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Abstract

We propose a new operator-sketching paradigm for designing efficient iterative
data-driven reconstruction (IDR) schemes, such as plug-and-play algorithms and
deep unrolling networks. These IDR schemes are the state-of-the-art solutions for
imaging inverse problems. However, for high-dimensional imaging tasks, such as
X-ray CT, PET and MRI imaging, these IDR schemes typically become inefficient
both in terms of computation, due to the need to compute the high-dimensional
forward and adjoint operators multiple times. In this work, we introduce a univer-
sal dimensionality reduction framework for accelerating IDR schemes in solving
imaging inverse problems, based on leveraging the sketching techniques from
stochastic optimization. Using this framework, we derive several accelerated IDR
schemes, including the plug-and-play multi-stage sketched gradient (PnP-MS2G)
and sketching-based primal-dual (LSPD and Sk-LSPD) deep unrolling networks.
Meanwhile, to fully accelerate PnP schemes when the denoisers are computa-
tionally expensive, we further propose novel stochastic lazy denoising schemes
(Lazy-PnP and Lazy-PnP-EQ), leveraging the ProxSkip scheme in optimization
and equivariant image denoisers, to significantly enhance the practicality and
efficiency of PnP algorithms. We provide theoretical analysis for recovery guar-
antees of instances of the proposed framework. Our numerical experiments on
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natural image processing and tomographic image reconstruction demonstrate the
remarkable effectiveness of our sketched IDR schemes.∗

Keywords: Deep Unrolling, Plug-and-Play Priors, Image Reconstruction, Sketching,
Stochastic Optimization, Lazy-PnP

1 Introduction

Randomized sketching and stochastic first-order optimization methods have become
the de facto techniques in modern data science and machine learning with a wide
range of applications [3–6], due to their remarkable scalability to the size of opti-
mization problems. The underlying optimization tasks in many applications nowadays
are large-scale and high-dimensional by nature, as a consequence of big data and
overparameterized models (for example, deep neural networks).

Although well-designed optimization algorithms can enable efficient machine learn-
ing, one can, on the other hand, utilize machine learning to develop problem-adapted
optimization algorithms using the so-called “learning-to-learn” philosophy [7, 8]. Tra-
ditionally, the optimization algorithms are designed in a hand-crafted manner, with
human-designed choices of rules for computing gradient estimates, step sizes, etc., for
some general class of problems. Noting that although the traditional field of optimiza-
tion has already obtained lower-bound matching algorithms (aka “optimal”) [9–11] for
many important general classes of problems, for specific instances there could be still
much room for improvement. For example, a classical way to solve inverse imaging
problems would be to minimize the regularized least squares [12] with specific mea-
surement operators, which is a very narrow subclass of the general class of smooth and
convex programs for which these optimization algorithms are developed “optimal”. To
obtain optimal algorithms adapted for a specific instance of a class, the hand-crafted
mathematical design could be totally inadequate, and very often we do not even have
a tight lower bound of it.

One of the highly active areas in modern data science is computational imaging
(which is also recognized as low-level computer vision), especially medical imaging that
includes X-ray computed tomography (CT) [13], magnetic resonance imaging (MRI)
[14] and positron emission tomography (PET) [15]. In such applications, clinics seek
to infer images of the patient’s inner body from the noisy measurements collected
from the imaging devices. Traditionally, dimensionality reduction methods, such as
stochastic approximation [16] and sketching schemes [17–19] have been widely applied
in solving large-scale imaging problems due to their scalability[20–22]. Inspired by
their successes, in our work, we focus on developing a framework for efficient sketched
iterative data-driven algorithms tailored for solving imaging inverse problems. In our
framework, we effectively deal with the computational redundancy that is prevalent

∗This paper contains some contents from its short conference version [1], and some early
results/contents from our unpublished technical report [2].
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in all of current state-of-the-art iterative data-driven reconstruction (IDR) schemes
including plug-and-play (PnP)/ regularization-by-denoising (RED) schemes and deep
unrolling (DU) networks. For example, our framework can accelerate any plug-and-
play algorithm by reducing the computational cost of forward/adjoint operators and
denoisers.

1.1 Contributions of this work

In this work, we make four main contributions:
• Operator sketching framework for accelerating iterative data-driven
reconstruction schemes

We propose an operator sketching framework for developing computation-
ally efficient iterative data-driven reconstruction (IDR) methods, ranging from
plug-and-play algorithms to deep unrolling networks based on a sketching
scheme which we have tailored for imaging inverse problems for massively
improving efficiency. We first derive our operator sketching scheme and obtain
a plug-and-play multi-stage sketched gradient (PnP-MS2G) algorithm. Com-
pared to state-of-the-art approaches such as PnP-SGD [21], we can observe
numerically significant acceleration. By applying again our sketching frame-
work to deep unrolling networks, we develop learned Stochastic Primal-Dual
(LSPD) network, and its accelerated variant Sketched LSPD (SkLSPD)
which is further empowered with the sketching approximation of products
[17, 22, 23]. Our proposed networks can be viewed as sketched extensions
of the state-of-the-art unrolling network – Learned Primal-Dual (LPD) net-
work introduced in [24]. Noting that the LPD is a generic framework that
takes most of the existing unrolling schemes as special cases, our acceleration
schemes can be extended and applied to many other deep unrolling networks
such as the ISTA-Net [25], ADMM-Net [26] and FISTA-Net [27].

• Stochastic lazy denoisers for PnP schemes
While utilizing operator sketching we mitigate the inefficiency due to

high-dimensionality measurement operators, the computational costs of state-
of-the-art denoising functions are also not negligible. In our work, we propose
first the Lazy-PnP scheme where we further introduce stochastic skipping
schemes for mitigating the computational cost of the denoiser, which can be
jointly applied with our operator sketching schemes for the ultimate acceler-
ation. Moreover, we leverage recently introduced equivariant PnP priors and
propose Lazy-PnP-EQ for improved stability and performance especially when
state-of-the-art deep denoising networks are used. By skipping the calls of the
denoiser with high-probability, we can achieve order-of-magnitude accelera-
tion for gradient-based PnP algorithms in scenarios where the computational
cost of the denoisers are dominant, such as image superresolution.

• Theoretical analysis of our framework
We provide a theoretical analysis of the basic instance of our framework

in accelerating proximal gradient descent and plug-and-play algorithms, from
the view-point of stochastic non-convex composite optimization. We provide
upper and lower bounds of the estimation errors under standard assumptions,
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suggesting that our proposed PnP-MS2G has the potential to achieve similar
estimation accuracy as its full-batch counterpart.

• Less is more – the numerical effectiveness of our new plug-and-play
methods and deep unrolling methods in imaging inverse problems

We provide numerical studies on the performance of the proposed new
plug-and-play schemes (PnP-MS2G / Lazy-PnP / Lazy-PnP-EQ), showing
significantly improved numerical results compared to the standard plug-
and-play schemes in image processing and reconstruction tasks. We also
numerically evaluate the performance of our proposed networks on two typical
tomographic medical imaging tasks – low-dose and sparse-view X-ray CT. We
compare our LSPD and SkLSPD with the full batch LPD. We found that our
networks achieve competitive image reconstruction accuracy with the LPD,
while only requiring a fraction of the computation of it.

2 Background

2.1 Imaging Inverse Problems

In imaging, the measurement systems can be generally expressed as:

b = Ax† + w, (1)

where x† ∈ Rd denotes the ground truth image (vectorized), and A ∈ Rn×d denotes
the forward measurement operator, w ∈ Rn the measurement noise, while b ∈ Rn

denotes the measurement data. A classical way to obtain a reasonably good estimate
of x† is to solve a composite optimization problem:

x⋆ ∈ arg min
x∈Rd

fb(Ax) + r(x), (2)

where data fidelity term fb(Ax) := f(b, Ax) is typically a convex function (one example
would be the least-squares ∥b − Ax∥22), while r(x) being a regularization term, for
example the total-variation (TV) semi-norm, or a learned regularization [28, 29]. A
classical way to solve the composite optimization problem (2) is via the proximal
gradient methods [12], which are based on iterations of the gradient descent step in f ,
proximal step on r and momentum step using previous iterations for fast convergence
[30, 31].

Since modern imaging problems are often on huge scales, deterministic methods
can be very computationally costly, since they need to apply the full forward and
adjoint operators in each iteration. For scalability, stochastic gradient methods [16] and
ordered subset methods [20, 32] are widely applied in real-world iterative reconstruc-
tion. More recent advanced stochastic variance-reduced gradient methods [5, 33–36]
have also been adopted in some suitable scenarios in imaging for better efficiency
[37–39].

More recently, deep learning approaches have been adapted in inverse imag-
ing problems, starting from the work of [40] on the FBP-ConvNet approach for
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tomographic reconstruction and DnCNN [41] for image denoising. Remarkably, the
learned primal-dual (LPD) network [24], which mimics the update rule of the primal-
dual gradient method and utilizes the forward operator and its adjoint within a
deep convolutional network, achieves state-of-the-art results and outperforms primal-
only unrolling approaches. Despite excellent performance, the computation of the
learned primal-dual method is significantly larger than direct approaches such as
FBP-ConvNet.

2.2 Iterative Data-Driven Reconstruction

In this section, we introduce the notion of iterative data-driven reconstruction (IDR)
algorithms, which we will explore in this work. The current dominant IDR schemes
can be summarized in two categories: the plug-and-play (PnP) algorithms and deep
unrolling networks.

2.2.1 Plug-and-Play algorithms

Iterative reconstruction algorithms have become ubiquitous for solving imaging inverse
problems such as image deblurring/inpainting/superresolution and tomographic image
reconstruction (for example X-ray CT, MRI and PET, etc.). Due to their strengths in
providing robust and consistent data reconstruction, these iterative solvers, especially
when combined with advanced image priors [41–43] in a “plug-and-play” (PnP) man-
ner [44–47], can still thrive in the current era where deep neural networks [40] have
been successfully adopted in all these problems.

Although these classical convex regularization approaches provide theoretically
tractable solutions for inverse problems, they have been significantly outperformed by
the PnP priors, constructed by advanced image denoizers or deep neural networks.
The very first PnP algorithm (probably not very well known) is proposed in [44],
which is a PnP stochastic approximation algorithm with BM3D as denoiser. The PnP-
ADMM of [45] and the PnP-LBFGS of [48] extend the classical methods ADMM and
L-BFGS, replacing the proximal operator with the denoiser and have been widely
applied in solving inverse problems since then. Then a very similar approach named
regularization-by-denoising (RED) was proposed by [46, 47], which explicitly con-
structs the regularization term using the denoiser and provides improved convenience
in parameter tuning. Since a strong link between PnP and RED is established in [49]
under the RED-PRO unifying framework, in this work we refer to plug-and-play and
regularization-by-denoising as “PnP” for simplicity. Although we mainly focus on PnP
schemes in this work, our framework is obviously also applicable to RED.

For large-scale problems, PnP algorithms may require long computational times to
obtain a good estimate. The PnP-SGD methods [21] and the stochastic PnP-ADMM
methods [50, 51] can provide significant acceleration compared to the deterministic
PnP-ADMM/PnP-LBFGS methods. In this work, we propose a generic acceleration of
PnP gradient methods using dimensionality reduction/sketching in the image space.
Moreover, we propose two enhanced acceleration schemes that deal with computational
complexity in the denoiser, leveraging stochastic skipping of proximal operators [52]
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in optimization, and equivariant denoising schemes for PnP algorithms [53] for stable
application of deep denoising networks in PnP.

2.2.2 Deep unrolling

Now we start by presenting the background of the deep-unrolling networks, starting
from the primal-dual-gradient-based optimization algorithm. It is well-known that, if
the loss function fb(·) is convex and lower semi-continuous, we can reformulate the
original objective function (2) to a saddle-point problem:

[x⋆, y⋆] = min
x

max
y
{r(x) + ⟨Ax, y⟩ − f∗

b (y)}, (3)

where f∗
b (·) is the Fenchel conjugate of fb(·):

f∗
b (y) := sup

h
{⟨h, y⟩ − fb(h)} (4)

The saddle-point problem (3) can be efficiently solved by the primal-dual hybrid gra-
dient (PDHG) method [54], which is also known as the Chambolle-Pock algorithm in
the optimization literature. The PDHG method for solving the saddle-point problem
obeys the following updating rule:

Primal-Dual Hybrid Gradient (PDHG)

−Initialize x0, x̄0 ∈ Rd y0 ∈ Rn

For k = 0, 1, 2, ...,K yk+1 = proxσf∗
b
(yk + σAx̄k);

xk+1 = proxτr(xk − τAT yk+1);
x̄k+1 = xk+1 + β(xk+1 − xk);

The PDHG algorithm alternatively takes the gradients with respect to the primal
variable x and the dual variable y and performs updates. In practice, it is often more
desirable to reformulate the primal problem (2) to the primal-dual form (3), especially
when the loss function f is non-smooth (or when the Lipschitz constant of the gradient
is large).

Currently, the most successful deep networks in imaging would be the unrolling
schemes [55] inspired by gradient-based optimization algorithms that use the knowl-
edge of physical models. The state-of-the-art unrolling scheme —- the learned
primal-dual network of [24] is based on the unfolding of the iteration of PDHG by
replacing the proximal operators proxσf⋆(·) and proxτg(·) with multilayer convolu-
tional neural networks Pθp(·) and Dθd(·), with sets of parameters θp and θd, applied to
both primal and dual spaces. The step sizes at each step are also set to be trainable.
The learned primal-dual with K iterations can be written as the following, where the
learnable paramters are {θkp , θkd , τk, σk}K−1

k=0 :

Learned Primal-Dual (LPD)
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−Initialize x0 ∈ Rd y0 ∈ Rn

For k = 0, 1, 2, ...,K − 1⌊
yk+1 = Dθk

d
(yk, σk, Axk, b);

xk+1 = Pθk
p
(xk, τk, A

T yk+1);

When the primal and the dual CNNs are kept fixed across the layers of LPD, it has
the potential to learn both the data-fidelity and the regularizer (albeit one might need
additional constraints on the CNNs to ensure that they are valid proximal operators).
This makes the LPD parameterization more powerful than a learned proximal-gradient
network (with only a primal CNN), which can only learn the regularization functional.
The capability of learning the data-fidelity term can be particularly useful when the
noise distribution is unknown and one does not have a clear analytical choice for the
fidelity term.

We choose the LPD as our backbone for deep unrolling because it is a generic
framework that covers most existing gradient-based unrolling schemes as special cases.
For example, if we choose the dual subnets of LPD to be a simple subtraction Axk−b,
we can recover unrolled proximal gradient descent.

3 Iterative Operator Sketching Framework

We propose an operator sketching framework based on reduction in dimensional-
ity in both the data dimension n and the parameter dimension d, constructing a
much smaller proxy operator to replace the role of the full operator in the iterative
reconstruction.

Our framework performs sketching in both the image domain (of dimension d) and
the data domain (of dimension n). For ease of illustration, we use the least-squares
objective and linear forward operator here without loss of generality. For a given
forward operator A ∈ Rn×d, we can often find a low-dimensional proxy As ∈ Rn×m0

discretized on a reduced image dimension m0 < d such that Ax ≈ AsS(x), where
S(·) : Rd → Rm0 (m0 < d) is a sketching/downsampling operator. Furthermore, we
can also perform random sketching M(·) : Rn → Rm (m < n) in the measurement
/ data domain, which corresponds to the stochastic approximation [16]. One typical
choice of this sketching operator M is the subsampling sketch —- a uniformly sampled
minibatch of In×n [17], which is suitable for inverse problems. For the image domain
sketching operator S, we found that off-the-shelf down-sampling algorithms such as
the bicubic interpolation suffice in our framework. Now we can summarize this double-
sketching as follows:

∥b−Ax∥22 ≈ ∥b−AsS(x)∥22
∝ EM∥Mb−MAsS(x)∥22.

(5)

Instead of using standalone data domain sketches [17], our double-sketching framework
is more effective in terms of dimensionality reduction and can be applied to generically
accelerate PnP methods and also deep unrolling networks. Using the sketched loss in
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(5), we can have an approximate data fit that can be efficiently optimized by SGD
[16] or its variance-reduced variants [4]. To recover the same reconstruction quality as
the original program, we can adjust the image domain sketch size m0 stagewise in a
coarse-to-fine manner.

We now further introduce our framework first under the context of plug-and-play
algorithms:

3.1 Doubly-Sketched PnP

In this section, we present our multistage sketched gradient framework PnP-MS2G.
Sketching techniques have been widely applied in large-scale optimization, especially
in least-squares problems [17, 22, 23, 56, 57]. However, we found that such data-domain
sketching methods are not efficient in imaging inverse problems, since very often the
forward operator is relatively sparse, and even the most efficient sparse Johnson-
Lindenstrauss transform [58] cannot provide significant computational gain here since
the sketched operator typically has similar sparsity as the full operator. If we use a
subsampling sketch which is the only practical data-domain sketch, the performance
is similar to or worse than SGD methods in imaging inverse problems.

Instead of using data-domain sketches, we propose to perform sketching in image-
domain, which appears to be much more effective and can be applied to generically
accelerate PnP proximal gradient methods.

3.1.1 Algorithmic Framework

Suppose the original objective reads:

x⋆ ∈ arg min
x∈M

f(b, Ax), (6)

where M can be some implicit non-convex constraint set constructed by the denoiser
(we write this for the ease of presentation), then our sketched objective can be generally
expressed as:

x⋆ ∈ arg min
x∈M

f(b, AsS(x)), (7)

where S(·) : Rd → Rm (m < d) being the sketching/downsampling operator, while
As ∈ Rn×m is the forward operator discretized on the reduced image space. We found
that such a scheme provides a remarkably efficient approximation of the solution. We
present our PnP-MS2G framework in Algorithm 1, where we denote D as the denoiser,
S as the sketching operator and U as the upsampling operator.

To explain the motivation and derivation of Algorithm 1, we start by illustrating
here a concrete example where the data-fidelity is the least squares. Noting that the
PnP proximal gradient descent iteration can be written as:

xk+1 = D[xk − η · (ATAxk −AT b)], (8)

where D(·) denotes the denoiser, which can be a denoising algorithm such as
NLM/BM3D/TNRD, or a classical proximal operator of some convex regularization
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Algorithm 1 — Plug-and-Play with Multi-Stage Sketched Gradients (PnP-MS2G)

Initialization: x0 ∈ Rd, number of stages K, sketch-size [m1, ...,mK ], sketched for-
ward operator [As1 , ...AsK ], sketching operators [S1, ...,SK ], up-sampling operators
[U1, ...,UK ], number of inner-loops for each stage [N1, ..., NK ], step-size sequence
[η1, ..., η∑K

k=1 Nk
], α ∈ (0, 1], iteration counter i = 0

For k = 1 to K
For j = 1 to Nk

i← i + 1
Generate random subsampling mask Mi

Compute the image-domain sketch: v = Sk(xi)
Compute gradient estimate G := ▽vf(Mib,MiAskv)
zi+1 = xi − ηiUkG,
xi+1 = (1− α)zi+1 + αD(zi+1),

Endfor
Endfor
Output xi+1

(such as TV-prox), or a pretrained denoising deep network such as (DnCNN). Then
our sketched gradient can be written as:

xk+1 = D[xk − η · U(AT
s AsS(xk)−AT

s b)], (9)

where U(·) denotes the upsamling operator. Numerically, we found that off-the-shelf
up/down-sampling algorithms such as the bicubic interpolation suffice to provide us
good estimates of the true gradients. Using this scheme, an efficient approximation of
the true gradient can be obtained, since As only takes a fraction of the computation
of A, and usually U and S can be computed very efficiently.

To further reduce the computational complexity, we can also utilize stochastic
gradient estimate:

xk+1 = D[xk − ηk · U((MkAs)
TMkAsS(xk)− (MkAs)

TMkb)] (10)

where Mk is uniformly sampled minibatch of In×n here for computing the stochastic
gradient. Here we use a vanilla minibatch stochastic gradient estimator. We can also
choose here those advanced stochastic variance-reduced gradient estimators [4, 34, 36,
59] for potentially even faster convergence.

In Algorithm 1 we present our PnP-MS2G framework, where we typically start
with an aggressive sketch {As1 ,S1} with m1 ≪ d for very fast initial convergence, and
then for later stages we switch to medium-size sketches {Ask ,Sk} with mk < d which
are increasingly more conservative, to reach a reconstruction accuracy similar to the
unsketched counterpart.

We also wish to point out that in our sketching framework both the denoiser D,
the upsampling function U and the sketching function S can be parameterized as deep
(convolutional) neural networks and trained recursively or end-to-end, resulting in a
new efficient deep unrolling scheme [24].
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In the multisketch framework presented here, we gradually increase the size of the
sketch m through stages.

3.2 Stochastic Lazy Denoisers

In many scenarios in imaging applications, the computational costs of the proximal
operators/PnP denoisers are also significant compared to the costs of evaluating the
gradients of the data-fidelity. Recall that our scheme can be summarized in one line:

xk+1 = D[xk − ηk · U((MkAs)
TMkAsS(xk)− (MkAs)

TMkb)]. (11)

Here one can further improve the efficiency in the early iteration if we replace the full
operator D with a sketched/down-scaled version Ds, such that D(·) = U ◦ Ds ◦ S(·),
then we have:

xk+1 = U ◦ Ds ◦ S[xk − ηk · U((MkAs)
TMkAsS(xk)− (MkAs)

TMkb)]. (12)

With this sketching scheme, which we perform triple-dimensionality reduction (both
on the forward operator and denoiser), we can accelerate PnP algorithms in reduc-
ing the complexity on denoiser but only in early iterations. In this subsection, we
propose two much more powerful schemes for accelerating PnP’s denoiser computa-
tion based on the finding that the denoiser computation can actually be skipped with
high-probability in each iteration and hence further accelerates our sketched gradient
schemes for PnP.

Lazy-PnP

The computational overhead of computing the denoiser can be effectively reduced by
avoiding computing the denoiser at each of the iterations of PnP. We propose a Lazy-
Denoiser framework along with sketching, inspired by the ProxSkip algorithm [52] used
for convex optimization and federated learning [60]. We present our Lazy-PnP scheme
in Alg. 2, which allows us to execute the denoiser in only a fraction of iterations while
maintaining the same convergence rates and reconstruction accuracy in practice.

The Lazy-PnP scheme presented in Alg. 2 utilizes an auxiliary variable h through-
out the iterations for stabilization. This scheme is a stochastic approach that calls the
denoiser with a relatively small probability p (in our experiments we choose p = 20%
and p = 50%), with the denoising step written as

xi+1 = D(zi+1 −
η

p
hi),

otherwise the denoising step is skipped (xi+1 = zi+1). If the denoiser step is executed
in one iteration, then the auxiliary variable hi is also updated

hi+1 = hi +
p

η
(xi+1 − zi+1).
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Algorithm 2 —Lazy PnP

Initialization: x0 ∈ Rd, h0 ∈ Rd, probability p ∈ (0, 1] for calling the denoiser at
each iteration. For accelerating PnP-MS2G, one can replace its inner-loop with this
algorithm.
For i = 1 to K

Generate random subsampling mask Mi

Compute gradient estimate G := ▽vf(Mib,MiAv)
Compute: zi+1 = xi − η(G− hi),
With probability p execute: xi+1 = D(zi+1 − η

phi), otherwise xi+1 = zi+1

Compute: hi+1 = hi + p
η (xi+1 − zi+1)

Endfor
Output xi+1

Algorithm 3 —Lazy PnP-EQ (with Equivariant Denoiser)

Initialization: x0 ∈ Rd, h0 ∈ Rd, probability p ∈ (0, 1] for calling the denoiser at
each iteration. For accelerating PnP-MS2G, one can replace its inner-loop with this
algorithm.
For i = 1 to K

Generate random subsampling mask Mi and group action Tgi where gi ∼ G
Compute gradient estimate G := ▽vf(Mib,MiAv)
Compute: zi+1 = xi − η(G− hi),

With probability p execute: xi+1 = T−1
gi D(Tgi(zi+1− η

phi)), otherwise xi+1 = zi+1

Compute: hi+1 = hi + p
η (xi+1 − zi+1)

Endfor
Output xi+1

While performing the gradient descent step, the auxiliary variable h is included

zi+1 = xi − η(G− hi).

Since the variable hi keeps the average of implicit gradients of the denoiser, it can
successfully compensate for the fact that for most of the iterations the denoiser is
skipped, while keeping the algorithm numerically stable. Numerically, we observe that
we can easily skip 50% − 80% of the denoising steps while maintaining the same
convergence rates for gradient-based PnP algorithms.

Equivariant Lazy PnP

Recently, a simple way of increasing the performance and stability of PnP methods
has been proposed, namely equivariant PnP [53]. Suppose we denote unitary matrix
{Tg}g∈G as transforms for some group G, the equivariant denoiser can be expressed as:

DG(x) = T−1
g D(Tgx), g ∼ G (13)
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Typical choices of the transforms include rotations, translations, reflections, etc. This
scheme was, in fact, first found numerically in the work of Zhang et al. [61]. In the work
of Terris et al. [53], this approach is formally analyzed and studied, demonstrating
remarkable performance in stabilizing iterations of PnP algorithms with performance
gains. As this scheme is crucial for the application of deep denoiser in PnP schemes,
we also leverage this in our Lazy-PnP framework, leading to a new algorithm as a side
contribution.

In our Algorithm 2 and 3 we present Lazy-PnP schemes with stochastic gradients
only because of ease of reading. Note that the same technique can be easily merged
fully with the PnP-MS2G framework, we omit this to avoid redundant presentations.

3.3 Accelerating the Deep Unrolling Schemes via Operator
Sketching

In this section, we present our two schemes for accelerating deep-unrolling networks.

3.3.1 One side sketching: Subset approximation

In our new approach, we propose to replace the forward and adjoint operators in
the full-batch LPD network of [24], with only subsets of it. The proposed network
can be seen as an unrolled version of stochastic PDHG [6] (but with ordered subsets
and without variance reduction). We partition the forward and adjoint operators into
subsets m, and also the corresponding measurement data. In each layer, we use only
one of the subsets, in cycling order. Let M := [M0,M1,M2, ...,Mm−1] be the set of
subsampling operators, then the saddle-point problem (3) can be rewritten as:

[x⋆, y⋆] = min
x

max
y
{r(x) +

m−1∑
i=0

⟨MiAx, yi⟩ − f∗
bi(yi)}. (14)

Utilizing this finite-sum structure, our learned stochastic primal-dual (LSPD) network
can be described as1:

Learned Stochastic Primal-Dual (LSPD)

−Initialize x0 ∈ Rd y0 ∈ Rn/m

For k = 0, 1, 2, ...,K − 1
i = mod (k,m);
(or pick i from [0,m− 1] uniformly at random)
yk+1 = Dθk

d
(yk, σk, (MiA)xk,Mib);

xk+1 = Pθk
p
(xk, τk, (MiA)T yk+1);

In the scenarios where the forward operator dominates the computation in the
unrolling network, for the same number of layers, our LSPD network is approximately

1Alternatively, one may also consider an optional learned momentum acceleration by keeping the mem-
ory of the outputs of a number of previous layers: xk+1 = P

θkp
(Xk, τk, (MiA)T yk+1) where Xk =

[xk, xk−1, ..xk−M ], at the cost of additional computation and memory. For such case the input channel of
the subnets would be M + 1.
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Fig. 1: One simple example of the practical choices for the building blocks of one layer
of our LSPD network. Both dual and primal subnetworks are consist of 3 convolutional
layers. The dual subnet has 3 input channels concatenating [Mib,MiAxk, yk], while
the primal subnet has 2 input channels for [(MiA)T yk+1, xk]

m-time more efficient than the full-batch LPD network in terms of computational com-
plexity. The LSPD we presented here describes a framework of deep learning-based
methods depending on the parameterization of the primal and dual subnetworks and
how they are trained. In practice, the LPD and LSPD networks usually achieve best
performance when trained completely end-to-end. While being the most recommended
in practice, when trained end-to-end, it is almost impossible to provide any non-trivial
theoretical guarantees. An alternative approach is to restrict the subnets across layers
to be the same and train the subnetwork to perform denoising [21, 50, 62, 63], arti-
fact removal [64], or approximate projection to an image manifold [65], leading to a
plug-and-play [45–47] type approach with theoretical convergence guarantees.

Note that our LSPD network covers the SGD-Net of [66] as a special case, by
setting the dual network to be a simple subtraction and limiting the primal network
to only have one input channel taking in the stochastic gradient descent step with a
fixed primal scalar step size. We refer to this type of networks as the Learned SGD
(LSGD) in this paper:

LSGD− Initialize x0 ∈ Rd y0 ∈ Rn/m

For k = 0, 1, 2, ...,K − 1 Pick i from [0,m− 1] uniformly at random
yk+1 = MiAxk −Mib;
xk+1 = Pθk

p
(xk − τ · (MiA)T yk+1);

which is a stochastic variant of ISTA-Net [25]. Stochastic unrolling can potentially
give m fold reduction in the complexity per iteration of unrolling.

13



3.3.2 Double-sided Operator Sketching

Now we are ready to present our sketched LPD and sketched LSPD networks. Our
main idea is to speedily approximate the products Axk, AT yk+1:

Axk ≈ AskSθk
s
(xk), AT yk+1 ≈ Uθk

u
(AT

sk
yk+1) (15)

where Sθk
s
(·) : Rd → Rdsk (dsk < d) being the sketching/downsampling operator which

can be potentially trainable w.r.t parameters θks , while Ask ∈ Rn×dsk is the sketched
forward operator discretized on the reduced low-dimensional image space, and for the
dual step we have Uθk

u
: Rdsk → Rd the upsampling operator which can also be trained.

In practice, we found that it actually suffices for us to just use the most simple off-the-
shelf up/down-sampling operators in Pytorch, for example the bilinear interpolation,
to deliver excellent performance for the sketched unrolling networks. Our Sketched
LPD network is written as:

Sketched LPD− Initialize x0 ∈ Rd y0 ∈ Rn

For k = 0, 1, 2, ...,K − 1⌊
yk+1 = Dθk

d
(yk, σk, AskSθk

s
(xk), b);

xk+1 = Pθk
p
(xk, τk,Uθk

u
(AT

sk
yk+1));

Again, we can use the same approximation for stochastic gradient steps:

(MiA)xk ≈ (MiAsk)Sθk
s
(xk),

(MiA)T yk+1 ≈ Uθk
u
((MiAsk)T yk+1),

(16)

and hence we can write our Sketched LSPD (SkLSPD) network as:

SkLSPD(Option1)

−Initialize x0 ∈ Rd y0 ∈ Rn/m

For k = 0, 1, 2, ...,K − 1
i = mod (k,m);
(or pick i from [0,m− 1] uniformly at random)
yk+1 = Dθk

d
(yk, σk, (MiAsk)Sθk

s
(xk),Mib);

xk+1 = Pθk
p
(xk, τk,Uθk

u
((MiAsk)T yk+1));

or alternatively:

SkLSPD(Option2)

−Initialize x0 ∈ Rd y0 ∈ Rn/m

For k = 0, 1, 2, ...,K − 1
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
i = mod (k,m);
(or pick i from [0,m− 1] uniformly at random)
yk+1 = Dθk

d
(yk, σk, (MiAsk)Sθk

s
(xk),Mib);

xk+1 = Uθk
u
(Pθk

p
(Sθk

s
(xk), τk, (MiAsk)T yk+1));

3.3.3 Remark regarding varying “coarse-to-fine” sketch size for
SkLPD and SkLSPD

Numerically we suggest that we should use more aggressive sketch at the beginning for
efficiency, while conservative sketch or non-sketch at latter iterations for accuracy. One
plausible choice we found numerically pretty successful is: for the last few unrolling
layers of SkLPD and SkLSPD, we switch to usual LPD/LSPD (say if the number of
unrolling layers is 20, we can choose the last four unrolling layers to be unsketched,
that is, Ask = A for k > Kswitch), and we found numerically that the reconstruction
accuracy is best preserved if we implement this scheme.

3.3.4 Remark regarding the Option 2 for further improving
efficiency

The second option of our SkLPD and SkLSPD further accelerates the computation
compared to Option 1, making the primal subnet take the low-dimensional images
and gradients as input and then upscale. Noting that the usual choice for the up and
down sampler would simply be an off-the-shelf interpolation algorithm such as bilinear
or bicubic interpolation which can be very efficiently computed, in practice we found
the optional 2 often more favorable computationally if we use the coarse-to-fine sketch
size. Numerically, we found that SkLPD and SkLSPD with option 2 and coarse-to-fine
sketch size can be both trained faster and more efficient in testing due to the further
reduction in the computation of the primal-subnet, without loss on reconstruction
accuracy compared to option 1.

4 Theoretical Analysis

In this section, we provide a theoretical recovery analysis of our operator sketching
framework presented in the previous section. From this motivational analysis, our aim
is to demonstrate the reconstruction guarantee of PnP-MS2G and compare it with the
recovery guarantee of PnP-PGD/PnP-SGD derived under the same setting.

4.1 General Assumptions

We list here the assumptions we make in our analysis of our generic sketching
framework:

xk+1 = Pθ[xk − ηk · U((MkAs)
TMkAsS(xk)− (MkAs)

TMkb)] (17)
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A. 1. (Approximate projection) We assume that the denoiser is a ε-approximate
projection towards a manifoldM:

Pθ(x) = e(x) + PM(x), (18)

where:
PM(x) := arg min

z∈M
∥x− z∥22, (19)

and,
∥e(x)∥2 ≤ ε0, ∀x ∈ Rd. (20)

Here we model the denoiser to be a ε-projection towards a manifold. Note that in
practice the image manifold M typically forms a non-convex subset. We also make
the conditions on the image manifold as follows:
A. 2. (Interpolation)We assume the ground-truth image x† ∈ M, where M is a
closed set.

With this condition on the manifold, we further assume a restricted eigenvalue
condition (restricted strong convexity) which is necessary for robust recovery [67–70]:
A. 3. (Restricted Eigenvalue Condition) We define a descent cone C at point x†

as:
C :=

{
v ∈ Rd| v = a(x− x†),∀a ≥ 0, x ∈M

}
, (21)

and the restricted strong-convexity constant µc to be the largest positive constant
satisfies the following:

1

n
∥Av∥22 ≥ µc∥v∥22, ∀v ∈ C. (22)

and the restricted smoothness constant Lc to be the smallest positive constant satisfies:

1

q
∥MiAv∥22 ≤ Lc∥v∥22, ∀v ∈ C. ∀i ∈ [m] (23)

The restricted eigenvalue condition is standard and crucial for robust estimation
guarantee for linear inverse problems, i.e., for a linear inverse problem to be non-
degenerate, this type of condition must hold [68, 70, 71]. For example, in a sparse
recovery setting, when the measurement operator is a Gaussian map (compressed
sensing measurements) and x† is s-sparse, one can show that µc can be as large as
O(1− s log d

n ) [70]. In our setting, we would expect an even better µc, since the mainifold
of certain classes of real-world images should have much smaller covering numbers
compared to the sparse set.

4.2 Estimation error bounds of PnP-MS2G

With the assumptions presented in the previous subsection, here we provide the recov-
ery guarantee of PnP-MS2G on linear inverse problem where we have b = Ax†.
Denoting Ls to be the smallest constant satisfying:

1

q
∥MiAv∥22 ≤ Ls∥v∥22, ∀v ∈ Rd, i ∈ [m], (24)

we can have the following result:
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Theorem 1. (Upper bound) Assuming A.1-3, let η = 1
qLs

and b = Ax† + w, the
output of k-th stage of PnP-MS2G has the following guarantee for the estimation of
x†:

E∥xNk
− x†∥2 ≤ αNk∥xinit − x†∥2 +

1− αNk

1− α
(ε + δ), (25)

where xinit denotes the initial point of k-th stage of PnP-MS2G, α = κ(1− µc

Ls
), κ = 1

ifM is convex, κ = 2 ifM is non-convex, ε = ε0 + κηε1 + κηε2 and let ,

δ := 2ηE sup
v∈C∩Bd,i∈[m]

vTATMT
i Miw

∥MiAsk∥2∥MiAskD(xk)−MiAxk∥2 ≤ ε1,∀i, k
∥U(MiAsk)T yk − (MiA)T yk∥2 ≤ ε2,∀i, k

(26)

When the restricted eigenvalue µc is large enough such that α < 1, the PnP-
MS2G has a linear convergence in the estimation error, up to ε

1−α only depending on
the accuracy of the denoiser approximation in terms of projection. For many inverse
problems, for example CT/PET tomographic imaging, we have Ls ≈ Lf where Lf

being the largest eigenvalue of 1
nA

TA, and in these tasks the same convergence rate
as in Theorem 1 applies for both sketched algorithms and the full-batch counterpart.
This suggests the tremendous potential for computational savings of PnP-MS2G over
classical methods.

From the above bound, we can observe that the reconstruction accuracy of a certain
stage of PnP-MS2G depends on ε1 and ε2, which are directly dependent on the sketch
size in the image domain. If we eventually reduce the sketch size in the image domain,
then ε1, ε2 → 0 and we can have optimal estimation accuracy. Hence, this bound
demonstrates that our multistage strategy is necessary.

On the other hand, using a similar technique, we can provide a complementing
lower bound for the estimation error of PnP-MS2G:
Theorem 2. (Lower bound.) Under the same conditions of Theorem 1, if we further
assume the constraint setM is convex, for any γ > 0, ∃R(γ), if ∥xinit−x†∥2 ≤ R(γ),
the estimation error of the output of the k-th stage PnP-MS2G satisfies the lower
bound:

E∥xNk
− x†∥2 ≥ (1− γ)Nk(1− Lc

Ls
)Nk∥xinit − x†∥2 −

Ls

Lc
ε⋆ (27)

where ε⋆ = ε0 + κηε1 + κηε2.
Again, we present the proof of this result in the appendix.

5 Numerical Results

5.1 Numerical study for Sketched Plug-and-Play algorithms

We start by presenting the numerical results for applying our sketching framework
on accelerating PnP algorithms. We start our illustration with sparse-view CT recon-
struction tasks. Here we compare our PnP-MS2G with PnP-PGD and its stochastic
variant PnP-SGD [21]. For our PnP-MS2G we perform a 4× downscale in the first
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Fig. 2: Example of applying PnP-MS2G in X-ray CT reconstruction, comparing to
the PnP stochastic gradient descent (PnP-SGD) proposed by Sun et al [21]. Note that
each iteration of PnP-MS2G is more computationally efficient than PnP-SGD due
to the dimensionality reduction by operator sketching. Surprisingly, even in terms of
iteration-number the PnP-MS2G can provide better convergence rate comparing to
PnP-SGD.

50 iterations, then a 2× downscale afterwards, leading to significant improvement in
computational efficiency. Here we choose the famous BM3D [42, 72] denoiser. In the
numerical results we reported in the figures, we found that surprisingly even in terms
of the iteration counts, our scheme can achieve an improvement on the convergence
speed, let alone our PnP-MS2G is more efficient per iteration compared to PnP-PGD
and PnP-SGD.

In Figures 3,4, and 6 we present numerical results for our Lazy PnP scheme on
image superresolution and X-ray CT image reconstruction tasks. We first test our
Lazy-PnP scheme with equivariant denoiser presented in Algorithm 3, compared to
the standard equivariant PnP scheme [53] in image superresolution task. Here we seek
to perform 4× superresolution for low-resolution color images. The setting of this
experiment is the same as the experiment in [53], with The interpolation kernel h for
the task being the Guassian kernel of standard deviation 1:

b = (h ∗ x)↓4 + ϵ, (28)
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Fig. 3: (Lazy-PnP)Example of applying our Lazy-PnP-EQ for image superresolution
(4×). The denoiser network we choose here is DnCNN. Here we show the reconstructed
image at 2000-th iteration.

where ϵ is a Gaussian noise with standard deviation 0.05. The denoiser we choose is the
pre-trained DnCNN. The numerical results for superresolution are demonstrated in
Figures 3 and 4, where we can observe that for this denoiser dominant case, our Lazy-
PnP (EQ) with p = 0.5 consistently outperforms the equivariant PnP scheme, which
means we save 50% of the calculation on the denoiser, while the standard PnP-PGD
diverges.

In the X-ray CT experiment we presented in Figure 6, we implemented PnP-SGD
with or without the Lazy-Denoiser scheme. We can observe that our Lazy-PnP has
the same convergence rates compared to vanilla PnP-SGD, while it only requires the
computation of the denoiser on 20% of the iteration.
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Fig. 4: (Lazy-PnP)Example of applying our Lazy-PnP-EQ for image superresolution
(4×). The denoiser network we choose here is DnCNN. Here we show the reconstructed
image at 2000-th iteration.

5.2 Numerical experiments for sketched deep unrolling
networks

The most basic training approach for LSPD/SkLSPD is end-to-end supervised
training, where we consider fully paired training samples of measurement and “ground-
truth” – which is typically obtained via a reconstruction from high-accuracy and
abundant measurements. We take the initialization of LSPD/SkLSPD as a “filtered
back-projection” x0 = A†b. Let θ be the set of parameters θ := {θkp , θkd , τk, σk}K−1

k=0 ,
applying the LSPD/SkLSPD network on some measurement b can be written as Fθ(b),
the training objective can typically be written as:

θ⋆ ∈ arg min
θ

N∑
i=1

∥x†
i −Fθ(bi, x

0
i )∥22, (29)

where we denote by N the number of paired training examples.

20



Fig. 5: (Lazy-PnP)Example of applying our Lazy-PnP-EQ scheme for image super-
resolution (4×). The denoiser network we choose here is DnCNN. Here we show the
reconstructed image at 2000-th iteration.

In this subsection, we present numerical results of our proposed networks for low-
dose X-ray CT. In real world clinical practice, low-dose CT is widely used and highly
recommended, since intense exposures to X-ray could significantly increase the risk
of inducing cancers [73]. The low-dose CT takes a large number of low-energy X-ray
views, leading to huge volumes of noisy measurements. This makes reconstruction
schemes struggle to achieve efficient and accurate estimations. In our X-ray CT exper-
iments, we use the standard Mayo-Clinic dataset [74] that contains 10 patients’ 3D
CT scans. We used 2111 slices (of 9 patients) of 2D images sized 512×512 for training
and 118 slices of the remaining 1 patient for testing. We used the ODL toolbox [24]
to simulate fan beam projection data with 800 equally spaced angles of view (each
view includes 800 rays). The fan beam CT measurement is corrupted with Poisson

noise: b ∼ Poisson(I0e
−Ax†

), where we make the low-dose choice of I0 = 7 × 104. We
use the Beer-Lambert law to simulate the noisy projection data, and to linearize the
measurements we consider the log data.

21



0 100 200 300 400 500
10

15

20

25

30

# Iteration

PnP-SGD

lazyPnP-SGD

the ground truth

reconstruction by PnP-SGD reconstruction by lazyPnP-SGD

Fig. 6: (Lazy-PnP)Example of applying our Lazy-PnP with minibatch sketches in
X-ray CT reconstruction. We choose p = 1

5 for our Lazy-PnP-SGD, which means that
the number of calls on the denoiser for our Lazy-PnP-SGD is only 20% of the standard
PnP-SGD, while maintaining the same convergence rate.

In our LSPD and SkLSPD networks, we interleave-partition (according to the
angles) the forward/adjoint operators and data into m = 4 subsets. Our networks has
K = 12 layers2 hence correspond to 3 data-passes, which means it takes only 3 calls
in total on the forward and adjoint operators. We compare it with the learned primal-
dual (LPD) which has K = 12 layers, corresponding to 12 calls on the forward and
adjoint operator. We train all networks with 50 epochs of Adam optimizer [3] with
batch size 1, supervised.

For our SkLSPD we choose Option 2 presented in Section III-B, with the coarse-
to-fine sketch size. For all these networks, we choose the subnetworks Pθk and Dθk to
have 3 convolutional layers (with a skip connection between the first channel of input
and the output) and 32 channels, with kernel size 5. The starting point x0 is set to be
the standard filtered-backprojection for all the unrolling networks. We set all of them
to have 12 algorithmic layers (K = 12). For the upsamplers/downsamplers in our
Sketched LSPD, we simply choose the bilinear upsample and downsample functions
in Pytorch. When called, the up-sampler increases the input image 4 times larger

2each layer of LSPD includes a primal and a dual subnetwork with 3 convolutional layers with kernel size
5 × 5 and 32 channels, same for LPD.
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Fig. 7: Examples for Low-dose CT on the test set of Mayo dataset. We can observe
that our LSPD networks achieve the same reconstruction performance as the full-batch
LPD

Table 1: Low-dose CT testing results for LPD, LSPD and SkLSPD networks on Mayo
dataset, with supervised training

Method # calls PSNR SSIM GPU time (s) on

on A and AT 1 pass of
test set

FBP - 14.3242 0.0663

LPD (12 layers) 24 35.3177 0.9065 48.348
LSGD (24 layers) 12 31.5825 0.8528 33.089
LSPD (12 layers) 6 35.0577 0.9014 31.196
SkLSPD (12 layers) 4 34.9749 0.9028 23.996
SkLSPD (12 layers, 4 34.6389 0.8939 19.843
light weight on dual-step)

(from 256× 256 to 512× 512), while the down-sampler makes the input image 4 times
smaller (from 512 × 512 to 256 × 256). While the full forward operator A is defined
on the grid of 512× 512, the sketched operator As is defined on the grid of 256× 256,
therefore requiring only half of the computation in this setting. We use the coarse-to-
fine strategy for SkLSPD, where we sketch the first 8 layers but left the last 4 layers
unsketched. We also implement and test SkLSPD with a light-weight dual subnetwork
(corresponding to a proximal operator of a weighted ℓ2 loss with learnable weights;
see SkLSPD-LW in Section IV).

In addition, we also implement the Learned SGD [66] in our setting which can
be viewed as a simple special case of our LSPD network (see Section III-A) . Here
for LSGD we choose the same parameterization of primal sub-networks as our LSPD
(except for their original design, the LSGD sub-networks only take 1 input channel).
To make a fair comparison, since LSGD do not have dual subnetworks, we allow the
LSGD to have 24 layers, such that the total number of learnable parameters is similar
to our LSPD.
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Fig. 8: Example for intermediate layer outputs for Low-dose CT on the test
set of Mayo dataset. We can observe that LSPD/SkLSPD achieves competitive
reconstruction quality with LPD across intermediate layers.

We present the performance of LPD, LSPD, and SkLSPD in the test set in Table
1, and some illustrative examples in Figure 2 for a visual comparison. We also present
the results of the classical Filtered Backprojection (FBP) algorithm, which is widely
used in clinical practice. We can observe from the FBP baseline that due to the chal-
lenging extreme low-dose setting, the FBP reconstruction fails completely. This can
be partially addressed by U-Net postpocessing (FBPConvNet, [40]), whose parame-
ter size is one order of magnitude larger than our unrolling networks. Next, we turn
to the learned reconstruction results. From the numerical results, we found that our
LSPD and SkLSPD networks both achieve almost the same reconstruction accuracy
compared to the baseline of LPD in terms of PSNR (peak signal-to-noise ratio) and
SSIM (structural similarity index, [75]) measures, with only requiring a fraction of the
computation of forward and adjoint operators. In terms of run time on the GPU, our
acceleration can introduce a reduction of around 40% to 60% compared to the full
batch LPD.
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Table 2: Sparse-View CT testing results for LPD and SkLSPD networks on Mayo
dataset, with supervised training

Method # calls PSNR SSIM GPU time (s) on

on A and AT 1 pass of
test set

FBP - 22.0299 0.2713

LPD (12 layers) 24 36.9198 0.9129 28.018
SkLSPD (12 layers) 4 36.6359 0.9178 17.340

In Table II, we present additional results on another widely applied modality in
clinical practice, the sparse-view CT, where we take fewer measurements in normal
doses. Here we again use the ODL toolbox to simulate fan-beam projection data with
200 equally spaced angles of views (each view includes 1200 rays). The fan beam CT

measurement is corrupted with Poisson noise: b ∼ Poisson(I0e
−Ax†

), where we choose
the normal dose of I0 = 7×106. Unlike low-dose CT, the main challenge of sparse-view
CT is the ill-poseness of inverse problems, namely that the measurement operator is
highly underdetermined with a nontrivial null space.

6 Conclusion

In this work, we proposed a new paradigm for accelerating iterative data-driven recon-
struction (IDR) schemes such as plug-and-play methods and deep unrolling networks,
and we performed recovery analysis for such frameworks for the first time and per-
formed a thorough comparison to full-batch unrolling. Our generic framework is based
on leveraging the spirit of sketching in stochastic optimization and dimensionality
reduction into the design of IDR schemes for computational efficiency and memory
efficiency in solving large-scale imaging inverse problems. Moreover, we propose aux-
iliary denoiser sketching schemes to mitigate the computational overhead of advanced
denoisers for plug-and-play methods. We have provided a theoretical analysis of the
proposed framework for the estimation guarantees from the viewpoint of stochastic
optimization theory. Then we provide a numerical study of the proposed schemes
in the context of X-ray CT image reconstruction, demonstrating the effectiveness of
our acceleration framework for deep-unrolling networks. Although in this paper we
mostly applied our sketching framework for accelerating PnP and deep unrolling, we
need to emphasize here that this framework can be easily applied to accelerate newer
algorithmic schemes such as deep restoration prior [76] and deep equilibrium models
[77].
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A Proofs

A.1 Proof of Theorem 3.1

In this proof we utilize several projection identities from [70]. We list them here first
for completeness. The first one would be the cone-projection identity:

∥PC(x)∥2 = sup
v∈C∩Bd

vTx, (30)
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where Bd denotes the uni-ball in Rd. The second one is the shift projection identity
regarding that the Euclidean distance is preserved under translation:

PM(x + v)− x = PM−x(v). (31)

Now if 0 ∈ M− x, we can have the third projection identity which is an important
result from geometric functional analysis [70, Lemma 18]:

∥PD(x)∥2 ≤ κD∥PC(x)∥2, (32)

where:

κD =

{
1 if D is convex
2 if D is non-convex

(33)

where D is a closed set of potential non-convex included by the cone C. On the other
hand, utilizing a simplified result of [78] with partition minibatches, we have:

ES(∥ATMTMA(x− z)∥22)

≤ 2Ls(
q2

2n
∥Ax− b∥22 −

q2

2n
∥Az − b∥22 − q2⟨▽f(z), x− z⟩).

(34)

where ▽f(z) = 1
nA

T (Az − b). Then for the case of noisy measurements b = Ax† + w,
following similar procedure we can have:

ES(∥ATMTMA(x− z)∥22)

≤ 2Ls(
q2

2n
∥Ax− b∥22 −

q2

2n
∥Az − b∥22

−q2⟨ 1
n
AT (Az − b), x− z⟩)

≤ q2Ls

n
(
1

2
∥A(x− x†)− w∥22 − ∥w∥22 + ⟨w,A(x− x†)⟩)

=
q2Ls

n
∥A(x− x†)∥22

As shown in the theorem, we have assumed the approximation errors of the forward
and adjoint operator are bounded:

∥MiAsk∥2∥MiAskD(xk)−MiAxk∥2 ≤ ε1

∥U(MiAsk)T yk − (MiA)T yk∥2 ≤ ε2,∀i, k
(35)

Denoting:

yk := MiAskD(xk)−Mib,

then for k-th iteration of PnP-MS2G we have the following:

∥xk+1 − x†∥2
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= ∥Pθp(xk − τU((MiAsk)
T
yk)− x†∥2

≤ ∥PM(xk − τU((MiAsk)
T
yk)))− x†∥2

+∥e(xk − τU((MiAsk)
T
yk)))∥2

= ∥PM−x†(xk − x† − τU((MiAsk)
T
yk)))∥2 + ∥e(x̄k)∥2,

Then we can continue:

∥xk+1 − x†∥2
≤ κ∥PC(xk − x† − τU((MiAsk)T yk+1))∥2 + ∥e(x̄k)∥2
= κ sup

v∈C∩Bd

vT (xk − x† − τU((MiAsk)T yk+1) + ∥e(x̄k)∥2

≤ κ sup
v∈C∩Bd

vT (xk − x† − τATMT
i (MiAxk −Mib)) + ε

= κ sup
v∈C∩Bd

vT [xk − x†

−τATMT
i (MiAxk −Mi(Ax† + w))] + ε

≤ κ sup
v∈C∩Bd

vT [(I − τATMi
TMiA)(xk − x†)]

+2τ sup
v∈C∩Bd

vTATMT
i Miw + ε

≤ κ∥(I − τATMi
TMiA)(xk − x†)∥2

+2τ sup
v∈C∩Bd

vTATMT
i Miw + ε.

Denote x̄k := xk − τATMi
T yk, and take expectation, then we have:

E(∥xk+1 − x†∥2)

≤ κE(∥(I − τATMi
TMiA)(xk − x†)∥2)

+ε

+2τE sup
v∈C∩Bd

vTATMT
i Miw

≤ κ

√
E(∥(I − τATMi

TMiA)(xk − x†)∥22)

+ε

+2τE sup
v∈C∩Bd

vTATMT
i Miw

= κ{E(∥xk − x†∥22 − 2τ∥MiA(xk − x†)∥22
+τ2∥ATMi

TMiA(xk − x†)∥22)} 1
2

+ε + 2τE sup
v∈C∩Bd

vTATMT
i Miw
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Now denoting:
δ := 2τE sup

v∈C∩Bd,i∈[m]

vTATMT
i Miw (36)

and then:

E(∥xk+1 − x†∥2)

≤ κ{∥xk − x†∥22 − 2
τqvb
n
∥A(xk − x†)∥22

+
τ2q2Lsva

n
∥A(xk − x†)∥22}

1
2 + ε + δ

≤ κ{∥xk − x†∥22 − (2τqvb − 2Lsτ
2q2va) · 1

n
∥A(xk − x†)∥22}

1
2

+ε + δ

and then due to Assumption A.3 the Restricted Eigenvalue Condition we have:

E(∥xk+1 − x†∥2)

≤ κ{∥xk − x†∥22 − (2τqµcvb − 2Lsµcτ
2q2va)∥xk − x†∥22}

1
2

+ε + δ

= κ{1− 2µcτqvb + 2Lsµcτ
2q2va}

1
2 ∥xk − x†∥2

+ε + δ

≤ κ(1− µcvb
Lsva

)∥xk − x†∥2 + ε + δ

Then let α = κ(1− µcvb
Lsva

), by the tower rule we get:

E(∥xk − x†∥2) ≤ αk∥x0 − x†∥2 +
(1− αk)

1− α
(ε + δ).

A.2 Proof for Theorem 3.2

For proving the lower bound we will need to assume the constraint set M to be
convex and apply a know result provide in [79, Lemma F.1], that for a closed convex
set D := M− x† containing the origin, given any a, γ ∈ (0, 1] there exist a positive
constant C such that for any v satisfies ∥PC(v)∥2 ≥ a∥v∥2 and ∥v∥2 ≤ c, we can have:

∥PD(v)∥2
∥PC(v)∥2

≥ 1− γ. (37)

Since in A.2 we assume the ground truth x† ∈M we know that 0 ∈M−x† hence the
above claim is applicable. For k-th layer of simplified LSPD we have the following:

∥xk+1 − x†∥2
= ∥Pθp(xk − τU(AT

sk
Mi

T yk))− x†∥2
≥ ∥PM(xk − τU(AT

sk
Mi

T yk))− x†∥2

29



−∥e(xk − τU(AT
sk
Mi

T yk))∥2
= ∥PM−x†(xk − x† − τU(AT

sk
Mi

T yk))∥2
−∥e(xk − τU(AT

sk
Mi

T yk))∥2.

Now due to (37) we can continue:

∥xk+1 − x†∥2
≥ (1− γ)∥PC(xk − x† − τU(AT

sk
Mi

T yk))∥2 − ε0

= (1− γ) sup
v∈C∩Bd

vT (xk − x† − τU(AT
sk
Mi

T yk))− ε0

= (1− γ) sup
v∈C∩Bd

vT (xk − x† − τATMi
T yk)

−ε0 − τε2

= (1− γ) sup
v∈C∩Bd

vT (xk − x†

−τATMi
T (MiAskD(xk)−Mib))− ε0 − τε2

= (1− γ) sup
v∈C∩Bd

vT (xk − x†

−τATMi
T (MiAxk −Mib))− ε0 − τε2 − τε1

= (1− γ)∥PC [(I − τATMi
TMiA)(xk − x†)]∥2

−ε
= (1− γ) sup

v∈C∩Sd−1

vT (I − τATMi
TMiA)(xk − x†)− ε

≥ (1− γ)
xk − x†

∥xk − x†∥2
(I − τATMi

TMiA)(xk − x†)− ε

= (1− γ)∥xk − x†∥2
(

1− τ
∥MiA(xk − x†)∥2
∥xk − x†∥2

)
− ε

where we denote ε = ε0 + τε2 + τε1. On the other hand since:

∥(I − τATMi
TMiA)(xk − x†)∥2 ≤ (1 + τqLs)∥(xk − x†)∥2, (38)

and also note the second part of restricted eigenvalue condition we have:

∥MiA(xk − x†)∥2 ≤ qLc∥xk − x†∥2. (39)

Hence:

∥PC [(I − τATMi
TMiA)(xk − x†)]∥2

≥ ∥xk − x†∥2
(

1− τ
∥MiA(xk − x†)∥2
∥xk − x†∥2

)
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≥
(

1− qτLc

1 + qτLs

)
∥(I − τATMi

TMiA)(xk − x†)∥2

Combining these three with τ = 1
qLs

, we find that (37) is satisfied for the choice

v = (I − τATMi
TMiA)(xk − x†) and a = Ls−Lc

2Ls
, we can write:

∥xk+1 − x†∥2 ≥ (1− γ)(1− Lc

Ls
)∥xk − x†∥2 − ε, (40)

for all ∥xk − x†∥2 ≤ δ
2 and by unfolding the iterations to x0 we finish the proof.

An appendix contains supplementary information that is not an essential part of
the text itself but which may be helpful in providing a more comprehensive under-
standing of the research problem or it is information that is too cumbersome to be
included in the body of the paper.
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