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ABSTRACT  22 

The decline in regeneration efficiency after birth in mammals is a significant roadblock for 23 

regenerative medicine in tissue repair. We previously developed a computational agent 24 

based-model (ABM) that recapitulates mechanical interactions between cells and the 25 

extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration 26 

alongside a parameter sensitivity analysis of the model suggested that an early and transient 27 

decrease in ECM cross-linking guides tissue repair towards regeneration. Consistent with the 28 

computational model, transient inhibition or stimulation of fiber cross-linking for the first six 29 

days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or 30 

scar healing, respectively. Therefore, this work positions the computational model as a 31 

predictive tool for tissue regeneration that with further development will behave as a digital 32 

twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM 33 

cross-linking to induce tissue regeneration in adult mammals.  34 

 35 
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INTRODUCTION  37 

Regenerating normal tissue structure after injury is a central goal of regenerative medicine in 38 

adult mammals. Overall, striking regenerative properties are present in newborn mammals, 39 

but this capability rapidly declines and disappears a few days after birth in most mammals1. 40 

This loss is a major issue in spontaneous tissue repair since injury in adults usually leads to 41 

scarring rather than regeneration. While scarring rapidly blocks bleeding and reconstitutes a 42 

protective barrier2, it has detrimental effects on tissue function. These adverse effects are due 43 

to the lack of recovery of tissue architecture and function due to inadequate extracellular matrix 44 

(ECM) structuring3.  45 

Classically, the identification of a putative therapeutic target is based on the identification of 46 

elements that differentiate regenerative from non-regenerative repair. However, these two 47 

repair outcomes are usually studied by comparing different species. Adult spiny mice (Acomys 48 

Cahirinus), which show regeneration in adults, have been increasingly used to investigate 49 

scar-free regeneration compared to Mus Musculus, the most commonly used mammal in 50 

research4. Recently, Sinha et al used the different regenerative capabilities of reindeer antler 51 

velvet compared to back skin, which forms fibrotic scars. Their study underscored the 52 

significance of the interactions between fibroblast and immune cells in the process of tissue 53 

repair5. Despite the power of these approaches, they can lead to context-specific insights 54 

rather than identifying factors specific to repair processes across tissues and species. 55 

Identification of regenerative medicine treatments based on these comparative studies may, 56 

therefore, fail to activate dormant regenerative capacities in adult mammal tissues across 57 

species. To overcome these limitations, we developed an original inducible model of adipose 58 

tissue (AT) regeneration in adult mammals that provides a convenient model where 59 

regeneration and scarring can be investigated in the same tissue and developmental stage in 60 

animals with a shared genetic background6–9. In this model, a large resection of subcutaneous 61 

AT spontaneously drives tissue repair toward scar healing that can be switched toward tissue 62 

regeneration following a treatment with antagonist of opioid receptors6. 63 
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The complete recovery of tissue architecture during tissue regeneration depends on 64 

mechanical interactions between cells and ECM fibrillar components, which provide spatial 65 

information for cells. ECM mechanical properties condition its organization which is highly 66 

dynamic and results from a combination of three mechanisms: its composition/synthesis, its 67 

degradation and post-translational modifications such as temporally dynamic cross-links 68 

between fibrillar components. However, the dynamics and nature of these changes in adult 69 

tissue after injury requires further systematic investigations. It is noteworthy that the combined 70 

actions of the three mechanisms to generate ECM mechanical forces leading to tissue 71 

organization makes it difficult to determine the respective importance of each mechanism 72 

using in vivo experiments.   73 

To address this complex biological question in a simpler way, and understand the regeneration 74 

process as a whole, we previously developed a computational agent-based model (ABM), 75 

composed of two agents (segments and growing circles modelling ECM fibers and 76 

differentiating cells from AT respectively). This model qualitatively reproduced the tissue repair 77 

process and allowed the identification of key factors that control the emergence of tissue 78 

architecture such as mechanical cues10,11. It integrated three critical parameters 79 

corresponding to the three mechanisms involved in ECM organization in vivo: frequency of 80 

fiber synthesis, unlinking and probability of cross-linking. Changing parameters showed that 81 

simple mechanical interactions between adipocytes and fibers may support the emergence of 82 

a lobular tissue architecture, similar to the one observed in vivo10,12. These results reinforced 83 

the relevance of this computational approach to determine the respective importance of each 84 

parameter and to generate new hypotheses to identify in vivo key biomechanical mechanisms 85 

controlling the emergence of AT architecture. 86 

Here, we took a step further in the analysis of this computational model to use it as a predictive 87 

model of tissue repair. This model mimics both regeneration and scar healing-like 88 

architectures. We performed high throughput multiparametric simulations (i.e. in silico 89 

experiments) in which ECM parameters were independently changed over a wide range of 90 
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values and used Machine Learning (ML) models to reveal that ECM cross-linking was the 91 

most important parameter explaining tissue repair outcome in silico. The computational model 92 

predicted that an early and transient decrease of ECM cross-linking after an injury could be 93 

necessary and sufficient to drive tissue regeneration. The computational model-based 94 

hypotheses were validated once the time calibration had been carried out. Indeed, by 95 

demonstrating that regeneration in adult mammals is unlocked by early and transient inhibition 96 

of ECM cross-linking, whereas increased cross-linking drives repair towards scar healing, this 97 

work positions the computational model as a predictive tool for tissue regeneration.   98 
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RESULTS  99 

A computational 2D model for tissue repair 100 

In our previous conceptual model, a tissue lesion was modelled by removal of segments (ECM 101 

fibers) and circles (adipose cells) (Figure 1a). The subsequent repair process was obtained 102 

by seeding new fibers and the growth of new cells. Cells and fibers interact through 103 

mechanical repulsive forces, but when two fibers intersect, they can also form cross-links with 104 

a defined probability (Pf), and can thus resist the pressure of growing cells. We mimicked ECM 105 

remodelling by setting up fiber synthesis (f), cross-linking (with a probability, Pf) and unlinking 106 

(ad), thus controlling both the density and cross-linking of fibers (Figure 1a right panel and 107 

supplementary Figure 1a). As shown in our previous theoretical study11, the model allowed to 108 

spontaneously reconstruct different types of tissue architectures after injury, by enabling the 109 

restoration of a fiber network from which both cell clustering and tissue architecture could 110 

emerge. To evaluate tissue reconstruction at the end of simulations, a repair index was 111 

calculated that captured the numbers and spatial organization of cells and fibers in the 112 

reconstructed tissue compared to the initial non-injured tissue (supplementary Figure 1b, c). 113 

This repair index Γ was defined in Equation 1 using morphological quantifiers of the cell and 114 

fibrous structures before and after injury:  115 
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Where 𝛥𝐸, 𝛥𝐴, 𝛥𝑁𝐶 , 𝛥𝑁𝐸  corresponded to the differences, before injury and after 117 

reconstruction, in cell cluster elongation, fiber network alignment, number of clusters and 118 

number of cells, respectively, and 𝐸0, 𝐴0, 𝑁𝐶0
, 𝑁𝐸0

 were scaling parameters.  119 

The model gave rise to three distinct classes of repair outcomes11, regenerative repair (repair 120 

index from 0 to - 0.7) was characterized by a reconstructed tissue similar to the non-injured 121 

tissue especially in terms of number of adipocytes and lobular organization. In contrast, 122 

unstructured repair (repair index from - 0.7 to - 2) did not reproduce lobular organization. Scar 123 
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repair (repair index from - 2 to - 4.5) was characterized by a high number of fibers and a few 124 

adipocytes (Figure 1b). In this previous study, a large sensitivity analysis of the parameters 125 

and a temporal calibration of ABM were lacking precluding to use it as a predictive model for 126 

in vivo tissue repair. 127 

Fiber cross-linking plays a major role in tissue repair outcome prediction. 128 

A sensitivity analysis was performed by generating a large panel of parameter combinations, 129 

leading to a dataset of 2,218 simulations. In order to consider the stochastic processes of the 130 

computational model, each combination of the parameters f (1 to 9), Pf (0.1 to 0.9), and ad 131 

(0.001 to 0.1) was simulated six times. These 2,218 simulations provided repair index values 132 

ranking from 0 to - 4.5 (243 of them being shown in 3D space, Figure 2a and supplementary 133 

Figure 1d). The sensitivity study, represented on the 3D scatter plot, revealed that with a low 134 

fiber unlinking frequency (ad), the combination of specific Pf and f values were associated 135 

with the three repair outcomes. In contrast, a high frequency of fiber unlinking was mainly 136 

associated with regenerative repair (Figure 2a).  137 

Because fiber organization is the result of the combined actions of the three ECM-related 138 

parameters, the respective contribution of each parameter is hard to define. To tackle this 139 

complex issue, we applied an explainable ML strategy to reveal the contribution of each 140 

parameter by itself considering its interaction with each of the other parameters. Simulations 141 

were randomly split into training (80%) and test (20%) sets according to classes (regenerative, 142 

unstructured, and scar repair) (Figure 2b). Both sets were balanced among the different 143 

classes (supplementary Figure 2a). To demonstrate the benefit of a more complex ML model 144 

that captures complex and non-linear relationships between parameters, a tree-based ML 145 

model Random Forest (RF) was compared to a linear model with regularization (ElasticNet). 146 

Models were trained and class predictions were compared (regenerative, unstructured, scar). 147 

RF predicted the different repair classes with a better accuracy than ElasticNet (79% versus 148 

72%) (supplementary Figure 2b). Analyzing confusion matrices, RF results were clearer than 149 

ElasticNet showing the benefit of using a tree-based algorithm instead of a linear inspired-150 
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model (supplementary Figure 2c-d). To define the contribution of each variable in repair 151 

outcomes predictions, Shapley Additive exPlanations framework (SHAP) was applied to RF. 152 

SHAP graphs represent explanations for regenerative (Figure 2c) and scar (Figure 2d) repair 153 

class predictions. Parameters (f, Pf and ad) were ranked according to their importance in 154 

the prediction, the parameter at the top being the most important to predict the class. RF 155 

results showed that Pf, ad and f values did not all have the same weight in the prediction of 156 

tissue repair outcomes (Pf 43%, ad 32 % and f 24 %) (supplementary Figure 2e). These 157 

analyses suggested that Pf and ad, both impacting the number of fiber cross-links, were the 158 

most important analysed parameters in predicting tissue repair outcome. 159 

Low values of Pf and f and high values of ad had a positive impact on regenerative class 160 

prediction (Figure 2c). More precisely, setting Pf from 0.1 to 0.2, ad from 0.05 to 0.1 and f 161 

from 1 to 3 seemed to systematically drive tissue repair toward regenerative repair (Figure 162 

2e). In contrast, high values of Pf (from 0.7 to 0.9) and f (from 7 to 9) as well as low values 163 

of ad (from 0.001 to 0.01) had a positive impact on the scar repair class prediction (Figure 164 

2f).  165 

We next evaluated the temporal changes in fiber cross-linking resulting from interactions 166 

between Pf and ad. The number of cross-links over time was recorded. This demonstrated 167 

that the three repair outcomes followed the same inverted exponential curve. We found that 168 

regenerative repair curve was associated with low number of cross-link values. Our analysis 169 

indicated that the outcome of tissue repair could be driven by modulating the number of fiber 170 

cross-links in a short temporal window since these values plateaued in the earliest time points 171 

of simulations (i.e. in the first Epochs) (supplementary Figure 2f).  172 

Early and transient modulation of fiber cross-linking is critical to drive tissue repair 173 

outcomes in silico. 174 

We next temporally calibrated the ABM, by using our in vivo model of AT regeneration6. In the 175 

ABM, the non-injured tissue is composed of lobular structures filled with adipocytes. In vivo, 176 
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after an injury, the wound is filled with fibers within 3 days and adipocytes emerge from 10 177 

days (supplementary Figure 3). We selected simulations for which the combination of 178 

parameters (f, Pf and ad) allowed wound closure and adipose cell emergence in a timeframe 179 

that matched with in vivo observations, which constituted the calibrated model. After this 180 

calibration, the number of fiber cross-links plateaued at 6 days post-injury (Figure 3a), 181 

suggesting that day 0 to day 6 post-injury might constitute the critical temporal window during 182 

which fiber cross-linking could be modulated to drive tissue repair outcome.  183 

We thus tested whether an early and transient change in Pf value was sufficient to reverse the 184 

final expected outcome of scar or regenerative simulations. To this end, we used the specific 185 

Pf values obtained with SHAP analysis (Figure 2e, f). Decreasing Pf from 0.7 to 0.1 during the 186 

first 6 days after injury switched tissue repair trajectories from scar to regenerative repair 187 

(Figure 3b). In contrast, increasing Pf from 0.2 to 0.8 during the first 6 days after injury switched 188 

tissue repair trajectories from regenerative to scar repair (Figure 3c). These results were 189 

confirmed by the quantification of the repair index (Figure 3d). As expected, changes in tissue 190 

repair outcome were associated with a switch in the profiles of the curves representing number 191 

of fiber cross-links (Figure 3e). Taken together, these in silico experiments performed on a 192 

calibrated computational tissue model show that early and transient modulation of fiber cross-193 

linking could be sufficient to guide the outcome of tissue repair. 194 

Temporally specific modulation of fiber cross-linking is sufficient to guide tissue repair 195 

outcomes in vivo. 196 

According to the in silico experiments, we then tested whether an early and transient decrease 197 

or increase in fiber cross-linking led to tissue regeneration or scarring respectively using the 198 

previously validated in vivo model of AT repair6,8. Indeed, as previously described, treatment 199 

with Vehicle or Naloxone Methiodide (Nal-M), an antagonist of opioid receptors, after partial 200 

resection of subcutaneous AT leads 1-month post-injury to scar healing or regeneration 201 

respectively6,8. During the 6 days following AT resection, Vehicle (scarring) and Nal-M 202 
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(regenerative) treated mice were treated with beta aminopropionitrile (BAPN) or with Genipin, 203 

drugs that inhibit and enhance fiber cross-linking, respectively.  204 

One month after resection, AT repair was analysed by macroscopic evaluation, light 205 

transmittance and quantified fluorescence experiments. BAPN significantly induced AT 206 

macroscopic regeneration in scarring mice (Figure 4a) and a decrease in light transmittance 207 

compared to vehicle treated mice, suggesting the presence of new cells in reconstructed area 208 

(Figure 4b). In addition, fluorescence of 300 µm thick tissue sections revealed the presence 209 

of mature adipocytes organized as lobules and of a new network of blood vessels in the 210 

reconstructed area of BAPN-treated mice (Figure 4c, supplementary Figure 4). This was 211 

confirmed by a higher percentage of reconstruction in BAPN compared to vehicle treated mice 212 

(Figure 4d). In contrast, Genipin inhibited macroscopic regeneration and induced AT scarring 213 

in regenerative mice (Figure 4a), associated with an increase in light transmittance, suggesting 214 

the absence of new cells in the reconstructed area (Figure 4b). In addition, reconstructed area 215 

was characterized by the presence of a dense collagen fiber network as well as the absence 216 

of adipocytes and blood vessels (Figure 4c, supplementary Figure 4), as well as a lower 217 

reconstruction percentage (Figure 4d).  218 

To evaluate ECM quantity which reflect both synthesis and degradation, we quantified total 219 

collagen content in the reconstructed area of our tissue samples 3 days post-injury in both 220 

regenerative and scarring conditions. We did not observe any difference in collagen content 221 

between regenerative or scarring conditions (supplementary Figure 5). To evaluate ECM 222 

organization during treatment windows, we then calculated Fractal Dimension (FD) values on 223 

Second Harmonic Generation (SHG) images 3 days post-injury. FD describes the amount of 224 

space and self-similarity of structure and is highly sensitive to changes in collagen 225 

organization13–15. FD values were significantly higher in regenerative than scarring mice. 226 

Moreover, ECM cross-linking inhibition through BAPN treatment was sufficient to switch FD 227 

values of scarring mice close to regenerative ones (Figure 4e). These data showed that 228 

regeneration and scarring were characterized by specific and distinct early ECM organization 229 
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patterns that reside in collagen cross-linking consistent with the conclusions of our 230 

computational model. 231 

Taken together, these data demonstrated that early and transient modulation of fiber cross-232 

linking guides tissue repair outcomes, both in our in vivo and in silico models.  233 
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DISCUSSION 234 

Our study provides biological validation of innovative hypotheses derived from a calibrated 235 

computational model used as a digital twin. We validated in vivo that regeneration in adult 236 

mammals can be induced by early and transient inhibition of ECM fiber cross-linking after 237 

injury. The ability to perform high throughput in silico experiments before implementing in vivo 238 

experiments for biological validation greatly reduced the time and number of animals needed 239 

to explore the experimental space. 240 

In this study, the initial conceptual computational model was deeply analyzed and calibrated 241 

to develop a predictive version. In vivo, ECM organization results from the combined actions 242 

of the three mechanisms corresponding to the three ECM-related parameters in our 243 

computational model. Our computational model allowed us to explore how ECM mechanical 244 

properties led to tissue organization by studying the respective importance of each initial 245 

parameter over a wide range of values and temporal window. The systematic investigation 246 

and the calibration of the conceptual model led to an independent and temporal exploration of 247 

the parameters. The calibration was based on morphological observations of tissue repair 248 

process (wound closure and adipocyte emergence timeframes) in the previously described in 249 

vivo model of AT regeneration6,8, since reliable methods to measure cross-linking and/or 250 

crosslinking activity biologically are currently lacking16. It is interesting to note that, although 251 

our computational model is in 2D while the tissue organization is in 3D, we were able to 252 

validate the computational hypotheses in vivo. In a next step, a 3D model could be envisioned 253 

to better investigate the regeneration of 3D complex structures. 254 

Our in silico results showed that early dynamic ECM linking rates are associated with the final 255 

repair outcome. In vivo either too much collagen or too many cross-links or both would inhibit 256 

tissue regeneration. We did not observe any difference in collagen content between 257 

regenerative or scarring conditions and showed that collagen organization is different between 258 

regenerative and scaring conditions with a similar organization between our two regenerative 259 

conditions (Nal-M and BAPN). These observations suggested that the difference between 260 
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regeneration and scarring resides more in collagen cross-linking strengthening the 261 

conclusions of our computational model. ECM cross-linking is known to condition ECM 262 

topology and physical properties and thus facilitates ECM stabilization17. Dynamic remodelling 263 

by changing the connectivity of the ECM network can confer either fluid or solid-like properties 264 

to tissues, as previously described in the development of embryos and adult tissues18. In all 265 

these studies, a weakly-cross-linked network behaves like a fluid and allows cell 266 

rearrangement within the ECM. This transition from a solid to fluid-like behavior also occurs at 267 

the tissue level during lung branching morphogenesis, where increased local fluidity enables 268 

branching to expand19. In contrast, extensive collagen cross-linking is observed in tissue 269 

fibrosis which results in an increasingly stiff and less compliant matrix20. The importance of 270 

ECM cross-linking in repair processes is also consistent with previous studies showing that 271 

uterus regeneration only occurs within an appropriate range of decellularized matrix cross-272 

links number17.  273 

Although this connectivity appears to be fundamental to the repair outcome, the timing of the 274 

interaction is also critical. Our computational tissue repair model revealed that early, transient 275 

and tight restriction of ECM cross-link numbers within a given range is critical and sufficient to 276 

allow cells to self-organize into an optimal architecture and guide tissue repair towards 277 

regeneration.  278 

Our results also indicate that tissue reconstruction after injury seems to result from a self-279 

organization of cells from an initial morphological template, as it has recently been described 280 

in skin development18. Indeed, tissue reconstruction in adult mammals seems to be a self-281 

organizing/emergent process where an initial scaffold leads spontaneously to scarring. 282 

Altering this initial scaffold sets the stage for the self-organization of cells and recovery of the 283 

tissue architecture existing before injury.  284 

Previously, we demonstrated that regeneration in adult tissues was observed after transient 285 

and early treatment with an antagonist of endogenous opioids during the 3 days following 286 

injury6. Similar results were also obtained on mouse pancreas confirming our conclusions21. 287 
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We also showed that inhibition of resident macrophages and management of the post-injury 288 

inflammatory phase could explain the regenerative effect of endogenous opioids inhibition8. 289 

The present study suggests that similar regenerative effects can be obtained without directly 290 

managing inflammation and opioid signalling. In all cases, our studies strongly suggest that 291 

tissue regeneration is possible but inhibited in adult mammals6 and the present study opens 292 

new therapeutic approaches targeting ECM cross-linking while preserving pain management. 293 

In conclusion, our discovery relies on three elements: i) a biological model relevant to analysis 294 

of repair processes in adult mammals, ii) a calibrated computational model of the biological 295 

tissue, iii) dynamic back and forth between in silico and in vivo models. Taken together, these 296 

three elements make our model close to the definition of a digital twin to reveal the complex 297 

biomechanical cues controlling tissue architecture emergence, impairment, and recovery after 298 

injury. The strategy of generating mechanistic models to formulate sets of mechanisms 299 

compatible with literature knowledge and implement them on the computer (i.e build digital 300 

twin candidates) has already been developed by many authors and successfully helped to 301 

gain biological insights into real systems22–27. Finally, our study highlights the management of 302 

cross-linking during the first steps after injury as a relevant target for plastic and reconstructive 303 

surgery and regenerative medicine. In addition, our work reveals the relevance of 304 

computational strategies to delineate fine biological processes with a minimal number of in 305 

vivo experiments.   306 
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METHODS 307 

Animals  308 

All experiments in mice were performed on 7-week-old male mice. C57BL/6 OlaHSD mice 309 

were obtained from Envigo Laboratories and housed in a conventional facility at the Faculty 310 

of Pharmacy in Toulouse. Animals were group-housed (3 to 5 per cage) in a controlled 311 

environment (12-hour light/dark cycles at 21 °C) with unrestricted access to water and a 312 

standard chow diet. Animals were maintained in accordance with the ARRIVE guidelines of 313 

the European Community Council. Mice were killed by cervical dislocation. All experiments 314 

were carried out in compliance with European Community Guidelines (2010/63/UE) and 315 

approved by the MESRI (Ministry of Higher Education, Research and Innovation) and the 316 

French ethics committee (protocol reference: 40880-2023010612201954 v6).  317 

Subcutaneous AT resection 318 

Control mice used for the baseline control were not subjected to surgery. For mice that 319 

underwent unilateral resection of subcutaneous AT, animals were anaesthetized by inhalation 320 

of isoflurane 2.5%. A single abdominal incision was then made to access and excise 35% of 321 

the right AT between the lymph node and groin, the skin was closed with 3 suture points.  322 

In vivo treatments 323 

Mice were treated with 50 µl of naloxone methiodide (Nal-M) (daily subcutaneous injections, 324 

17 mg/kg, N129, Sigma Aldrich) or NaCl (daily subcutaneous injections) from day 0 to 3 after 325 

AT resection. For cross-link regulation, mice were treated with 50 µl of lysyl oxidase inhibitor, 326 

β-aminopropionitrile (daily subcutaneous injections, 150 mg/kg, A3134, Sigma Aldrich) from 327 

day 0 to 6 after AT resection. Genipin treatment was administrated daily as a co-injection with 328 

Nal-M during the first 3 days after AT resection and Genipin only (daily subcutaneous injection, 329 

5 mg/kg, G4796, Sigma Aldrich) from day 4 to 6 after AT resection. 330 

Regeneration evaluation by light transmittance analyses 331 
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One-month post-resection, mouse AT were fixed (PFA 4%, 24h) and placed on a coverglass. 332 

The samples were observed through a binocular microscope and pictures were taken using a 333 

48MP camera (Nikon, D5000). All images were opened in ImageJ software and the contrast 334 

was normalized using the histogram equalization function. Regions of interest (ROI) were 335 

drawn to include the reconstructed area and the mean gray value in this ROI were calculated. 336 

Higher mean gray values mean that the tissues were not reconstructed since the light can go 337 

through the reconstructed area and lower values were associated with reconstructed tissue 338 

where the reconstructed area is darker thanks to the presence of new adipocytes.  339 

Fluorescence and SHG imaging 340 

Mice AT were fixed (PFA 4%, 24h), embedded in agarose gel (Sigma A0169), and cut into 341 

300 µm tissue sections with a Vibroslice for Campden Instruments. Tissue sections were 342 

incubated for 1.5 hours in PBS/0.2% triton at room temperature and then 2 hours in Bodipy 343 

493 (Invitrogen 03922) in the dark.  Tissue sections were incubated for 2 hours in Draq5 344 

(Thermofisher, 62251) and 2 hours in lectin (Eurobio Scientific, RL1102). The Bodipy 345 

concentration was used according and the manufacturer instructions, Draq5 and Lectin were 346 

used at 5 mM and 5 µg/ml respectively. Imaging was performed using a Biphotonic Laser 347 

Scanning Microscope (LSM880 Carl Zeiss, Jena, Germany) with an objective lens LCI ‘Pan 348 

Apochromat’ 10X/0.45 or ‘LD C-Apochromat’ 40x/1.1. Bodipy, lectin and Draq5 were excited 349 

using 488, 561 and 633 nm lasers, and SHG was excited using the 800 nm biphoton laser. 350 

Fractal dimension (FD) analyses  351 

For FD analysis, SHG tiles were individually opened in ImageJ and background subtractions 352 

were performed before binarizing all images from the Z-stack. FD were then estimated using 353 

the box-counting method in ImageJ. The software considered box-counting in two dimensions, 354 

allowing quantification of pixel distribution in this space. The FD was based on a series of grids 355 

with different sizes (boxes) over an image and the recorded data (counting) for each 356 

successive box size. The results were expressed as the FD of the object that is DF = Log 357 
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N/Log r; N, where N is the number of boxes that cover the pattern, and r is the magnification, 358 

or the inverse of the box size. FD were thereby calculated using the ImageJ software set 359 

between 0 and 2, with 0 corresponding to an image without signal (0 pixels) and 2 to an image 360 

full of signal. 361 

Picrosirius Red (PSR) Staining  362 

AT were collected from non-injured mice 3 and 10 days after injury and fixed (PFA 4%, 24h). 363 

AT were dehydrated using the following successive alcohol treatment protocol: 10 minutes in 364 

70% EtOH, 15 minutes in 95% EtOH, 35 minutes in 100% EtOH and 35 minutes in Bioclear 365 

solution. Then AT samples were embedded in paraffin for 24 hours. 5 µm sections were cut, 366 

deparaffined by successive baths in Bioclear and 100% EtOH, and then rinsed in distilled 367 

water. Tissue sections were incubated in Fast Green/Citrate buffer solution (0.04%) for 15 368 

minutes, rinsed in distilled water, incubated in Fast Green/Picrosirius Red (0.1%) during 15 369 

minutes, washed in distilled water and dehydrated in 2 minutes EtOH and 10 minutes Bioclear 370 

solution and mounted with Eukitt Mounting Medium. Tissue sections were imaged using Lyon 371 

Platform Imaging (CIQLE) with a Zeiss AxioScan 7 microscope.  372 

Total collagen assay  373 

AT were collected from Vehicle, BAPN, Nal-M and Nal-M+Genipin treated mice 3 days after 374 

injury. AT were placed in a tube with a stainless bead and frozen. They were pulverized 2 375 

times 2 minutes at 25 Hz with the Tissue Lyser (Retsch MM300). Then pulverized tissue were 376 

digested overnight at 4°C with pepsine solution (Sigma P7012) 0.1 mg/ml in acetic acid 0,5M. 377 

After centrifugation (10minutes, 12 000rpm, 4°C), the supernatant containing solubilized 378 

collagen was collected. Collagen quantification was performed with the Sircol collagen assay 379 

(Biocolor S1000) according to the manufacturer instructions and the absorbance 380 

measurement was done at 540nm with Varioskan LUX (Thermo Scientific).    381 

Machine learning analyses 382 
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The dataset was composed of 2,218 simulations from 405 combinations of parameters. The 383 

dataset was split into train (80%) and test (20%) sets. One tree-based model (RandomForest 384 

Classifier) and one linear-based model with regularization (ElacticNet) were used to predict 385 

the final result of simulations (regenerative, unstructured, and scar repair). To better explain 386 

the prediction results, a SHAP model was applied to calculate the influences and interactions 387 

of each parameter on the output of the predictive model. RF analysis was performed using 388 

scikit-learn, seaborn and shap libraries, and the following RandomForestClassifier 389 

hyperparameters (max_depth=6, min_samples_split=10, n_estimators=15, criterion=’gini’). 390 

Statistical analyses 391 

The number of animals used in each study is indicated directly on the figure or in the figure 392 

legends. Measurements were taken from distinct samples. Mice were randomly allocated to 393 

the different groups and investigators were blinded to analyses. All results are given as 394 

means ± SEM or ± SD for the barplot or curve plot and median ± min/max for the boxplot. 395 

Statistical differences were measured using an ANOVA test when there were more than two 396 

groups and Tukey-HSD post-hoc or Kruskal-Wallis tests (two-sided) were used to determine 397 

statistical differences between each group. All statistical analyses were carried out using 398 

RStudio software. p < 0.05 was considered as significance level. The following symbols for 399 

statistical significance were used throughout the manuscript: *p < 0.05; **p < 0.01; 400 

***p < 0.001, **** p < 0.0001. 401 

Mathematical modelling 402 

The 2D mathematical model features cells described as 2D spheres represented by their 403 

centers and radii and fibers described as segments of fixed length. The model was 404 

implemented on a 2D square domain with periodic boundary conditions. Cells (adipocytes) 405 

and fibers were represented as 2D-spheres of time-dependent radius and segments 406 

respectively. The agents (cells and fibers) interacted via mechanical repulsive interactions. 407 

Cells were modelled as incompressible, i.e., non-overlapping, while fiber-fiber and fiber-cell 408 
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interactions were modelled via soft repulsion potentials, allowing some interpenetration of the 409 

agents. Intersecting fibers were able to link or unlink following random (Poisson) processes of 410 

frequencies link and unlink, respectively. In contrast, linked fiber pairs were constrained to 411 

maintain the position of their cross-link during motion. Linked fibers were subjected to an 412 

alignment force at their junctions. The model was divided into two steps (morphogenesis and 413 

reconstruction). The morphogenesis step was started from a random distribution of fibers 414 

linked with Pf probability. New cells were randomly inseminated into the domain with a minimal 415 

radius and allowed to grow with linear volumic growth until a maximal radius was reached. 416 

The cell insemination process was stopped when the maximal number of cells was reached. 417 

As shown in [9], this model was able to spontaneously generate tissue architectures at 418 

equilibrium consisting of lobular cell structures in organized fiber networks which served as a 419 

basis for the reconstruction step.  420 

The reconstruction steps were studied starting from morphogenesis simulations, described 421 

above, as a starting point. Tissue injury was modelled by removing all the components (cells 422 

and fibers) located in a region of the simulation square domain. This created a gradient at the 423 

border of the wounds that activates the production of an ‘injury signalling chemical’. This 424 

chemical was produced at the front of the tissue (borders of the wound), allowed to diffuse in 425 

the tissue, and had a finite lifetime. This signal inhibited the insemination of new cells and 426 

locally activated the insemination of new fibers modelled as a Poisson process of frequency 427 

f. Upon insemination, new fibers were automatically linked with a proportion (Pf) of their 428 

intersecting neighbours, and unlinked with frequency ad. The wound was then filled with new 429 

fibers and the injury signalling chemicals disappeared, enabling insemination of new cells 430 

modelled as a Poisson process. The frequency of new cell insemination depended on: (a) The 431 

density of injury-signalling molecules: new cells were more likely to appear where the density 432 

of injury-signalling chemical is low, (b) the number of fiber links in the ECM: new cells were 433 

more likely to appear in regions with low ECM fiber links, and (c) the density of existing agents: 434 

new cells were more likely to appear where existing fibers were already present. As in the 435 
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morphogenesis step, new cells grew according to a linear volumic growth up to a preset 436 

maximal radius.  437 
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DATA AVAILABILITY  438 

An example of dataset generated in this study for regeneration/scar issue as function of model 439 

parameters (𝜈𝑓 , 𝜈𝑎𝑑, 𝑃𝑓) is publicly available in Figshare under accession code 440 

[https://figshare.com/s/c8e9387e24a40cd9f5da]. All other data are protected by the patent 441 

deposition number PCT/FR2023/052035 (see Competing Interests section). 442 

 443 

CODE AVAILABILITY  444 

The codes used to generate the simulations based on publications10,11 have been implemented 445 

in FORTRAN90 and deposited at Agence de Protection des Programmes (IDDN number 446 

IDDN.FR.001.160018.000.S.A.2024.000.3120 at date 2024/04/16) under proprietary license. 447 

These codes are not publicly available but the compiled versions may be made available to 448 

qualified researchers on reasonable request to Diane Peurichard 449 

(diane.a.peurichard@inria.fr). The codes for machine learning analysis and SHAP model are 450 

implemented in Python 3.7 and are freely available on FigShare 451 

[https://figshare.com/s/c8e9387e24a40cd9f5da]. 452 
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Figure Legend 549 

Figure 1: In silico modelling of AT repair outcomes. a) Cellular (left panel) and fibrillar 550 

(right panel) phenomenons of the agent-based in silico model of AT repair. Rmin and Rmax 551 

correspond to the minimal and maximal radii of cells respectively. b) Simulation results after 552 

injury: scar repair is defined by a repair index smaller than - 2 (lower panel), unstructured 553 

tissue is defined by a repair index from - 0.7 to - 2 (middle panel) and regenerative repair is 554 

defined by a repair index above - 0.7 during tissue repair steps (upper panel). 555 

 556 

Figure 2: In silico modelling: fiber cross-linking plays a major role in tissue repair 557 

outcome prediction. a) 3D scatter plot of repair index over a wide range of values of three 558 

parameters used in in silico modelling (Pf, f, ad). b) ML pipeline for the predictive model. c) 559 

RF SHAP-values when varying each parameter for a regenerative outcome. The color in each 560 

graph represents the value of the associated parameter – red for high values and blue for low 561 

values of the parameter. A positive SHAP value means that the parameter contributes 562 

positively to the prediction whereas a negative SHAP value means that the parameter 563 

contributes negatively to the prediction. The parameter ranking indicates the importance in the 564 

class (repair outcome) prediction: the parameter at the top is the most important for predicting 565 

the class. d) RF SHAP-values according to each parameter for the scarring class. e) RF SHAP 566 

dependence plots for parameter values in the regenerative class. f) RF SHAP dependence 567 

plots of each parameter value for the scarring class. 568 

 569 

Figure 3: In silico modelling: Identification and validation of an early and transient 570 

treatment window where fiber cross-linking modulation can drive tissue repair 571 

outcomes. a) Total number of cross-links over time upon regenerative repair, unstructured 572 

tissue and scar repair conditions (n=7 for each condition). b) Simulation results after injury for 573 

a Pf=0.7 correspond to scar repair. A transient Pf decrease (Pf=0.1) during the first 6 days 574 
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leads to regenerative repair. c) Simulation results after injury for a Pf=0.2 correspond to 575 

regenerative repair. A transient Pf increase (Pf=0.8) during the first 6 days leads to scarring 576 

repair. d) Histogram of the repair index when Pf is constant throughout the simulation (scar 577 

and regenerative repair) or for a transient Pf decrease (Pf=0.1) or increase (Pf=0.8) during the 578 

first 6 days. N=6 simulations for each condition.  e) Total number of cross-links over time upon 579 

regenerative and scar repair or for a transient increase or decrease in Pf. Fixed values of f=5 580 

and ad=10-3 were used for all simulations. n=6 for each condition. Data are expressed as 581 

mean +/- SEM and analysed by Tukey’s test. **** p< 0.0001. 582 

 583 

Figure 4: In vivo validation: Early and transient fiber cross-linking modulation guides 584 

tissue repair outcomes. a) Morphological image of AT after scarring repair (Vehicle), upon 585 

transient inhibition of cross-links (BAPN), under regenerative conditions (Nal-M) and upon 586 

transient increase of cross-links (Nal-M + Genipin). Images were taken 1-month post-injury. 587 

b) Box-plot of light transmittance after Vehicle, BAPN, Nal-M and Nal-M + Genipin treatments. 588 

c) Representative fluorescence (300 µm thick tissue sections) images of regenerative (Nal-M 589 

and BAPN) and scarring conditions (Vehicle and Nal-M + Genipin) 1-month post-injury. The 590 

two lines represent the reconstructed area. Red, blue and green colors correspond to 591 

adipocytes, nuclei and collagen respectively. Scale bars represent 2,000 µm (panel A) and 592 

100 µm (fluorescence images). d) Histogram of the reconstructed area (%) based on the ratio 593 

of adipocyte area compared to the whole reconstructed area upon regenerative and scarring 594 

repair. e) Boxplot of fractal dimension under regenerative, scarring and BAPN conditions 3 595 

days post-injury. Data are expressed as mean +/- SEM. Data analysed by Tukey’s test. * 596 

p<0.05; ** p<0.01; **** p< 0.0001.  597 
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Parameter name Biological phenomena

n f Fiber insemination frequency

n ad Fiber unlinking frequency

Pf New fiber cross-linking probability

Quantifier name Description

NC Number of cell Clusters

E Cluster Elongation

NE Number of cells

A Fibers Alignment

Nf Number of fibers in the whole area

NXl tot Total number of fiber cross-links

a)

b)

Supplementary Figure 1: In silico model description. a) Table presenting the three fiber parameters in the in silico model
of AT repair and their biological counterpart. b) Table presenting the quantifiers extracted from simulations and their
description. c) Formula of the ‘repair index’ (Γ)	as a weighted norm of the quantifiers before and after injury. E0 = 0.6, A0=
0.2, NC0= 10 and NE0 = 0.2 were chosen for all simulations and correspond to the value of the quantifiers difference
between regular adipose tissue morphology and a scar. d) The three classes (regeneration, unstructured, scarring) were
represented by taking nine different parameter value combinations for nf, nad and Pf in each class (1: nf=1 nad=0.001
Pf=0.1 ; 2: nf=2 nad=0.001 Pf=0.2 ; 3: nf=7 nad=0.1 Pf=0.1 ; 4: nf=5 nad=0.01 Pf=0.4 ; 5: nf=1 nad=0.01 Pf=0.9 ; 6: nf=5
nad=0.001 Pf=0.3 ; 7: nf=3 nad=0.001 Pf=0.8 ; 8: nf=4 nad=0.001 Pf=0.9 ; 9: nf=8 nad=0.001 Pf=0.5). For each parameter
combination, six simulations were performed. The heterogeneity of the repair index was represented by a boxplot where
each dot represents a simulation.
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Supplementary Figure 2: ML analysis. a) Histogram representing the number of simulations for each class
of the dataset. Simulations were split into train and test sets (80:20) for each class (regenerative,
unstructured, scar). b) Table of the accuracy score of each parameter for the two ML algorithms used in the
dataset analysis. c) Confusion matrix of the predicted class attributed by RF algorithm and the real class. d)
Confusion matrix of the predicted class attributed by ElasticNet algorithm and the real class. e) Table of the
feature importance score of each parameter for RF algorithm. f) Total number of cross-links over simulation
time upon regenerative repair, unstructured tissue and scar repair conditions (n=50 for each condition). Data
are expressed as mean +/- SEM and analysed by Tukey’s test. **** p< 0.0001.
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Supplementary Figure 3: In silico model temporal calibration based on in vivo experiments. a)
Representative Picrosirius Red stained tissue slices of regenerative (Nal-M) condition at different time point (3
and 10 days post-injury). The two black lines represent the reconstructed area. Pink staining corresponds to
collagen fibers visualized in bright field illumination. Higher magnification scale bars represent 500 µm (middle
panels) and 100 µm (lower panels). b) Simulation results before injury 3 and 10 days after injury, with the
following parameters values (Pf=0.1, nf=5 and nad=0.001) that fit with in vivo observations.
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Supplementary Figure 4 Final outcomes characterization. High magnifications of
representative fluorescence of 300 µm thick tissue section images upon regenerative (Nal-M
and BAPN) and scarring conditions (Vehicle and Nal-M + Genipin) 1-month post-injury. Red,
blue, magenta and green colors correspond to adipocytes, nuclei, vasculature and collagen
respectively. High magnification scale bars represent 25 µm.
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Supplementary Figure 5: Total collagen content. Total collagen content in the
reconstructed area 3 days post-injury, in regenerative (BAPN, Nal-M) and scarring
conditions (Vehicle, Nal-M + Genipin). In the barplot each dot represents one mouse. n=6
for vehicle and BAPN, n=5 for Nal-M, n=4 for Nal-M + Genipin. Data are expressed as
mean +/- SD. Data analysed by Kruskal-Wallis test.
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