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Abstract

In this paper, we investigate optimal state transfers for a generic class of piecewise-linear models widely used
to qualitatively describe gene-regulatory networks. Motivated by the main practical drawbacks of artificially
regulating gene expression through chemical inducers, the optimality of the transitions is defined as the
convex combination of the total time and the L1 cost of the control. Solutions are studied through a Hybrid
Pontryagin’s Maximum Principle approach, which allows to characterize the optimal trajectories and control
for the general formulation of the problem. Then, we focus on two practical examples of two-dimensional
regulatory networks: the bistable switch, for which the objective is to induce optimal transitions between its
two stable steady states, and the damped genetic oscillator, where the goal is to induce sustained oscillatory
behaviors. The resulting optimal control strategies can be expressed in state feedback form, involving both
bang arcs and inactive control periods, and are shown to slide over certain separatrices of the uncontrolled
system that characterize the boundaries of the admissibility set.

Keywords: Hybrid optimal control; mathematical biology; gene regulatory networks; piecewise linear
systems; hybrid systems

1. Introduction

Most of the underlying biological processes in living beings are governed by the numerous biochemical
interactions between genes occurring at the intracellular level. Even for the simplest natural phenomena,
these interactions can form complex regulatory networks exhibiting highly nonlinear behaviors. For decades,
the study of these networks, often referred to in the literature as Gene Regulatory Networks (GRNs), has
been crucial in understanding elemental cellular mechanisms such as signaling, differentiation, metabolism
and growth. In the context of systems biology, enormous efforts have been put into inferring GRNs from
experimental data [1], which has allowed the construction of large topological maps of the physiology of a wide
range of cell types. In recent years, the emergence of novel experimental techniques and high-throughput
computational methods has enabled large-scale studies focusing also on the transient regimes of GRNs [2].
In this context, where most of our knowledge in the subject is centered around the steady-state structure of
GRNs, dynamical studies start to regain relevance in the community for their capacity to decrypt, model,
predict and ultimately control gene networks [3].

A wide spectrum of quantitative and qualitative modeling paradigms have been used to describe and
study GRNs, ranging from logic models to stochastic differential equations [4]. These approaches are often
used in a complementary manner, as they can respond to different research questions, and thus provide
insight into different biological mechanisms. In the framework of systems theory, it is customary to model
the biochemical interactions between genes as quantitative nonlinear mathematical expressions of chemical
kinetics, and to describe the expression levels of genes and proteins as solutions of deterministic differential
equations of the form

ẋ = kh±(y)︸ ︷︷ ︸
Production

− dx︸︷︷︸
Degradation

,



where x(t) represents the time-varying concentration of a gene x. In this model, h(·) accounts for the
nonlinear expression rate of x in terms of the presence of the gene y, often modeled using Hill kinetics.
A catalyzing effect of y over x is modeled with an increasing function h+, while inhibition is represented
through a decreasing function h−. A particular feature of GRNs is that they operate in conditions in which
synthesis rates are almost always saturated [5] which, in a mathematical context, translates into the function
h± taking only two values: saturated or null. Moreover, and in spite of the simplicity of such models, the
nonlinearities can often obscure the study of a given phenomenon, even if they do not play a decisive role in
the behavior of the system. This motivated the development of the piecewise linear (PWL) framework [6],
a particular hybrid/nonlinear modeling paradigm in which the gene expression rates h± are approximated
through piecewise constant functions defined as

s−(x, θ) =

{
1 if x < θ,
0 if x > θ,

s+(x, θ) =

{
0 if x < θ,
1 if x > θ,

where s− models an inhibiting effect, s+ a catalyzing effect, and θ represents in both cases a threshold for
transcriptional repression or activation, respectively.

The PWL modeling framework has been instrumental in characterizing the qualitative behavior of numer-
ous naturally-evolved regulatory processes. For instance, it has been used to study the transitions between
two genetic states (normal vs. starvation) in the bacterium Bacillus subtilis [7]. For this, the dynamical
behavior of a GRN is often studied through its associated transition graph, which is a directed graph where
the nodes are domains (i.e. a set of qualitative states) and the edges correspond to the respective transcrip-
tional thresholds. This perspective has raised interesting questions for the control systems community, in
particular in how to modify these transition graphs in order to produce a given path in the set of regular
domains [8, 9]. Such theoretical challenge has been proven to be related to specific topological properties
of the uncontrolled interaction graph, together with the action of the control. Similarly, more recent works
have also studied how to synchronize networks of coupled GRNs [10, 11]. The aforementioned approaches
focus mostly on proposing feasible control laws, and so they do not consider the optimality of these control
strategies, which is an aspect that has received significantly less attention from the community. For instance,
the time needed to induce transfers between states can be a major constraint in certain biosynthetic devices
that involve multiple asynchronous mechanisms functioning at different timescales [12]. In this sense, time-
efficiency of state transfers in GRNs becomes essential for biotechnological applications, thus motivating an
optimal control perspective of these mathematical challenges [13, 14].

Optimality of control strategies can be defined in regard to numerous criteria, depending on the chosen
control scheme and objectives. In an experimental setting, gene networks can be externally regulated by
activating or inactivating gene expression through chemical inducibles. The most classical example is the
use of the diffusible molecule IPTG (isopropyl β-d-thiogalactoside) to induce protein expression in E. coli, a
method widely used, among others, to externally control the state of biosynthetic devices [15, 16]. IPTG acts
on the lac operon—which is a group of genes used by bacteria to metabolize lactose—by inhibiting the gene
lacI that blocks gene transcription in the absence of lactose (which consequently triggers the transcription of
the lac operon). The main drawback of modulating gene expression with this method is that such chemical
inducers are highly expensive [17] and produce toxic elements known to induce stress to cells [18]. In this
context, it is compulsory to limit the control action when designing efficient feedback strategies in GRNs,
which can be done either by imposing upper bounds onto the total control usage, or by considering it as an
additional operation cost.

This is the question addressed in this work, where we study optimal state transfers for a generic class of
PWL mathematical models of GRNs, in terms of the cost associated to the use of control and the duration
of the transition. For that, we consider a convex combination of the L1 norm of the control function and
the total transfer time. The mathematical originality of the approach lies in the integration of a hybrid
framework on the state with a non-smooth mixed L1 and time-OCP (Optimal Control Problem). On one
hand, the exploration of L1 cost functions has emerged as a significant research area [19, 20, 21] characterized
by the presence of inactivated arcs (i.e. arcs along which the cost is zero) in optimal synthesis, as a generic
feature of optimal control solutions [22]. Substantial efforts have also been directed towards understanding
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the optimality of singular arcs in this particular setting [19]. On the other hand, the optimal control of
hybrid systems has increasingly received attention in recent years, with comprehensive works addressing
optimality conditions for this particular framework [23, 24]. However, very few studies have applied these
results to practical problems from applied sciences, let alone mathematical and synthetic biology. Recent
contributions [25, 26] aim to clarify the application of the Hybrid Maximum Principle (HMP) across various
frameworks, striving to make it a readily usable tool for non-smooth control systems defined regionally. A
difficulty is that complex behaviors can occur at the interfaces where dynamic switches happen between
different regions. In this work, we mitigate the latter behaviors by employing a sequential-in-time HMP as
introduced in [27], effectively disregarding certain trajectory crossings at highly singular interfaces defined
by the thresholds of the gene network under consideration.

In addition to the results obtained for the general formulation, we investigate the problem of inducing
efficient state transitions in two different examples of GRNs, both widely studied in the field of systems
biology. The latter systems represent the smallest GRNs exhibiting bistability and oscillations, and can
be modeled though two-dimensional positive and negative feedback loops, respectively. The first case is a
bistable system inspired on the genetic toggle switch, a biosynthetic flip-flop device consisting of two genes
mutually repressing each other, for which the control objective is to induce a switch between states. The
genetic toggle switch was first implemented in the bacterium E. coli by exploiting the mutual repression
between the genes lacI and tetR, whose concentrations account for the state of the switch that can be
controlled by externally modulating their synthesis rates through the inducers IPTG and aTc [28]. This
device represents a milestone in biocomputing, for being the first implementation of a biosynthetic memory
unit capable of storing 1 bit of information in a living cell. The second example is a genetic damped
oscillator, for which the control objective is to efficiently transform the damped oscillations into sustained
ones. Genetic oscillators have been extensively used in the literature to qualitatively describe the dynamical
behavior of more complex intracellular phenomena [29], such as the mammalian circadian clock, or the
carbon starvation response in E. coli [30]. For each case, the biological objective can be represented through
a state transition control problem, for which we investigate the structure of the optimal solutions by applying
the developed theoretical framework and, in parallel, by exploiting the inherent dynamical features of each
individual system, and the reachability properties in terms of the control and the chosen terminal state. A
thorough investigation of the problems shows that optimal state transfers can be expressed as state feedback
laws that, when applied to the systems, yield piecewise-constant control functions involving both bang (i.e.
saturated) and inactive control periods. Optimal trajectories are shown to slide over certain surfaces of
the uncontrolled system (that we call separatrices), which are specific to the dynamics of each system, and
characterize the boundaries of the admissibility set. Moreover, we show how the interplay between time and
L1-optimality reveals the existence of bifurcations among the different possible control strategies, depending
on the weight assigned to each objective.

The paper is organized as follows: In Section 2, we define the class of systems of interest and the optimal
control problem, followed by the general results concerning the structure of the optimal synthesis, through
the use of an adaptation of the Hybrid Maximum Principle stated in Theorem 1. Then, in Section 3, we
focus on the two example applications, where the general theoretical results are refined to each particular
case. For each problem, an optimal feedback control law is derived, and the results are verified through
numerical simulations. Note that the theoretical results of Section 2 are independent of the interaction
graph of each system, and could be used for the understanding of more complex motifs.

2. General framework

In this section, we define a general mathematical model of an n-dimensional GRN. For i ∈ {1, 2} and
j ∈ {1, . . . , n}, let f j

i be given functions defined on {0, 1}n representing the (catalytic or inhibitory) influence
of other genes onto gene j, and define the sequences (θiq,j)q,j∈{1,...,n} of non-negative numbers such that for

given q, j ∈ {1, . . . , n}, the value θiq,j corresponds to the threshold for the influence of gene j on gene q.

Define for every x ∈ Rn, κi
q(x) =

(
s±(x1, θ

i
q,1), . . . , s

±(xn, θ
i
q,n)
)
, and consider the PWL dynamical model

denoted by
ẋ = F1(x) + u(t)F2(x)− Γx (1)
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where F1 and F2 are the vectors of (non-controlled and controlled, respectively) synthesis rates, defined as

Fi(x) =

f
i
1(κ

i
1(x))
...

f i
n(κ

i
n(x))

 ,

and u(t) ∈ [umin, umax] is the external control function. The state (x(t))t≥0 represents the concentrations
of each protein, while the matrix Γ is positive diagonal with pairwise distinct coefficients (γj)j∈{1,...,n}, and
for j ∈ {1, . . . , n}, y ∈ R, and for θ ∈ R, the function s−(·, θ) : R → R is such that

s−(y, θ) =

{
1 if y < θ,
0 if y > θ.

and s+(y, θ) = 1 − s−(y, θ). It is assumed that s±(y, θ) ∈ [0, 1] for y = θ. For a fixed j ∈ {1, . . . , n}, some
different thresholds may be involved in the dynamics for the same variable xj . Next, we assume that for
every q-th gene, either its production rate is completely controlled, or not controlled at all. Additionally, we
state some dynamical properties of the general system; we refer to Figure 1 for an example of such dynamical
behavior.

Assumption 1. f1
q (κ

1
q(x))× f2

q (κ
2
q(x)) = 0 for every q ∈ {1, . . . , n} and x ∈ Rn.

Since (x(t))t≥0 represents protein concentrations, we formulate the following assumption:

Assumption 2. For every constant input u(t) ≡ u ∈ [umin, umax], the quadrant (R+)
n is forward invariant

by the dynamics of Equation (1).

0 θ1
1, 1 θ1

1, 2 θ1
1, 3

x1

0

θ1
2, 1

θ1
2, 2

x 2

Figure 1: Streamplot of a bidimensional non-controlled (i.e. F2(x) = 0) sample system with multiple thresholds θ, illustrating
the PWL dynamics that can be obtained in such systems, and the resulting multistability patterns.

Definition 1. Define the regular domains as non-empty finite intersections over j, q ∈ {1, . . . , n} of domains
of the type

Bi,+
j,q = {x ∈ Rn | xj > θij,q},

or

Bi,−
j,q = {x ∈ Rn | xj < θij,q},

for i ∈ {1, 2}, in which the vector fields F1 and F2 are constant. Note that an open subset B of Rn is a

4



regular domain if and only if it can be written as a non-empty set under the form

B =
⋂

i∈{1,2}

⋂
j,q∈{1,...,n}

B
i,ϵi,j,q
j,q ,

where ϵi,j,q ∈ {+,−} for every i ∈ {1, 2} and j, q ∈ {1, . . . , n}.

Definition 2. Equation (1) restricted to a regular domain B is a linear dynamical system on Rn having an
asymptotically stable equilibrium ϕ, called focal point. If ϕ ∈ B, then ϕ is a steady state for Equation (1).

The control u which is scalar and real valued, is assumed to belong to the functional space L∞(R, [umin, umax]),
so that we can define the solutions of Equation (1) in Filippov sense. In a given admissible domain B, the
vector fields F1(x) and F2(x) are constant vectors of Rn.

2.1. Optimal control problem

We consider the problem of inducing a state transfer for system (1) under the general initial and terminal
conditions:

x(0) = x0 > 0, x(tf ) ∈ K ⊂ B,

where x0 belongs to a regular domain, and K is a subset of a regular domain B. For a fixed λ ∈ (0, 1], the
cost function to minimize is defined as

Jλ(u) = λ

∫ tf

0

|u(t)− 1| dt+ (1− λ)tf

among admissible trajectories of Equation (1), and tf ≥ 0 which is a free non-negative real number. In
order to solve this optimal control problem, one has to face two difficulties:

• The hybrid nature of the dynamics;

• The non-smoothness of the L1 Lagrangian cost.

The first point can be tackled by optimizing over B-admissible trajectories, as defined in the next
definition, while the second point can be solved by applying the Hybrid Pontryagin’s Principle from [27] to
an extended system, as described in Section 2.2.

Definition 3. Let ν ≥ 0, and a sequence B = (Bj)j∈{1,...,ν} of regular domains as defined in Definition 1.

• We say that a solution x(t) of Equation (1) is B-admissible if there exists a time T > 0, a control
u(·) ∈ L∞([0, tf ], [umin, umax]), and times t0 = 0 < t1 < · · · < tν such that x(t) ∈ Bj for every t ∈ ∆j,
where ∆j = (tj , tj+1), and define xj : ∆j → Rn as the continuous function which is the restriction of
x(·) to the time interval ∆j, and uj : ∆j → R as the L∞ function which is the restriction of u(·) to
∆j.

• Define the vector z ∈ Rd as

z = (t0, (t1, x
1(t0), x

1(t1)), . . . , (tν , x
ν(tν−1), x

ν(tν))),

where d = 1 + (2n + 1)ν, and parametrize the intersection wall between the closures B̄j and B̄j+1 as
the set of z ∈ Rd such that ϕj(z) = 0 and ηj(z) ≥ 0, for affine functions (ϕj , ηj) depending on z.

Example 1. In the simple two-dimensional case where all the synthesis rates are controlled, we have n = 2,
ν = 2, F1 ≡ 0, and

F2(x) =

(
f1(s

±(x1, θ1), s
±(x2, θ2))

f2(s
±(x1, θ1), s

±(x2, θ2)))

)
,
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with thresholds θ1, θ2 > 0. This defines the regular domains

B1 = {x ∈ R2 | xj < θj j ∈ {1, 2}},
B2 = {x ∈ R2 | x1 < θ1, x2 > θ2},

and so we can define B = (B1, B2)-admissible trajectories with the constraint functions

ϕ1(z) = x1
1(t1)− θ1,

ϕ2(z) = x1
1(t1)− x2

1(t1),

η1(z) = x1
2(t1)− θ2,

for z =
(
t0, (t1, x

1(t0), x
1(t1)), (t2, x

2(t1), x
2(t2))

)
∈ R11.

2.2. Adapted Hybrid Pontryagin’s Principle

Let ν ≥ 1, and a sequence B = (Bj)j∈{1,...,ν} of regular domains as defined in Definition 1, and associated

affine constraint functions (ϕj , ηj)j . In the notations of Definition 3, define, for every k ∈ {1, . . . , ν}, xk ∈ Bk,
uk ∈ [umin, umax] and pk ∈ Rn, the pseudo-Hamiltonian

Hk(xk, pk, p0, uk) =⟨pk,Fk(x
k, uk)⟩+ p0(λ|uk − 1|+ 1− λ),

where Fk is the restriction of the vector field F1(x) + uF2(x) − Γx for x ∈ Bk. For a given B-admissible

trajectory (x(t), u(t)), define, for every t ≥ 0, y(t) = λ
∫ t

0
|u(s) − 1| ds + (1 − λ)t, and define Zk(t) =

(xk(t), yk(t)), so that the extended system in the variable Zk(t) satisfies

Żk =

(
Fk(x

k, uk)
λ|uk − 1|+ (1− λ)

)
,

and minimizing Jλ is then equivalent to minimizing y(tf ). It is then possible to apply the temporally Hybrid
Pontryagin’s Maximum Principle (HMP) from [27, Theorem 4] (we can also refer to [31] for a comparison of
the different settings for Hybrid OCPs), for which the minimization is made among trajectories following a
fixed sequence of controlled vector fields, then restricting the minimization to B-admissible trajectories. We
obtain the following necessary optimality conditions for the System (1). Note that our framework excludes
sliding motions along the boundaries of regular domains.

Theorem 1. Let (x(t), u(t)) be a B-admissible trajectory which is optimal for the minimization of Jλ(u).
Then there exists

(α, β, p(·), p0),

where α = (α1, . . . , αm) ∈ Rm, β = (β1, . . . , βq) ∈ Rq, p = (p1, . . . , pν), all pk : ∆k → Rn for k ∈ {1, . . . , ν}
being Lipschitz functions, and a constant p0 ≤ 0 such that:

• (p0, α, β) ̸= 0;

• For every i ∈ {1, . . . ,m}, αi ≥ 0;

• For every i ∈ {1, . . . ,m}, αiϕi(z̃) = 0;

• For almost every t ∈ ∆k,

ẋk =
∂Hk

∂p
(xk, pk, p0, ũ),

ṗk = −∂Hk

∂xk
(xk, pk, p0, ũ), (E)

Hk(xk, pk, p0, ũ) = max
u∈[umin,umax]

Hk(xk, pk, p0, u) = 0. (V)
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Moreover, if we define the Lagrangian

L(z) = p0
(
λ

∫ tν

t0

|u− 1|dt+ (1− λ)(tν − t0)

)
+

m∑
j=1

αjϕj(z) +

q∑
j=1

βjηj(z),

then we have the following transversality and discontinuity conditions at times t = t0, . . . , tν :

• At the initial and final times t0 and tν , we have

p1(t0) =
∂L

∂x1(t0)
(z̃),

pν(tν) = − ∂L

∂xν(tν)
(z̃).

• At the crossing times (tk)k∈{1,...,ν−1}, we have, for every k ∈ {1, . . . , ν − 1},

pk(tk−1) =
∂L

∂xk(tk−1)
(z̃), (J)

pk(tk) = − ∂L

∂xk(tk)
(z̃).

Analogously, we say that an extremal (x(t), p(t), p0, u(t)) solution of HMP is B-admissible if its associated
solution (x(t), u(t)) is B-admissible.

Remark 1. In the continuous framework, a process (x(t), p(t), p0, u(t)) is said to be admissible if the
trajectory is bounded and satisfies the terminal constraints. In the framework here described, an additional
requirement is to comply with the B-admissibility condition, which allows the study of a space-stratified OCP
through its associated time-partitioned problem as done in this section (see e.g. [31] for more details).

2.2.1. Adjoint equation and some useful quantities

For x belonging to a given regular domain, u ∈ [umin, umax], p ∈ Rn and p0 ≤ 0, define the functions

ϕ−(x, p, p0) = ⟨F2(x), p⟩+ λp0,

ϕ+(x, p, p0) = ⟨F2(x), p⟩ − λp0,

that satisfy ϕ+ ≥ ϕ−. With this notation, the Hamiltonian Hk in each regular domain becomes

Hk(x, p, p0, u) =

{
⟨F1(x)− Γx, p⟩+ uϕ+(x, p, p0) + p0(1− 2λ) if u ≥ 1,
⟨F1(x)− Γx, p⟩+ uϕ−(x, p, p0) + p0 if u < 1.

Applying Theorem 1, we obtain that along an extremal (x(t), p(t), p0, u(t))t∈[0,tf ], the dynamics of the adjoint
state (E) is

ṗ(t) = Γp(t), (2)

for every t ∈ [0, tf ], and it follows that

(ϕ−)(m)(t) = (ϕ+)(m)(t) = ⟨F2(x(t)),Γ
mp(t)⟩,

for a.e. t ∈ [0, tf ], and m ≥ 1.

Definition 4. We say that a B-admissible extremal (x(t), p(t), p0, u(t)) is normal (respectively, abnormal)
if p0 ̸= 0 (respectively, p0 = 0).

In accordance with the definition given in [19], we give the following definition of singular arcs.
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Definition 5. We say that an arc (x(t), p(t), p0, u(t))t∈[t1,t2] of a B-admissible extremal (x(t), p(t), p0, u(t))t∈[0,tf ]

is singular if it satisfies
ϕ−(x(t), u(t), p(t), p0)ϕ+(x(t), u(t), p(t), p0) ≡ 0,

for a.e. t ∈ [t1, t2].

A particular property of the state transfer problem for systems under the form (1) will be shown in
Theorem 2, stating in particular that singular arcs cannot appear along normal trajectories.

2.3. General qualitative structure of optimal trajectories

Let (Bk)k∈{1,...,ν} be a sequence of regular domains, and for x ∈ Bk, let q = #Ξk, where Ξk = {j ∈
{1, . . . , n} | ⟨F2(x), ej⟩ ≠ 0}, and let Kk

2 ∈ Rq be the vector of non-zero components of F2(x). The following
result proves that every normal optimal trajectory is a concatenation of bang arcs (i.e. u(t) ∈ {umin, umax})
and inactivated arcs (i.e. u(t) ≡ 1).

Theorem 2. Along a normal extremal, the optimal control u(t) is non-singular. In particular, u(t) takes
values in the set {umin, 1, umax} for a.e. t ∈ [0, tf ].

Proof. In order to simplify the notations, we use (x(t), u(t)) to denote a given pair (xk(t), uk(t)) defined in a
regular domain, for t ∈ ∆k. Assume that u(t) > 1 (respectively, u(t) < 1) for t ∈ [t1, t2] ⊂ [0, tf ]. Applying
Theorem 1, the maximization condition provides that u ≡ umax (respectively, u ≡ umin) outside the set
ϕ−(x(t), u(t), p(t), p0) ≡ 0 (ϕ+(x(t), u(t), p(t), p0) ≡ 0, respectively). Without loss of generality, assume
that ϕ−(x(t), u(t), p(t), p0) ≡ 0 for a.e. t ∈ [t1, t2], i.e. ⟨F2(x(t)), p(t)⟩ + λp0 = 0 for every t ∈ [t1, t2]. By
successive differentiations w.r.t. t (see Section 2.2.1), as the adjoint equation in Equation (2) writes ṗ = Γp
and the vector field F2(x(t)) is constant for t ∈ ∆k, we obtain that ⟨F2(x(t)),Γ

mp(t)⟩ ≡ 0 for a.e. t ∈ [t1, t2],
for every m ≥ 1. Let K2 ∈ Rq be the vector of non-zero components of F2(x(t)) with q ≥ 1, and p̃ be
the restriction of the vector of components of p to those components. Let Γ̃ be the corresponding q × q
reordered positive diagonal matrix, built from Γ. We have ⟨K2, Γ̃

mp̃(t)⟩ = 0, for every m ∈ {1, . . . , q}, and
⟨K2, p̃(t)⟩ ± λp0 = 0. As the (γj)j are pairwise distinct, we have that the family of vectors (Γ̃K2, . . . , Γ̃

qK2)
spans Rq, and we can deduce p̃(t) ≡ 0, for every t ∈ [t1, t2]. Equation (E) then provides p̃(t) ≡ 0 for
t ∈ ∆k, and the second equality provides λp0 = 0, and hence p0 = 0, so that (x(t), u(t))t∈[0,tf ] is an
abnormal extremal, which is a contradiction. We can deduce that u(t) > 1 along a normal extremal for
[t1, t2] ⊂ [0, tf ] implies u(t) ≡ umax (respectively, u(t) < 1 for [t1, t2] ⊂ [0, tf ] implies u(t) ≡ umin), and the
result follows.

Remark 2. For the minimal-time problem (i.e., λ = 0), there are in general no inactivated arcs along
extremal trajectories excepted when they admit singular arcs which might coincide with inactivated arcs.

2.4. Bounds on the number of switches for normal trajectories

Assume in this section that λ ∈ (0, 1] and p0 ̸= 0, so that the conclusion of Theorem 2 holds.

Proposition 3. Let (x(t), p(t), p0, u(t)) be a normal extremal. Then, for given t2 > t1 ≥ 0, along an arc in
the subinterval [t1, t2], the optimal control is

u(t) =

 umax if ϕ−(x(t), p(t), p0) > 0,
umin if ϕ+(x(t), p(t), p0) < 0,
1 if ϕ+(x(t), p(t), p0) ≥ 0 and ϕ−(x(t), p(t), p0) ≤ 0.

Proof. According to the maximization condition of Theorem 1, the control u should maximize the Hamil-
tonian. If ϕ−(x(t), p(t), p0) > 0 for t ∈ [t1, t2], then the Hamiltonian Hk(x(t), p(t), p0, u) is maximized
with u(t) ≡ umax for a.e. t ∈ [t1, t2]. Analogously, if ϕ+(x(t), u(t), p(t), p0) < 0 for t ∈ [t1, t2], then
the Hamiltonian Hk(x(t), p(t), p0, umin) is maximized with u(t) ≡ umin for a.e. t ∈ [t1, t2]. Finally, if
u(t) ≡ umax for t ∈ [t1, t2] (respectively, u(t) ≡ umin), then ϕ−(x(t), u(t), p(t), p0) ≥ 0 (respectively,
ϕ+(x(t), u(t), p(t), p0) ≤ 0). Hence, arcs u ≡ 1 occur if and only if ϕ+(x(t), u(t), p(t), p0) ≥ 0 and
ϕ−(x(t), u(t), p(t), p0) ≤ 0.
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In particular, in normal extremals there cannot be a direct switch between umin and umax. We state the
following classical property, which can be deduced by induction on n ≥ 1 via a simple application of Rolle’s
Theorem.

Lemma 1. Let (aj)j∈{0,...,n} be real numbers and (λj)j∈{1,...,n} be pairwise distinct real numbers. Then the

function ϕn defined by ϕn(t) = a0 +
∑n

j=1 aje
λjt for t ∈ R has at most n zeros.

As a byproduct of Proposition 3 together with Lemma 1, we obtain the following result.

Proposition 4. Let B be a regular domain in the sense of Definition 1, and let (x(t), u(t), p(t), p0) be
an extremal with associated trajectory satsifying x(t) ∈ B for a.e. t ∈ [t1, t2]. Then the functions t 7→
ϕ−(x(t), u(t), p(t), p0) and t 7→ ϕ+(x(t), u(t), p(t), p0) vanish at most n times in the interval t ∈ [t1, t2].

Corollary 1. A normal optimal trajectory is made in each regular domains of:

• at most n switches between u(t) ≡ 1 and u(t) ≡ umin (independently of the order).

• at most n switches between u(t) ≡ 1 and u(t) ≡ umax (independently of the order).

Moreover, if constant solutions are not optimal, then there exists at least an inactivated arc u(t) ≡ 1. In
particular, there are at most 2n switches in each regular domain.

(a) Normal trajectory (b) Abnormal trajectory

t0 t1 t2 t3 t4
t

0

ϕ +

ϕ −

u≡1 u≡ umin u≡1 u≡ umax

t0 t1 t2 t3
t

0

ϕ

u≡ umin u≡ umax u≡ umin

Figure 2: Examples of functions ϕ±(t) along normal (i.e. p0 ̸= 0) and abnormal (i.e. p0 = 0) trajectories with no singular arcs.

In Figure 2, we illustrate an example of evolution of the functions ϕ± as functions of time along a
non-singular normal trajectory. The latter shows how, due to the continuity of such function in a regular
domain, the presence of an inactivated arc u ≡ 1 is required between two bang arcs.

2.5. Abnormal trajectories

Referring to Section 2.2.1, one can easily see that for abnormal trajectories admitting no singular arcs,
the optimal control only takes the values u ≡ umin or u ≡ umax depending on the sign of ϕ = ⟨F2(x), p⟩
along the trajectory. It follows that there are at most n− 1 switches between umin and umax in each regular
domain, excluding the possibility of having inactivated arcs u ≡ 1, as illustrated on Figure 2. As we shall see
in the next section, abnormal extremals can in this case be seen as limit cases of normal extremals when the
length of inactivated arcs tends to 0. This occurs because the endpoint at time tf > 0 lies on the boundary
of the accessibility set from the initial point x0 at time tf , which is a well-known geometric property of
abnormal extremals (see, e.g., [32]). While, for the general case, the necessary conditions obtained through
HMP do not give enough information about the admissibility of singular arcs along an abnormal extremal,
they can be ruled out for the examples studied in the following section.
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3. Applications

Previous works proved that simple two-dimensional systems are often capable of accounting for the main
dynamical features of much larger GRNs [33, 29]. The latter is due to the fact that most of the complex
regulatory mechanisms observed in nature can be described by two main asymptotic patterns: multistability
and oscillations. With this in mind, in this section, we focus on the two smallest GRNs motifs exhibiting
bistability and damped oscillations, that can be both described by two-dimensional PWL models. While
the biological objective is different in each case, both problems can be reduced to inducing efficient state
transitions in the control framework. For certain values of the design parameter λ, the application of the
HMP turns out to be informative enough to obtain explicit results concerning the optimal synthesis (i.e.
a feedback control law). Both mathematical models obey the non-controlled two-dimensional dynamics
defined in Filippov sense, {

ẋ1 = −γ1x1 + k1s
−(x2, θ2),

ẋ2 = −γ2x2 + k2s
±(x1, θ1),

where the positive constants (γj)j∈{1,2}, (kj)j∈{1,2} correspond, respectively, to the degradation and the
production rates of each variable, and s± determines whether the system is a positive or negative feedback
loop. The transcriptional thresholds delimit the regular domains

B00 =
{
(x1, x2) ∈ R2 | 0 < x1 < θ1, 0 < x2 < θ2

}
,

B01 =
{
(x1, x2) ∈ R2 | 0 < x1 < θ1, θ2 < x2 < k2

γ2

}
,

B10 =
{
(x1, x2) ∈ R2 | θ1 < x1 < k1

γ1
, 0 < x2 < θ2

}
,

B11 =
{
(x1, x2) ∈ R2 | θ1 < x1 < k1

γ1
, θ2 < x2 < k2

γ2

}
,

which are defined as open sets in accordance with the HMP approach. We will see that controls are in general
written as a concatenation of arcs characterized by a constant control. Thus, throughout this section, we
resort to the notation u1 − u2 − · · · − un to imply that there exists a sequence (tk)k of times such that
u(t) ≡ uk for a.e. t ∈ [tk, tk+1], for every k.

3.1. State transitions in a bistable switch

Consider two variables x1 and x2 which represent two genes mutually inhibiting each other. Then, the
individual dynamics is {

ẋ1 = −γ1x1 + k1s
−(x2, θ2),

ẋ2 = −γ2x2 + k2s
−(x1, θ1).

(3)

The domain K = [0, k1/γ1] × [0, k2/γ2] is forward invariant by the dynamics of Equation (3), so that we
consider only solutions evolving in K. Each regular domain Bij for i, j ∈ {0, 1} has a focal point

ϕij = (x̄i, x̄j)

corresponding to

x̄i =
ki
γi
s−(x̄j , θj),
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and system (9) has two locally asymptotically stable steady states

ϕ10 =

(
k1
γ1

, 0

)
∈ B̄10,

ϕ01 =

(
0,

k2
γ2

)
∈ B̄01,

and an unstable Filippov equilibrium point at (θ1, θ2). Figure 3 illustrates the dynamical behavior of this
non-controlled system. Following [9], we assume that both synthesis rates can be externally regulated, and

0 θ1 k1
γ1

x1

0

θ2

k2
γ2

x 2

B01 B11

B00 B10

ϕ10
ϕ01

Figure 3: Streamplot of the open-loop bistable system (3) with parameters k1 = k2 = 1, γ1 = 1.1, γ2 = 1.7, θ1 = 0.6 and
θ2 = 0.4.

so the controlled system, defined in Filippov sense, becomes{
ẋ1 = −γ1x1 + u(t)k1s

−(x2, θ2),
ẋ2 = −γ2x2 + u(t)k2s

−(x1, θ1),
(S)

where the control u(·) ∈ L∞([0, tf ], [umin, umax]), with 0 < umin < 1 ≤ umax. For a fixed value of u(t) ≡
u ∈ [umin, umax], the separatrix (Su) is defined as the stable manifold of the Filippov equilibrium (θ1, θ2)
for Equation (S) restricted to B00. In the coordinates (x1, x2) ∈ B00, for u ≥ 1, the separatrix (Su) can be
written as the curve of equation

x2 = α(x1, u) =
k2u

γ2
−
(
k2u

γ2
− θ2

)
k1u

γ1
− x1

k1u

γ1
− θ1


γ2
γ1

,

which corresponds to the set of points in B00 that belongs to the trajectory with constant u(t) ≡ u for all t
starting in x2 = 0 and reaching the point (θ1, θ2). Using the latter, we define the regions

(Su)
+ =

{
(x1, x2) ∈ R2 | 0 < x1 < θ1, α(x1, u) < x2 <

k2
γ2

}
,

(Su)
− =

{
(x1, x2) ∈ R2 | 0 < x2 < θ2, α(x1, u) > x2, x1 <

k1
γ1

}
,

such that the domain K is divided into

K = (Su)+ ∪ (Su)− ∪B11,
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where (Su)+ and (Su)− are forward invariant sets when Equation (S) is driven by any constant control
u(t) ≡ u for every t ≥ 0. Figure 4 illustrates the role of these curves on the dynamic behavior of the system.

(a) Streamplot for u ≡ 1 (b) Streamplot for u ≡ umax

0 θ1
x1

0

θ2

x 2

(S1)
(Sumax)

0 θ1
x1

0

θ2

(S1)
(Sumax)

Figure 4: Separatrix with parameters k1 = k2 = 1, γ1 = 0.25, γ2 = 0.3, θ1 = 4 and θ2 = 3, and umax = 1.7. For a fixed control
u, if the state is in (Su)+ (respectively, (Su)−), then the state converges to ϕ01 (respectively, ϕ10).

In boolean logic, the bistable switch is characterized by two possible states: x ∈ B01 or x ∈ B10, which
are the regions of the state space associated to the stable steady states of the open-loop PWL dynamical
system. The objective in this section is to induce transitions between these two regular domains. In
particular, and without lose of generality, we focus on a transition from region B10 to B01, as the inverse
problem is essentially equivalent due to the symmetry of the system. For that, we fix the sequence of regular
domains B = (B10, B00, B01), and restrict the optimal control problem to B-admissible trajectories, in the
sense of Definition 3. Thus, we consider the boundary conditions

x(0) = x0 ∈ B10, x2(tf ) = xf
2 ∈

(
θ2,

k2
γ2

)
,

where x1(tf ) is not fixed since the production of gene x1 is not controlled in B01. For a given λ ∈ (0, 1], our
aim is to minimize Jλ(u), as defined in Section 2.1. For feasibility of the control task (see [14]), assume the
following.

Assumption 3. The parameters (γj)j and (kj)j satisfy

θj <
kj
γj

, j ∈ {1, 2}; θ2
θ1

>
k2
k1

γ1
γ2

;
θ2
θ1

<
k2
k1

.

We start by recalling the following result for minimal time state transitions.

Proposition 5 (Theorem 2 [14]). The minimal time strategy (i.e. λ = 0) is a feedback control law given by

u(x) =

{
umin if x ∈ (Sumax

)−,
umax if x ∈ (Sumax

)+.
(4)

Note that, for initial conditions in (Sumax), the latter control law yields optimal control functions with
structure umin − umax, as shown in the example of Figure 5. Naturally, since the term |u − 1| related to
control usage is not present in the cost function, no inactivated arcs are optimal. Using the simple structure
of the Hamiltonian, one obtains the following result, which states that there is no singular arc along both
normal (which is a direct consequence of Theorem 2) and abnormal trajectories.
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(a) Trajectory (x1, x2) (b) Optimal control u(t)

θ1
x1

0

θ2

xf2

x 2

(Sumax)
(S1)

0 t00t00 t01
t

umin

1

umax λ=0

Figure 5: Minimal-time trajectory with parameters k1 = k2 = 1, γ1 = 1.4, γ2 = 1.6, θ1 = 0.6 and θ2 = 0.4. The streamplot
corresponds to the closed-loop control system resulting from the optimal control law (4).

Proposition 6. No optimal trajectory (x(t), u(t)) can admit a singular arc. In particular, u(t) ∈ {umin, 1, umax}
for a.e. t ∈ [0, tf ].

Proof. In order to apply Theorem 1, given the choice B = {B10, B00, B01}, we set ν = 3, and we define the
vector fields, for x = (x1, x2) ∈ R2, u ∈ [umin, umax], by

f1(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2

)
, f2(x1, x2, u) =

(
−γ1x1 + uk1
−γ2x2 + uk2

)
, f3(x1, x2, u) =

(
−γ1x1

−γ2x2 + uk2

)
.

The times where changes of regular domains occur for the dynamics are denoted by t0 = 0 < t1 < t2,
and the final time is t3 = tf . We introduce the following functions (ϕj)j∈{1,...,10}, which will guarantee the
B-admissibility of the trajectories x(t), which are solutions of Equation (S). We define

z = (t0, (t1, x
1(t0), x

1(t1)), (t2, x
2(t1), x

2(t2)), (tf , x
3(t2), x

3(tf ))).

In order to guarantee the B-admissibility and the continuity of the trajectory (x(t))t∈[0,tf ] at t = t1, t2, we
define the functions 

ϕ1(z) = t0,

ϕ2(z) = x1
1(t0)− x0

1,

ϕ3(z) = x1
2(t0)− x0

2,

ϕ4(z) = x1
1(t1)− θ1,

ϕ5(z) = x2
1(t1)− θ1,

ϕ6(z) = x1
2(t1)− x2

2(t1),

ϕ7(z) = x2
2(t2)− θ2,

ϕ8(z) = x3
2(t2)− θ2,

ϕ9(z) = x2
1(t2)− x3

1(t2),

ϕ10(z) = x3
2(tf )− xf

2 .

We can then define, for α = (α1, . . . , α10) ∈ R10, the Lagrangian

L(z) = p0
(
λ

∫ tν

t0

|u− 1|dt+ (1− λ)(tν − t0)

)
+

10∑
j=1

αjϕj(z).
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Applying Theorem 1 in this setting, Corollary 1 implies that the existence of a singular arc in a regular
domain among B10, B00, B01 implies p0 = 0, i.e. the arc lies on an abnormal trajectory (x(t), u(t))t∈[0,tf ].
Moreover, we have the following transversality and discontinuity conditions at times t0 = 0, t1, t2 and tf :

α1 = 0,

p11(0) = α2,

p12(0) = α3,

p11(t1) = −α4,

p21(t1) = α5,

p12(t1) = p22(t1) = α6,

p22(t2) = −α7,

p21(t2) = p31(t2) = α9,

p32(t2) = −α8,

p31(tf ) = 0,

p32(tf ) = α10.

(TD)

Assuming p0 = 0, for k ∈ {1, 2, 3}, the Hamiltonian Hk defined in Theorem 1 can be written as Hk =
H0 + ukHk

1 , with uk ∈ [umin, umax] where, for every xk = (xk
1 , x

k
2) ∈ R2 and pk = (pk1 , p

k
2),

H0(x
k, pk, p0) = −γ1x

k
1p

k
1 − γ2x

k
2p

k
2 ,

Hk
1(x

k, pk) = ξk1k1p
k
1 + ξk2k2p

k
2 ,

with ξ11 = 1, ξ21 = 0, ξ12 = 1, and ξ22 = 1, ξ31 = 0, and ξ32 = 1. In this setting, the adjoint State Equation (E)
writes {

ṗk1 = γ1p
k
1 ,

ṗk2 = γ2p
k
2 ,

(AD)

which is independent of k ∈ {1, 2}. For k ∈ {1, 2, 3}, singular arcs occur when the variables (xk(t), pk(t), p0, uk(t))
are extremal and satisfy Hk

1(x
k(t), λk(t)) = 0, for every t ∈ [T1, T2], where 0 ≤ T1 < T2 ≤ tf . Along such

trajectories, the vanishing condition of the k-th Hamiltonian Hk becomes

−γ1x
k
1(t)p

k
1(t)− γ2x

k
2(t)p

k
2(t) = 0, (V)

for every t ∈ [T1, T2]. Assuming that Hk
1(x

k(t), pk(t)) = 0 for t ∈ [tk, tk+1] for some given k ∈ {1, 2, 3},
one can easily check that the vanishing condition on the Hamiltonian (V) together with discontinuity con-
ditions (TD) imply that (x(t), u(t))t∈[0,tf ] is singular for every t ∈ [0, tf ], so that we obtain αj = 0 for every
j ∈ {1, . . . , 10}. Hence the non-triviality condition of Theorem 1 is violated, and the result follows.

In the following theorem, we describe the possible structures of the optimal control for the general case.

Theorem 7. Along normal extremals, the optimal control is a feedback law

u(x) =

 umin if x ∈ (S1)
−,

umax if x ∈ B01 and x2 ≥ xs
2,

1 otherwise,
(5)

with

xs
2(λ) =

k2
γ2

2λ− 1

λ
(6)

14



For abnormal extremals, the optimal control corresponds to the feedback law (4).

Proof. We start by proving the result for normal extremals (p0 ̸= 0), and, in accordance with the notations
used in the proof of Proposition 6, we can define (x(t))t∈[0,tf ] (respectively, the adjoint state (p(t))t∈[0,tf ])

as the concatenation of (xk(t))t∈[tk−1,tk] for k ∈ {1, 2, 3} (respectively, (pk(t))t∈[tk−1,tk] for k ∈ {1, 2, 3}). In
B01 and B10, one has at most one switch. The latter can be seen by the fact that the switching functions
in B01 are

ϕ−(x, p, p0) = k2p2 + λp0, (7)

ϕ+(x, p, p0) = k2p2 − λp0

and in B10,

ϕ−(x, p, p0) = k1p1 + λp0,

ϕ+(x, p, p0) = k1p1 − λp0,

which can vanish at most once. As the feasibility of the trajectories implies that the control strategies start
by u ≡ umin in B10 and end by u ≡ 1 or u ≡ umax in B01, we have that u ≡ umin in B10. Note that,
since x0

1 < k1

γ1
, we cannot have 1 − umin, as this would imply that during the 1 arc, the x1-component of

the trajectory is non-decreasing. Then, the length of the umin arc (hence the cost Jλ(u)) would have to be
larger. Moreover, we obtain a control structure u ≡ 1− umax, u ≡ 1 or u ≡ umax in B01. The order of the
arcs u ≡ 1− umax in B01 is guaranteed by the fact that if there is a umax arc in B01, then p2 is positive in
B01, and so the function ϕ− is increasing in B01. Now, suppose there is a switch in B01 between the two
arcs u ≡ 1 and u ≡ umax at time ts. Then, we have ϕ−(ts) = 0, which implies that p2(ts) = λ/k2. Using
the fact that x1(tf ) is free, we have that p1(tf ) = 0, and so p1(t) = 0 for a.e. t such that x(t) ∈ B01. The
Hamiltonian is

H(x(t), p(t), p0, u(t)) = ẋ1(t)p1(t) + ẋ2(t)p2(t) + p0λ|1− u(t)|+ p0(1− λ) = 0.

Replacing the latter conditions, as well as u(t) ≥ 1 and p0 = −1, in the Hamiltonian evaluated at time t = ts
yields (6), where xs

2 = x2(ts). Corollary 1 applied with n = 2 implies that there are three possibilities in
B00: u ≡ umin − 1− umax − 1, u ≡ umin − 1− umax, or u ≡ umin − 1. The structure can be further explored
by using the transversality conditions: using the fact that x1(tf ) is free, we have that p1(tf ) = 0, and so
p1(t) = 0 for a.e. t such that x(t) ∈ B10 and the same holds in B00, due to the continuity of the p1 across
these regions imposed in (TD). Thus, the switching functions in B00 also have the form (7). Since we have
u ≡ umin in (S1)

−, we obtain from Equation (AD) that p2(t) < 0 for a.e. t such that x(t) ∈ B00 and so
no umax arcs are allowed in B00. Given that a unique u ≡ umin is not admissible as the state never reaches
x2 = θ2, then a switch to u ≡ 1 is necessary. Now, consider a trajectory (x(t))t∈[ts,tf ], where ts ≥ 0 is such
that x(ts) ∈ (S1), with control u(t) ≡ umin for t ∈ [ts, t

⋆], then u(t) ≡ 1 for t > t⋆, where the switching time
between arcs is produced at time t = t⋆ ≥ ts. Let t

⋆ 7→ T (t⋆) be the function associating to t⋆ ≥ ts the time
at which we have x2(T (t

⋆)) = θ2 with the latter control strategy. By computing the cost of such trajectory,
we have

Jλ(u) = λ(1− umin)(t
⋆ − ts) + (1− λ)(T (t⋆)− ts).

Using that the function T is increasing w.r.t. t⋆ (as ẋ2|u=umin
< ẋ2|u=1), we prove that Jλ(u) is increasing

w.r.t. t⋆, and so the optimal switching time is t∗ = ts, which occurs exactly when the state (x(t))t∈[0,tf ]

reaches the separatrix (S1).
Along abnormal extremals, i.e. p0 = 0 as described in Section 2.5, there is at most one switch between

umin and umax in B00, while there is no switch between umin and umax in B01 and B10 since we have
ϕ(x, p, p0) = k2p2 in B01 and ϕ(x, p, p0) = k1p1 in B01. By a similar computation of the cost Jλ(u) to the
one previously made for normal trajectories, it is possible to prove that the optimal switch occurs when the
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state reaches (Sumax). The feasibility of control strategies then proves the claimed structure.

(a) Abnormal feedback control u(t) (b) Normal feedback control u(t)

0 θ1
x1

0

θ2

x 2

(S
1)

(S u
ma

x)

0 θ1
x1

0

θ2
xs2

x 2

(S
1)

(S u
ma

x
)

u≡ umax
u≡ umin
u≡1

Figure 6: Optimal feedback control laws with parameters k1 = k2 = 1, γ1 = 1.4, γ2 = 1.6, θ1 = 0.6 and θ2 = 0.4. The colored
regions indicate the value of the control to apply, and the streamplots illustrate the resulting closed-loop vector fields.

Figure 6 illustrates both the abnormal and the normal feedback control laws in the x1x2-plane. In
particular, we can see that for the ”minimum fuel” state transitions given by λ = 1, there is no switch to
the umax arc in B01, since xs

2(0) = max(x2) = k2/γ2. This extreme case can be described by:

Corollary 2. The optimal control for the minimum fuel problem (i.e., λ = 1) is a feedback law of the form

u(x) =

{
umin if x ∈ (S1)

−,
1 if x ∈ (S1)

+.
(8)

Figure 7 shows the optimal trajectories associated to four different values of λ, illustrating the different
behaviors that can be obtained depending on the trade-off control usage/transition time. We conclude the
study of the bistable switch by a description of these feedback control strategies, and a numerical analysis
of the cost function.

(a) Trajectory (x1, x2) (b) Optimal control u(t)

θ1
x1

0

θ2

xs2(0.8)
xf2

x 2

(Sumax)
(S1)

0 t1
f     t2

f t3
f t4

f

t

umin

1

umax

λ= 0
λ= 0.5
λ= 0.8
λ= 1

Figure 7: Optimal trajectories for four different choices of λ representing all possible control structures. Parameters values are
k1 = k2 = 1, γ1 = 1.4, γ2 = 1.6, θ1 = 0.6 and θ2 = 0.4. The control bounds are umin = 0.5 and umax = 1.5.
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Remark 3 (Parametric bifurcations w.r.t. the trade-off parameter λ). As represented in Figure 8, we
identify four different optimal feedback regimes depending on the value of λ ∈ (0, 1]:

A Abnormal strategy (4),

B Normal strategy (5), with u ≡ umax in x ∈ B01,

C Normal strategy (5), with xs
2 ∈

(
θ2,

k2

γ2

)
,

D Normal strategy (8).

The associated subintervals of λ are delimited by the parameters λa, λb, λc, also illustrated in Figure 8.
The last two parameters can be easily computed from (6), while λa requires an explicit computation and
comparison of the costs associated to λ = 0 and λ = λa.

0 λa λb λc 1
λ

0.0

0.1

0.2

0.3

0.4

Co
st

 o
f c

on
tro

l (∫
t f 0
|u

−
1|
dt

) A B C D

0.0

0.5

1.0

1.5

Ti
m

e 
t

u
ts

tf

Figure 8: Plot of the cost of control (in grey), the final time (in orange), and the optimal switching time ts (in blue) as functions
of λ corresponding to the different optimal control strategies A, B, C and D described in Remark 3. The switching time ts
corresponds to the time t at which x2(t) = xs

2(λ). Parameters values are k1 = k2 = 1, γ1 = 1.4, γ2 = 1.6, θ1 = 0.6 and
θ2 = 0.4. The control bounds are umin = 0.5 and umax = 1.5.

As a final remark, we can observe that every control switch along optimal trajectories occurs over one
of the two separatrices. While the latter becomes useful in expressing the regulatory action as a feedback
control, it is clearly a weak spot in terms of robustness. Indeed, if the switch is performed ϵ time before
reaching the separatrix, the state returns to the initial regular domain, and the switch is not achieved.
This phenomenon reveals another trade-off between optimality and robustness, which becomes critical in
experimental settings under the presence of measurement noise inducing state uncertainty. While a thorough
study of the problem is pertinent, as a preliminary solution, the latter can be compensated by delaying the
control switch ϵ time after the separatrix is reached.

3.2. Sustained behavior in a damped genetic oscillator

The simplest GRN involving oscillatory behaviors can be modeled through two variables x1 and x2 that
have opposite effects on each other: x1 catalyzes the production of x2, that in turn inhibits the production
of x1. Following the literature on the control of negative genetic feedback loops [34, 35], we suppose that
the system can be externally controlled by a chemical inducer that targets only one of the genes. Thus, we
obtain the controlled PWL dynamical system{

ẋ1 = −γ1x1 + u(t)k1s
−(x2, θ2),

ẋ2 = −γ2x2 + k2s
+(x1, θ1).

(9)

The asymptotic behavior of the latter system has been extensively studied in the literature. In particular,
in the open-loop case, it is a well known fact that constant control inputs cannot yield periodic trajectories,
as they produce damped oscillatory behaviors towards its unique equilibrium:
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Lemma 2. Under constant control functions u ≡ u∗, the state converges to the Filippov equilibrium point
(θ1, θ2) when t → ∞.

Proof. The proof of this result can be found in [36, Theorem 2], where it is shown that for any constant
control u ≡ u⋆ > 0, any trajectory converges asymptotically to (θ1, θ2).

An example of this asymptotic behavior is shown in Figure 9a. This situation triggers a natural question:
how can we use the external control to induce periodic trajectories? In this context, our objective is to obtain
a cost-effective regulation law capable of transforming the non-controlled damped oscillations into sustained
ones, while minimizing the cost Jλ(u). To that end, we say an oscillation is sustained if, on each cycle, it
passes by a given point in R2 which we define as the cycle point (xc

1, θ2) ∈ B10. Since the dynamics of (9) is
not controlled in B01 nor in B11, it suffices to minimize Jλ(u) among B = (B00, B10)-admissible trajectories.
Thus, we will first focus on the more general problem of reaching the cycle point from any initial condition
in B00, by fixing

x(0) = x0 ∈ B00, x(tf ) = (xc
1, θ2)

for a free final time tf . Once the general problem is grasped, we can tackle the more particular case of
staying within the cycle, given by the more restrictive initial condition

x(0) = (g(xc
1), θ2),

where g is the function defined as

g(x) = x

 θ2

θ2 +
k2

γ2

[(
x
θ1

) γ2
γ1 − 1

]


γ1
γ2

,

for x ∈ [θ1, k1/γ1]. For a given x, the value g(x) corresponds to the x1-coordinate of the point in the set
{x ∈ R2 | x2 = θ2, x1 ≤ θ1} reached by the trajectory starting in the cycle point, as illustrated in Figure 9b.
The computation of the function g is described in Appendix A. Similarly to what has been obtained in

(a) Damped oscillation (b) Link between xc
1 and g(xc

1)

0 θ1 xc1
x1

0

θ2x 2

0 g(xc1) θ1 xc1
x1

0

θ2x 2

Figure 9: Open-loop behavior of system (9) (i.e. u(t) ≡ 1) converging asymptotically to (θ1, θ2). The parameters are k1 = 2,
k2 = 4, γ1 = 0.25, γ2 = 0.3, θ1 = 4 and θ2 = 3.

Proposition 6 for the bistable switch case, one has the following result concerning the absence of singular
arcs:
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Proposition 8. An optimal trajectory (x(t), u(t)) cannot admit singular arcs.

The proof, which follows exactly the same lines as the proof of Proposition 6, is based on a direct
application of Theorem 1, with the choice B = {B00, B10} and the controlled vector fields defined for
x = (x1, x2) ∈ R2, u ∈ [umin, umax], by

f1(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2

)
, f2(x1, x2, u) =

(
−γ1x1 + uk1
−γ2x2 + k2

)
.

In this setting, for k ∈ {1, 2}, the adjoint system is

ṗk1 = γ1p
k
1 , (AD1)

ṗk2 = γ2p
k
2 ,

and along an extremal, the maximized Hamiltonian H satisfies

H(x(t), p(t), p0, u(t)) = ẋ1(t)p1(t) + ẋ2(t)p2(t) + p0λ|1− u(t)|+ p0(1− λ) = 0, (10)

for a.e. t ∈ [0, tf ].
The following result on the structure of the optimal control can be obtained by direct application of the

general theoretical result.

Theorem 9. Along normal extremals, an optimal control in a single regular domain B00 or B10 can be

• A single arc, which can be either a bang (u ≡ umin or u ≡ umax) or an inactivated (u ≡ 1) arc,

• A concatenation of two arcs: a 1 arc followed by a bang arc (u ≡ umin or u ≡ umax).

For abnormal extremals, the optimal control can only be of the form umin − umax and umax − umin.

Proof. The proof simply holds from the fact that the switching functions in both regular domains

ϕ−(x, p, p0) = k1p1 + λp0,

ϕ+(x, p, p0) = k1p1 − λp0,

are monotone increasing or decreasing from the adjoint Equation (AD1) (depending on the sign of p1), and
so they can vanish at most once. Thus, depending on the value of p1, they can yield either a single bang
arc or a switch from a 1 arc to a bang arc. In order to prove the last claim, assume that p0 = 0. Then,
using the absence of singular arcs claimed by Proposition 8 it is easy to see that no switch may occur in a
single regular domain, hence the control is equal to umin or umax in B00 and B10. Let us analyze all possible
cases of signs by looking at (10) with p0 = 0: if p2(t) > 0 for a.e. t ∈ [0, tf ], then p1(t) < 0 for a.e. t such
that x(t) ∈ B10, and p1(t) > 0 for a.e. t such that x(t) ∈ B00, and so the control structure is umax − umin.
Analogously, if p2(t) < 0 for a.e. t ∈ [0, tf ], then p1(t) > 0 for a.e. t such that x(t) ∈ B10, and p1(t) < 0 for
a.e. t such that x(t) ∈ B00, and so the control structure is umin − umax.

As already established in Section 2.5, in optimal control problems with terminal constraints, the abnormal
extremals can be very useful in characterizing the boundaries of the admissibility set. For that, we introduce
some notation that will be important in describing admissible solutions: define the separatrix (Mu1,u2

) ∈
B00 ∪B10 as the stable manifold of the point (xc

1, θ2) under the control function

u(x) =

{
u1 if x ∈ B00,
u2 if x ∈ B10.

Analogously to the bistable switch case, the curve can be expressed as x2 = δ(x1, u1, u2), where the function
δ can be computed by calculating the trajectory of the system under the given controllers, thus defining the
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sets

(Mu1,u2)
+ =

{
(x1, x2) ∈ R2 | 0 < x1 <

k1
γ1

, δ(x1, u1, u2) < x2 < θ2

}
,

(Mu1,u2
)− =

{
(x1, x2) ∈ R2 | 0 < x2 < θ2, δ(x1, u1, u2) > x2, 0 < x1 <

k1
γ1

}
.

Then, based on the abnormal control structures umax − umin and umin − umax, we use the separatrices
(Mumax,umin

) and (Mumin,umax
) to define the domain of nonadmissibility of solutions

Na = (Mumin,umax
)+ ∪ (Mumax,umin

)− ∪ {(x1, x2) ∈ B10 | xc
1 < x1 < k1/γ1}.

Both the separatrices and the nonadmissibility set are shown in Figure 10. It is intuitive to see that, along an
optimal trajectory we have x(t) /∈ Na for a.e. t ∈ [0, tf ], but the trajectory can slide through the boundary
∂Na. Moreover, as seen in Figure 10, the separatrix (Mumax,umin

) only spawns in B10 for the current choice
of parameters and control bounds, which is due to the inverse-time trajectory with u ≡ umax that starts
in (xc

1, θ2) not reaching B00. However, this is not necessarily true in the more general case, for e.g., under
weaker control actions (i.e., umin and umax closer to 1), or cycle points closer to the Filippov equilibrium.

θ1 xc1
x1

0

θ2x 2

(Mumin, umax)
(Mumax, umin)
a

Figure 10: Separatrices and nonadmissibility set of (9) for the cycle point (xc
1, θ2), with parameters k1 = 2, k2 = 4, γ1 = 0.25,

γ2 = 0.3, θ1 = 4 and θ2 = 3; and control bounds umin = 0.6 and umax = 1.4.

So far, by application of the HMP, it was possible to reduce the original problem from an arbitrary
constrained control u ∈ [umin, umin] to a piecewise constant function composed of at most 4 arcs. In this
approach, we further investigate the control structure by restraining the values of λ:

Assumption 4. λ ∈ (0, 0.5].

Then, we see that the latter assumption allows one to reduce the space of admissible controllers by ruling
out certain control structures:

Lemma 3. Under Assumption 4, the following holds along normal extremals:

• If p2(t) ≥ 0 for a.e. t ∈ [0, tf ], there cannot be 1 arcs in B00,

• If p2(t) ≤ 0 for a.e. t ∈ [0, tf ], there cannot be 1 arcs in B10.

Proof. For the first claim, suppose p2(t) ≥ 0 for a.e. t ∈ [0, tf ]. Then, using (10) and Proposition 3, we get
p1(t) > 0 for a.e. t such that x(t) ∈ B00. By way of contradiction, suppose that there is a 1 arc in B00 on
the subinterval [0, t1], and thus, in that interval, we have 0 < p1(t) < λ/k1 by Proposition 3. Condition (10)
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evaluated at t ∈ [0, t1] gives

(−γ1x1(t) + k1u(t)) p1(t)︸ ︷︷ ︸
<λ/k1

+ ẋ2(t)p2(t)︸ ︷︷ ︸
≤0

−λ|u(t)− 1| − (1− λ) = 0,

which then, using the fact that |u(t)− 1| = 0 for a.e. t ∈ [0, t1], yields the inequality

(−γ1x1(t) + k1)
λ

k1
+ λ− 1 > 0.

When solving for x1(t), and imposing x1(t) > 0, we obtain

0 < x1(t) <
k1
γ1

2λ− 1

λ
.

which yields λ > 0.5, contradicting Assumption 4. For the second claim, suppose p2(t) ≤ 0 for a.e. t ∈ [0, tf ].
Then, using (10) we get p1(t) > 0 for a.e. t such that x(t) ∈ B10. Now, suppose that there is a 1 arc in B10

on the subinterval [ts, t2], where ts corresponds to the time at which x1(ts) = θ1, and thus, in that interval,
one has 0 < p1(t) < λ/k1. By a similar procedure as done in the first claim (replacing (10) in t ∈ [ts, t2] to
get an inequality, together with |u(t)− 1| = 1 and imposing x1(t) > θ1), we can obtain

λ >

k1

γ1

2k1

γ1
− θ1

,

which implies λ > 0.5, as θ1 > k1/γ1, again contradicting Assumption 4.

Then, we can characterize the optimal control by investigating the admissible control structures:

Proposition 10. Under Assumption 4, the possible optimal control structures are

Case In B00 In B10

A 1− umin umax

B 1− umax umax

C umax 1− umax

D umax 1− umin

where the 1 arcs can be of length zero depending on the initial condition.

Proof. The latter can be proved by studying the multiple combinations of signs of p1 and p2 in each regular
domain:

• If p1(t) ≤ 0 for a.e. t such that x(t) ∈ B00, then, using (10), we obtain p2(t) < 0 for a.e t ∈ [0, tf ], and
consequently p1(t) > 0 for a.e. t such that x(t) ∈ B10. Again, Lemma 3 implies that the 1 arc in B10

is not optimal, and so the structure of the optimal control is 1 − umin in B00 and then umax in B10.
The particular case p1(t) = 0 in B00 yields the abnormal control umin − umax.

• If p1(t) > 0 for a.e. t such that x(t) ∈ B00, then the control can have 1 and umax arcs in B00. Then:

– If p2(t) ≤ 0 for a.e. t ∈ [0, tf ], then p1(t) for a.e. t such that x(t) ∈ B10, as p1(t) ≤ 0 is forbidden
by (10). Thus, only 1 and umax arcs are admissible in B10. Lemma 3 states that the 1 arc in B10

is not optimal. Then, the structure of the optimal control is 1 − umax in B00 and then umax in
B10. The particular case p2(t) = 0 for a.e. t yields the control umax − umax.

– If p2(t) > 0 for a.e. t ∈ [0, tf ], Lemma 3 states that the 1 arc in B00 is not optimal. Then, there
are three choices:
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∗ If p1(t) > 0 for a.e. t such that x(t) ∈ B10, then the structure of the optimal control is umax

in B00 and 1− umax in B10.

∗ If p1(t) < 0 for a.e. t such that x(t) ∈ B10, then the structure of the optimal control is umax

in B00 and 1− umin in B10.

∗ If p1(t) = 0 for a.e. t such that x(t) ∈ B10, then the structure of the optimal control is umax

in B00 and 1 in B10.

Proposition 10 discards optimal control structures containing 1 arcs in both regions, as well as optimal
control functions with a unique umin arc in a regular domain. A priori, the latter is not enough to fully
characterize the optimal control: for each initial condition, one should compare the cost of each of the
four control structures to obtain the optimal one. However, it is easy to see that each control structure
is associated to a different region of B00, and thus, for each initial condition x0 ∈ B00, there is only one
admissible control structure, i.e., that can drive the state to the final cycle point (xc

1, θ2). The latter is
illustrated in Figure 11, that shows the four regions associated to each control structure, delimited by their
respective separatrices.

θ1 xc1
x1

0

θ2

x 2

(M
umin , umax )

(M1, umax)
(Mumax, umax)

(Mumax, 1)

A
B

C
D

Figure 11: Regions of B00 linking each possible control structure (as defined in Proposition 10) to a set of initial conditions of
the optimal control problem, delimited by the separatrices obtained for the cycle point (xc

1, θ2). The parameters are k1 = 2,
k2 = 3, γ1 = 0.25, γ2 = 0.3, θ1 = 4 and θ2 = 3; and control bounds umin = 0.6 and umax = 1.4.

Using this feature, it is then possible to express the optimal control as a feedback law.

Theorem 11. Under Assumption 4, the optimal control is defined for x ∈ (B00 ∪B10) \Na by the feedback
law

u(x) =

 umin if x ∈ (Mumax,umin) or x ∈ (Mumin,umax) ∩B10,
umax if x ∈ (Mumax,umax) or x ∈ (Mumax,umax)

− ∩B00,
1 otherwise

(11)

For abnormal extremals, the optimal control structures are umax−umin and umin−umax, which occur if and
only if x0 lies exactly over the separatrices (Mumax,umin

) and (Mumin,umax
), respectively, and so no 1 arc is

required to reach the cycle point.

The optimal feedback control is plotted in Figure 12a, while Figure 12b shows different examples of
optimal trajectories where the initial conditions have been chosen to produce the four possible control
structures described in Proposition 10. As expected, every optimal trajectory uses an inactive arc (u ≡ 1)
to reach a separatrix, and then slides over it until the cycle point.

For the particular case of starting from a point (g(xc
1), θ2) within the cycle, it is quite intuitive to see that

the optimal control structures are either A or B depending on the choice of parameters and control bounds.
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(a) Optimal feedback control u(t) (b) Optimal trajectories

θ1 xc1
x1

0

θ2x 2

u≡ umax
u≡ umax

u≡ umin
u≡1

θ1 xc1
x1

0

θ2x 2

A
B

C
D

Figure 12: Optimal feedback control law for system (9) with parameters k1 = 2, k2 = 4, γ1 = 0.25, γ2 = 0.3, θ1 = 4 and
θ2 = 3; and control bounds umin = 0.6 and umax = 1.4.

Figure 13 illustrates an example of a full cycle, where we see that the solution slides over (Mumin,umax
), thus

having a 1− umin − umax structure.

(a) Trajectory (x1, x2) (b) Optimal control u(t)

θ1 xc1
x1

θ2

x 2

(Mumax, umax)
(Mumin, umax)

0 t10 t00 t01
t

umin

1

umax

Figure 13: Optimal trajectory and control associated to a full cycle of system (9), with control structure A. The parameters
are k1 = 2, k2 = 3, γ1 = 0.2, γ2 = 0.3, θ1 = 4 and θ2 = 3; and control bounds umin = 0.4 and umax = 1.6.

To conclude the study, we recall that the optimal control is not defined for x ∈ Na due to the lack
of feasibility of the control problem in that region. For the sake of completeness of the approach, we can
formulate an extended feedback control law for every value of x ∈ K, capable of asymptotically driving the
trajectories in Na to the admissibility set, and subsequently applying the optimal feedback control (11) to
reach the cycle point. Thus, for x ∈ K, we propose the extended optimality-based feedback control

u(x) =

 umin if x ∈ (Mumin
)− or x ∈ (Mumin,umax

)+ ∩B10,
umax if x ∈ (Mumax,umax

)+ ∩B10 or x ∈ (Mumax,umax
)− ∩B00,

1 otherwise.
(12)

whose closed-loop behavior is illustrated in Figure 14a. By definition, the latter control law is optimal for
trajectories starting in x ∈ (B00 ∪ B10) \ Na. Moreover, as shown in Figure 14b, the trajectories starting
in Na \ {(θ1, θ2)} under the proposed feedback control law converge to the cycle point (xc

1, θ2), and thus, to
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the optimal periodic trajectory, after a finite number of cycles.

(a) Extended feedback control u(t) (b) Examples of trajectories

θ1
x1

0

θ2x 2

u≡ umin
u≡ umax
u≡ 1

  θ1
x1

θ2

x 2
Figure 14: Closed-loop behavior of system (9) under the extended feedback control strategy (12). The parameters are k1 = 2,
k2 = 3, γ1 = 0.25, γ2 = 0.3, θ1 = 4 and θ2 = 3; and the control bounds are umin = 0.6 and umax = 1.4.

4. Conclusion

In this paper, we developed a mathematical framework for inducing optimal state transitions in dynamical
models of gene regulatory networks. For that, we considered a combination of the total time and L1 cost
of trajectories. The latter accounts for the main limitations of current practices in the external regulation
of gene expression through chemical inducibles (such as IPTG), arising particularly in the field of synthetic
biology and metabolic engineering. By integrating hybrid systems techniques with non-smooth optimal
control methodologies, we managed to obtain general qualitative theoretical properties of the optimal control
and the trajectories, that reduce the set of admissible controllers to piecewise constant functions composed of
a limited number of arcs. In the second part of the paper, we focused on two application cases of PWL GRNs
accounting for the main dynamical behaviors observed in biological regulatory mechanisms: oscillations and
bistability. Both systems represent highly relevant examples from systems biology: the genetic toggle switch,
a biosynthetic flip-flop device that acts as a biological memory unit through its bistability; and the genetic
oscillator, capable of representing numerous naturally-evolved rhythmic behaviors in nature. For both cases,
a thorough study of the problem reveals that the optimal control laws associated to each objective can be
expressed in state feedback form, and result in trajectories that slide over certain separatrices specific
to the dynamics of each system. While these results remain mostly at the theoretical level, they can
potentially provide guidance in designing practical closed-loop control schemes for experimental settings.
We believe that the general framework could be a starting point for higher-dimensional studies: in that
sense, we expect the illustrated bifurcations between abnormality and normality to be a generic feature of
such problems. Moreover, we believe that exploiting the understanding of simpler two-dimensional motifs
can help formulating cost-effective control laws for producing transitions in more complex GRNs of coupled
synthetic devices.

Appendix A. Computation of the function g

Computing the g function can be done by explicitly calculating the trajectory of the system. We fix
initial conditions x1(0) = xc

1 > θ1 and x2(0) = θ2, and so the solution for t ≥ 0 of Equation (9) in the first
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region B11 is

x1(t) = xc
1e

−γ1t,

x2(t) =

(
θ2 −

k2
γ2

)
e−γ2t +

k2
γ2

.

By defining tb ≥ 0 as the time such that x1(tb) = θ1, we obtain

x1(tb) = θ1 = xc
1e

−γ1tb ,

x2(tb) = xa
2 =

(
θ2 −

k2
γ2

)
e−γ2tb +

k2
γ2

= θ2e
−γ2tb +

k2
γ2

(
1− e−γ2tb

)
,

which means that tb =
1
γ1

ln
xc
1

θ1
> 0, and thus eγ2tb =

(
x10

θ1

) γ2
γ1
. Then, in the second region B01, we have

x2(t) = xa
2e

−γ2(t−tb) =

(
θ2 +

k2
γ2

[(
xc
1

θ1

) γ2
γ1

− 1

])
e−γ2t,

for every t ≥ tb. Defining tc ≥ 0 as the time at which x2(tc) = θ2, we get

tc =
1

γ2
ln

θ2 +
k2

γ2

[(
xc
1

θ1

) γ2
γ1 − 1

]
θ2

,

which means that

x1(tc) = g(xc
1) = xc

1e
−γ1tc = xc

1

 θ2

θ2 +
k2

γ2

[(
xc
1

θ1

) γ2
γ1 − 1

]


γ1
γ2

,

for any xc
1 ∈ [θ1, k1/γ1].
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[11] N. Augier, M. Chaves, J.-L. Gouzé, Weak synchronization and convergence in coupled genetic regulatory networks: Ap-

plications to damped oscillators and multistable circuits, International Journal of Robust and Nonlinear Control 33 (9)
(2023) 4867–4892.

25



[12] P. Hillenbrand, G. Fritz, U. Gerland, Biological signal processing with a genetic toggle switch, PloS one 8 (7) (2013)
e68345.

[13] N. Augier, A. G. Yabo, Time-optimal control of piecewise affine bistable gene-regulatory networks: preliminary results,
IFAC-PapersOnLine 54 (5) (2021) 205–210, 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021.

[14] N. Augier, A. G. Yabo, Time-optimal control of piecewise affine bistable gene-regulatory networks, International Journal
of Robust and Nonlinear Control 33 (9) (2023) 4967–4988. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/
rnc.6012, doi:https://doi.org/10.1002/rnc.6012.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6012
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