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Communication
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Bis(N-p-Fluorophenylthiourea): Crystal Structure and
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Hydrazine-1,2-Bis(Carbothioamide)
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Abstract: The reaction of the phosphonated hydrazone (2-hydrazineylidenepropyl) diphenylphos-
phine oxide 1 with p-fluorophenyl-isothiocyanate yields as a major product the thiosemicarbazone
Ph2P(=O)CH2{C=N-NH(C=S)-N(H)C6H4F}CH3 (2-(1-(diphenylphosphoryl)propan-2-ylidene)-N-
(4-fluorophenyl)hydrazine-1-carbothioamide) 2 along with bis(N-p-fluorophenylthiourea) 3 as a
minor product. The latter compound 3 was isolated as the main product by direct treatment of
p-FC6H4N=C=S with hydrazine in a 2:1 ratio. Both 2 and 3 were characterized by NMR. Furthermore,
the molecular structure of 3 was elucidated by an X-ray diffraction study, revealing both intra- and
intermolecular secondary interactions. A conformational DFT study, at the B3LYP/6-311 G++ (d, p)
level of theory, confirms a good match between the calculated structure and the experimental one.

Keywords: thiourea; thiosemicarbazone; crystal structure; conformational analysis; supramolecular
network

1. Introduction

In some previous papers, we have described the synthesis and conformational analysis
of a series of phosphonated hydrazones Ph2P(=O)CH2C(=N-NH2)CH3 and [R1R2C(CH2O)2
P(=O)CH2-C{=N-N(H)R5}C(H)R3R4] bearing a six-membered 1,3,2-dioxaphosphorinane
heterocycle, which were obtained by treatment of their respective allene precursors with
hydrazines [1–4]. The reactivity of these compounds has been subsequently investigated,
for example, with ethylorthoformiate, leading to 4-phosphopyrazoles [5].

Since these hydrazones contain a potentially reactive C=N-N(H)R group, these com-
pounds also appeared as suitable starting materials for nucleophilic addition reaction
vis-à-vis reactive unsaturated substrates such as isothiocyanates R-N=C=S to afford β-
phosphonated thiosemicarbazones. We were intrigued to explore this route, since thiocar-
bamates feature both promising biological activities (see selected examples in Figure 1) and
have found widespread use since the 1970s as ligands in coordination chemistry [6–9].

We describe here our preliminary finding concerning the reactivity of (2-hydrazineylid-
enepropyl)diphenylphosphine oxide with p-fluorophenylisothiocyanate yielding the tar-
geted thiosemicarbazone Ph2P(=O)CH2{C=N-NH(C=S)-N(H)C6H4F}CH3 2. During the
work-up, we also noticed the formation of a second species in minor amounts, the hitherto
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unknown compound bis(N-p-fluorophenylthiourea) 3. The topic of this communication
is focused on (i) the optimized preparation and (ii) the spectroscopic and detailed crystal-
lographic characterization of this nitrogen- and sulfur-rich compound, whose molecular
structure was also (iii) subjected to a theoretical conformational analysis by means of a
DFT study.
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{1H} NMR spectra of this compound did not show any impurities; even the 19F NMR 
spectrum contained only the signals of product 2 (Figure S1). However, after 
crystallization from hot ethanol, a partial decomposition due to cleavage of the Ph2P(=O) 
moiety is observed, resulting in the formation of a secondary product, bis(N-p-
fluorophenylthiourea) 3. Compound 2 displays resonances at about δ 29 ppm in its 31P{1H} 
NMR spectrum, whereas that of 3 is silent for this nucleus. To fully characterize this new 
compound, it was synthesized independently via a nucleophilic addition reaction of p-
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Figure 1. Examples of thiosemicarbazone structures featuring a biological activity [10–12].

2. Results and Discussion

The synthesis of N-p-fluorothiosemicarbazone 2 is achieved through a condensation
reaction of p-fluorophenylisothiocyanate with phosphonated hydrazone 1. The 1H and
13C {1H} NMR spectra of this compound did not show any impurities; even the 19F NMR
spectrum contained only the signals of product 2 (Figure S1). However, after crystallization
from hot ethanol, a partial decomposition due to cleavage of the Ph2P(=O) moiety is ob-
served, resulting in the formation of a secondary product, bis(N-p-fluorophenylthiourea) 3.
Compound 2 displays resonances at about δ 29 ppm in its 31P{1H} NMR spectrum, whereas
that of 3 is silent for this nucleus. To fully characterize this new compound, it was synthe-
sized independently via a nucleophilic addition reaction of p-fluorophenylisothiocyanate
with hydrazine monohydrate (Scheme 1).
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The structure of compound 3 was confirmed by NMR, IR spectroscopy and X-ray
crystallography. In the IR spectrum of 3, the strong bands at 3222 and 3074 cm−1 are
assigned to N-H stretching. The C-N stretching frequency is observed at 1409 cm−1. The
thione C=S stretching band appears at 1180 cm−1 (Figure S2). This is in good agreement
with the characteristic absorption bands observed in the theoretical IR spectrum (Figure S3)
and in accordance with the literature [13,14]. The 1H-NMR spectrum recorded in DMSO-d6
(Figure 2) reveals the aryl signals in the range δ 7.15 to 7.53 ppm. The broad signal at
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δ 9.91 ppm can be assigned to the proton of the NH group attached to the phenyl ring,
and consequently, the second resonance at δ 9.71 ppm is attributed to the NH group
adjacent to the C=S group. The proton-decoupled 13C NMR spectrum (Figure 3) reveals
a signal at δ 182.48 ppm, characteristic for a thiocarbonyl group. The doublet appearing
at 159.86 ppm is assigned to the carbon C2 due to a strong 1JFC coupling of 241 Hz. The
remaining peaks observed between 115 and 136 ppm correspond to aromatic carbons, as
attributed in Figure 2. Both the 1H and 13C NMR spectra reveal the presence of other
signals, and we suppose that they are due to a second conformational isomer in a low
equilibrium concentration.
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has been cut off.

As shown in Figure 4, a crystallographic investigation of bis(N-p-fluorophenylthiourea)
3 performed at 100 K shows that the solid-state structure has an inversion center between
the two nitrogen atoms N2, with the asymmetric unit displaying only half of compound 3.
This can be explained by the fact that the center of the molecule is located on a two-fold
axis. Both the C1–N1 and C1–N2 bonds of 1.332(2) and 1.367(2) Å are shorter than the
C2–N1 bond (1.440(2) Å), reflecting a partial double bond character. The torsion angle
C1-N2–N2–C1 amounts to −125.52◦, so 3 adopts a s-cis or cisoid conformation similar to that
reported in previous studies for related derivatives bearing a phenyl or cyclohexyl cycle
(see also below for the conformational analysis) [15,16]. In fact, Akinchan et al. studied
bis(N-phenylthiourea) and found a s-cis conformation of the two thiosemicarbazone moiety
(Figure 5a) [15]. A s-cis conformation of the thiosemicarbazone moiety was also reported
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by Jaiswal et al. [16] for the structure of bis(N-cyclohexylthiourea) Figure 5b). However, a
transoid conformation around the central N–N bond was crystallographically ascertained
for N,N′-bis(benzamidothiocarbonyl)hydrazine (Figure 5c) and for N,N′-(hydrazine-1,2-
diyldicarbonothioyl)bis(2-chlorobenzamide) [17–19]. This transoid conformation observed
for the latter benzoyl derivatives is probably forced by an intramolecular O···H bonding.
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Figure 4. Molecular structure of 3 in the crystal. Selected bond lengths (Å) and angles (◦): S1–C1
1.6970 (17), F1–C5 1.366 (2), N2–N21 1.404 (3), N2–C1 1.367 (2), N1–C1 1.332 (2), N1–C2 1.440 (2); C1–
N2–N21 119.70 (16), C1–N1–C2 122.29 (14), N2–C1–S1 118.08 (12), N1–C1–N2 118.08 (15), C3–C2–N1
119.35 (16), C7–C2–N1 119.77 (16), F1–C5–C4 118.36 (19), F1–C5–C6 118.33 (19). Symmetry operation
to generate equivalent atoms: 11-x, +y, 3/2-z.
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Figure 5. Other examples of crystallographically characterized bis(thioureas) adopting a cisoid (a,b)
or a transoid conformation (c) with respect to the central N–N bond [13,15–17].

All hydrogen atoms from the NH groups are involved in intermolecular hydrogen
bonds with sulfur atoms as shown in Figure 6.

Additionally, the inter- and supramolecular interactions of compound 3 were fur-
ther analyzed using a Hirshfeld analysis. CrystalExplorer21 was employed to calculate a
three-dimensional Hirshfeld surface [20]. The surface is depicted in Figure 7. Particularly
significant are the very strong N2–H2···S1 interactions in the solid state, which are promi-
nently observable. The distance between atoms N2 and S1 is 3.2749(16) Å, and the high
linear bond angle of 164.4(19)◦ further confirms the presence of a strong hydrogen bond
within the crystal. Moreover, additional interactions can be identified on the Hirshfeld
surface. The somewhat weaker N1–H1···S1 interaction, despite having a shorter overall
contact of 3.2675(15) Å (N1–S1), exhibits a smaller angle of 141.9(18)◦. As a result, the
H2···S1 contact is shorter [2.42(2) Å] compared to the longer H1···S1 contact [2.56(2) Å].
Decisive, however, is the significantly more linear angle of the N2–H2···S1 interaction
compared to the N1–H1···S1 interaction, which could be primarily responsible for the
packing within the crystal structure and shows a correspondingly strong expression on the
Hirshfeld surface (see Figure 7).
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Figure 6. Supramolecular secondary interactions occurring in the crystal structure of 3.

Other multiple contacts are present here as well, which contribute to the extended
supramolecular network. Finally, a weaker C6–H6···F1 interaction is observed, charac-
terized by a separation of 3.291(2) Å (C6–F1) and an angle of 135.8(18)◦. This indicates
that, due to the lower degree of linearity, this interaction is relatively weak. The analysis
of the fingerprint plots, whose illustrations can be found in the Supporting Information
(Figure S4), also suggests that the S···H contacts are particularly pronounced and reflect
the most significant supramolecular interactions. Table 1 summarizes all relevant hydrogen
bonds in the solid-state structure.

Table 1. Selected hydrogen bonds of compound 3 between the donor atom (D) and the acceptor atom
(A); the distances dD–H, dH–A, dD–A as well as the angle D–H–A are listed.

D H A dD–H/Å dH–A/Å dD–A/Å D–H–A/◦

N2 H2 S1 0.88(2) 2.42(2) 3.2749(16) 164.4(19)
N1 H1 S1 0.85(2) 2.56(2) 3.2675(15) 141.9(18)
C6 H6 F1 0.94(2) 2.55(2) 3.291(2) 135.8(18)
C7 H7 F1 0.96(2) 3.08(2) 3.684(2 122.6(15)

In addition to hydrogen bonding, the crystal structure of 3 was examined for π–π
interactions. Figure 6 already shows that the packing within the cell is so arranged that the
aromatic ring systems are stacked on top of each other. To determine the exact distance
and significance of these interactions, the centroid of a symmetry-generated aromatic ring
C2–C7 (1 -x, +y, 3/2 -z) was calculated and repeated for the neighboring aromatic ring.
The analysis of the centroid-to-centroid distance revealed a separation of 4.8775(6) Å and
a ring-to-ring angle of 138.62(9)◦. These values indicate that π–π interactions are weak in
compound 3, though they may contribute to the stabilization of the packing.

To optimize the electronic structure of bis (N-p-fluorophenylthiourea) 3, a theoretical
study DFT calculation using the B3LYP/ 6-311++ G (d, p) basis set was performed both
in the gas and various solvent (ethanol/methanol/chloroform/acetonitrile) phases with
varying polarities. The optimized molecular geometry of 3 adopting a s-cis or cisoid
conformation of the thiosemicarbazone moiety is reported in Figure 8.
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Figure 7. Hirshfeld surface of compound 3 (–0.4235 to 1.5420 arbitrary units): (a) visualization of the
very strong N2–H2···S1 interactions with two other molecules in the solid state; (b) representation
of the strong N1–H1···S1 interactions with another molecule in the solid state, as well as weak
C6–H6···F1 interactions in the solid state of compound 3.
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Figure 8. Optimized structure of 3 using DFT/ B3LYP/6-311++ G (d,p).
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A comparison of selected geometrical parameters of the DFT-optimized structures in
solvent with the experimental structure obtained by SCXRD was investigated. The essential
bond lengths and angle values are shown in Table 2. The best matches were obtained using
ethanol and methanol as the solvent model, whereas the gas-phase data were less satisfying
(Table S6). Representative torsion angles are given in the Supplementary Materials as
Table S7. It can be observed that calculated bond lengths are close to the experimental ones.
The slight difference between the SCXRD- and DFT-calculated angles is certainly due to the
fact that the X-ray crystallographic data were collected from the crystal lattice of complex
molecules interacting with the neighboring ones. Therefore, the presence of the intermolec-
ular interactions, described above and illustrated in Figure 6, cannot be taken in account in
the computational study. The calculated S1-C5 bond of 1.684 Å in ethanol, methanol and
acetonitrile is similar to the experimental value of 1.697(17) Å, revealing a double bond
character (Table 2). These values match again with those reported in the literature [15,16].
For example, Akinchan et al. [15] experimentally found the bond length of S1-C5 in the
bis(N-phenylthiourea) (Figure 5a) equal to 1.681(3) Å. Jaiswal et al. reported experimental
and calculated values (using DFT, B3LYP, 6-311 ++ G (d, p), in the gaseous phase) of 1.695(3)
and 1.696 Å for the S1-C5 bond in bis(N-cyclohexylthiourea) (Figure 5b) [16]. Identical cal-
culated bond lengths were found for N4-N21: 1.392 Å in ethanol, methanol and acetonitrile
phases corresponding to 1.404(3) Å in SC-XRD. A comparison of the parameters calculated
for the four solvents studied reveals that chloroform, having the least polarity, deviates
furthest from the SC-XRD parameter values. The calculated C5-N4-N21-C22 torsion angle
of −119.95◦ in ethanol phase corresponds to the experimental value of −125.65◦, with a
deviation of 5.7 Å, indicating a skew conformation of the molecule (Table S7). A similar
conformation was crystallographically found for bis(N-phenylthiourea) (Figure 5a), with a
C5-N4-N21-C22 torsion angle of −121.8(3)◦ [15].

Table 2. Selected bond lengths (Å) and angles (◦) for 3 from X-ray diffraction and DFT optimization *.

Bond
Lengths

(Å)

Exp
SCXRD

Calc.
in

EtOH **

Calc.
in

MeOH

Calc.
in

MeCN

Calc.
in

CHCl3

Angles (◦) Exp.
SCXRD

Calc.
in

EtOH

Calc.
in

MeOH

Calc.
in

MeCN

Calc.
in

CHCl3

S1-C5 1.697(17) 1.684 1.684 1.684 1.678 C5-N4-N21 119.70(16) 120.84 120.84 120.84 121.09

F2-C11 1.366(2) 1.361 1.361 1.361 1.358 C5-N3-C6 122.29(14) 127.48 127.46 127.45 127.61

N4-N21 1.404(3) 1.392 1.392 1.392 1.390 N4-C5-S1 118.08(12) 118.46 118.45 118.46 118.46

N4-C5 1.367(2) 1.388 1.387 1.387 1.390 N3-C5-S1 123.81(13) 126.85 126.81 126.81 127.11

N3-C5 1.332(2) 1.343 1.343 1.343 1.346 C7-C6-N3 119.35(16) 118.59 120.07 121.07 118.41

N3-C6 1.440(2) 1.426 1.426 1.426 1.427 N3-C5-N4 118.08(15) 114.68 114.71 114.72 114.38

C6-C7 1.394(2) 1.395 1.396 1.396 1.395 F2-C11-C9 118.36(19) 118.71 118.64 118.64 118.74

* The atom numbering is shown in the optimized structure of 3. ** Descending order of polarity of the tested
solvents: MeOH (ε = 32.6) > EtOH (ε = 24.3) > MeCN (ε = 36.0) > CHCl3 (ε = 4.81).

3. Materials and Methods

All reagents were obtained from commercial suppliers and used without further pu-
rification. 1H and 13C{1H} NMR spectra were acquired using a Bruker AC 400 spectrometer
(Bruker, Wissembourg, France) operating at 400 MHz and 100 MHz, respectively. The
infrared spectrum was recorded in ATR mode using a Vertex 70 spectrometer (Bruker,
Wissembourg, France).

Synthesis of compound 2: p-fluorophenyl-isothiocyanate (0.01 mol, 1.53 g) was added
dropwise to a solution of β-phosphonate hydrazone 1 (0.01 mol, 2.72 g) and absolute
ethanol (25 mL). The reaction mixture was stirred at room temperature until the formation
of white precipitate. Yield = 2.75 g, 65%, C22H21FN3OPS (M.W. = 425.46 g. mol−1) white
solid, mp (◦C ±2): 198. Z-isomer: 31P{1H} NMR (DMSO-d6) at 298 K: 28.94. 19F NMR
(DMSO-d6) at 298 K: −117.41. 1H NMR (DMSO-d6) at 298 K: 1.81 (d, 4JHP 2.2 Hz, 3H, CH3),
4.01 (d, 2JHP 15.55 Hz, 2H, CH2-P), 7.14–7.94 (m, Harom), 9.84 (s, 1H, N-NH), 11.16 (s, 1H,
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NH-p-F-Ph). 13C{1H} NMR (DMSO-d6) at 298 K: 25.82 (d, 3JCP 2.51 Hz, CH3), 126.85–136.00
(m, Carom), 146.54 (d, 2JCP 9.08 Hz, C=N), 159.91 (d, 1JCF 241.8 Hz, C-F), 177.59 (s, C=S).
E-isomer: 31P{1H} NMR (DMSO-d6) at 298 K: s, 26.97. 19F NMR (DMSO-d6) at 298 K:
−117.33. 1H NMR (DMSO-d6) at 298 K: 2.01 (d, 4JHP 1.35 Hz 3H, CH3), 3.73 (d, 2JHP
13.4 Hz, 2H, CH2-P), 7.14–7.94 (m, Harom), 9.63 (s, 1H, N-NH), 10.72 (s, 1H, NH-p-F-Ph).
13C{1H} NMR (DMSO-d6) at 298 K: 19.01 (d, 3JCP 2.51 Hz, CH3), 34.61 (d, 1JCP = 61.69 Hz,
CH2-P), 126.85–136.00 (m, Carom), 147.89 (d, 2JCP 8.9 Hz, C=N), 159.83 (d, 1JCF = 241.9 Hz,
C-F), 176.89 (s, C=S).

Synthesis of compound 3: p-fluorophenyl isothiocyanate (0.01 mol, 1.53 g) was dis-
solved in 25 mL of ethanol. To this solution, hydrazine monohydrate (0.005 mol, 0.25 g) was
added dropwise. The resulting mixture was then stirred at room temperature for 2 h. The
precipitate was filtered and washed with ice-cold ethanol and crystalized from hot ethanol.
Yield: (1.35 g, 80%). C14H12F2N4S2 (M.W. = 338.39 g.mol−1) white solid, mp > 225 ◦C,
IR-ATR: 3074 ν(NH), 1180 ν(C=S) cm−1. 19F NMR (DMSO-d6) at 298 K: −117.48. 1H NMR
(DMSO-d6) at 298 K: δ 7.15–7.53 (m, Harom), 9.71 (s, HN-C=S), 9.91 (s, HN-Ar) ppm. 13C{1H}
NMR (DMSO-d6) at 298 K: δ 115.19 (C5), 127.15 (C4), 136.00 (C3), 159.86 (d, 1JCF 242.1 Hz,
C2), 182.48 (C1) ppm.

The crystallographic data collection was performed on a Bruker D8 Venture four-circle
diffractometer from Bruker AXS GmbH (Karlsruhe, Germany). A Photon II from Bruker
AXS GmbH was used as a CPAD detector, and the X-ray sources were a Microfocus source
IµS Mo from Incoatec GmbH with HELIOS mirror optics and a single-hole collimator from
Bruker AXS GmbH. Programs used for data collection were APEX4 Suite [21] (v2021.10-0)
and integrated programs SAINT (V8.40A; integration as well as SADABS (2018/7; absorp-
tion correction) from Bruker AXS GmbH [21]. The SHELX programs were used for further
processing [22]. The solution of the crystal structures was performed with the help of the
program SHELXT [23] and the structure refinement with SHELXL [24]. The processing and
finalization of the crystal structure data were carried out with program OLEX2 v1.5 [25].
All non-hydrogen atoms were refined anisotropically. All H atoms were refined freely
using independent values for each Uiso(H).

Crystal data for C14H12F2N4S2: M = 338.39 g·mol–1, white crystals, crystal size 0.231 ×
0.147 × 0.032 mm3, monoclinic, space group C2/c a = 26.6377 (17) Å, b = 6.4831 (4) Å, c = 9.2178
(6) Å,α = 90◦, β = 96.244 (3)◦, γ = 90◦, V = 1582.42 (17) Å3, Z = 4, Dcalc = 1.420 g/cm3, T = 100 K,
R1 = 0.0600, Rw2 = 0.0785 (all data) for 12604 reflections with I > = 2σ (I) and 2051 independent
reflections, GOF = 1.058 Largest diff. peak/hole/e Å−3 0.27/−0.27.

Data were collected using graphite monochromated MoKα radiation λ = 0.71073 Å
and have been deposited at the Cambridge Crystallographic Data Centre as CCDC 2382121.
(Supplementary Materials). The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures (accessed on
19 November 2024).

Theoretical Calculations

All computations were performed with the Gaussian 09 program [26,27]. The con-
formation was optimized using DFT geometry optimizations using hybrid B3LYP [28]
functional and the 6-311++ G (d, p) basis set. To be sure that all optimized structure lay
at a local point on the potential energy surface, harmonic vibrational frequencies of all
structures were analyzed. None of the predicted spectra has any imaginary frequencies.

4. Conclusions

We have demonstrated that the N-p-fluorothiosemicarbazone Ph2P(=O)CH2{C=N-
NH(C=S)-N(H)C6H4F}CH3 2 is readily accessible as the main product by treatment of
hydrazone Ph2P(=O)CH2C(=N-NH2)CH3 1 with p-fluorophenyl-isothiocyanate. As a side
product, the formation of minor amounts of bis(N-p-fluorophenylthiourea) 3 was also
evidenced, which alternatively have been synthesized in a targeted manner by direct
addition of hydrazine hydrate to p-fluorophenylisothiocyanate. For the latter compound,

http://www.ccdc.cam.ac.uk/getstructures
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whose crystal structure reveals both intra- and intermolecular secondary interactions, a
conformational analysis was also performed by means of DFT computing. We are currently
investigating whether treatment of 1 with other aryl- and alkylisothiocyanates constitutes a
general synthetic access to thiosemicarbazone and are analyzing conformational aspects
in more detail. We are furthermore probing their potential as functionalized S,N chelate
ligands in coordination chemistry.

Supplementary Materials: The following supporting information can be downloaded, 1H NMR
spectrum of compound 2, CIF file, Check-CIF report, Hirshfeld fingerprint plots, IR spectra.
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