Hd Dyke height m Uniform U(7, 9)
X6 = Cb Bank height m Triangular T (55, 55.5, 56)
X7 = L River length m Triangular T (4990, 5000, 5010)
X8 = B River width m Triangular T (295, 300, 305)

Table 2. Input variables for the flood model. The notation |I
means that the distribution is truncated on the interval I.

The pdf of the Gumbel distribution G(η, β) (η ∈ R, β > 0) and of the triangular
distribution T (a, c, b) (a < c < b) are given respectively by:

ρ(x) =
1

β
exp

(
−x− η

β
− exp

(
−x− η

β

))
, x ∈ R,

ρ(x) =
2(x− a)

(b− a)(c− a)
1[a,c](x) +

2(b− x)
(b− a)(b− c)

1(c,b](x), x ∈ R.

For the sake of comparison, we need the total Sobol indices and the main effects.
Since closed form expressions can be hardly obtained, we estimate them with a
large sample of size 10 000 and refer to these estimations as “true” values. More
precisely, the total Sobol indices are computed with the function soboljansen
from the package sensitivity [17] and the main effects are estimated with the
function loess (package stats).

We present the results for S and C at the same time, focusing on the variables
Q, Ks, Zv and Hd, which are found to be the most influential. Figure 11 displays
the upper bounds. We see that for each variable Xi, the bounds provided by the
data-driven weight ŵi and wi,lin are sharp and somewhat similar, except for Hd in
the output C, where the bounds are rather rough. This poor result for Hd may be
due to the fact that its main effect has a non-monotonic quadratic shape (see Figure
12). Recall that when the main effect is non monotonic, the data-driven weight can
be constructed but does not come with a theoretical guarantee. Furthermore, this
may cause numerical troubles. For instance, we could not use the SCAM estimator
as it produces a flat curve in the region Hd < 8 which creates a singularity in
the definition of the estimated weight given in (4.5). We have replaced it by an
increasing piecewise affine function with knots Hd = 7, 8, 9.

We present now the PoinCE approximations in Figures 13 and 14. We obtain
relevant and similarly accurate approximations for each variable. This includes
the case of the variable Hd in the output C, where no accurate upper bound was
provided. This is remarkable, considering that only few basis functions have been
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Figure 11. Upper bounds of the total Sobol indices for the flood
model. Horizontal red bars indicate the true values.
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Figure 12. Estimators f̂i (blue lines) of the main effects fi (red
lines) for the recentered outputs of the flood model.

used in the PoinCE chaos. Using more basis functions would reduce the slight bias
for the output C.
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Figure 13. PoinCE approximations, estimated with samples of
sizes 150 (left) and 10 000 (right), of the total Sobol indices for S.
Horizontal red bars indicate the true values.
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Figure 14. PoinCE approximations, estimated with samples of
sizes 150 (left) and 10 000 (right), of the total Sobol indices for the
flood model (cost output). Horizontal red bars indicate the true
values.
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Appendix A.

This short appendix presents the various computations of the weight wlin for
each example listed in Table 1. We deal only with the truncated measures, as
the weights in the non truncated case are immediately recovered by letting the
truncation boundaries tend to infinity. Given some probability measure µ ∈ P(a, b),
recall that by Theorem 3.1 the weight wlin is given by

wlin(x) =
1

ρ(x)

∫ x

a

(m− y) ρ(y) dy, x ∈ [a, b],

where m denotes the mean m =
∫ b
a
z ρ(z) dz and ρ is the Lebesgue density of the

measure µ.

Uniform distribution U(a, b)
For all x ∈ [a, b],

wlin(x) =
a+ b

2

∫ x

a

dy −
∫ x

a

y dy =
1

2
(x− a)(b− x).

Truncated exponential distribution E(γ)|[0,h]
In this case the mean is

m =

(∫ h

0

γ e−γzdz

)−1 ∫ h

0

γ z e−γzdz =
1

γ
− he−γh

1− e−γh
,
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and for all x ∈ [0, h],

wlin(x) = eγx
((

1

γ
− h e−γh

1− e−γh

)∫ x

0

e−γydy −
∫ x

0

y e−γydy

)
= eγx

((
1

γ
− h e−γh

1− e−γh

)
1

γ

(
1− e−γx

)
+

1

γ
x e−γx − 1

γ2
(
1− e−γx

))
=

1

γ

(
x− h e

γx − 1

eγh − 1

)
.

Truncated normal distribution N (m,σ2)|[m−h,m+h]

For all x ∈ [m− h,m+ h],

wlin(x) = e(x−m)2/2σ2

∫ x

m−h
(m− y) e−(y−m)2/2σ2

dy

= σ2 e(x−m)2/2σ2
(
e−(x−m)2/2σ2

− e−h
2/2σ2

)
= σ2

(
1− e((x−m)2−h2)/2σ2

)
.

Truncated generalized Cauchy distribution C(β)|[−h,h]
We have m = 0 and for all x ∈ [−h, h],

wlin(x) = −(1 + x2)β
∫ x

−h
y (1 + y2)−β dy

=


1

2(β − 1)

((
1 + x2

)
− (1 + x2)β(1 + h2)−β+1

)
if β 6= 1;

−1

2
(1 + x2) log

(
1 + x2

1 + h2

)
if β = 1.

Truncated Pareto distribution Par(z, α)|[z,z+h]
• Case α 6= 1: the mean is

m =
α

z−α − (z + h)−α

∫ z+h

z

y−αdy =
α

α− 1

z1−α − (z + h)1−α

z−α − (z + h)−α
,

and for all x ∈ [z, z + h],

wlin(x) = xα+1

(
m

∫ x

z

y−(α+1)dy −
∫ x

z

y−αdy

)
= xα+1

(
m

α

(
z−α − x−α

)
− 1

α− 1
(z1−α − x1−α)

)
=
xα+1

α− 1

(
z1−α − (z + h)1−α

z−α − (z + h)−α
(
z−α − x−α

)
−
(
z1−α − x1−α

))
.

• Case α = 1: we have m = (log(z + h)− log(z))/(z−1 − (z + h)−1) and for all
x ∈ [z, z + h],

wlin(x) = x2
(
m

∫ x

z

y−2dy −
∫ x

z

y−1dy

)
= x2

(
(log(z + h)− log(z))

z−1 − x−1

z−1 − (z + h)−1
− (log(x)− log(z))

)
.
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