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The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to 
its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-
based, open-source package designed to automate the unsupervised analysis of large datasets generated 
by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs 

advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular 
trajectories, enabling a more intuitive understanding of excited-state processes. Using the 
photochemical dynamics of fulvene as a test case, we demonstrate how ULaMDyn efficiently 
identifies critical molecular geometries and critical nonadiabatic transitions. The package offers a 

streamlined, scalable solution for interpreting large NAMD datasets. It is poised to facilitate advances 
in the study of excited-state dynamics across a wide range of molecular systems. 

 

Keywords: ULaMDyn, Unsupervised learning, Trajectory Surface Hopping, Newton-X 

  

https://doi.org/10.26434/chemrxiv-2024-32h0p ORCID: https://orcid.org/0000-0003-2258-0002 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

mailto:maxjr82@gmail.com
mailto:bidhan-chandra.garain@univ-amu.fr
mailto:mario.barbatti@univ-amu.fr
http://www.barbatti.org/
https://orcid.org/0000-0002-5120-4172
https://orcid.org/0000-0001-8597-5875
https://orcid.org/0000-0003-0215-7100
https://orcid.org/0000-0002-4320-6055
https://orcid.org/0000-0003-2258-0002
https://orcid.org/0000-0002-8969-6635
https://orcid.org/0000-0002-0025-4735
https://orcid.org/0000-0001-9336-6607
https://doi.org/10.26434/chemrxiv-2024-32h0p
https://orcid.org/0000-0003-2258-0002
https://creativecommons.org/licenses/by/4.0/


Pinheiro Jr. et al., ULaMDyn, preprint (2024). 

2 

1  Introduction 

Photochemical and photophysical phenomena in molecules, supramolecular assemblies, and solids 

involve the time evolution of electronic populations through multiple electronic states. Understanding 

these processes requires nonadiabatic dynamics simulations that account for the interplay between 

nuclear and electronic motions beyond the adiabatic approximation.1-6 Given the high computational 

costs of these simulations, several strategies have been developed. One approach is to address the 

problem fully quantum mechanically but with reduced dimensionality, such as focusing only on 

electron dynamics within a fixed nuclear framework or considering a few nuclear modes. Another 

strategy is to retain full dimensionality by treating part of the system's degrees of freedom quantum 

mechanically and the rest classically. This latter approach underpins Nonadiabatic Mixed Quantum-

Classical (NAMQC) dynamics. NAMQC dynamics is a broad category that includes various methods 

developed over the years to account for time-resolved simulations.7-16 Among these, trajectory surface 

hopping (TSH) is the most widely used.17 In this approach, a swarm of independent trajectories is 

propagated, each utilizing the forces from a single adiabatic electronic state. The nonadiabatic nature 

of the dynamics is captured by allowing the trajectories to probabilistically hop to different electronic 

state surfaces. 

Trajectory-based nonadiabatic dynamics require running numerous independent trajectories to 

approximate quantum system behavior until statistical convergence is achieved. At each time step of 

the dynamics, electronic properties for a given molecular configuration are computed. Thus,  statistical 

analysis provides essential insights into dynamics features, such as excited-state lifetimes, reaction 

channel branching ratios, and dominant molecular motions. With the advancements in surface hopping 

techniques and the substantial growth of computational power, the systems under study are becoming 

increasingly complex.18, 19 This progress allows for the generation of a large number of configurations 

more efficiently, resulting in a massive amount of high-dimensional data and reducing the uncertainty 

in the calculated mean properties.  

When considering nonadiabatic molecular dynamics (NAMD) for data generation, a sequential 

array of frames representing diverse molecular configurations is produced. These frames can be 

condensed into vectors, enriched with quantum properties computed during the dynamics, creating a 

comprehensive dataset of molecular behaviors. As time scales extend, the dataset becomes 

increasingly extensive and intricate. The surface hopping approximation further adds complexity by 

increasing data volume through the requirement of multiple independent trajectories, which in turn 

increases system dimensionality and makes advanced statistical methods essential for pattern 

extraction.  
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Figure 1: ULaMDyn streamlines the analysis of high-dimensional data from Nonadiabatic Molecular 

Dynamics (NAMD) simulations. It integrates statistical analysis, dimensionality reduction, and 

clustering to extract relevant information and visualize key molecular properties, simplifying the 

understanding of complex trajectories. 

In nonadiabatic molecular dynamics (NAMD) simulations, multiple electronic states and their 

associated potential energy surfaces are involved. As molecular trajectories evolve over time, they 

encounter regions of conical intersections or surface hopping, where transitions between states occur. 

Given the complexity of these dynamics and the high-dimensional nature of molecular geometry data, 

advanced statistical methods like dimensionality reduction and unsupervised learning are necessary to 

extract meaningful patterns. ULaMDyn addresses this challenge by automating the analysis of these 

large datasets, uncovering critical internal coordinates, and allowing researchers to identify key 

features across molecular trajectories. This concept has already been successfully applied to the 

analysis of ground-state molecular dynamics data when there is only one trajectory, demonstrating its 

potential for broader applications.20-27 

However, the application of unsupervised learning algorithms to analyze nonadiabatic dynamics 

simulation results remains challenging, with only limited progress made in recent years. Virshup et al. 

utilized the diffusion map technique for dimensionality reduction in analyzing photoisomerization 

dynamics through ab initio multiple spawning simulations.28 Similarly, Belyaev et al. applied the same 

dimensionality reduction method to examine the geometric evolution in TSH nonadiabatic dynamics.29 

Li et al. explored the geometric evolution in nonadiabatic dynamics using two closely related 
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dimensionality reduction techniques: classical multidimensional scaling (MDS) and isometric feature 

mapping (ISOMAP), alongside the density-based spatial clustering of applications with noise 

(DBSCAN) clustering approach.30, 31 Principal component analysis (PCA) was employed by Peng et 

al.32 and Capano et al.33 to study the photophysics of a Cu-complex in TSH dynamics and to investigate 

the role of bath motion in the symmetrical quasi-classical dynamics method based on the Meyer–Miller 

mapping Hamiltonian, respectively.  

Recently, Lan et al. have developed a hierarchical protocol using unsupervised machine learning 

to automatically identify different photoreaction channels and critical molecular motions from on-the-

fly TSH dynamics simulations, effectively addressing challenges like characterizing the ring distortion 

for keto iso cytosine.34, 35 Lan and co-worker's recent work highlights the growing potential of 

integrating unsupervised machine learning methods into NAMD simulation analysis, emphasizing the 

need for interdisciplinary collaboration and the future development of automated "black-box" tools to 

enhance efficiency and insight into nonadiabatic dynamics.36 Additionally, some progress has been 

made in applying unsupervised machine learning algorithms to analyze the nonadiabatic dynamics of 

solid-state systems.37  Prezhdo et al. applied unsupervised machine learning to analyze correlations 

between structural and electronic properties of CsPbI₃ perovskite, establishing key geometric features 

and motions that govern charge carrier dynamics in this widely studied solar cell material. 38  Despite 

the emergence of such advanced techniques to address the challenges of analyzing high-dimensional 

data in this fast-paced field, these methods often function independently, requiring distinct approaches 

for each type of data generation and clustering. This separation can complicate the practical analysis 

and interpretation of results. 

To address this challenge, we developed a unified, free, and open-source Python package called 

ULaMDyn, which stands for "Unsupervised Learning Analysis of Molecular Dynamics" (Figure 1). It 

is designed to automate the discovery of hidden patterns in high-dimensional molecular datasets. 

ULaMDyn offers a comprehensive set of tools for preprocessing, statistical analysis, and unsupervised 

learning of trajectory data generated by Newton-X.39 Seamlessly integrated with Newton-X's surface 

hopping NAMD, it streamlines the processing and analysis of simulation outputs.  The package also 

leverages dimensionality reduction and clustering techniques to enhance dataset construction for 

supervised learning tasks conducted using MLatom, which is similarly interfaced with Newton-X.40 

This unified approach establishes a comprehensive pipeline that combines both supervised and 

unsupervised learning methodologies, thereby streamlining the analysis of molecular dynamics 

simulations and improving the interpretability and understanding of complex potential energy surfaces 

and nonadiabatic dynamics. 

2 Prerequisites 

To effectively engage with this article, it is recommended that the reader has a foundational knowledge 

of Python, including familiarity with the prevalent nonadiabatic dynamics package Newton-X.39 
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Additionally, an understanding of NAMD principles is beneficial, as our discussions incorporate 

NAMD data.1 A basic understanding of fundamental machine learning concepts, such as evaluation 

metrics and data partitioning strategies, is assumed to grasp the more advanced topics discussed in this 

paper on unsupervised learning.  

To run ULaMDyn, essential Python packages like SciPy, Pandas, and tslearn should be installed. 

The list of requirements is provided when downloading the package, and instructions for any additional 

libraries are provided in the Python notebook accompanying the package. The reader must have access 

to a platform capable of executing them, such as a dedicated integrated development environment 

(IDE) like Jupyter or equivalent alternatives. Alternatively, ULaMDyn can be run as a single code line, 

and subsequent analysis can be done using simple Python scripts. The notebook example and code 

provided in this article are designed to be executable on a standard laptop, ensuring accessibility and 

ease of implementation for a broad range of readers.  

3 Methods 

In the context of nonadiabatic dynamics, unsupervised learning techniques are often applied to various 

data types, including molecular geometries (3D structures), NAMD trajectories (time-series data), 

electronic properties (tabular data), transition states (tabular data), and excited state interactions (graph 

networks). These techniques can generally be categorized into two groups: 

1. Dimensionality reduction schemes. They reduce the complexity of high-dimensional datasets 

by mapping them to lower-dimensional spaces, ensuring that essential information and features 

present in the data are preserved. 

2. Clustering techniques. They aim to identify groups of data points with shared attributes by 

detecting distinct patterns in the data, such as metastable states from an MD trajectory.  

All these methods can be used to make the exploration of large phase spaces more manageable 

and are essential tools for identifying photochemical pathways and relevant molecular geometries.  

3.1 Molecular Representations 

An appropriate molecular representation is essential for capturing the relevant chemical variability in 

data, and it significantly influences the accuracy and interpretability of machine learning models. 

Traditionally, this has involved descriptor and feature selection, where specific values are combined 

into a compact vector representation for each molecule. 

In ULaMDyn, there are three types of geometry-based descriptors, which incorporate translation 

and rotation invariances: the pairwise distances between atoms (R2 family of descriptors), the Z-

Matrix representation, and Smooth Overlap of Atomic Positions (SOAP) descriptors. Additionally, 

Cremer-Pople parameters for ring puckering analysis are also available, providing a detailed 

description of ring conformations.41 
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R2 descriptor: The R2 descriptor is represented as a flattened matrix containing all pairwise 

Euclidean distances between atoms in a molecule. Since this matrix is symmetric with respect to the 

interchange of atom indices (i.e., 𝐷𝑖𝑗 = 𝐷𝑗𝑖), only the lower triangular portion of the R2 matrix is 

included in the final dataset. 

ULaMDyn also provides additional feature engineering steps to convert the R2 distance matrix 

into other meaningful variants: 

• Inverse R2: This descriptor is defined as the inverse of the R2 (1 𝑅𝑖𝑗
⁄ ) distance matrix, similar 

to the Coulomb matrix descriptor.42 

• Delta R2: This descriptor represents the difference between the R2 vector of the current 

geometry at time t and the corresponding R2 vector of a reference geometry, typically the 

ground-state geometry (𝑅𝑖𝑗 (𝑡) − 𝑅𝑖𝑗 (𝑟𝑒𝑓)). 

• RE: The RE descriptor is the R2 vector normalized relative to the equilibrium geometry  

(𝑅𝑖𝑗(𝑒𝑞) 𝑅𝑖𝑗(𝑡)⁄ ). 

Z Matrix: The Z-matrix is a structured way to represent the geometry of a molecule using internal 

coordinates rather than Cartesian coordinates. In a Z-matrix, the position of each atom is described by 

a combination of bond lengths, bond angles, and dihedral angles relative to other atoms in the 

molecule. This format inherently captures the connectivity and relative spatial arrangement of atoms, 

making it particularly useful for quantum chemistry calculations and molecular simulations. The Z-

matrix naturally accommodates rotational and translational invariance, making it an efficient 

descriptor for capturing the essential structural features of molecules. Additionally, it simplifies the 

specification of molecular structures, especially when dealing with large systems or those with 

symmetrical properties. ULaMDyn provides quantities related to distances in angstroms, while 

features derived from angles are provided in degrees. Since the Z-Matrix module in ULaMDyn 

provides separate functions to compute bond distances, angles, dihedrals, or even bending angles (six 

atoms) to describe large out-of-plane motions, the user has the possibility of augmenting the standard 

Z-Matrix dataset by including other key variables relevant to the specific system/dynamics. In addition 

to the standard Z-Matrix, ULaMDyn also offers methods to compute variants of the Z-Matrix 

molecular descriptors: 

• Delta Z-Matrix: It represents the difference between the Z-Matrix of the current geometry at 

time t and the Z-Matrix of a reference geometry. 

• tanh Z-Matrix: It applies a hyperbolic tangent transformation to all features of the Delta Z-

Matrix. 

• Sig Z-Matrix: It applies a sigmoid transformation to all features of the Delta Z-Matrix. 

Smooth Overlap of Atomic Positions (SOAP): Smooth Overlap of Atomic Positions (SOAP), 

as implemented in DScribe43 and utilized by ULaMDyn, is a descriptor that captures local atomic 

geometries by expanding a Gaussian-smeared atomic density using orthonormal functions derived 
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from spherical harmonics and radial basis functions.44 In this implementation, SOAP requires the 

atomic coordinates in the form of XYZ data and the corresponding labels for each atom. Additionally, 

the SOAP constructor accepts various other parameters that allow for further customization, with 

detailed explanations available in the DScribe library documentation.43 

The SOAP output is represented as the partial power spectrum vector 𝒑, with its elements defined 

as follows45   
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In eq. (2), 𝑌𝑙𝑚(𝜃, 𝜙) are the real spherical harmonics, and 𝑔𝑛(𝑟)is the radial basis function. 

Cremer-Pople parameters: Cremer–Pople puckering parameters provide a mathematical 

framework to describe the three-dimensional conformations of non-planar ring systems, which are 

particularly useful for cyclic organic molecules. For an 𝑁-membered ring (where𝑁 > 3), there are 

𝑁 − 3 ring-puckering coordinates that quantify deviations from planarity. For a six-membered ring, 

these coordinates reduce to three key parameters: the puckering amplitude  𝑄, which measures the 

extent of puckering, and two angular variables, 𝜃 and 𝜙, which describe the degree and type of 

distortion (e.g., chair, boat, or twist). This formalism can be generalized to rings of different sizes, 

making it a versatile tool for analyzing ring conformations. 

In the future, we plan to implement Faber-Christensen-Huang-Lilienfeld (FCHL),46 and Many-

Body Tensor Representation (MBTR)47 descriptors in ULaMDyn. 

3.2 Data Preprocessing 

Data preprocessing is a crucial step in any machine learning pipeline and requires as much attention 

as model development.48 Proper preprocessing converts raw data into a format suitable for model 

training, with a key aspect being the management of features with varying scales. Techniques like 

normalization and scaling are essential to address these issues. Normalization and scaling adjust the 

range and distribution of data features to enhance algorithm performance. Standardization, or z -score 

normalization, is a standard method that transforms data to have a mean of zero and a standard 

deviation of one, ensuring that features with different units or scales contribute equally to the model. 

The formula for z-score normalization is: 
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where x is the original value, μ is the mean of the feature, and σ is the standard deviation of the feature. 

Distance-based methods, whether for dimensionality reduction or clustering, are susceptible to 

feature scales. Therefore, it is advisable to apply appropriate normalization techniques before training 

these models. Another commonly used method for data rescaling is min-max scaling, which adjusts 

data to a fixed range, typically [0, 1]. This is achieved by subtracting the minimum value from all data 

points and then dividing it by the range, which is the difference between the minimum and maximum 

values. 

3.3 Dimensionality Reduction 

Dimensionality reduction is a data analysis technique that simplifies complex datasets by reducing the 

number of features or variables while retaining essential information. Chemical systems, like 

molecules, are inherently high-dimensional due to the multitude of properties, descriptors, and 

interactions involved. For instance, a molecule can be characterized by features such as bond lengths, 

angles, dihedrals, and even electronic properties. When handling such high-dimensional data, which 

may include hundreds or thousands of variables, visualizing and analyzing the information effectively 

becomes challenging. Dimensionality reduction is valuable in two key ways: it helps with data 

visualization by transforming high-dimensional data into a more manageable format,49 and it reduces 

redundancy by removing correlated or redundant features.50 Reducing redundant features can enhance 

the efficiency and performance of subsequent data use. Below, we summarize some of the most 

common dimensionality reduction methods applied to model chemical systems and available in 

ULaMDyn. 

PCA (Principal Component Analysis): PCA51 is a widely used linear multivariate statistical 

technique for dimensionality reduction, valued for its interpretability.52 As a matrix factorization 

method, PCA identifies patterns and extracts critical features from high-dimensional datasets by 

transforming the original variables into a new set of orthogonal, uncorrelated variables known as 

principal components. This process achieves a lower-dimensional representation of the data while 

retaining as much of the original information as possible. PCA is particularly effective when the 

primary variations in the data are linear, making it a good starting point for exploratory data analysis.  

t-SNE (t-Distributed Stochastic Neighbor Embedding): t-SNE is a nonlinear dimensionality 

reduction technique used in various fields, including molecular systems.53 Unlike PCA, the dimensions 

obtained with t-SNE do not have a straightforward interpretation, so it is primarily used for 

visualization or exploratory data analysis. t-SNE maps high-dimensional data into a lower-dimensional 

space (embedding) based on similarities between data points, calculated using a Gaussian kernel or a 

Student's t-distribution. It constructs a neighborhood graph where each node is connected to its nearest 

neighbors, forming local relationships. The parameter perplexity controls the balance between 
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preserving local and capturing global structures; higher perplexity values capture global relationships, 

while lower values emphasize local structure. t-SNE then creates probability distributions for both 

high- and low-dimensional spaces and uses an optimization algorithm, such as gradient descent, to 

iteratively adjust the positions of the mapped points until the divergence between the distributions is 

minimized or the maximum number of iterations is reached. The resulting embedding can be visualized 

in scatter plots or further analyzed for insights into the data structure.  

ISOMAP (Isometric Feature Mapping): ISOMAP is a nonlinear dimensionality reduction 

technique that extends classical multidimensional scaling (MDS) by incorporating geodesic 

distances.54 It is designed to uncover the underlying manifold structure of high-dimensional data. 

ISOMAP works by first constructing a neighborhood graph of data points using a method like k -nearest 

neighbors or ε-neighborhoods. It then calculates the shortest paths between all pairs of points in this 

graph, approximating the geodesic distances on the manifold. These distances are used to perform 

classical MDS, resulting in a lower-dimensional representation that preserves the intrinsic geometric 

structure of the data. ISOMAP is particularly useful when the data lies on a nonlinear manifold and is 

effective for capturing global structures in the data. It provides a way to visualize complex, high-

dimensional data in a more interpretable form. 

3.4 Clustering 

Clustering methods are commonly used to make sense of these large datasets, helping to organize 

chemical systems into subgroups with shared electronic properties or spatial configurations. Unlike 

dimensionality reduction, which compresses data into a smaller set of critical components and may 

create artificial groupings, clustering identifies natural subgroups in the original data space. This 

preserves the intrinsic relationships and structures within the data, making it particularly useful for 

identifying families of molecules with similar electronic properties or revealing patterns in chemical 

composition and spatial configurations essential for understanding molecular interactions and 

reactivity. A well-tuned clustering algorithm distills large volumes of data into a manageable number 

of qualitatively distinct categories, facilitating data visualization and exploration. This approach also 

improves the efficiency of further computational and experimental studies by enabling a more focused 

analysis of nonadiabatic dynamics, thereby enhancing our understanding of excited-state processes 

and transitions. 

In ULaMDyn, several algorithms are available for clustering analysis, each differing in its 

interpretation of what constitutes a cluster and how clusters are identified. The clustering algorithms 

provided include:55-58 

• K-Means Clustering: This algorithm partitions data into a predefined number of clusters by 

minimizing the sum of squared distances between data points and their respective cluster 

centroids. Because K-Means assumes an isotropic data distribution per cluster (equal variance 

in all directions), this method tends to work better on datasets with inherent globular or 
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spherical cluster shapes. Each data point is assigned to the nearest cluster in a rigid, non-

overlapping manner, resulting in distinct Voronoi cells that define the cluster boundaries . 

• Gaussian Mixture Model (GMM): This method can be seen as a generalization of K-Means 

in the sense that each cluster is described by a Gaussian distribution, allowing for more flexible 

cluster shapes, such as ellipses, with varying size, orientation, and covariance. Unlike K-

Means, which uses hard assignments, GMM employs a soft (probabilistic) approach, where 

each data point is assigned a probability of belonging to multiple clusters. This results in a more 

flexible clustering approach, as data points can partially belong to different clusters. GMM is 

particularly suited for datasets where clusters overlap or exhibit complex shapes, making it a 

more versatile method for capturing non-spherical structures. Because GMM learns the 

underlying data distribution, it can also be used as a generative model to sample geometries 

from specific regions of the NAMD trajectory space. 

• Hierarchical Agglomerative Clustering: This method utilizes a bottom-up approach that 

starts with each data point as a separate cluster and iteratively merges the closest pairs of 

clusters until a single cluster remains. This process creates a hierarchical structure called a 

dendrogram, which can be cut at different levels to obtain clusters of varying granularity. 

Therefore, this agglomerative clustering does not require a predetermined number of clusters. 

The method does not assume any specific cluster shape, making it well-suited for complex data 

distributions. 

• Spectral Clustering (equivalent to kernel K-Means):  This method extends K-Means by first 

representing the data as a graph, where each data point is a node, and edges represent pairwise 

similarities between points. Spectral clustering then uses the eigenvalues of the graph's 

Laplacian matrix to transform the data into a lower-dimensional space, capturing the critical 

connectivity patterns in the data. This transformation allows for the identification of complex, 

nonlinear clusters that K-Means might miss. Unlike K-Means, which operates directly in the 

original input space and assumes spherical clusters, spectral clustering leverages the graph 

structure to uncover clusters of arbitrary shape. By relying on a similarity matrix rather than 

distance measures, spectral clustering is particularly well-suited for data where distance-based 

methods are less effective. 

4 Walkthrough Example 

In this section, a walkthrough example of installing and using ULaMDyn is provided. The entire 

clustering or dimensionality reduction analysis workflow is automated by ULaMDyn, starting with 

data collection and the conversion of molecular geometries into descriptors. The selected unsupervised 

learning algorithms are then applied to the descriptor space. Additionally, various postprocessing 

statistical analyses are conducted by grouping the data according to the cluster labels generated by the 

clustering process. All these steps can be executed via a command-line interface (CLI) or by 
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customized Python scripts by importing the ULaMDyn modules. In the following subsections, this 

pipeline will be broken down, demonstrating how each step can be carried out within a Python 

framework using ULaMDyn. A Python notebook of this example can be found at 

https://ulamdyn.com/. 

4.1 Installation 

ULaMDyn can be conveniently installed from its repository, along with all necessary dependencies  

(Figure 2). Additionally, several packages are required for visualization purposes, ensuring 

comprehensive data analysis and representation. 

 

Figure 2. Installation code snippet. 

4.2 NAMD Dataset 

In this example, fulvene serves as a photoactive molecule undergoing structural transformation during 

nonadiabatic dynamics simulations initiated from the first excited state .59 Fulvene is adopted here 

because it is a typical test molecule used for the development of methods and benchmarks in NAMD. 18, 

60, 61 The reason for its popularity stems from its small size (allowing quick simulations even at fully 

correlated levels)60 and ultrafast dynamics (all relevant events are completed in less than 100 fs). 

Fulvene has also been shown to be the multidimensional analogous of the popular Tully III analytical 

1D model.62  

Fulvene dynamics is characterized by ultrafast nonadiabatic processes involving S1↔S0 

recurrences at an extended conical intersection seam.63 The molecule exhibits fast decay to the ground 

state (S0) followed by periodic recurrences to the first excited state (S1). In fulvene dynamics, the most 

relevant coordinates include the torsional angle around the C–CH2 bond and the bond length between 

these carbon atoms. These coordinates are critical because they define the molecule's structural 

evolution as it moves toward the conical intersection at different regions of the crossing seam.  

The Newton-X CS (classical series) program was employed to propagate 200 surface hopping 

trajectories up to 60 femtoseconds with a time step of 0.1 fs. The CAS(6,6)/6 -31G* method was 

utilized to calculate the quantum chemical properties for the two electronic states (S₀ and S₁).18  The 

complete dataset can be downloaded from https://figshare.com/articles/dataset/Fulvene_DC-
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FSSH/14446998?file=27635412. For the sake of time, only a subset of the trajectories (50 trajectories) 

was selected for this example. 

After downloading and unpacking the NAMD data, navigate to the working directory containing 

the 50 TRAJ folders, each housing the simulation results. ULaMDyn will automatically detect the 

available trajectories and extract all the necessary information for further analysis.  

4.3 Data Import and Inspection 

The first step in the pipeline for analyzing nonadiabatic molecular dynamics (MD) data involves 

gathering relevant quantities, such as molecular geometries, potential energies for each electronic state, 

kinetic energy, energy gradients, and oscillator strengths, computed for each trajectory. In Newton-X, 

this information is typically provided in text files located within each TRAJ#/RESULTS folder. Built-

in classes are included in ULaMDyn and are specifically designed to aggregate these data, storing them 

in Python objects for straightforward manipulation. The usage of these data collection classes within 

a Python environment is demonstrated in the following section. 

Running ULaMDyn as a command-line interface. Before we get started with the capabilities of 

ULaMDyn through Python API, it is important to highlight that ULaMDyn also provides a set of 

predefined functions accessible through a command-line interface. This simplifies workflows and 

enhances the overall user experience. Once ULaMDyn is installed, users can execute the wrapper 

script, run-ulamdyn, directly from the Linux terminal. Using a command-line parser, additional 

options can be specified, which can be viewed by invoking the --help flag.  

The wrapper script is executed from the main TRAJECTORIES directory, which must include a 

reference geom.xyz file and a Newton-X input file inside the TRAJ1 subdirectory. By executing the 

command-line program, ULaMDyn will first generate structured datasets (such as flattened XYZ 

coordinates, Z-matrices, and quantum mechanical (QM) properties) in a CSV file containing all 

information collected from the output files of different trajectories. After that, the program can 

compute the basic descriptive statistics (mean, median, and standard deviation) for each dataset and 

export these results as separate CSV files. If additional options are specified via the command line, 

they will be incorporated into the workflow and executed accordingly.  

Geometries. The data collection process in ULaMDyn is organized in a modular fashion, with a 

specific class called GetCoords() dedicated to reading geometries from Newton-X trajectories. This 

class simplifies the process by automatically extracting all the molecular geometries from the available 

trajectories. When executed, it systematically reads all the geometries provided in the standard 

Newton-X output (dyn.out or .h5), ensuring comprehensive data acquisition. In the subsequent printout 

(Figure 3), the GetCoords() object lists all available trajectories detected in the folder, along with 

the corresponding atomic labels, which can be used for the generation of SOAP descriptors. These 

labels can be utilized, for example, to calculate mass-weighted coordinates when necessary. 
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Additionally, the total number of geometries loaded from all these trajectories is displayed  (Figure 3 

bottom). 

 

Figure 3: Setup for getting the dataset and extracting geometries from Newton-X trajectories using 

ULaMDyn. (Left) Directory structure with the nx_traj_fulv folder containing individual TRAJ# 

subdirectories. (Right) Code snippets show ULaMDyn's GetCoords class used to load molecular 

geometries, displaying the status of class variables. 

After running the read_all_trajs function (see Figure 3), the processed geometries are 

conveniently stored as an object attribute, along with their corresponding trajectory and time step 

indices, allowing for easy selection of a specific geometry from a given trajectory at any time step 

(geoms_loader). This built-in indexing of the geoms_loader object streamlines geometry selection for 

rapid inspection and analysis of the structures within the simulation data. For example, the XYZ of 

trajectory 9 at 10.0 fs can easily accessed for molecular visualization by passing these two indices as 

arguments (Figure 4).  
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Figure 4: (Left panel) Selection of a molecular geometry at a given time using ULaMDyn. The script 

snippet demonstrates how to access the XYZ coordinates of a fulvene molecule from trajectory 9 at 

the 10.0 fs time step. The output shows the atomic coordinates (in Å) and a 3D visualization of the 

molecule's structure. (Right panel) Histogram of the RMSD of geometries with respect to the 

equilibrium geometry. 

 By providing a reference geometry file, geom.xyz, in the working directory , the software 

automatically computes the root mean square deviation (RMSD) between each frame of the trajectories 

and this reference geometry, typically the ground state minimum. In the example above, the resulting 

RMSD distribution reveals that most geometries are clustered around an RMSD value of 

approximately 0.21 Å, indicating significant deviations from the ground state. A few geometries 

exhibit even more significant distortions, as shown by the long tail in the distribution. (Figure 4). 

Energies and other properties. In ULaMDyn, several utility functions have been designed to enable 

the consistent extraction of various properties from Newton-X simulation output files. For instance, 

energy information can be retrieved by reading the relevant files and compiling a dataset. Quantum 

mechanical quantities, such as potential energies and oscillator strengths, are collected from the 

Newton-X outputs using the GetProperties() class. The properties dataset includes columns for 

trajectory identifiers and time steps, which are essential for uniquely identifying each data point. 

Consistent identifiers across different datasets, like those for molecular geometries or RMSD values, 

are crucial for accurate data merging and analysis. 

Typically, this dataset includes columns for total energy, ground state energy, and energy gaps 

between states when multiple states are considered. It also includes an indicator for hopping 

geometries, where a value of '0' denotes a no-hopping and '1' indicates a hopping event. This setup 

facilitates easy filtering of hopping geometries for further analysis. Additionally, users can extend the 

dataset by incorporating other calculated quantities, such as state populations, which are typical outputs 

in nonadiabatic molecular dynamics simulations. 
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In the case of fulvene dynamics (Figure 5), the potential energy of the ground and first excited 

states, the oscillator strength corresponding to the transition between these states, and the MCSCF 

coefficients of the CAS wave function are available and shown in the columns. Additionally, a function 

is provided to collect the % of the state's population as computed by Newton-X (Pop1 and Pop2) 

 

 

Figure 5: Example of using ULamDyn's GetProperties class: (a) the left code snippet retrieves potential 

energies and dataset details; (b) the right snippet adds state population data for analyzing nonadiabatic 

transitions in fulvene. 

4.4 Generation of Geometric Descriptors 

The geoms_loader() object in Python encapsulates the attributes of the collected geometries from 

Newton-X outputs. The ̀ xyz` attribute of this object can be accessed to retrieve all stored geometries. 

The data is structured as an array, with dimensions corresponding to the number of samples , number 

of atoms, and number of coordinates, thus providing a comprehensive dataset for further analysis.  

As mentioned earlier, ULaMDyn provides three classes of symmetry-aware descriptors 

(translational and rotational invariant) based on molecular geometries: the pairwise atom-atom 

distances (R2 family of descriptors) and the Z-Matrix representation. These descriptors are computed 

by processing the NAMD molecular geometries stored in the GetCoords() object. In the example 

provided below (Figure 6), the function build_descriptor() within the R2 descriptor class is used 

to return a Pandas data frame object with the descriptor calculated for all geometries of each NAMD 

trajectory. Additional flexibility for representing molecular structures in a manner invariant to 

translational and rotational transformations is offered by other variants of the R2 descriptor supported 

by this function.  
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An important application of this properties dataset is to distinguish between hopping and non-

hopping geometries. By filtering the dataset accordingly, the distribution of specific bond distances 

(such as the C5-C6 bond in fulvene) can be plotted for hopping versus non-hopping geometries. For 

fulvene, the analysis revealed that the distribution of hopping geometries (represented by red bars) has 

shifted towards larger C5-C6 bond distances (Figure 6). This observation is aligned with the 

understanding that, at the beginning of the dynamics, the bond stretching in fulvene often leads the 

system towards a conical intersection, facilitating nonadiabatic transitions.59 The structural differences 

between hopping and non-hopping geometries are underscored by the distinct distributions, with 

hopping geometries predominantly concentrated around a bond distance of approximately 1.55 Å.  

 

Figure 6: Workflow demonstrating the use of ULaMDyn to generate descriptors and visualize results. 

The left panel shows the raw coordinates loaded from NAMD simulations. These coordinates are used 

to build an R2 descriptor (df_r2), as seen in the top-right panel. The bottom-right panel presents the 

code to create a histogram comparing C5-C6 bond distances for geometries with and without hopping 

events, with the resulting histogram displayed in the bottom-left panel. 

An alternative method to inspect the dataset and gain insights into its behavior is by plotting bond 

distances (y-axis) as a function of time (x-axis) (Figure 7). This type of analysis, part of the standard 

routine for understanding nonadiabatic molecular dynamics (NAMD) simulations, helps visualize the 

evolution of geometrical features such as bond stretching and contraction. Additional information, 

such as hopping geometries, can be overlaid on this plot. Notably, in this analysis, most hopping points, 
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marked by red indicators, cluster around the maxima of the oscillations in the bond distance. 

ULaMDyn serves as a tool to facilitate this type of interaction with NAMD simulation results, allowing 

users to extract and interpret key information efficiently. While these analyses are routine, they lay the 

groundwork for more advanced unsupervised learning methods, which automate the extraction of 

deeper insights from high-dimensional data  

 

Figure 7: Stretching of C5-C6 bond length of fulvene for 50 trajectories. Points in red indicate the 

hopping events, which mainly occur at the maximum bond length. 

Up to this point, the focus has been on exploring the dataset to identify key features. This 

exploratory phase allows for experimentation and various tests to understand the dataset better. 

Depending on the specific requirements of the analysis, this level of exploration may already provide 

sufficient insights. 

4.5 Dimensionality Reduction 

In the R2 dataset of fulvene, which includes all non-equivalent atom-atom distances, it is noted that 

68 columns are initially present, two of them corresponding to the index tuple of trajectory number 

and time. Therefore, the descriptor has 66 variables, with the molecular geometries represented in a 

high-dimensional vector format. Direct visualization of this correlated high-dimensional data is not 

feasible; however, dimensionality reduction techniques can be applied to reduce the 66 columns to 

two, allowing the representation of the geometry evolution in a simple 2D scatter plot. 

In ULaMDyn, the DimensionReduction() class is used to perform dimensionality reduction 

on the descriptor dataset provided as input. To minimize the correlation between consecutive 

geometries, the dataset can be resampled at larger time intervals. For instance, a time step of 0.5 fs, 

five times larger than the time step used to generate the NAMD trajectories, is employed to reduce 

temporal correlation, enhancing the algorithm's ability to identify meaningful patterns. The 
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DimensionReduction() class provides access to several methods for dimensionality reduction with 

ISOMAP, a nonlinear technique, being utilized here for demonstration. This method has proven 

particularly effective in identifying critical active coordinates that dominate photophysical processes 

in nonadiabatic simulations of complex molecular systems.30 The dataset is reduced from 66 

dimensions to two by the ISOMAP method for visualization. A neighborhood graph with a specified 

number of neighbors (e.g., 30 Figure 8(a)) is constructed by the ISOMAP method, and this graph is 

used to map high-dimensional data into a lower-dimensional space. 

 

 

Figure 8: (a) Dimensionality reduction using ISOMAP in ULaMDyn, with the parameters for the 

ISOMAP analysis; (b) the 2D ISOMAP embedding of the R2 descriptor, with the S0-S1 energy gap 

color-coded; (c) the relationship between the first ISOMAP component and the C5-C6 bond distance. 

A distribution is revealed by the plot shown in  Figure 8(b), where points with similar properties 

(e.g., energy gaps) are clustered together despite this information not being explicitly provided as input 

to the method. Important geometries and regions of interest within the dataset are easily identified 

through this visualization, which condenses information on independent NAMD trajectories. Although 

the selection of molecules based solely on properties such as the energy gap is possible, it is noted that 

this approach may not always capture nuanced differences in geometry. A more comprehensive view 
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is provided by the dimensionality reduction diagram (Figure 8b), which highlights distinct regions and 

aids in the selection of significant molecular geometries for further analysis.  

In nonlinear dimensionality reduction, the relationship between the embedded dimensions and the 

original features is typically complicated in determining their contribution to clustering patterns. An 

alternative to gaining intuition about these relationships is to plot each geometrical feature of the 

molecules against the embedded dimensions. For example, plotting the first reduced dimension, X1, 

against the C5-C6 bond distance reveals a positive correlation (Figure 8c). In the case of fulvene, this 

indicates that the X1 coordinate effectively captures the bond stretching trend involving the CH2 group, 

which is expected to be one of the key motions for driving the system throughout the conical 

intersection. This interpretation strategy can be applied to many other quantities to further explore the 

relationships between geometrical features and the reduced dimensions.  
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Figure 9: Dimensionality Reduction performed on the difference between gradients, 2D ISOMAP 

embedding of the gradient difference, with the S0-S1 energy gap color-coded. 

Since the analysis performed here is a postprocessing step on the NAMD simulation data, 

examining only the molecular geometries is not a limitation. Any quantum chemical information 

available from the simulations can be used as a descriptor for unsupervised learning analysis. For 

instance, crucial information on how rapidly geometries can evolve during dynamics is provided by 

the energy gradient matrices of each potential energy surface. Figure 9 shows the difference between 

the energy-gradient matrices of the S1 and S0 states as an example. Although the ISOMAP diagram 

derived from the gradient difference descriptors looks different from the one obtained with the R2 
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descriptor (geometry-based), one can observe that geometries with small and large energy gaps 

between the S0 and S1 states still appear as clearly distinct groups in the plot. 

4.6 Clustering 

Up to this point, the focus has been on exploring the dataset to understand its main features. Now, 

clustering analysis will be applied to the features without dimensional reduction.  

A common question is whether dimensional reduction should be performed before clustering. 

This decision depends on the specific context.  When dealing with large or sparse vectors representing 

each molecule, dimensionality reduction can be advantageous. Reducing dimensions often helps 

eliminate unnecessary or correlated components, making it easier to compare data points ; it is often 

used for visualization purposes. On the other hand, the compact representation resulting from 

dimensionality reduction can introduce artificial clusters, as distances between points may be shrunken 

compared to the original space, potentially distorting the true relationships in the data.  In the case of 

fulvene, the molecule is relatively small, and the vectors used for representation are not very large. 

Therefore, clustering will be applied directly to the descriptors without any prior dimensional 

reduction. Dimensional reduction can still be used afterward to visualize how the clustering algorithm 

identified different groups within the dataset. 

The process begins with the creation of our descriptor, the Delta Z-Matrix, in this case. This 

involves subtracting the Z-matrix of the ground state from the geometry of each frame of the dynamics. 

Additionally, a nonlinear function is applied to focus on points that are not outliers, ensuring that the 

algorithm identifies those that are more like the ground state.  The geoms_loader object, which contains 

geometries from different trajectories, is passed as input. The geometries are read by ULaMDyn, and 

the descriptor is created accordingly (Figure 10a).  

Next, geometries are grouped by similarity in the descriptor space using the clustering module of 

ULaMDyn (Figure 10a), which contains different methods similar to the dimensional reduction 

module. The data set, represented by the descriptor, is provided as input. To reduce the size of the data 

set and eliminate some correlations, a specific time slice can be given, or a fixed number of samples  

selected randomly (such as 1,000 geometries from the original data set) can be specified. 
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Figure 10: (a) The Z-matrix descriptor is created for geometries, followed by clustering using K-Means 

(with 3 clusters). The parameters for K-Means are detailed, showing the number of geometries in each 

cluster; (b) The clustered data is then merged with properties data (df_props); (c) The average values 

of selected properties (DE21, Hops_S21, Hops_S12) are computed for each cluster . 

Based on the color pattern of the ISOMAP plot in Figure 9 (red for large, green for intermediate, 

and blue for small energy gaps), a reasonable guess for the number of clusters in this demonstration 

would be three. In cases where this information is not readily available, ULaMDyn offers a built-in 

function that combines the Silhouette score64 and Calinski-Harabasz65 metric to determine the optimal 

number of clusters. This feature can be accessed by setting the number of clusters parameter to 'best .' 

Once the clustering object is created, the K-means algorithm is applied using the command 

`clustering.kmeans()`. Because the data set is stored within the clustering object, multiple 

algorithms can be run and easily compared using the same input data set. In this example, the k-means 

algorithm is used for clustering. To switch to a different algorithm, one needs to change ̀ kmeans` to 

another algorithm, such as `hierarchical` for hierarchical clustering. 

In this example, the K-means algorithm split the data into three clusters labeled 0, 1, and 2, where 

cluster two contains significantly fewer geometries compared to the others. Upon closer inspection 

and analysis, we observe that this smaller cluster contains geometries related to CH2 rotations. This is 

consistent with the finding that such rotated geometries are less frequently visited during the dynamics 
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compared to other points. Consequently, the smaller cluster size reflects the lower occurrence of these 

rotated geometries. 

The data set (df_cluster) containing the K-means clustering labels is straightforward. Each label 

corresponds to a specific row in the data set, indicating which cluster the geometry belongs to . By 

concatenating the K-means labels with the properties dataset, it becomes clear which geometries 

belong to each cluster, revealing, for instance, that geometry with a large energy gap (around 3.8 eV) 

belongs to cluster zero, among other insights (first line of output in Figure 10b). Python simplifies the 

manipulation of this data, allowing for efficient grouping and analysis of the points within each cluster. 

Thus, by grouping all rows corresponding to a given cluster, statistics such as the mean value of a 

given property can be calculated (Figure 10c). For example, cluster one has an average energy gap of 

1.55 eV and contains many hopping geometries. In contrast, cluster zero has essentially no hopping 

points. This type of analysis enables a deeper understanding of the characteristics within each cluster. 

The distribution of the energy gap for each cluster can be visualized using a histogram (Figure 

11a). This helps illustrate the differences in the energy gap across the clusters. Despite the energy gap 

not being included in the descriptor used for clustering, its distinct distribution among clusters 

underscores the effectiveness of the data partitioning algorithm, which serves as a validation step, 

confirming that the clustering results are meaningful. For example, clusters zero and one exhibit 

distinct energy gap distributions, highlighting their unique characteristics.   On the other hand, clusters 

one and two show some overlap in the region of small energy gaps. This observation aligns with the  

findings, which identified two different types of geometries associated with hopping events: one 

related to bond stretching and another linked to the rotation of the CH₂ groups.  

 

Figure 11: (a) Histogram displaying the distribution of the S0-S1 energy gap (in eV) across different 

clusters identified by K-Means clustering. Each color represents a different cluster label. (b) ISOMAP 

projection of the Delta Z-Matrix data, where the points are colored according to their respective K-

Means cluster labels, showing the separation of clusters in the reduced dimensional space.  
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To further assess the effectiveness of the clustering algorithm, dimensionality reduction was 

applied to the differential Z-Matrix data set. The two primary components were plotted, and the points 

were colored according to their cluster assignments to visually evaluate the clustering results  (Figure 

11b).  

In K-means clustering, the partitioning is known as a "hard partition," meaning each point is 

strictly assigned to a single cluster. This method does not allow for probability distributions across 

clusters as in the Gaussian Mixture model. As a result, K-means may struggle with data sets where 

clusters overlap significantly, as a straight boundary tends to be drawn between them. This limitation 

can lead to less defined clusters, especially when the clusters are not well-separated in space. This 

behavior is evident in the plot shown in Figure 11b, where cluster two is distinctly different, but 

clusters zero and one could potentially be merged into a single cluster. This ambiguity suggests that 

using a different clustering algorithm, such as hierarchical clustering, might yield different results, 

potentially combining these clusters into one. However, with K-means, the data set will consistently 

be partitioned into distinct parts, irrespective of such nuances.  

With the cluster labels now established, the next step involves analyzing what these labels reveal 

in terms of the underlying chemistry. To do this, standard Z-matrices without any difference from the 

ground state are calculated to obtain bond lengths, angles, and dihedrals. The objective here is to 

investigate whether the clustering correctly distinguishes the data according to the two degrees of 

freedom that are expected to be most significant. In this particular case, the importance of these degrees 

of freedom is already known, simplifying the analysis. However, in scenarios where the chemistry of 

the system is less understood, it would be advisable to spend more time exploring the data beforehand. 

This exploration would help develop an intuition for how the variables are distributed . 

Upon calculating the bond lengths and dihedrals, specifically the C5-C6 bond distance, significant 

differences are observed between clusters 0 and 1 (Figure 12). The mean values of these distributions 

are noticeably different. Cluster 2 shows more dispersed values, particularly in the green distribution, 

which likely corresponds to the 90° rotation discussed earlier. The blue cluster primarily consists of 

geometries with shorter bond lengths. In contrast, the yellow cluster includes geometries with an 

extended C5-C6 bond length. The markers in this plot correspond to the hopping geometries. It becomes 

evident from this analysis that some hopping geometries belong to cluster 1 (yellow). In contrast, a 

few others, represented by smaller markers, belong to cluster 2. 
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Figure 12: (a) Histogram showing the distribution of C5-C6 bond distances (in Å) categorized by K-

Means cluster labels. Each color represents a different cluster. (b) Scatter plot of the H1-C6-C5-C4 

dihedral angle versus the C5-C6 bond length, with points colored according to their corresponding 

cluster. Representative geometries for each cluster are displayed alongside the plot.  

By analyzing the geometries within cluster 2, it has been confirmed that they correspond to the 

90-degree rotated structures. These kind of structures are responsible for less than 5% of the decay 

population of fulvene.59 Meanwhile, the hopping geometries in cluster 1 are associated with an 

elongated C5-C6 bond length, and the geometries in cluster 0 exhibit various other distortions. 

Additionally, the ring analysis module of ULaMDyn can be used to assess the puckering of rings. 66 

5 Conclusions and Outlook 

In this work, we introduced ULaMDyn, a robust and flexible Python package for analyzing 

nonadiabatic molecular dynamics (NAMD) simulations using unsupervised learning techniques. 

ULaMDyn integrates seamlessly with Newton-X and offers a complete pipeline for processing, 

reducing, and clustering high-dimensional molecular datasets, enabling researchers to uncover hidden 

patterns and critical molecular transitions. Through the case study of fulvene dynamics, we 

demonstrated its ability to identify critical geometries and provide insights into nonadiabatic 

transitions. 

The automated nature of ULaMDyn streamlines the traditionally manual and labor-intensive task 

of postprocessing NAMD data, making it highly scalable for large systems and long timescale 

simulations. Beyond its current capabilities, the package is set to incorporate more advanced 

descriptors like MBTR and clustering techniques like DBSCAN, further enhancing its applicability to 

diverse molecular systems. With these upcoming features, ULaMDyn has the potential to significantly 
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broaden its impact, facilitating the study of complex excited-state processes in areas ranging from 

photochemistry to materials science. 

ULaMDyn has been designed to be the principal analysis tool for the many programs composing 

the Newton-X platform. However, users of other NAMD programs can also profit from the ULaMDyn 

capabilities by simply rewriting their results in the native Newton-X format, which is a matter of trivial 

scripting and postprocessing.  
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