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Abstract
We propose an implementation, using the cgal library, of an algorithm to compute

ε-nets on hyperbolic surfaces proposed by Despré, Lanuel and Teillaud [DLT24]. We
describe the data structure, detail the implemented algorithm and report experimental
results on hyperbolic surfaces of genus 2.

The implementation differs from the cited algorithm on several aspects. In particular,
we use a different data structure, using a combinatorial map, to represent a triangulation
of a surface. Also for the critical step of locating points on the surface, we use the
visibility walk and prove its termination in the hyperbolic setting.

1 Introduction
Hyperbolic surfaces, i.e., surfaces with a constant negative curvature, are well studied
in mathematics since hyperbolic geometry is the natural geometry on surfaces of genus
larger than one [FK92]. However, there are long standing open problems that could be
experimentally investigated like finding the hyperbolic surface of genus 3 with the longest
systole (non-contractible shortest curve) or the hyperbolic surface of genus 2 with the smallest
diameter.

A few computational tools for hyperbolic surfaces have only been available recently. Iordanov
and Teillaud [IT17] introduced a package in CGAL [IT19] to construct Delaunay triangula-
tions with Bowyer’s incremental algorithm, only for the Bolza surface, which is the most
symmetric surface of genus two. The authors in [DDKT22] proposed an implementation of
edge flips to transform any triangulation of a closed hyperbolic surface into the Delaunay
triangulation. Their software [DDT] also generates surfaces of genus 2. The algorithm does
not support insertions of new points.

The aforementioned open problems need computations of distances on a surface and an ε-net
(see Section 2.2) is a natural tool to approximate such distances. Our contribution is the
implementation of an ε-net algorithm proposed in [DLT24] based on Shewchuk’s Delaunay
refinement [She02]. To the best of our knowledge, it is the first implementation for this
problem. There are two candidate data structures to represent a hyperbolic surface in this
context: one focuses on a fundamental domain in the universal cover [DLT24] and the other
considers the surface as a combinatorial map [DDKT22]. We use an enriched version of the
data structure implemented in [DDKT22, DDT].

Our implementation is independent from the genus of the surface. However, the only tractable
surfaces that we can generate have genus two. Indeed, except for the specific case of the Bolza
surface mentioned above, which involves algebraic numbers, so far the only surfaces that
are reachable by exact computations are a dense subset of the set of surfaces of genus two
given by a domain with rational coordinates. As mentioned in [EITV22], even for generalized
Bolza surfaces, the representation of fundamental domains with algebraic numbers in genus
higher than two is an obstacle.
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The algorithm iteratively inserts in the triangulation the circumcenter of a large triangle,
which is a triangle whose circumradius is greater than ε. Even though the coordinates of a
circumcenter are in an algebraic extension of degree two with respect to the coordinates of
the vertices of the triangle, our algorithm only constructs approximate points with rational
coordinates. Consequently, we have to check the correctness of the output, and this is the
only place where we use algebraic numbers of degree 2. This approach is proven successful
in our experiments for “typical” surfaces, i.e., surfaces with a large systole. We observe in
Section 7.2 that higher precision on the rational approximation of the circumcenter would be
needed to handle a surface with a very small systole.

The key component of the algorithm, alongside the Delaunay flip part, is the point location.
To insert a point in a triangulation of the surface, we work in the triangulation lifted in H2

and determine the lift of a triangle containing the point. Similar to the Euclidean plane,
there are multiple strategies for traversing the triangulation and locate a point [DPT02]. In
our implementation, we tested both the straight and the visibility walks, which demonstrate
comparable efficiency for our purposes. To ensure the correctness of our algorithm, we also
prove that the visibility walk terminates successfully in the context of finite or periodic
Delaunay triangulations of H2 (Theorem 1).

The paper is organized as follows: The termination of the visibility walk in H2 is proved
in Section 3. We detail our data structure in Section 4 and our implemented algorithm in
Section 5. We discuss in Section 6 the issues of generating relevant and tractable hyperbolic
surfaces. Our experiments are reported in Section 7.

2 Background and Notation
2.1 Hyperbolic Surfaces
We refer the reader to textbooks [Bea83, Bus10] for more details on hyperbolic surfaces.

In this paper, we use the term hyperbolic surface for a closed (connected, compact, and
without boundary) oriented hyperbolic surface. Such a surface S can be seen as the quotient of
the hyperbolic plane H2 under the action of a discrete subgroup Γ of the group of orientation-
preserving isometries of H2. The surface S is locally isometric to H2. The action of Γ on
H2 induces a projection ρ : H2 7→ H2/Γ = S. If x ∈ S, an element x̃ ∈ Γx := ρ−1(x) ⊂ H2

is called a lift of x. Throughout this paper, objects written with a tilde ·̃ are in H2 while
objects on S are written without. The term copy refers to an image of an object by an
isometry of Γ.

A fundamental domain for S is a connected subset of H2 containing exactly one lift of every
point of S, except on its boundary. The Dirichlet domain D

b̃
of a point b̃ ∈ H2 is defined as

the closed Voronoi cell of b̃ in the Voronoi diagram of the point set Γb̃. It is a fundamental
polygon for S: the interiors of two copies of the domain are disjoint, ΓD

b̃
= H2, and its

boundary is made of geodesic segments called sides. To each side s of D
b̃
, there is a unique

element γs ∈ Γ, called side pairing, such that γs(s) is also a side. The side pairings generate
Γ, so that D

b̃
and its side pairings determine the metric of the surface.

We work with the Poincaré disk model in which H2 is represented by the open unit disk of C.
The geodesics are either diameters of the disk, or circular arcs orthogonal to the unit circle.
Hyperbolic circles are Euclidean circles but their centers do not coincide in general.

If T is a triangulation of S, we note T̃ the infinite triangulation of H2 whose vertices, edges
and faces are all lifts of those of T . Conversely, any vertex, edge or face of T̃ projects on
S as a vertex, edge or face of T . The triangulation T is a Delaunay triangulation if T̃ is a
Delaunay triangulation of H2, that is, no circumcircle of a triangle of T̃ contains a vertex of
T̃ in its interior.
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We denote as g the genus of S and σ its systole, i.e., the length of the shortest non-contractible
closed geodesic.

2.2 ε-Nets
Let (X, d) be a metric space and ε > 0. A subset P ⊂ X is an ε-covering if d(x, P ) ⩽ ε for
all x ∈ X, i.e., the closed balls of radius ε centered at points of P cover X. It is an ε-packing
if d(p, q) ⩾ ε for all p ̸= q ∈ P , that is, the open balls of radius ε/2 centered at points of P
are pairwise disjoint. If P is both an ε-covering and an ε-packing, then it is an ε-net.

The number of points in an ε-packing of a hyperbolic surface S is upper-bounded by
16(g − 1)

(
1/ε2 + 1/σ2)

, or 16(g − 1)/ε2 if ε < σ [DLT24]. If so, we say that S is ε-thick.

2.3 Original Algorithm
Let us summarize the original algorithm [DLT24], on which our implementation is based.
The algorithm is inspired by Shewchuck’s Delaunay refinement [She02]. It starts with a
Delaunay triangulation of S with a single vertex b. In a nutshell, as long as there is a large
triangle in the triangulation, its circumcenter is inserted and the triangulation is updated
(see Figure 1): the triangle in which the circumcenter lies is first split into three new triangles,
then the Delaunay property is retrieved using edge flips [DST20]. The set of vertices of the
final Delaunay triangulation is an ε-net of S, and all the intermediate sets of vertices are
ε-packings.

Figure 1: Insertion of a point in a Delaunay triangulation using a flip algorithm.

The algorithm also stores the Dirichlet domain D
b̃

of a lift b̃ of b together with its side
pairings, which can be computed from any fundamental domain for S [DKPT23]. The data
structure stores the lift in D

b̃
of each vertex of the triangulation (or one of its lifts if it lies

on the boundary of D
b̃
), and for each triangle, the information needed to retrieve its (at

most three) lifts having at least one vertex in D
b̃
.

The most crucial step of the algorithm is the location of the circumcenter c of a triangle ∆
in a triangulation of S. To this aim, a lift of c is located in the lifted triangulation in H2, as
follows. First, the circumcenter c̃ of a lift ∆̃ of ∆ with at least one vertex in D

b̃
is computed.

The point c̃ is a lift of c that does not necessarily lie in D
b̃
. To locate c̃, the algorithm first

finds the copy of D
b̃

containing it by walking in the tiling ΓD
b̃
, i.e. the element γc ∈ Γ such

that c̃ ∈ γcD
b̃
. The lift c̃b = γ−1

c c̃ of c lying in D
b̃

can then be computed. Second, the triangle
in D

b̃
in which c̃b lies is identified by checking, for each triangle, its (at most three) lifts

having at least one vertex in D
b̃
. It can be shown that the walk in the tiling ΓD

b̃
traverses

a bounded number of Dirichlet domains. The complexity of the algorithm is bounded by
O

(
N2)

, where N is the number of points in the ε-net.

3



3 Preliminary Result: Walking in a Triangulation in H2

As mentioned above, a crucial step of the algorithm relies on finding a triangle containing
a given point in a triangulation of H2 (there is only one such triangle, except for collinear
points). In this section, we drop the ·̃ for objects in H2 in order to keep notation light. There
are two classical algorithms in the Euclidean plane: the straight walk and the visibility walk,
which can be adapted to the hyperbolic plane. Both methods find the triangle containing a
query point q in a triangulation starting from a vertex p of a triangle ∆. The straight walk
visits all triangles along the geodesic segment pq. The algorithm starts by rotating around p
to find a triangle incident to p that has an edge intersecting the geodesic segment pq. The
visibility walk consists, for each visited triangle not containing q, of moving to a neighbor
through an edge e if q and the third vertex of the visited triangle are on different sides of the
geodesic line supporting e. In the Euclidean case, the visibility walk terminates in a Delaunay
triangulation [Ede90] but it can loop forever in a non-Delaunay triangulation [DFFNP91].

The rest of this section is devoted to proving Theorem 1.

Theorem 1. The visibility walk terminates in a finite or periodic hyperbolic Delaunay
triangulation.

A proof of the Euclidean case [DH16] relies on the notion of power of a point with respect
to a circle. Let q, z ∈ R2 and C(z, r) be the circle of radius r > 0 and centered at z. The
power of q with respect to C(z, r) is ||qz||2 − r2. In H2, an equivalent of Pythagoras’ theorem
is [Bus10, Theorem 2.2.2]: in a right-angled triangle whose hypotenuse has length c and its
two other sides have length a and b, we have cosh(c) = cosh(a) cosh(b). For lighter notation,
we note the length of a geodesic segment xy as xy instead of dH2(x, y). We define the power
of a point q with respect to a circle C(z, r) as cosh(zq)/ cosh(r). It is larger than 1 when q
lies outside the circle, smaller than 1 when it lies inside, and equal to 1 when it lies on the
circle.

We define the circle power of a triangle ∆ in H2 with respect to q as

P (∆, q) := cosh(z∆q)
cosh(r∆) ,

where r∆ denotes the radius of the circumcircle of ∆ and z∆ its center.

Lemma 2. During the visibility walk toward the point q in a Delaunay triangulation in H2,
if a triangle ∆ is encountered before its neighbor ∆′, then P (∆, q) ⩾ P (∆′, q).

Proof. Denote z and z′ the respective centers of the circumcircles of ∆ and ∆′, and r and
r′ their respective radii. Call u and v the common vertices of ∆ and ∆′. The geodesic line
zz′ is the bisector of the geodesic segment uv, hence it intersects it perpendicularly at its
midpoint m. As illustrated in Figure 2, Hyperbolic Pythagoras’ theorem yields

cosh(r) = cosh(vm) cosh(zm) and cosh(r′) = cosh(vm) cosh(z′m). (1)

When walking toward q, the point q is on the same side of the geodesic uv as ∆′ and it is
not on uv. The geodesic zz′ can be oriented such that it crosses ∆ before ∆′. The Delaunay
property implies that z appears before z′ for this order. Indeed, in the pencil of circles based
on the edge uv, if z′ appears before z, the part of the circle of center z′ to the right of the
edge contains the third point of the triangle ∆′. Since this part is included is the circle of
center z, ∆′ cannot be a Delaunay triangle. To prove that P (∆, q) ⩾ P (∆′, q), we distinguish
three cases with respect to the position of the point m on the line zz′. Note that when
z = z′, the inequality is an equality and the two triangles have the same circumcircle. In the
following we can thus assume z ̸= z′ and we will prove that the inequality is strict.
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Figure 2: Illustration of Equation 1 (left) and of the first case of the proof (right).

First case: m lies between z and z′ This case is illustrated in Figure 2 (right). Define
φ as the unsigned angle ∠(q, m, z′). In the triangles (z, m, q) and (z′, m, q), hyperbolic
trigonometry [Bus10, Theorem 2.2.1] yields

cosh(zq) = − sinh(zm) sinh(mq) cos(π − φ) + cosh(zm) cosh(mq),
cosh(z′q) = − sinh(z′m) sinh(mq) cos(φ) + cosh(z′m) cosh(mq).

The angle φ is positive and smaller than π/2 because q and ∆′ lie on the same side of the line uv.

Then cos(φ) > 0 and cos(π − φ) < 0 and it follows that cosh(zq)
cosh(zm) > cosh(mq) >

cosh(z′q)
cosh(z′m) .

We obtain P (∆, q) > P (∆′, q) using Equation 1.

q

φ∆
∆′

v

u

z

z′

m

q

φ
∆′∆ z′

z

m

u

v

Figure 3: Illustration of the second (left) and third (right) cases of the proof.

Second case: z lies between m and z′ This case is illustrated in Figure 3 (left). The
same formula now yields

cosh(zq) = − sinh(zm) sinh(mq) cos(φ) + cosh(zm) cosh(mq),
cosh(z′q) = − sinh(z′m) sinh(mq) cos(φ) + cosh(z′m) cosh(mq).

It follows that
cosh(zq)
cosh(zm) = − tanh(zm) sinh(mq) cos(φ) + cosh(mq),

cosh(z′q)
cosh(z′m) = − tanh(z′m) sinh(mq) cos(φ) + cosh(mq).

As in the previous case, the angle φ is positive and smaller than π/2. Moreover, zm < z′m
and tanh is increasing. We divide both equations by cosh(vm) and obtain P (∆, q) > P (∆′, q).
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Third case: z′ lies between m and z This case is illustrated in Figure 3 (right). In this
case, the same formula gives the same equations as above. Since φ ∈ (π/2, π] and zm > z′m,
we conclude in a similar way.

The termination of the walk is thus clear when the triangulation is finite. We use a
compactness argument for the case of an infinite Delaunay triangulation in H2 given by the
lifts of a triangulation of a surface. Indeed, there is a finite number of circumradii that
are thus upper bounded by a value R, and for any triangle ∆′ with circumcircle C(z′, r′) of

the triangulation P (∆, q) ⩾ P (∆′, q) = cosh(z′q)
cosh(r′) ⩾

cosh(z′q)
cosh(R) . This implies that z′ is in a

bounded region of H2 so that the walk stays in a finite triangulation.

4 Data Structure
We reuse the data structure provided by Loïc Dubois’ GitHub repository [DDKT22, DDT].

A combinatorial map is an edge-centered data structure based on darts, which are equivalent
to half-edges in our setting. A dart can be seen as an oriented edge. In dimension 2, each
dart has a pointer β1 to access the dart of the next edge in the same face, and a pointer β2 to
access the dart of the same edge in the adjacent face, as illustrated in Figure 4. Following β1
pointers, we obtain all the darts of a given face. Following β1 ◦ β2 combinations of pointers,
we obtain all the darts of a given vertex.

β1

β2

Figure 4: A dart (bold) in a 2D combinatorial map, and its pointers.

In Dubois’ work, the geometric information of T is given as a cross-ratio for each edge,
which is stored in darts. The cross-ratio of four pairwise distinct points z1, z2, z3, z4 in the
Poincaré disk is defined as [z1, z2, z3, z4] = (z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2) ∈ C. It is invariant under

orientation-preserving isometries, so, the cross-ratio of an edge e can be defined from any of
its lifts. Let ẽ = (ũ1, ũ3) be a lift of e and ũ2, ũ4 be the remaining vertices of the triangles
incident to e, such that ũ1, ũ2, ũ3, ũ4 are oriented counter-clockwise. The cross-ratio of e in
T is RT (e) = [ũ1, ũ2, ũ3, ũ4]. The imaginary part of RT (e) is positive if and only if ũ4 lies in
the circumdisk of the triangle (ũ1, ũ2, ũ3), i.e., if and only if the edge e is Delaunay flippable.

In addition to cross-ratios, Dubois’ data structure contains one anchor, which represents a
lift of a triangle in the Poincaré disk. The anchor is composed of a dart representing the
triangle in the combinatorial map, and of the coordinates of the three vertices ṽ0, ṽ1, ṽ2 of a
lift of the triangle. The dart corresponds to the edge (v0, v1).

Knowing a lift of a triangle, its neighbors can be retrieved using the cross-ratios of its edges:
if (ã, b̃, c̃) and (ã, c̃, d̃) are two triangles in H2 sharing the edge (ã, c̃), the coordinates of d̃
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can be deduced from ã, b̃, c̃ and RT (a, c). The anchor can therefore be used to compute a
part of T̃ one step at a time, for example to draw a lift of each triangle of T .

Our algorithm (see Section 5) performs computations with lifts of triangles at each step,
in particular to compute a lift of the circumcenter of a triangle and locate it. To have
constant time access to a lift of any triangle, we actually store an anchor for each face of the
triangulation. The three darts of each triangular face are associated with its anchor.

Note that the set of anchors of all faces of T is not necessarily connected.

Updating the Data Structure In the ε-net algorithm, the data structure is modified by
two operations: splitting a triangle into three new triangles, and flipping an edge.

When splitting a triangle ∆, we know the lift given by its anchor ∆̃ = (ã, b̃, c̃) and the
point d̃ in ∆̃. The darts of ∆ are kept and three pairs of darts are created (Figure 5). The
pointers β1 and β2 of all these darts are set or updated to create the three new triangles
in the combinatorial map. We create three new anchors corresponding to the new triangles
(ã, b̃, d̃), (̃b, c̃, d̃) and (c̃, ã, d̃) and associate them to the darts of their respective triangles.
The cross-ratios of the three new edges are computed from the coordinates of ã, b̃, c̃, and d̃.
The cross-ratios of the edges (a, b), (b, c), and (c, a) must be updated. For the edge (a, b), for
instance, we use its cross-ratio and the vertices of the anchor (ã, b̃, d̃) of its incident triangle
to compute the coordinates of a lift of the third vertex of its neighboring incident triangle.
This step is mandatory because the anchor associated with the adjacent triangle in the
combinatorial map may store a non-adjacent lift in H2.

ã

b̃

c̃

d̃

Figure 5: Splitting a triangular face in three in the combinatorial map, new darts are in blue.

To flip an edge, we use Dubois’ code, which modifies the β1 pointers and updates the
cross-ratios [DDKT22]. We still need to update the anchors. To do so, we get the coordinates
of the points stored in the anchor of a dart δ of the edge being flipped. We call them ã, b̃, c̃,
in such a way that the edge (c̃, ã) is represented by δ in the combinatorial map. Using the
cross-ratio of that edge, we compute the coordinates of d̃, the third vertex of the other lifted
triangle sharing the edge (c̃, ã) (see Figure 6). We then create two new anchors corresponding
to the lifts of the triangles obtained after the flip, (̃b, d̃, ã) and (̃b, d̃, c̃) and we associate them
to the darts of their respective triangles.

Note that, though these operations remove triangles and create new ones, darts are added
but never removed in the data structure.
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c̃

ã

b̃

d̃

c̃

ã

b̃

d̃

δ δ

Figure 6: A flip. No darts are added or removed, only adjacencies are modified.

5 The Implemented Algorithm
The data structure is implemented in Anchored_hyperbolic_surface_triangulation_2, a
class inherited from Dubois’ Hyperbolic_surface_triangulation_2 [DDT]. The algorithm
to compute an ε-net is implemented in the epsilon_net(epsilon) method. It maintains
a Delaunay triangulation and iteratively inserts circumcenters of large triangles. We first
detail our processing of large triangles aiming at minimizing the number of computations of
circumcenters (Section 5.1). We then detail the largeness test, the representation of coordi-
nates of points in H2 by exact rational numbers and the possible issues of the approximation
of circumcenters (Section 5.2). The point location is detailed in Section 5.3. Finally, we
explain how to certify that the set of vertices of the output triangulation is an ε-net using
exact computation in degree two algebraic extensions (Section 5.4).

5.1 Additional Data Structure
At each step of the algorithm, a large triangle is considered. In the original algorithm, all
triangles of the current triangulation are checked until a large one is found. Consequently,
all triangles that are not affected by an insertion will be checked again for the next insertion.
This choice has no effect on the theoretical complexity of the algorithm, but computing a
circumradius is expensive in practice, so, we avoid such unnecessary computations.

To this aim, we could maintain a set of large triangles. However the insertion of the
circumcenter of a large triangle ∆ does not only remove ∆ from this set, but also other
triangles, which may also be large. This implies that we would have done unnecessary
expensive circumradii computations for triangles that are removed.

Instead of that set of large triangles, we maintain a list of triangles to be processed and
only check whether they are large when necessary. In fact, we maintain a list L of darts
representing triangles. The list is initialized with one dart for each triangle of the input
triangulation. The only operations on this list are: pop the front dart, and push new darts
at the back. The computation of a circumradius is only performed when a dart is popped
from the front.

Instead of that set of large triangles, we maintain a list of triangles to be processed and
only check whether they are large when necessary. In fact, we maintain a list L of darts
representing the triangles; each dart has a Boolean mark and we maintain the property that
each triangle is represented in L by exactly one marked dart. The list is initialized with one
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marked dart for each triangle of the input triangulation (for a reasonable choice of ε, all
these triangles are large). When a dart is popped out of L, if it is marked, we unmark it
and the circumradius of the triangle it represents is computed. If the triangle is large, its
circumcenter splits a triangle as detailed in Section 4, and one dart is marked and pushed to
the back of L for each of the three new triangles. Darts are added to L without checking the
size of the circumradius of the corresponding triangle. The Delaunay property is restored
using the flip algorithm of Despré et al. [DDKT22]. After a flip, in each of the two new
triangles, we maintain the property that only one dart is marked so that each triangle is
represented at most once in the list L. Indeed, such a new triangle may have 0, 1 or 2 marked
edges, if it has none, we mark one and push it back in L, if it has two, we unmark one of
them and otherwise there is nothing to do.

As explained in Section 4, when a triangle disappears from the triangulation, its darts stay
in the data structure, but their β1 pointers are modified. So, it can be the case that a
dart represented a large triangle when it was inserted in L, but it represents a triangle
whose circumradius is not greater than ε when it comes to the front of L. A circumradius is
computed only when a marked dart is popped out from the front of L; if it is not marked
nothing is done: it means that the triangle it belongs to is represented by another dart. The
algorithm proceeds with the new front dart until L is empty.

In the description above, the list L is not ordered. We ran experiments to check possible
orders, in particular, ordering the list according to their circumradii (see Appendix A). It
turns out that ordering L actually does not improve running times. Darts representing new
triangles are always pushed at the end of L, so, in practice, large triangles tend to be close
to the front and are processed before triangles with smaller circumradii.

5.2 Circumcenters and Circumradii
When a dart is popped out from L, its circumcenter is computed from the vertices of the
anchor of that triangle. The coordinates of a circumcenter of three vertices of the triangulation
with rational coordinates are algebraic numbers of degree two [BDT14]. When it is inserted
in the triangulation, a circumcenter becomes a vertex. Handling exact circumcenters would
thus lead to cascading the algebraic degrees of coordinates, which would lead to computations
that are known to be impossible to handle in practice.

The coordinates of the circumcenter c̃∆ of a triangle ∆ are represented by the type
CGAL::Sqrt_extension, which handles algebraic numbers of degree two. Before insert-
ing c̃∆, we round it to a double type and convert it to an exact rational type from this double
precision number. More specifically, coordinates of points in our triangulation are represented
by the CGAL::Exact_rational number type, which is a wrapper for the arbitrary-precision
rational type mpq_t provided by gmp [dt]. All the computations on our data structure are
performed using this CGAL::Exact_rational number type for points and cross-ratios.

To avoid as much as possible the use of hyperbolic functions, which cannot be evaluated
exactly, we detail the computation of the largeness test for triangles. In the Poincaré
disk, the distance between two points ũ and ṽ is dH2(ũ, ṽ) = arcosh(1 + δ(ũ, ṽ)), where

δ(ũ, ṽ) = 2||ũ − ṽ||2

(1 − ||ũ||2)(1 − ||ṽ||2) and || · || is the Euclidean distance. We compute the

minimum δ between the approximate circumcenter and the three vertices of the anchor. If it
is greater than a certified upper bound of cosh(ε) − 1, then we consider the triangle large
and add the approximate circumcenter c̃ in the triangulation. The certified upper bound on
the cosh function is computed with the Boost interval library [Boo]. Due to approximations
for the computation of c̃, this process may miss a large triangle and thus does not enforce
the ε-covering property. Similarly, even if the approximate circumcenter c̃ that is inserted
into the triangulation is at distance at most ε from the vertices of its triangle, it may be
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at distance smaller than ε from another vertex of the triangulation. We will check these
properties on the final output of the algorithm (Section 5.4).

5.3 Point Location

∆̃
p̃

∆̃1

∆̃′
1

∆̃′
2

c̃

∆̃2

Figure 7: A fundamental domain of the surface is given by the anchors of the triangles (thick
black lines). The blue triangles are the lifts constructed by the visibility walk to reach the
circumcenter c̃ of ∆̃. Triangles ∆̃′

1 and ∆̃′
2 are the lifts of ∆1 and ∆2 in the domain.

Our implementation maintains a Delaunay triangulation of S using the data structure
presented in Section 4. Each point to be inserted is located in this triangulation by locating a
lift in the lifted triangulation. We do not store a Dirichlet domain as in the original algorithm
(Section 2.3), but instead directly locate each new circumcenter by walking in the current
triangulation itself.

We tested two walk algorithms: the straight walk and the visibility walk (Figure 7). In our
case, the query point c̃ is the approximate circumcenter of a lift ∆̃ of the triangle being
processed by the algorithm. The walk starts from a vertex p̃ of the triangle ∆̃. The algorithm
uses the adjacency relations in the combinatorial map. In addition, lifts of triangles must be
constructed along the walk to find the triangle lift containing c̃. Both walks are based on
orientation tests in H2 with vertices of lifted triangles. The combinatorial map encoding of
the triangulation provides a direct access to the neighbor ∆′ of a triangle ∆ adjacent through
one of its edges. On the other hand, the lift ∆̃′ of this triangle given by its anchor may not
be adjacent to the lift ∆̃. The lift of ∆′ that is adjacent to ∆̃ is computed from the vertices
of ∆̃ and the cross-ratio of the common edge as explained in Section 4.

Running the epsilon_net method with both walks shows that they perform equivalently
(see Appendix B): the running time of the method remains the same, and they compute a
similar number of lifts. The visibility walk does not have to handle the degenerate cases of
the straight walk, which may go through a vertex or along an edge; we therefore choose the
visibility walk. The bound of the original algorithm on the length of the straight walk, using
Dirichlet domains, does not apply to the visibility walk. However we observe, in Section 7.1,
that the walk has constant length in practice.

5.4 ε-Covering and ε-Packing Checks
As explained in Section 5.2, the output triangulation may not be an ε-net, due to approx-
imations of circumcenters. To check the ε-covering property, it is sufficient to check that
there is no large triangle. For every triangle ∆, we compute the exact circumcenter c̃∆ of its
anchor, which has coordinates in a degree two algebraic extension, using the number type
CGAL::Sqrt_extension. We then compute δ(c̃∆, ṽ) with the same type (see Section 5.2) for
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a vertex ṽ of the triangle, and check that it is less than a certified lower bound on cosh(ε) − 1.
To check the ε-packing property, it is sufficient to check that all Delaunay edges are longer
than ε. Since all vertices have rational coordinates, the value δ(ṽi, ṽj) for two vertices of an
edge is rational and it is checked to be larger than an upper bound on cosh(ε) − 1.

An alternative robust algorithm would be to certify the largeness test for triangles and check
the ε-packing property after the restoration of the Delaunay property at each insertion.
Indeed, the largeness test can done exactly using computations in a degree two extension.
Checking the ε-packing property only involves exact rational computations. If it fails, this
means that the inserted point was not a good enough approximation of the circumcenter and
iteratively refining it would eventually recover the ε-packing property. Note that iterative
refinement of the rational bounds on cosh(ε) − 1 must also be computed.

Our experiments, presented in Section 7, show that for surfaces with a large systole, this
more involved algorithm is not necessary: Using a double precision for the approximation of
the exact circumcenter and to compute bounds on cosh(ε) − 1 constructs valid ε-nets. On
the other hand, we also observe that higher precision would be needed to handle a surface
with a very small systole (Section 7.2).

6 Generation of Input Surfaces and Triangulations
To experiment with an algorithm in practice, it is important to get both relevant and
tractable input. For an algorithm computing triangulations in R2 or R3 [BDTY00], or even
in a quotient space like the flat torus [CT09], authors would typically generate millions
of uniformly distributed points, or use data given by some application field. In order to
make their implementation robust, they would rely on (filtered) exact predicates on rational
coordinates.

However, getting relevant input hyperbolic surfaces, or even defining what “relevant” means
in this context, is a major challenge. Arithmetic issues are also a major obstacle here, as our
algorithm relies on constructions. The next two sections elaborate on these issues.

6.1 Well-Distributed Surfaces?
The situation was nicely described by Mirzakhani [Mir13] (though there are more recent
results [Mon22]). We just give a flavor here. The moduli space Mg is the set of all hyperbolic
surfaces of genus g. It can be equipped by two natural metrics: the Teichmüller distance
and the Weil-Petersson one. Roughly speaking, they measure the deformation between two
hyperbolic metrics: the first one considers the supremum and the second the average. Ideally,
we would like to obtain a uniform sampling of Mg (for any of the two metrics). However,
today’s mathematical literature does not answer this question. The first problem is that
there is no known parameterization of Mg, so, we can only work with a parameterization of
its universal cover, the Teichmüller space Tg, i.e., the set of all marked hyperbolic surfaces.
Indeed, in Tg, as opposed to in Mg, applying a non-trivial homeomorphism to a hyperbolic
surface gives a different element in Tg. Thus the moduli space Mg is the quotient of Tg by
the mapping class group Modg, which is the group of non-trivial homeomorphisms of the
topological surface of genus g. Unfortunately, the known parameterizations of Tg are not
invariant under the action of Modg, which is the main reason why sampling Mg is so intricate.
It is not clear how to describe a fundamental domain of Mg in Tg in any parameterization
of Tg. As of today, the best that can be done is to sample a parameterization of Tg, being
aware that this does not lead to a good distribution on Mg.

For completeness, we mention that there are other ways of constructing random surfaces in
theory, by randomly gluing hyperbolic ideal triangles together [BM04, Pet17]. However, these
methods rely on a compactification of the obtained cusped surfaces, which, roughly speaking,
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boils down to a conformal uniformization of the metric. This process is obviously very far
from yielding a practical construction. Additionally, those approaches lead to surfaces with
huge genus (typically, several thousands), which cannot be manipulated in practice.

Systole. Remark that Mg is not a compact set, as a surface can have an arbitrarily
small systole: Indeed, in any compact subset of Mg, the systole function sys(·) is bounded.
Mirzakhani showed that small systoles are somewhat rare in Mg: the probability to obtain
a surface with a systole smaller than some σ0 > 0 using a uniform distribution (for the
Weil-Petersson point of view) is of the order of σ2

0 . This means that the typical case is a
“thick” surface (see Section 2.2) with a reasonably long systole. It will be the case in most of
our input surfaces. For completeness, we will also enforce a surface with a small systole and
experimentally observe the impact in Section 7.2.

6.2 Arithmetic Issues
The algorithm relies on computations of cross-ratios and points in H2. There is no point in
computing with float or double number types, as this is notoriously unstable. Delaunay
triangulations could be computed on the very specific Bolza surface, represented by algebraic
numbers. There, input points had rational coordinates, but computations with the group of
the surface led to numbers whose degrees could be controlled by tailored computations [IT17].
The same approach was shown to fail already for genus 3 [EITV22] in practice with the
Core library [cor]. Our algorithm is generic, the arithmetic issues must be considered
independently of a given specific surface. Even more than for standard benchmarks on points
in the Euclidean space, using rational numbers is key for running software and go beyond
toy cases.

The Teichmüller space Tg can be parameterized either from a pants decomposition and the
Fenchel-Nielsen coordinates or by a fundamental polygon in H2 and side-pairings [Bus10,
§ 6]. Since we aim at computing triangulation in H2, starting from a fundamental polygon is
the right choice to avoid the use of hyperbolic trigonometric functions. Any genus 2 surface
has a fundamental domain that is a symmetric octagon centered at the origin [ABC+05].
More precisely, three points are first chosen in the upper half of the Poincaré disk. Then
a fourth point is computed so that the octagon formed by these four points and the four
symmetric points with respect to the origin is a fundamental domain. The Teichmüller space
T2 is thus parameterized by three complex numbers and this construction generically leads
to algebraic numbers. For higher genus surfaces, a construction of fundamental polygons is
described in [ZVC06, § 6.11], but unfortunately it does not lead to tractable numbers.

Restricting to complex numbers with rational real and imaginary parts gives a dense subset
of the Teichmüller space T2 [DDKT22]. This means that for any genus 2 surface, we can work
on an arbitrary close surface given by rational numbers. This allows us to only use exact
rational computations for constructing an ε-net (see Section 5.2) and algebraic extensions of
degree 2 to check its correctness (see Section 5.4). The eight vertices of the domain actually
project on the same point on the surface. Triangulating this convex octagon in an arbitrary
way gives a triangulation of the surface with one vertex. The next step is to compute the
cross-ratios of all edges. Then the Delaunay triangulation is computed using flips [DDKT22].
The data structure produced by Dubois’ code is a combinatorial map with a cross-ratio on
each edge, and one anchor. To generate the input for our ε-net algorithm, we only have to
add an anchor for each face of the triangulation. Since the initial triangulation has only one
vertex and six faces, the remaining anchors are computed (and associated to their respective
face) using cross-ratios, by successively computing lifts of adjacent triangles, as detailed in
Section 4.
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7 Experiments
All the experiments of Section 7.1 are performed on 180 random surfaces of genus 2 that are
expected to have a large systole (see Section 6.1). Section 7.2 focuses on a surface with a
small systole. Section 7.3 displays and analyzes visualizations of the output.

The source code and complete data of the experiments are available on GitHub1.

7.1 Main Results
For each of the 180 random surfaces, an input for the ε-net algorithm is computed as a single
vertex Delaunay triangulation of the surface, as explained in Section 6. The epsilon_net
method was run with 50 values of ε on every input, decreasing from 0.5 to 0.01 with a step
of 0.01. Table 1 presents an overview of the results.

We first observe that the number of vertices in the computed ε-nets is close to the theoretical
upper bound for an ε-thick surface which is 16(g − 1)/ε2 = 16/ε2 since g = 2 for all surfaces
of the experiments. In proportion, the number of vertices is 54% of the upper bound on
average, with a standard deviation of 2%. The minimum is 47% and the maximum is 63%
over all tested surfaces and values of ε.

Table 1: Average number of vertices of the ε-nets.

ε 0.50 0.40 0.30 0.20 0.10 0.05 0.01
Avg. # of vertices 34 54 96 216 865 3,454 86,314

16/ε2 64 100 178 400 1,600 6,400 160,000

Even though we do not have a complexity analysis of the visibility walk for the point location,
we observe that the walk is traversing a (small) constant number of triangles. The average
number of computed triangle lifts during each walk tends to decrease when ε becomes smaller,
while the average proportion of points located in the starting triangle lift of the walk tends
to increase, as shown in Figure 8. On average, 68% of the approximate circumcenters lie in
their triangle lift. Over all surfaces and all tested values of ε, the farthest located points
were 4 triangles away from the starting triangle of the walk.

Since in practice, the point location performs a constant number of operations, the complexity
of the algorithm is proportional to the total number of flips. We counted the number of flips
done to retrieve the Delaunay property of the triangulation after each insertion. On average,
it is decreasing when ε becomes smaller, going from 3.41 for ε = 0.5 to 2.41 for ε = 0.01, as
shown in Figure 9. It shows that the number of flips at each insertion is in practice a small
constant. The total number of flips is thus, in practice, linear in the number of points, which
is in contrast with the theoretical quadratic bound (see Section 2.3).

In Appendix C, we show an order of magnitude for the running times to give an idea of the
practical complexity of our implementation. Interestingly, it appears to be slightly faster
than quadratic in 1/ε.

7.2 Surface With a Thin Part
As mentioned in Section 6, surfaces with a small systole are not common. Recall that we
generate our input by choosing three random points in the Poincaré disk to form a symmetric
octagonal fundamental domain. We designed a surface of genus two with a systole less than
10−4 by explicitly choosing two of these points very close together so that the corresponding
side of the domain projects onto a small geodesic loop on the surface. The length of this
geodesic is then an upper bound on the systole.

1https://anonymous.4open.science/r/SOCG_2025_submission_implementation_epsilon_net-D4C2
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Figure 8: Average number of computed triangle lifts in the walk at each locate query (left,
solid), and average percentage of points lying in the initial triangle lift of the walk (right,
dashed).
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Figure 9: Average number of flips done to recover the Delaunay property after each insertion.

Precision issues The epsilon_net method produces an ε-net for ε ⩾ 0.22, which we
certify using the method described in Section 5.4. For ε = 0.21, the output is not an
ε-covering, which means that the algorithm misses some large triangles. However, it is an
1.05 × ε-covering. This indicates that this problem is likely a precision issue, which motivates
the need for a higher precision approximation of the circumcenters (see Section 5.4).
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Number of vertices With a systole less than 10−4, the number of points in the output of
this surface is upper bounded by a number of the order of 109 according to the theoretical
upper bound of 16(1/ε2 + 1/σ2) (see Section 2). However, the observed number of points
is far from this bound. The results shows that it actually depends on a quantity w(σ, ε),
defined below, instead of 1/σ2.

The injectivity radius rx(S) of a point x ∈ S is the supremum of all r > 0 such that the
open ball of radius r centered at x is an embedded disk in S [Bus10, Chapter 4]. When
σ < ε, the surface has an ε-thin part defined as {x ∈ S | rx(S) ⩽ ε}. This ε-thin part
is composed of one or several cylindrical collars around the closed geodesics of length less
than ε. The width of the collar around σ is twice the distance between its boundary and
σ. It is equal to w(σ, ε) = 2 arcosh(sinh(ε/2)/ sinh(σ/2)) [EPV22]. The geometric intuition
is that the number of points in an ε-net of a cylindrical collar is linear in its width. In
Table 2, we observe that the number of vertices in the output of this surface is proportional
to 16/ε2 + w(σ, ε)/ε.

Table 2: Comparison between the number of vertices in the output and a proportion of
16/ε2 +w(σ, ε)/ε. The coefficient (0.5383) used is the proportion of the upper bound observed
in our experiments on surfaces with large systoles (Section 7.1).

ε 0.5 0.45 0.4 0.35 0.3 0.25
Number of vertices 58 64 75 108 137 179

0.5383 × 16/ε2 + w(10−4, ε)/ε 54 64 78 98 127 174

7.3 Visualization of the Output
To visualize an ε-net, we draw a fundamental domain of the surface in the Poincaré disk
using its Delaunay triangulation. To build a fundamental domain from a triangulation it
suffices to draw a lift of each triangle in a connected way. We cannot just use the anchors
since they would generally not lead to a connected domain. So, we lift one anchor of a
triangle and build lifts of the other triangles starting from this anchor. Additionally, we
translate one vertex ṽ of the initial anchor to the origin of the Poincaré disk (and apply the
same translation to the 2 other vertices) to obtain a drawing that is better centered in the
unit disk. Once the starting triangle lift chosen, the drawing only depends on the order of
processing of the adjacent triangles.

In Figures 10 and 11, the drawings are computed by Dubois’ code that uses a weight on
edges to order the lifts of triangles of the triangulation T of S. The weight of an edge (x̃, ỹ)
is defined as |x̃|2 + |ỹ|2 (| · | being the complex modulus). The drawing is then iteratively
computed: given T ′ the set of triangles that have a computed lift, the next lift being computed
is the one in T \ T ′ that shares the edge of least weight with T ′. To ensure that the drawings
are comparable when we run the ε-net algorithm with different values of ε on a same surface,
we make sure that ṽ is always the same point.

The drawings of triangulations shown in Figure 10 naturally look like Dirichlet domains
since the weight on the edges ensures that the lifts of triangles entirely contained in the
Dirichlet domain will be drawn. This becomes clear when drawing the Dirichlet domain of ṽ
translated to the origin (Figure 12). Since the input of the ε-net algorithm is a Delaunay
triangulation of a single vertex, we obtain a Dirichlet domain by computing the circumcenter
of all the lifted triangles incident to ṽ in the input, before running the ε-net algorithm.

An alternative drawing is obtained by ordering the lifts of the triangles around the initial
anchor following a Breadth First Search (BFS) algorithm on the adjacency graph. Such
a drawing actually represents a combinatorial Dirichlet domain, see Figure 13. We can
observe that, for larger values of ε, many triangles can be drawn outside the Dirichlet domain.
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Figure 10: Delaunay triangulations of the computed ε-nets for ε=0.5 (left), ε=0.1 (middle),
ε=0.05 (right) on the surfaces of seed 123 (top) and 321 (bottom).

Figure 11: Delaunay triangulation of the computed 0.25-net of the surface with a small
systole of Section 7.2. We can observe the collar around the systole in the form of "horns"
pointing close to the boundary of the Poincaré disk.

But for smaller values of ε, the lift fits the domain better. It means that considering the
length of curves by their number of intersections with the triangulation of an ε-net leads
to a combinatorial distance that seems to converge to the hyperbolic metric (up to some
constant factor). Making this statement a theorem is an interesting open question.
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Figure 12: Delaunay triangulations of the computed 0.5-net (left) and the 0.05-net (right) on
the surface of seed 123, and the corresponding Dirichlet domain. Lift computed with Dubois’
algorithm.

Figure 13: Delaunay triangulations of the computed 0.5-net (left) and 0.05-net (right) on
the surface of seed 123, and the corresponding Dirichlet domain. Lift computed with a BFS
algorithm.
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A Managing the List L
We compared different ways to manage the list L of darts representing the triangles to be
considered by the algorithm, as mentioned in Section 5. Each of these ways is implemented in
an algorithm called variant. Variant A is the final algorithm presented in this paper. Variant
B is variant A but with darts pushed at the front of L instead of at the back. In variant C,
the algorithm checks whether a triangle is large before pushing (or not) one of its darts into
L. Variant D is like variant C, but in addition, the darts of the list are ordered according to
the circumradius of their triangle, the larger ones being at the front. The results, presented
in Table 3, show that any attempt to sort the list in a specific way, or to optimize its memory
consumption is counter-productive.

Table 3: Average running time (seconds) of each variant of the implementation.

Variant/ε 0.5 0.2 0.1 0.05
A 0.19 0.81 2.34 6.92
B 0.31 2.34 9.9 40.59
C 0.36 1.61 4.8 15.44
D 0.49 2.29 8.31 49.93

These running times were obtained on a Dell Precision 3571 laptop equipped with an Intel
i7-12700H CPU and 32 GB of RAM. The average is taken over the first 100 surfaces used in
the experiments.

B Point Location Walks Comparison
We compared the performance of the visibility walk and the straight walk within the ε-net
algorithm, as mentioned in Section 5.3. We measured both the average running time of the
epsilon_net method using either walk, and the number of computed lifts when the point
was not in the starting triangle lift. These results are summarized in Table 4. Note that, for
a given surface and a given parameter ε, the obtained ε-net can be different when using a
walk or the other. This is due to implementation details of the walks, leading to darts being
treated in a different order in L.

Table 4: For each point location algorithm: average running time in the ε-net algorithm, and
average number of computed lifts when the point is not in the starting triangle lift.

ε 0.5 0.4 0.3 0.2 0.1 0.05

Avg. running time (s) Straight 0.187 0.278 0.436 0.815 2.340 6.922
Visibility 0.189 0.275 0.432 0.815 2.372 7.016

Avg. # computed lifts Straight 1.022 1.024 1.023 1.025 1.026 1.028
Visibility 1.025 1.029 1.027 1.030 1.028 1.029

These running times were obtained on a Dell Precision 3571 laptop equipped with an Intel
i7-12700H CPU and 32 GB of RAM. The average is taken over the first 100 surfaces used in
the experiments.

C Running Time
We give some order of magnitude of the running time of the algorithm. The complete results
are summarized by a graph (Figure 14). All the given times are averages over the 180 surfaces
used in the experiments. These times are obtained on a cluster equipped with an Intel Xeon
Gold 5220 CPU and 96 GB of RAM.
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The average running time of the algorithm is less than 1 second for ε ⩾ 0.23. It is 3.47
seconds for ε = 0.1, and 47.46 seconds for ε = 0.02. It takes about 2 minutes and 40 seconds
to run the algorithm for ε = 0.01. The average running time of the algorithm fits the function
f(ε) = 0.0901/ε1.5962 with an r2 greater than 0.999. The actual time-complexity of the
algorithm is therefore sub-linear in the number of points, which is O(1/ε2). This behavior
can be explained by the number of lifts computed for the point location and the number of
flips at each insertion, which are both decreasing as ε decreases.
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Figure 14: Average running time (seconds) of the ε-net algorithm.
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