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Abstract

The modern study and use of surfaces is a research topic grounded in centuries of
mathematical and empirical inquiry. From a mathematical point of view, curvature
is an invariant that characterises the intrinsic geometry and the extrinsic shape of
a surface. Yet, in modern applications the focus has shifted away from finding
expressive representations of surfaces, and towards the design of efficient neural
network architectures to process them. The literature suggests a tendency to
either overlook the representation of the processed surface, or use overcomplicated
representations whose ability to capture the essential features of a surface is opaque.
We propose using curvature as the input of neural network architectures for surface
processing, and explore this proposition through experiments making use of the
shape operator. Our results show that using curvature as input leads to significant
a increase in performance on segmentation and classification tasks, while allowing
far less computational overhead than current methods.

1 Introduction

Surfaces are a natural representation for many real world objects ranging from organs and organisms
to archaeological artefacts. They are also a central tool in virtual environments such as computer
games, or computer-aided design. This ubiquity has resulted in a large body of work dedicated to
mathematical methods developed for the efficient use of surfaces, as well as their analysis.

The goal of traditional computational surface analysis is to find a representation of a surface that
is expressive enough to capture details relevant for the problem or task at hand, while being com-
putationally light-weight. However, the effectiveness of Convolutional Neural Network (CNN) in
image processing opened new doors to surface processing. The design of efficient convolution-like
operations to adapt neural networks (NN) to surfaces alleviated the need for complex and detailed rep-
resentations, to the point where most state of the art architectures use extrinsic vertex coordinates as
input, letting the NN models learn the surface structure at multiple scales. While some attempts were
made to use well known representations as inputs, yielding some increase in performance [38, 35],
the general consensus is that the model should be able to learn it by itself [25]. While it is true that
neural networks are efficient at capturing surface features at multiple scales, the use of a local surface
representation that is more expressive and more natural to interpret than extrinsic coordinates should
naturally improve the performance of the network. The optimal choice of representation should be
somewhere between coarse extrinsic vertex coordinates, and more complex representations.
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In Riemannian geometry, the shape operator is the main tool linking the intrinsic geometry of a
surface with its bending and curving in ambient space. Its eigenvalues are the principal curvatures.
Their product and evenly divided sum give precisely the Gauss and mean curvature of the surface,
respectively. We hypothesize that the optimal choice for a local surface representation that meets the
requirements of surface processing is the set of principal curvatures: they characterize the surface up
to isometry (location and orientation in space); they are purely local, which allows the neural network
to decide on more general surface features; and they are lightweight, leaving very little computational
overhead in any scenario. This work tests our hypothesis against two widely used representations of
surfaces in three state of the art NN architectures.

In the next section we give an overview of surface processing, and introduce shape representations
and learning methods. In section 3 we give an introduction to the Shape Operator, although we
should remark now that this is not the first appearance of the shape operator in the surface processing
literature. The shape operator has already become an efficient tool in surface processing and
is, among other things, used to define local tangent frames and compute surface features like
creases [31]. Following these introductions, we then conduct extensive experiments in section 4,
comparing principal curvature with three other representations in conjunction with three different
NN architectures, on two segmentation datasets and one classification dataset, that shows how
principal curvature enhances any state of the art model in different tasks. In addition to outperforming
other methods, we show that this more concise representation is faster to compute, leaving minimal
computational overhead when added to a pipeline.

2 Related work

The first step to surface processing is usually its discretisation as a mesh or point cloud, which is
particularly useful for visualisation or rendering. From this starting point, novel representations have
been derived in an effort to provide tools for different surface related tasks. These tasks include
surface matching, semantic segmentation, classification, or even shape retrieval.

Historically, the general trend has been to find compact descriptors of a shape which could be
then compared within a dataset. A long list of such descriptors exist, among them signature-
based descriptors, such as Heat Kernel Signature (HKS) [42] or wave kernel signature [4], proved
to be particularly efficient. Closely related are histogram methods, which are often combined
with signatures to provide expressive representations such as the SHOT [37] or the Echo [26]
descriptors. Geometric measure theory has also been a source of inspiration for developing efficient
representations, such as geometric currents [5] leveraging on finite elements, or kernel-based currents
[43] and varifolds [10] tailored for shape deformation. Such representations can be used in conjunction
with classical statistical analysis tools, e.g [26, 37, 5], although they are often building blocks for
specialised methods on surfaces such as LDDMM [49], functional maps [29] or spectral-based
analysis [45].

With the advent of deep learning, many methods previously stated were re-written with the help of
neural networks resulting in Deep functional maps [20], and ResNet-LDDMM [2], to name but a
few. Representations of surfaces themselves were proposed as neural networks, such as DeepSDF
[32] or DeepCurrents [30]. As convolutions proved particularly effective when learning on images,
i.e structured grids, some work proposed voxel-based solutions to the study of surfaces [23]. Others
suggested representing surfaces as geometric images [40], on which convolutions can be applied.
A second generation of geometric deep learning has focused on building network architecture
specifically tailored to work directly on surfaces, i.e meshes or point clouds. From a point cloud
perspective, Point Net [34] and its extension Point Net ++ [35] consider the surface as a set of points
by applying set operations on them. Among others, DGCNN [46] applies a convolution-like operation
on dynamic graphs constructed layer-wise. MeshCNN [16] on the other hand fully leverages the
mesh structure to develop operation unique to triangulations. Transformer based architectures have
also appeared for the specific purpose of surface processing [18]. Among them, and in a similar
vein as before, GaTr [8] proposes to represent geometric data in an algebra of choice and designs
an architecture with operations belonging to this algebra. An effort to have efficient generalisation
of convolutions on surfaces was proposed by [22], although the lack of global coordinates creates
ambiguity in local operations. To alleviate this problem, a large body of work has proposed rotation
equivariant operations, namely GemCNN [12], augmenting graph NNs, or field convolutions [25].
Finally, recent models propose to bypass the problem of generalising convolutions by focusing
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on well defined operations on surfaces, such as discrete exterior calculus in Hodge Net [41], heat
diffusion in Diffusion Net [38] or a suit of known operators in Delta Net [48].

As model architectures include more and more knowledge of shapes, the need for a better repre-
sentation of the input to these models has decreased. Outside of models that contain operations
proper to the structure of choice (e.g [16, 8]), most models naturally accept as input the coordinates at
every point. Some papers propose to augment the model by inputing higher dimensional descriptors
initially designed for a more direct analysis, such as the ones previously mentioned (e.g HKS, WKS,
SHOT). Such proposals can be seen in [38], where HKS interacts well with the diffusion part of the
architecture, or [35] were they combine HKS, WKS, Gaussian curvature through concatenation and
PCA. However, recent work has dismissed this idea [25], citing the results of Diffusion Net [38]
which show no great improvement when moving from coordinates to HKS.

As methods for learning on surfaces have evolved, we suggest that a better input representation is
a simpler one, yet is more expressive than coordinates. We suggest that we can scale back to the
simplest differentiable invariant of a surface: its curvature.

3 The Shape Operator

Here we give a conceptual introduction to the Shape Operator and describe how its eigenvalues
completely characterize the surface to which it belongs (section 3.1). In section 3.2 we describe an
explicit calculation of the Shape Operator which igl’s implementation of the principal curvatures
is based on – this is the implementation we use in our experiments (see section 4.1). Those already
familiar with the differential geometry of curves and surfaces may skip ahead to section 4; for others
this section serves as a concise introduction – although, we do rely on a basic understanding of
functions of several variables and their derivatives, and surfaces and their tangent spaces.

Surfaces in R3 will be denoted by S and S, points in surfaces by p’s and q’s, and the tangent space
to S at a point p ∈ S by TpS. Maps from R3 to itself will be denoted by F : R3 → R3, and their
derivatives at a point p by DFp – the Jacobian matrix. A parameterisation X of a smooth surface S is
a diffeomorphism between an open set U ⊂ R2 and an open set V ⊂ S, and provides a mathematical
description of S as it lies in R3. The standard Euclidean inner product on R3 will be signified by
⟨·, ·⟩, and it’s restriction to a surface S and its tangent bundle TS =

∐
p∈S TpS by gS (·, ·), which

we call the induced metric. A normal vector to S at p is one which is orthogonal to every vector v in
TpS (measured in ⟨·, ·⟩) and will be denoted by Np; if we have a field of normal vectors in an open
set around p then this field will be denoted simply by N .

The Shape Operator of a surface S at a point p ∈ S measures the rate at which surface normal vectors
N separate around p, which is precisely the bending of the surface in space:

Definition 1 Given a point p on a surface S ⊂ R3, and the unit normal vector N defined on a
neighbourhood U of p, the shape operator is the linear map

Sp : TpS −→ TpS

v 7−→ −∇vN,

where TpS denotes the tangent space of S at point p

In other words, the shape operator Sp tells us how the normal vector changes as we move in S, in the
direction of v from p. One possible way to visualise the shape operator is through the Gauss map,
which identifies each point p ∈ S ⊂ R3 with its unit normal vector Np, now thought of as a point in
S2. The shape operator is then the differential of the Gauss map at p and is a tangent vector to S2 at
the image Np of p, as illustrated in figure 1.

The operator Sp is linear for each p ∈ S, and self-adjoint in the Euclidean inner product ⟨·, ·⟩:
⟨Sp(v), w⟩ = ⟨v,Sp(w)⟩. (1)

It can therefore be represented by a symmetric 2× 2 matrix [Sp] : TpS → TpS at each point p ∈ S.
It is well-known that symmetric matrices admit a complete system of orthonormal eigenvectors
(e1, e2) spanning the space on which they act. The matrix representation [Sp] with respect to the
basis (e1, e2) has the simple form:

[Sp] =

(
κ1 0
0 κ2

)
. (2)
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Figure 1: The shape operator may be visualised via the Gauss map.

Where κ1 and κ2 are the eigenvalues of Sp.

Definition 2 Let S be a surface in R3, p a point in S, Sp the shape operator at p and [Sp] its matrix
representation.

1. The eigenvalues κ1(p) and κ2(p) of [Sp] at p are the principal curvatures of S at p, and
their corresponding eigenvectors e1 and e2 are the principal directions;

2. The Gauss curvature κ of S at p is the product κ1(p) · κ2(p) of the principal curvatures;

3. The mean curvature Hp is the average κ1(p)+κ2(p)
2 of the principal curvatures

The Gauss and mean curvatures can be equivalently interpreted as the determinant and half the trace
of [Sp], respectively.

The importance of these quantities is two-fold: (1) two surfaces differ only in location and orientation
in space if and only if they have the same principal curvatures (Theorems 9.1 and 9.2 in [28]) – that
is, the shape operator completely characterizes the shape of a surface; and (2) the Gauss and mean
curvature generate all possible differential invariants of a surface (see Guggenheim [15], Olver [27]) –
in particular, Gauss and mean curvature are fundamental characteristics of the shape of a surface, and
the inclusion of the higher order invariants they generate into a representation could even improve the
results shown here.

3.1 Congruence

To explain how Gauss and mean curvature completely describe the shape of a surface we need a few
more definitions.

An isometry of R3 is a map F : R3 → R3 whose differential preserves the angles between tangent
vectors at every point of Rn:

⟨v, w⟩p = ⟨DFp · v,DFp · w⟩p, ∀v, w ∈ TpR3. (3)

If gS is the Riemannian inner product induced on TS by the Euclidean inner product ⟨·, ·⟩ then an
isometry between two surfaces is a map η : S → S whose differential preserves the angles between
tangent vectors to S:

gS(v, w) = gS(Dη · v,Dη · w). (4)

Every isometry F of R3 restricts to an isometry of surfaces F |S = η : S → F (S), but the converse
need not be true, unless an additional hypothesis on the shape operators is satisfied.

Two surfaces S and S are congruent if there exists an isometry F : R3 → R3 such that F (S) = S;
that is, congruent surfaces are surfaces which differ only in their location and orientation in space. It
is clear that the shape operators S and S of two congruent surfaces are related by

DFp · Sp(v) = SF (p) (DFp · v) , ∀v ∈ TpS; (5)

in particular, the matrices [Sp] and [Sp] are conjugate to one another via [DFp]. As per Theorem 9.2
of [28], if there exists an isometry η : S → S such that

Dηp · Sp(v) = Sη(p) (Dηp · v) , ∀v ∈ TpS, (6)
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i.e. such that the matrices [Sp] and [Sp] are conjugate to one another via the matrix representation
[Dηp], then there exists an isometry F : R3 → R3 such that F |S(S) = η(S) = S, and the two
surfaces are congruent. The conclusion of this brief mathematical digression is that two congruent
surfaces have the same intrinsic geometry and shape in space, and two surfaces with the same intrinsic
geometry and shape in space are congruent. This is what is sought after when representing shapes
with intrinsic quantities.

3.2 Discrete curvature

As well as being an important theoretical tool, curvature is a central notion in mesh processing. A
large body of work has been dedicated to estimating its discrete counterpart. Among them, many
methods propose to infer Gaussian curvature directly, such as in [24], or involve the use of geometric
measure theory [13], as in [11, 17]. Interestingly, many efficient methods propose to first discretize the
shape operator in order to compute the Gaussian curvature from it. This is done either directly on the
mesh triangles, such as in [36], or by first locally fitting a function to the surface, and then computing
explicitly the shape operator. To get a better feel for why this is a natural construction of the shape
operator, consider a surface S, given a point p ∈ S. Then the surface around p can be parameterized
as X(u, v) with (u, v) ∈ R2. The inner product at TpS, also called the first fundamental form, is
then given for any two tangent vectors v, w by:

(v, w)p = vT
(
E F
F G

)
w, (7)

where E = ⟨∂uX, ∂uX⟩, F = ⟨∂uX, ∂vX⟩ and G = ⟨∂vX, ∂vX⟩. And the surface normal at p can
be defined as

n =
∂uX(u, v)× ∂vX(u, v)

|∂uX(u, v)× ∂vX(u, v)|
. (8)

We can now define the second partial derivatives of X in the normal direction n, a quantity called the
second fundamental form, noted II:

II =

(
L M
M N

)
(9)

where L = ⟨∂uuX,n⟩, M = ⟨∂uvX,n⟩, and N = ⟨∂vvX,n⟩. The partial derivatives of the surface
normal can then be expressed via the Weingarten equations, in terms of the components of the first
and second fundamental form:

∂un =
FM −GL

EG− F 2
∂uX +

FL− EM

EG− F 2
∂vX

∂vn =
FN −GM

EG− F 2
∂uX +

FM − EN

EG− F 2
∂vX.

This enables us to write the matrix form of the shape operator at p as:

[Sp] = (EG− F 2)−1

(
LG−MF ME − LF
ME − LF NE −MF

)
(10)

From these derivations, it becomes interesting to find good local parametrisation of surfaces, that is, a
bi-variate scalar function f such that:

X(u, v) = (u, v, f(u, v)) (11)

The shape operator can then be easily derived from the first and second derivatives of f . An efficient
way to find such functions is via osculating jets, proposed in [9]. For the following experiments, we
use a multi-scale version of this, proposed in [31], in which the shape operator is computed by using
neighbourhoods of varying size around a point, yielding a robust method for estimating curvature on
a mesh.

4 Experiments

We test the representation of surfaces by the principal curvatures κ1, κ2 and Gaussian curvature κ
against the three most commonly used representations: the HKS [42], the SHOT descriptor [37], and
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(a) κ1 (b) κ2

Figure 2: Principal curvature visualisation of a Louis XIV statue.

the extrinsic coordinates. The HKS is a purely intrinsic representation derived from the Laplace
operator, and constitutes the most widely used signature-based method to represent shapes. The
SHOT representation is a descriptor mixing signature and histogram-based methods to describe
shapes, and is therefore an extrinsic representation. As they belong to two different classes of surface
representations we believe they are the most adequate for benchmarking our proposed curvature
representation.

All representations are tested with three different architectures. We regard Diffusion Net [38] as the
state of the art in NN architectures, as it shows the most promising results on general benchmark tasks.
In addition, it shows very little difference in performance when changing the input from coordinates
to HKS, making it the hardest test for our representation. Point Net ++ [35] has been designed as a
general method to process shapes arising in many situations, including controlled environments – as
in our case – but also from segmented images encountered in the autonomous driving field [35]. As
such Point Net ++ uses the least geometric structure to describe a surface: all one needs is a point
set. We believe that in this case, using better surface information for the input will greatly enhance
the performance of the model. The authors of PointNet++ have already touched on this subject,
recommending a linear combination of HKS, WKS and Gaussian curvature, followed by a PCA
projection, leading to a 64 dimensional feature per point. We aim to show that a 2d (or even 1d) input
of curvature information is more relevant for a smaller computational cost. Delta Net [48] proposes
an architecture intrinsic to surfaces by design, by combining four operators defined on the surface:
Laplacian, divergence, curl and norm. Most papers that propose other surface descriptors rather than
coordinates as input, do it solely to have an intrinsic representation of the surface. Curvature gives
isometry invariance (section 3), and we further believe it is also more robust, numerically. Better
performance from a curvature based representation in this architecture would support this belief.

Finally, we pick three tasks of varying complexity to measure the impact of each method: human
segmentation [21], molecular segmentation [6], and shape classification [19]. Examples from each
dataset are shown in figure 3.

4.1 Implementation

The performance of each representation is strongly dependent on the chosen implementation. We
have tried to be as fair as possible by not developing our own implementations of existing work and
instead using implementations which have already been tried, tested, and validated in the literature.
For calculating the discrete principal curvatures via quadratic surface fitting, we have used igl’s
implementation with a fixed neighbourhood radius of 5; the Gaussian curvature κ is then computed
directly as the product of κ1, κ2. HKS depends on the Laplacian, and we have used the method
implemented in robust-laplacian based on [39] - this is also consistent with what is used in
Diffusion Net. The eigendecomposition of the Laplacian is then performed with scipy. For the
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(a) Human poses [21]. (b) Molecules [6]. (c) Shrec’11 [19].

Figure 3: Samples of the segmentation and classification datasets used for experiments.

SHOT representation, we use the implementation in the pcl library, which computes 352 features
per vertex, in this case we normalise all shapes and use a ball of radius .1; all other parameters are
left untouched.

Regarding the neural networks, we use the implementations made publicly available by the authors,
modifying only when needed to accommodate more than just coordinates as input. We also use the
same parameters proposed in each paper when they are known, which we detail for every task below.
We make all our code and experiments available at https://github.com/Inria-Asclepios/
shape-nets

4.2 Time Complexity

As a first experiment, we compute1 for each representation method, the computation time as a
function of the number of points in a surface. The performances are reported in figure 4. HKS and
curvature are both efficient for meshes with up to 100k points. However, curvature is consistently
faster, even for larger meshes (up to 500k points), displaying the very small overhead incurred by the
use of curvature in surface models.

Figure 4: Time of computation for each representation with respect to the number of points in a mesh.

1Computed on an Apple M2 chip
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4.3 Human Anatomy segmentation

We first segment the human parts from the composite dataset proposed in [21], containing samples
from other human dataset, namely FAUST [7], SCAPE [3], Adobe [1], MIT [44], and SHREC07 [14].
As in the original paper, we use the SHREC07 dataset as test set. Similar to [47], we differ from
[21] by evaluating on vertices rather than faces. For Point Net ++ and Delta Net we resample each
shape to 1024 points, and we leave the meshes untouched for Diffusion Net, as per the experiments
conducted in each paper. We optimise the negative log-likelihood for 100 epochs, with the ADAM
optimiser and a scheduler step every 20 epochs. We ran the experiment 5 times and have reported the
mean test accuracy in table 1.

xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 69.6 71.4 72.4 78.1 80.6 74.5
Delta Net 72.4 58.1 66.2 68.9 86.8 60.0
Diffusion Net 94.7 95.0 95.0 95.1 97.4 95.4

Table 1: Test accuracies (%) on the Human part segmentation task.

The results highlight the assumption that better representations lead to better performance. PointNet++
showed the greatest improvement when moving away from coordinates: this is due to its architecture
having the least amount of geometric information at baseline. The better results come from the
principal curvatures, and show how expressive this representation is. The effects of the principal
curvatures are even more pronounced in the Delta Net experiment, where κ1, κ2 greatly outperform all
other methods. It’s interesting to note that in this experiment the coordinate representation performs
better than the other more complex representations. Diffusion Net may show that it is more robust to
the type of input, as long as it loosely describes the shape, however the improvement brought by the
principal curvature is still significant. To further demonstrate the impact of a good representation,
even in the case of Diffusion Net, we show in 5 the worst cases for xyz and κ1, κ2 inputs. The clear
improvement in this case may be even more important than general accuracy in some cases, e.g with
human-in-the-loop type corrections.

(a) κ1, κ2. 80.9% accuracy. (b) xyz. 29.2% accuracy. (c) HKS. 12.3% accuracy.

Figure 5: Human part segmentation with Diffusion Net. Worst cases for different representations,
blue shows the correct prediction, red the error.

4.4 Molecular segmentation

The molecular dataset made available by [6] and first proposed in [33], can be considered a harder
segmentation task then the Human part dataset: it proposes a wider range of shapes in the form of
RNA molecules, and a 260-way part segmentation task. We resample all meshes to 2048 points,
except in the case of Diffusion Net where we kept the original discretisation. We evaluate all our
baselines on 5 random splits with a train-test ratio of 80-20. We run the models for 200 epochs, and
report the mean test accuracies in table 2.
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xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 35.4 70.9 71.9 70.2 72.4 69.0
Delta Net 29.2 45.6 56.5 49.6 55.5 29.2
Diffusion Net 82.6 88.4 89.1 85.6 89.4 84.0

Table 2: Test accuracies (%) on the Molecular segmentation task.

Again, we see a significant improvement when using a better representation of the surface in the
case of PointNet++, going from failing in the case of coordinates to outperforming Delta Net – with
principal curvatures giving the best performances. Diffusion Net shows a non-negligable jump in
performance as well. Although the SHOT descriptor outperforms other representations in the case of
Delta Net, the general performance of this architecture is underwhelming. We believe this is due to
the accumulation of errors in the discretisation of surface operators used. Indeed, one layer computes
a chain of 6 operators on the surface: since the RNA shapes are very irregular, the error for each
operator could be significant.

4.5 Classification

In addition to segmentation tasks, we propose to compare representations in the context of classifica-
tion. This experiment should show whether or not geometrically informative inputs interact well with
pooling-type operations. We choose the widely adopted baseline Shrec11, proposed in [19]. It is a
30-way classification dataset with 20 shapes per category. We choose the simplified mesh dataset and
the harder version of training, using only 10 samples per class and evaluating on the test. We perform
our experiments on 5 random splits. We train our baselines for 100 epochs with a scheduler step at
epoch 50 and optimise the cross-entropy loss with a label smoothing factor of 0.2. Resulting mean
test accuracies are shown in table 3.

xyz shot16 shot64 hks κ1, κ2 κ
Point Net ++ 71.5 69.8 60.7 60.8 85.7 96.2
Delta Net 75.7 54.9 60.4 98.6 90.1 98.8
Diffusion Net 80.3 52.6 67.4 98.9 94.2 99.1
Table 3: Test accuracies (%) on the Shrec11 classification task.

Yet again we observe a significant improvement when turning to better representations, even more so
when using Gaussian curvature κ. Additionally, figure 6 shows that all geometric representations yield
less variability across each folds. In addition, HKS, Gaussian curvature κ, and principal curvature
κ1, κ2 converge much faster than all others.

Figure 6: Evolution of the test accuracy with 95% confidence interval by epochs per representations
across folds, for the Shrec07 dataset using Diffusion Net.

The fact that gaussian curvature, closely followed by HKS outperform principal curvature in this
classification task seems to indicate that Gaussian curvature interacts better with pooling operations
present in classification architectures. Interestingly, all three architectures tested here have different
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ways of performing the pooling operation. Although it is hard to give any analytical reasoning to
this behavior, we believe it is simply the fact that gaussian curvature is already an aggregation of the
principal curvatures, that it shows better performance in classification tasks.

For each experiment, additional metrics can be found in Appendix A.1.

4.6 Noisy data

We propose one final experiment to highlight the robustness of input features to noisy data. We
focus on three representations: HKS, known to be robust to noise as it computes a representation at
multiple scale; extrinsic coordinates that are directly impacted by the noise; and principal curvatures,
known to be less robust to noise as a purely local descriptor. To compare these representations we
pick the diffusion net trained on the human pose dataset, and we add noise to the dataset at inference
time. Specifically, we add gaussian noise with a standard deviation of 1%, 3%, 5%, 7% and 10% of
the diagonal length of the bounding box of each shape. Examples of the noisy data can be seen in
Appendix A.2. Results show that the accuracy for all three features worsen at the same rate, as shown
in figure 7, showing that principal curvature can be a viable choice even in the presence of noisy data.

Figure 7: Evolution of the test accuracy on the human pose segmentation task for inputs (k1, k2),
HKS and the extrinsic coordinates when noise is added to the shapes.

5 Conclusion

In this work we have shown that curvature should be the representation of choice when it comes
to processing surfaces with neural networks. In almost all experiments the principal and Gaussian
curvatures performed better than any other choice of input, both qualitatively and quantitatively. In
particular, this representation can be obtained with minimal computational overhead. Its combination
with PointNet++, the architecture that has the least prior information about the surface, showed that it
can help the network better understand the surface structure. When combined with Delta Net, which
contains only intrinsic operations, the improvement indicates that curvature gives more than just a
rigid transformation invariance. Even in the case of Diffusion Net, where the diffusion operation
seems to interact nicely with any representation, curvature as input showed significant amelioration.
For these reasons, we believe curvature should become the standard practice when using models to
learn on surfaces. Finally, although experiments have shown that gaussian curvature outperforms
principal curvatures on classification tasks, we would like to further define those guidelines in future
work, as well as compare representations in a wider range of tasks and architectures.
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A Appendix

A.1 Segmentation and classification detailed results

We present below the complete results for each experiment. For each dataset, and each neural network
architecture, we show the Accuracy, Balanced accuracy, F1 score, and Specificity. They were all
measured using 5-fold cross validation, and we give the results on the test sets in the form of mean ±
standard deviation.

Accuracy Balanced accuracy F1 score Specificity
xyz .696±.306 .804±.393 .662±.293 .957±.49
shot16 .714±.061 .815±.15 .689±.061 .959±.234
shot64 .724±.034 .827±.13 .693±.035 .961±.201
hks .781±.07 .865±.159 .754±.08 .969±.203
κ1, κ2 .806±.079 .871±.14 .799±.089 .972±.196
κ .745±.165 .826±.227 .714±.148 .964±.32

Table 4: Human pose segmentation - Point Net ++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .724±.265 .223±.076 .223±.076 .724±.265
shot16 .581±.095 .215±.05 .215±.05 .581±.095
shot64 .662±.075 .302±.084 .302±.084 .662±.075
hks .689±.14 .303±.043 .303±.043 .689±.14
κ1, κ2 .868±.128 .299±.114 .299±.114 .868±.128
κ .6±.087 .163±.054 .163±.054 .6±.087

Table 5: Human pose segmentation - Delta Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .947±.013 .943±.015 .943±.015 .947±.013
shot16 .95±.017 .946±.018 .946±.018 .95±.017
shot64 .95±.018 .944±.021 .944±.021 .95±.018
hks .951±.04 .969±.055 .947±.039 .993±.07
κ1, κ2 .975±.014 .971±.015 .971±.015 .975±.014
κ .954±.014 .951±.016 .951±.016 .954±.014

Table 6: Human pose segmentation - Diffusion Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .354±.008 .202±.001 .202±.001 .354±.008
shot16 .709±.004 .592±.016 .592±.016 .709±.004
shot64 .719±.009 .602±.01 .602±.01 .719±.009
hks .703±.017 .574±.003 .574±.003 .703±.017
κ1, κ2 .724±.013 .597±.013 .597±.013 .724±.013
κ .69±.008 .572±.008 .572±.008 .69±.008

Table 7: RNA molecules segmentation - PointNet++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .292±.018 .182±.012 .182±.012 .292±.018
shot16 .456±.008 .352±.016 .352±.016 .456±.008
shot64 .565±.010 .299±.008 .299±.008 .565±.010
hks .496±.017 .392±.008 .392±.008 .496±.017
κ1, κ2 .555±.023 .496±.013 .496±.013 .555±.023
κ .292±.008 .142±.008 .142±.008 .292±.008

Table 8: RNA molecules segmentation - Delta Net results.
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Accuracy Balanced accuracy F1 score Specificity
xyz .826±.001 .851±.106 .704±.003 .999±.129
shot16 .884±.002 .765±.008 .765±.008 .874±.002
shot64 .891±.001 .781±.008 .781±.008 .879±.001
hks .856±.596 .873±.622 .758±.536 .999±.697
κ1, κ2 .894±.008 .873±.064 .783±.025 .999±.082
κ .84±.008 .862±.113 .718±.011 .999±.12

Table 9: RNA molecules segmentation - Diffusion Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .715±.037 .852±.019 .709±.034 .99±.001
shot16 .698±.035 .844±.018 .694±.036 .99±.001
shot64 .607±.031 .797±.016 .594±.038 .986±.001
hks .608±.181 .797±.093 .602±.184 .986±.006
κ1, κ2 .857±.007 .926±.004 .852±.007 .995±.0
κ .962±.011 .98±.006 .961±.011 .999±.0

Table 10: Shrec classification - Point Net ++ results.

Accuracy Balanced accuracy F1 score Specificity
xyz .757±.027 .753±.031 .753±.031 .757±.028
shot16 .549±.029 .533±.026 .532±.026 .549±.029
shot64 .604±.026 .597±.019 .597±.019 .604±.026
hks .986±.005 .985±.006 .986±.006 .986±.005
κ1, κ2 .887±.020 .881±.019 .881±.019 .887±.020
κ .988±.004 .988±.004 .988±.004 .988±.004

Table 11: Shrec classification - Delta Net results.

Accuracy Balanced accuracy F1 score Specificity
xyz .803±.159 .898±.082 .791±.169 .993±.005
shot16 .526±.054 .755±.028 .513±.053 .984±.002
shot64 .674±.033 .831±.017 .668±.036 .989±.001
hks .989±.006 .994±.003 .989±.006 1.0±.0
κ1, κ2 .922±.009 .96±.004 .919±.008 .997±.0
κ .991±.003 .995±.001 .991±.003 1.0±.0

Table 12: Shrec classification - Diffusion Net results.

A.2 Noisy data exemples
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(a) 1%. (b) 3%. (c) 5%. (d) 7% (e) 10%.

Figure 8: Different quantity of noise added to a shape from the human pose dataset, from 1% to 10%
of the diagonal of the bounding box of the shape.

(a) Initial shape. (b) 1%. (c) 3%.

(d) 5% (e) 7%. (f) 10%.

Figure 9: Different quantity of noise added to a shape, from 1% to 10% of the diagonal of the
bounding box of the shape.
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