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Abstract

Solitary foraging ants excel in following long visual routes in complex environments with limited sensory and
neural resources—an ability that remains challenging for robots with minimal computational power. Here, we
introduce a self-supervised, insect-inspired neural network that enables robust route-following on the compact,
low-cost Antcar robot. The robot leverages key aspects of ant brain and behavior: (i) continuous, one-shot
visual route learning using panoramic encoding in a mushroom body-inspired network, (ii) categorization of low-
resolution egocentric panoramas via oscillatory movements, (iii) opponent-process control of angular and forward
velocities based on visual familiarity, (iv) recognition of places of interest along routes, and (v) motivation-based
memory modulation. Antcar autonomously followed routes between indoor or outdoor destinations, forward
or backward, while remaining stable in both theoretical analysis and real-world testing despite occlusions and
visual changes. Across 1.3 km of autonomous travel, Antcar achieved challenging route-following with sub-20 cm
lateral error at speeds up to 150 cm/s, requiring only 148 kilobits of memory and processing panoramas every
62 ms. This efficient, brain-inspired architecture stands out from more sensor-intensive and computationally
demanding methods, presenting a neuromorphic approach with valuable insights into insect navigation and
practical robotic applications.

Introduction1

Insect navigation has long intrigued researchers2

across various fields, from biology to robotics, driv-3

ing the development of cutting-edge technologies for4

autonomous mobile robots [1–3]. Autonomous naviga-5

tion remains a demanding and interdisciplinary chal-6

lenge with applications ranging from space exploration7

to last miles delivery [4, 5], especially in scenarios where8

robots cannot rely on satellite systems [6]. Simultane-9

ously, robots serve as valuable tools for studying insects10

navigation and brain structure, advancing neuromor-11

phic engineering [7–11].12

In Robotics, visual teach-and-repeat methods com-13

bined with dead-reckoning techniques have gained in14

popularity [12–15]. However, experienced solitary for-15

aging ants navigate along familiar routes using only16

visual memories, without relying on dead reckoning17

(so-called path integration in the insect literature) [16–18

18]. This behavior has inspired various robotic models,19

although current implementations are generally lim-20

ited to short-range experiments of about ten meters,21

with modest computational efficiency, precision, and22

accuracy [19–23]. While ant-inspired models achieve23

results comparable to conventional computer vision24

approaches [13, 24], they struggle in dynamic environ-25

ments where computational efficiency must be balanced26

with resource use.27

Fig. 1 Biological inspiration for robotic navigation. An
ant in the foreground symbolizes nature’s efficient navigational
strategies, while the Antcar robot in the background integrates
these principles into a neuromorphic system. The blurred image
captures only the large masses of the environment, similar to the
low-pass spatial filter in the ant’s visual system, which retains
these large features even when objects obstruct the view between
the robot and the building. ©Tifenn Ripoll - VOST Collectif /
Institut Carnot STAR.

These challenges are partly due to early navigation 28

models that emphasized hymenopteran behavior rather 29

than underlying brain processes. Early models, referred 30

to as perfect memory models, stored periodic snapshots 31

at specific waypoints [25, 26]. Then, during autonomous 32

route following (or exploitation), forced scanning move- 33

ments compared acquired views to an image bank, using 34
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rotational image differences to establish the most famil-35

iar image and desired heading –a process known as the36

visual compass [27–32]. However, these approaches has37

revealed two main limitations when applied in robotics.38

The first limitation involves the cumulative storage39

of snapshots, which significantly increases memory and40

computational demands as the route lengthens, mak-41

ing it unsuitable for long-distance navigation. This issue42

was partially addressed by a neural network using the43

Infomax algorithm [33], which enables efficient encoding44

of increasing numbers of images without a correspond-45

ing rise in memory load [20, 31, 34]. However, Infomax46

requires substantial adjustments to synaptic weights for47

each input through a non-local learning mechanism,48

limiting its biological plausibility.49

In parallel, research on the Mushroom Body (MB),50

a key part of the insect brain, has highlighted its essen-51

tial role in olfactory and visual learning [35, 36]. In52

the MB, learning occurs through synaptic depression53

between thousands of Kenyon Cells (KCs) – intrinsic54

neurons that sparsely encode sensory input – and a55

few Mushroom Body Output Neurons (MBONs), which56

modulate behavioral responses based on learned asso-57

ciations. These processed signals are then transmitted58

to downstream neural circuits, influencing decision-59

making [37]. The first MB model simulating visual60

route following used a Spiking Neural Network with61

20,000 KCs and one MBON to compute familiarity [38].62

Despite this advancement, a second limitation remains:63

a forced systematic scanning during navigation slows64

robotic movement [21]. Also, this limitation does not65

reflect natural ant behavior, where scanning occurs only66

occasionally [39–41].67

To address the second limitation, an early68

robotic implementation combined a klinokinesis model69

with perfect memory, enhancing short-distance route-70

following by replacing cumbersome scanning with alter-71

nating, ballistic left and right turns where familiarity72

adjusted turn amplitude [19] (later also observed in ants73

[42]).74

To move beyond the random, undirected move-75

ment of kinesis, a taxis model was proposed, simu-76

lating directed movement toward a stimulus. In this77

model, KC firing activity was categorized into two78

distinct MBONs based on left or right orientation rel-79

ative to the goal [43, 44]. This approach mirrors how80

insects, through continuous lateral body oscillations,81

sample multiple directions based on their nest position82

[42, 45]. Subsequent robotic models for route follow-83

ing attempted to integrate this lateralized approach by84

splitting the visual field into separate left and right85

memories, but these implementations showed limited86

efficiency in real-world tasks [22, 46]. In ants, however,87

the entire field of view is sent to the MB, and memories88

are fundamentally binocular [47].89

Here, we propose the lateralized route memories90

model, an MB-inspired design with four MBONs: two91

dedicated to route following and two for recognizing92

route extremities (Fig. 2). During a one-shot outbound93

learning route, ant-like body oscillations are simulated94

through continuous in-silico rotation of the panoramic95

image, mimicking head movement. This simulated head96

orientation, relative to the dynamic local orientation of97

the route, categorizes views into left or right memory 98

based on the polarity of the angular value, leading to 99

a self-supervised model for route learning. This design 100

also mimics dopaminergic feedback from motor centers, 101

modulating MBON synapses based on the currently 102

active KCs and the integration of left and right stimuli 103

[44]. 104

In addition, our model incorporates key aspects 105

of ant navigation not previously applied in MB mod- 106

els, such as adjusting forward speed by accelerating 107

on familiar routes and slowing down in unfamiliar 108

areas [39]. Our model also enables bi-directional route 109

learning, allowing to retrace a route while moving back- 110

ward or forward, recognizing visual memories from the 111

outbound journey [48–51]. Embedded in the compact 112

Antcar robot (Figs. 1 and 2a), the model was tested 113

across 99 autonomous trajectories, covering 1.3 km 114

indoors and outdoors, achieving median lateral and 115

angular errors of 20 cm and 3°, respectively, with refresh 116

rates of 16 Hz during exploitation and 38 Hz during 117

learning. Our MB model showed strong robustness to 118

visual changes, including light fluctuations and pedes- 119

trian interference. This performance demonstrates the 120

potential of our MB model for efficient, adaptable visual 121

navigation in complex environments with accessible 122

hardware and minimal computing requirements. 123

Results 124

Our proposed MB model emulates ant visual processing 125

by encoding panoramic images as ultra-low resolution 126

neural representations, enabling efficient learning and 127

route recognition with minimal computational demands 128

(see Methods for details, Fig. 2b). The model operates 129

in two main phases: learning (Fig. 2c) and exploitation 130

(Fig. 2d). During the learning phase, our self-supervised 131

model encodes the route using two MBONs and stores 132

place-specific memories for the Nest and Feeder as route 133

extremities (see Methods, Fig. 2c). In the exploita- 134

tion phase, the robot processes each view through both 135

memory pathways, yielding two familiarity values (left 136

and right MBON activities). The lateralized differ- 137

ence of familiarities (λdiff ) directs steering, while the 138

maximum familiarity value modulates forward speed. 139

Additionally, a motivational control modulates motor 140

gain, allowing the robot to stop or reverse based on a 141

familiarity thresholds set by place-specific MBONs (see 142

Methods, Fig. 2d). 143

This study begins with an offline analysis of the 144

proposed self-supervised MB model using two route 145

MBONs to assess stability, followed by experimental 146

route-following tasks in challenging indoor and out- 147

door environments. Next, a homing task is described, 148

in which the robot follows a long outdoor route in 149

reverse toward the starting area, designated as the 150

Nest (N), and stops nearby, utilizing three MBONs. 151

Finally, a shuttling task is introduced, where the robot, 152

after a single learning trial with two route MBONs 153

and two extremities MBONs for the Nest and Feeder, 154

autonomously shuttles to and fro between these two 155

locations, driving both forward and backward. 156
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Fig. 2 Overview of the Lateralized Route Memories model implemented in the Antcar robot. This figure illustrates the
process from image encoding to navigation control in both learning and exploitation phases. a The Antcar robot: a compact car-like
platform equipped with an omnidirectional camera and a (Global Positioning System - Real-Time Kinematic) GPS-RTK system for
ground truth data. b The image encoding process mimics ant’s visual processing. Panoramic images (I) are captured, blurred, sub-
sampled, and edge-filtered to create a low-resolution 32×32 pixels panorama (IS). The IS is then transformed into Projection Neurons
(PN), which are expanded into Excitatory Post-Synaptic Projections (EP) and reduced into Action Potentials (AP) via a κ-WTA
function, forming the Kenyon Cells (KC). c During learning, the robot follows a path (C) from a start point (N) with an oscillatory

movement to simulate angular deviations (θ̂e). Synaptic updates occur in the Mushroom Body Output Neurons (MBONs) through
the modulation by Dopaminergic-like Neurons (DAN), associating visual inputs with route memories in a self-supervised manner,
dependent on the sign of θe. An internal oscillator adjusts the image to simulate different angular errors, while joystick inputs control
learning dynamics. d During exploitation, the robot aims to minimize the lateral (d) and angular (θe) errors relative to the route.
The encoded image activates the MBONs according to the learned synaptic weights, allowing the robot to determine the position of
the route and adjust its steering angle and speed. Familiarity indexes (λ) of MBONs work in an opponent valence process to guide
navigation: steering adjustments are based on differentiated familiarities, while the maximum familiarity modulates the speed. Specific
MBONs related to start and end points alter motivational states to adjust route polarity or stop movement.

Self-supervised lateralized route157

memories model158

We first evaluated the self-supervised model for route159

learning (using only two MBONs) with a dataset of160

indoor and outdoor parallel routes (Figs. 3c,f). Results161

demonstrated that, with a controlled oscillation ampli-162

tude during learning, the model accurately estimated163

its heading error based on the differential familiarity164

λdiff , handling angular deviations up to 135° indoors165

and 90° outdoors (Fig. 3a,d,g). Furthermore, the maxi-166

mum familiarity index λmax, used as feedback for speed167

control, increased proportionally with heading error,168

enabling the robot to slow down when misaligned with169

the route. This behavior was consistent even when170

the robot was moved laterally off-route (Fig. 3a,b).171

Outdoors, these gradients were steeper (Fig. 3a,b,d172

and e), indicating a higher visual contrast with larger173

landmarks.174

The model’s ability to identify heading error accu-175

rately across training oscillation amplitudes up to 135°176

(Fig. 3i, see also Supplementary note 1 and Fig. S1) sug-177

gests that this parameter may not require further tuning178

below this threshold. However, larger oscillation ampli-179

tudes increased computation time, especially on the180

Raspberry Pi platform (0.4s for ±45°, Fig. 3i). Notably,181

the familiarity difference index (Fig. 3g) closely matched182

the spatial derivative of the maximum familiarity index,183

corresponding to the catchment area and turn rate 184

amplitude observed in ants (Fig. 3h, Supplementary 185

note 1, 2, Fig. S1 and S2 [43]). 186

This analysis helped establish the operational limits 187

of our MB model, maintaining stable behavior within a 188

lateral error (d) of 2 meters and an angular error (θe) 189

within the learning oscillation amplitude, set here at 190

45°. For asymptotic stability (i.e., the system’s ability 191

to return to equilibrium), we assumed a proportional 192

relationship between λdiff and θe, supported by the 193

Pearson correlation coefficient being close to 1 (Fig. 3i) 194

and expressed as Kdiff · λdiff = −θe, where Kdiff 195

is a tuned negative gain. Integrating this relationship 196

into the robot’s motion equations, we applied a Lya- 197

punov function for stability analysis. Results confirmed 198

that the system converged to equilibrium points at 199

de = 0 and θee = 0, effectively correcting small devia- 200

tions and enabling the robot to remain aligned with the 201

learned route. The full derivation of these equations and 202

Lyapunov stability proof are provided in the Methods 203

(section 6) and Supplementary note 3,4 and Fig. S3. 204

Route-following: robustness to visual 205

changes 206

The proposed self-supervised approach for route learn- 207

ing was validated through a series of indoor and outdoor 208

route-following tasks in fully autonomous mode, with 209
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Fig. 3 Offline familiarity mapping for learning of indoor and outdoor routes. This figure illustrates the differentiation and
maximum familiarity of route Mushroom Body Output Neurons (MBONs) during offline analysis of panoramic images and positional
data from indoor (Mediterranean Flight Arena) and outdoor (Luminy Campus, Marseille, France) environments. The mapping was
performed using an oscillation amplitude A of 45◦. a,d Familiarity difference index (λdiff ) and b,e familiarity maximum index (λmax)
are mapped in the route’s frame of reference, showing variations with both lateral and angular errors (d and θe). The defined operating
area is highlighted in pink. c Overview of the indoor (top) and f outdoor (bottom) environments with the learned route highlighted
in red. g Cross-sectional view of the familiarity difference index (λdiff ) and h familiarity maximum index (λmax) against the angular
error (θe) when the lateral error (d) is null. Plotted for indoor (solid line) and outdoor (dotted line) conditions. i Pearson correlation
coefficient illustrating the linear relationship between familiarity difference index (λdiff ) and angular error (θe) as a function of
oscillation amplitude A. This evolution of the correlation coefficient also illustrates the learning time required for a single oscillation
cycle for each image captured on board the robot.

only two MBONs. After a first outbound route with210

online learning, where images were captured contin-211

uously to update synaptic weights in real-time, the212

robot demonstrated robust route-following in various213

configurations (Figs. 4 and 5). First, the Antcar robot214

successfully navigated convex and concave routes in215

a cluttered indoor environment of approximately 8216

meters (median lateral error ±median absolute devia-217

tion (MAD) = 0.21 ± 0.09 m, angular error ±MAD =218

3.4 ± 6.2°, Fig. 4a,g and Fig. 7a). Moreover, the robot219

showed resilience in a kidnapped robot scenario, realign-220

ing with the learned route after being displaced (lateral221

error ±MAD = 0.26 ± 0.14 m, angular error ±MAD222

= 6.45 ± 4.19°, Fig. 4b and Fig. 7a). Only one crash223

occurred when the robot exceeded theoretical angular224

limits (see Supplementary Fig. S5 ).225

Further tests assessed the robot’s adaptability to 226

high and low light conditions (Figs. 4c,h and Figs. 4d,i). 227

Despite a single learning trial under standard lighting 228

(815 Lux), the robot accurately followed its route in 229

high (1,340 Lux) and low (81 Lux) lighting, with simi- 230

lar lateral and angular errors across tests (Fig. 7). This 231

indicates that the MB-based control system is robust to 232

significant changes in illumination. 233

In dynamic conditions with pedestrians and cam- 234

era occlusions (Figs. 4e,f), the robot maintained reliable 235

route-following when encountering pedestrians (lateral 236

error ±MAD = 0.27 ± 0.15 m, angular error ±MAD = 4 237

± 2.8°, Fig. 4e and Fig. 7a) and with dynamic occlusions 238

(lateral error ±MAD = 0.22 ± 0.13 m, angular error 239

±MAD = 4.7 ± 3.3°, Fig. 4f and Fig. 7a). The pres- 240

ence of pedestrians and occlusions was reflected by the 241
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Fig. 4 Real world experiments of indoor route following in different conditions. The learned route in red is approximately
8m long. These experiments used two route MBONs. Environmental configurations and specific familiarity data are provided in the
Supplementary Fig. S4 and video. From a to f, Route following results using the proposed self-supervised one-shot learning approach
in different environmental conditions. From g to k, The visual environments in which the robot evolved during the experiments.

loss of maximum familiarity and led to speed reductions242

and increased emerging oscillatory motion (15% slower243

than in the previous experiments, Figs. 4e,f and supple-244

mentary video), which was also observed near obstacles.245

These results underscore the system’s resilience under246

challenging conditions.247

Outdoor experiments demonstrated the model’s248

ability to maintain stable performance even over a long,249

53-meter route and under altered environmental condi-250

tions. A route was learned and accurately recapitulated251

on a sunny day (lateral error ±MAD = 0.39 ± 0.13252

m, angular error ±MAD = 5.8 ± 2.8°, Fig. 5a & 7a)253

and then retested the following day with parked cars254

removed (lateral error ±MAD = 1.3 ± 0.5 m, angular255

error ±MAD = 6.2 ± 3.2°, Fig. 5b & 7a). While the256

robot’s error margins were slightly broader on the sec-257

ond day, it remained well within acceptable limits over258

the entire route. To test Antcar’s maximum speed, a259

higher speed gain was applied during the second test260

(Fig. 5b), resulting in a cruising speed of 1.5 m/s com-261

pared to 1 m/s on the first day (see Supplementary262

Information note 5, Fig. S4 and Table S7).263

Homing: homeward route and stop264

Building on the validated route-following strategy, fur-265

ther tests refined the robot’s behavior, focusing on266

ant-like homing. Homing, by definition, is the ability to267

return to a specific location after displacement. To test268

this, we evaluated the robot’s ability to follow a 50 m269

outdoor route in reverse, stopping at a designated Nest270

area (point N in Fig. 6a). During learning, a 180° shift271

in the visual oscillation pattern simulated the “turn 272

back and look” behavior observed in ants and led to 273

homeward route following. 274

The robot successfully followed the 50 m route in 275

reverse under cloudy outdoor conditions (lateral error 276

±MAD = 0.9 ±0.5 m, angular error ±MAD = 6.3 277

±4.2°, Fig. 6a and Fig. 7a). Although maximum famil- 278

iarity was higher than in previous outdoor experiments 279

(see Supplementary note 5, Fig. S4 and Table S7), 280

overall accuracy remained stable and emerging oscilla- 281

tory movements was demonstrated (see Supplementary 282

Video). 283

To enable autonomous stopping at the Nest, a place- 284

specific MBON was used to learn ‘nest-views’ at the 285

starting point of the route. Subsequent ’recognition’ in 286

this MBON, based on a familiarity threshold, acted as a 287

motivational cues to halt route-following behavior and 288

reducing the robot’s linear velocity. This mechanisms 289

was sufficient for the robot to successfully reach and 290

stop at the Nest area in 4 out of 5 trials, with a median 291

stopping distance of 1.4 m (Fig. 6c, see also Supple- 292

mentary Fig. S6b for detailed familiarities values over 293

distance). 294

Shuttling: foodward and homeward 295

routes 296

Reverse route-following is also commonly observed in 297

ants and was successfully replicated on board Antcar. 298

Homing ants can pull food items backward when it 299

is too large to carry forward, maintaining body align- 300

ment with the outbound route learned forward, and 301

5



Fig. 5 Real word experiments of outdoor route-following with shared memories. a First day experiments, learning and
autonomous route with several cars along the road. b Second day experiments, autonomous routes using the memories from day one
in an altered environment (without cars).

using outbound memories with an opposite valance [50].302

Shuttling tests show the robot’s ability to switch move-303

ment direction and drive backward while maintaining304

alignment with the outbound route (Fig. 6b).305

This foraging behavior was made possible by incor-306

porating two additional place MBONs, which learned a307

series of panoramic views defining each endpoint of the308

route (Feeder and Nest). During shuttling, the model309

triggered a switch in motor gain polarity upon recogniz-310

ing these panoramic views corresponding to the Feeder311

or Nest areas. In a cluttered indoor environment along a312

6-meter learned route, the robot autonomously shuttled313

to and fro between the Feeder and the Nest, cover-314

ing a total distance of 160 meters without interruption.315

Using a similar familiarity threshold on the two route-316

extremity MBONs, the robot detected the endpoints317

22 times, achieving a median stopping distance of 0.31318

m (Fig. 6d) (See Supplementary Fig. S6a for detailed319

familiarities values over distance).320

This continuous shuttling revealed distinct differ-321

ences in error profiles between forward and backward322

movement (Fig. 6b). During forward motion, the robot323

maintained stable control with minimal deviations (lat-324

eral error ±MAD = 0.1 ± 0.03 m, angular error ±MAD325

= 1.26 ± 0.83°, Fig. 6b). However, during backward326

motion, the traction-driven setup amplified steering327

effects, resulting in slightly larger deviations from both328

accuracy and precision, though overall performance329

remained acceptable (lateral error ±MAD= 0.19 ± 0.08330

m, angular error ±MAD= 2.7 ± 2.1°, Fig. 6b & 7a). The331

increased ’motor’ variability led to lower visual recog-332

nition signal and thus usefully affected speed, which333

decreased by 14% compared to forward motion (see334

Supplementary note 5, Fig. S4 and Table S7). Nonethe-335

less, the robot consistently realigned with the correct336

path after such minor deviations. These results high-337

light the model’s versatility across different driving338

dynamics, capability to implement inverted steering,339

and adaptability to variations in motor kinematics and340

propulsion.341

Performance summary342

Across all experiments, including both indoor and out-343

door route-following, homing and shuttling tasks, the344

model demonstrated robust and stable navigation per- 345

formance, completing 99 autonomous trajectories with 346

a total of 1.3 km traveled. The theoretical limits of 347

the system were validated, with convergence toward 348

equilibrium points consistently achieved under various 349

environmental conditions, even in the presence of noise 350

(lateral error ±MAD = 0.22 ±0.10 m, angular error 351

±MAD = 3.8 ±2.4°, Fig. 7b). Lateral errors were within 352

acceptable margins for both indoor and outdoor con- 353

texts, aligning within the standard widths of roads in 354

France (5m) and typical indoor corridor (1.5m). 355

Additionally, statistical analysis showed no signifi- 356

cant differences in the lateral or angular errors across 357

the eleven test scenarios (Kruskal-Wallis test, H = 1.20 358

for lateral error, p value ≈ 1; H = 0.97 for angular 359

error, p value ≈ 1), underscoring the system’s reliability 360

across diverse conditions (see Statistical Information). 361

These results highlight the robustness and adaptabil- 362

ity of the MB model in both structured and dynamic 363

environments, confirming its potential applicability in a 364

variety of navigation contexts. 365

Discussion 366

Our study presents a robust, embedded, and biologi- 367

cally inspired Mushroom Body (MB) model capable of 368

long-distance navigation in the real world with minimal 369

sensor acuity and computational resources. Using fewer 370

than a thousand pixels, the Antcar robot successfully 371

followed routes at speeds up to 1.5 m/s—approximately 372

eight times its body length—achieving continuous 373

online learning in just 20 ms per image, with exploita- 374

tion times of 75 ms and an extrapolated memory 375

footprint of only 0.3 Mo per kilometer. By integrat- 376

ing ant-inspired lateralized memory with self-supervised 377

panoramic learning through oscillations, our model 378

sustained high navigational accuracy across dynamic 379

lighting, cluttered, and altered environments, with a 380

positional accuracy of approximately 20 cm. Offline 381

analysis confirmed the model’s stability and alignment 382

with defined limits, predicting robust real-time perfor- 383

mance by reliably maintaining route alignment within 384

learning oscillation bounds. 385

The angular error between the agent’s head direc- 386

tion and the dynamic local route orientation (defined 387
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Fig. 6 Real word experiments of outdoor homing and indoor shuttling. a Homing experiments using two route MBONs
and one motivation MBON for a 53m L-shaped route, in an outdoor cloudy environment. Autonomous route headed in the opposite
direction. b Familiarity nest index (λN ) over traveled distance with the fixed stopping condition (p = 0.2). c Shuttling experiments
using two route MBONs and two place MBONs in an indoor environment with artificial visual cues. Autonomous routes swing back
(blue) and forth (black). d Familiarity nest (λN ) and feeder (λF ) index over the traveled distance, zoomed in to illustrate backward
and forward movement.

in the Methods as the Frenet frame [52]) emerged as388

both a challenge during exploitation—where the sys-389

tem minimizes this error—and a cue during learning,390

where the categorization process depends on its polar-391

ity. Our model demonstrated homing behavior using392

either a 180° shift in visual oscillation or by invert-393

ing motor gains, thus enabling forward and backward394

movements with only a single foodward learning route.395

Additionally, visual place memories stored in supple-396

mentary MBONs, paired with a motivational control397

system, allowed the robot to recognize route endpoints398

and modulate motor gain, halting movement or rever-399

seing foraging motivation. With a single learning pass400

in one direction, the agent could follow the route for-401

ward, backward, and in reverse, controlled by oscillation402

parameters and motivational cues. Only motivational403

rules required adjustment to switch between route fol-404

lowing, homing, and shuttling, underscoring the model’s405

flexibility.406

Our results surpass earlier ant-inspired familiarity-407

only models robots, which were generally limited to408

short indoor routes, slower linear speed (stop and409

scan), and lower efficiency [19–23]. Our model also410

markedly outperforms state-of-the-art visual teach-and-411

repeat methods, which report memory footprints of 3412

Mo per kilometer and processing times around 400 ms413

[13]. Our model also achieves competitive results against414

teach-and-repeat systems incorporating odometry [14,415

15].416

This lateralized MB model distinguishes itself417

through reduced time and space complexity for route418

direction processing compared to perfect memory, snap-419

shot, and visual compass approaches [43]. Whereas420

time and space complexity increase with the num-421

ber of images in perfect memory or snapshot models,422

our MB model maintains constant space complexity,423

relying only on the synaptic matrix size KCtoMBON. 424

Additionally, in contrast to visual compass approaches, 425

where computational complexity scales with in-silico 426

scan range and resolution during exploitation (O(n)), 427

our MB model maintains a constant factor (O(1)) since 428

in-silico scanning is only required during learning. For 429

instance, while a visual compass scanning a ±45° range 430

at 1° resolution requires 90 comparisons per image, our 431

model requires only two comparisons, eliminating the 432

need for angular scanning in exploitation. Notably, our 433

model produced commands five times faster than the 434

visual compass approach on the same robot platform 435

[21]. 436

Our contribution also aligns well with current bio- 437

logical observations, particularly highlighting the effec- 438

tiveness of latent learning [53], where continuous learn- 439

ing bypass the need to control “when to learn” [31, 44]. 440

The opposed event-triggered and snapshot-based learn- 441

ing models producing place learning [15, 54] where used 442

here only to recognise place of interests such as the 443

nest and the feeder to switch motivation, but were not 444

engaged for route guidance. Also, our MB model pri- 445

oritized body orientation within the local frame rather 446

than divided the visual field [22, 46], aligning with 447

biological observations in ants with unilateral visual 448

impairment, showing that these insects store and recog- 449

nise fudnamentally binocular views [47]. Interestingly, 450

the linear relationship observed between familiarity 451

measures (and thus motor output) and angular error 452

during exploitation closely mirrors experimental find- 453

ings in ants [43]. This relationship enabled us to demon- 454

strate the asymptotical stability of the system within a 455

defined domain, ensuring the consistent and predictable 456

behavior essential for a robotic navigation model [55]. 457
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a n=22,924bn=7,165 n=1,774 n=1,211 n=1,219 n=1,510 n=2,015 n=1,583 n=2,349 n=1,754n=1,444n=900

Fig. 7 Performance during route following overview a Detailed errors for each experiment. b Weighted bi-variate distribution
for lateral (d) and angular errors (θe) across 11 different experimental configurations.

Furthermore, oscillatory learning behavior mirrors458

ant behavior, where initial routes involve slow, rota-459

tional movements, transitioning to direct paths on460

subsequent journeys [39]. These oscillations typically461

fall within ±100°, with peaks around ±45° in unfamiliar462

terrain [40, 42]. The robot’s ability to slow down and463

produce emerging mechanical scanning upon entering464

unfamiliar areas (see Supplementary Video) are consis-465

tent with such naturalistic behaviors. Finally, Antcar’s466

homing capability was maintained even when navi-467

gating backward, closely mirroring ant behavior while468

dragging food [48–50, 56]. Overall, our attemt to inte-469

grate multiple MBONs, oscillations, “turn back and470

look” behavior, and motivational control mechanisms471

echoes insect mechanisms [2, 57], and the resulting472

expression when implemented in the robot echoes insect473

behaviours.474

This study addresses several core needs identi-475

fied in research on embodied neuromorphic intelligence476

[6, 8], such as robustness to visual changes, adapt-477

ability to real-world environments, and support for478

extended route learning. Our algorithm’s efficiency479

allows computational power for additional tasks, mak-480

ing it valuable in GPS-compromised or SLAM-disrupted481

scenarios (SLAM stands for Simultaneous Localization482

And Mapping). The robot’s low-resolution, wide-angle483

vision proves resilient against moving objects that often484

disrupt SLAM. Our model is well-suited for dynamic485

environments or situations where odometry (e.g., visual,486

inertial, step-counting, or wheel-rotation) is unreliable.487

Interestingly, the semi-random encoding process,488

specifically the PNtoKC synaptic projections, intro-489

duces a “fail-secure” memory-sharing mechanism. If490

synaptic weights for encoding differ, memory shar-491

ing becomes inaccessible, an advantageous feature for492

swarm robotics or cross-robot memory sharing.493

Future research could enhance this approach. Tran-494

sitioning this model to a spiking neural network on495

neuromorphic hardware could further enhance com-496

putational efficiency and biological fidelity [11]. Addi-497

tionally, incorporating obstacle avoidance [58], would498

improve performance in dynamic environments.499

In addition, a reduction of the visual field could500

correspond to more general cases, rendering in silico501

scanning impossible. In such scenarios, it would be nec- 502

essary to estimate the angular error between the road 503

frame and the agent. This could be achieved using a 504

local angular path integration system (or odometry) 505

during learning. As demonstrated by Collett et al. [59], 506

showing that ants could utilize route segment odometry 507

for navigation. 508

Our approach does not cover beeline homing post- 509

foraging or search behaviors near points of interest, 510

although these could be added by adding path integra- 511

tion mechanisms [60] or using the current visual mecha- 512

nism but adding “learning walk” behaviors around place 513

of interest [44]. Additionally, fixed neural parameters 514

across all experiments suggest an opportunity for fur- 515

ther exploration by adjusting Kenyon Cell numbers or 516

connectivity, or testing different MB learning mecha- 517

nisms [61].Expanding the number of MBONs, akin to 518

the 34 in Drosophila [37], could enable more complex 519

motivational states, multi-branch memory storage [53], 520

and broader navigational abilities [62]. 521

Overall, inspired by the neuroethology of ants, our 522

MB model provides an effective bridge between theoret- 523

ical insights and practical applications in insect-inspired 524

autonomous robotic navigation. This egocentric model 525

confirms the neuromorphic architecture’s promise for 526

autonomous systems, suggesting a scalable solution for 527

both robotics and biological research applications. 528

Methods 529

This section describes the methodology used in the 530

present study, focusing on the Encoding, Learning, and 531

Exploitation processes of the proposed MB model (Figs. 532

2b-d). We also provide details on the hardware setup, 533

control architecture, and stability analysis (See Supple- 534

mentary Fig. S7 for the detailed route following neural 535

network). 536

Image Encoding 537

Inspired by the visual system of ants [63], the model 538

encoded real-world images into sparse, binary neural 539

representations to efficiently handle visual input. 540
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The encoding function (Fig. 2b) processed541

panoramic images from a camera with a 220° verti-542

cal and 360° horizontal field of view. This wide field543

of view enabled the camera to capture from slightly544

below the horizon to nearly directly below itself. To545

enhance natural contrast, the green channel of each546

image was selected [63], followed by Gaussian smooth-547

ing (σ = 3 pixels) to reduce noise. The image was then548

downsampled to an ultra-low-resolution 32 × 32 pixel549

thumbnail (0.145 pixel per degree), approximating550

the visual resolution of ants at 7.1° between adjacent551

photoreceptors.552

Next, a Sobel filter extracted edges, mimicking lat-553

eral inhibition as seen in insect optical lobes [64]. These554

processed images were flattened into 800 Visual Pro-555

jection Neurons (PNs), comparable to the number of556

ommatidia in ants. The PNs were further expanded557

into Kenyon Cells (KCs) using a fixed, sparse pseudo-558

random synaptic matrix (PNtoKC). Each KC received559

input from four PNs, enhancing the visual encoding’s560

discriminative power within the Mushroom Body (MB)561

[65], forming an Excitatory Post Synaptic Projection562

(EP) vector of size u.563

The EP vector size was set to u = 15, 000 for564

the route MBONs (MBONR and MBONL), while for565

place-specific MBONs (MBONN andMBONF ), which566

required fewer images, u was set to 5,000. A κ-Winner-567

Take-All (WTA) mechanism was applied to capture the568

highest contrasts, creating a high-dimensional, sparsi-569

fied binary vector. This vector, referred to as the Action570

Potential (AP), consequently activated only 1% of KCs571

(κ = 0.01), giving u = u ∗ κ active neurons. This572

final binary representation served as the encoded visual573

input.574

All parameters were predefined by literature and575

experimental tests, but not further optimized.576

Routes and places learning577

The learning process is governed by synaptic depression578

through anti-Hebbian learning.579

KCtoMBONi =

{

0, if APi = 1

KCtoMBONi, otherwise
(1)

For each MBONs, their synaptic weight matrix580

(KCtoMBON) dynamically adjusted their weight581

based on input from the AP layer described in equation582

1 and from the mimicked dopaminergic feedback. Here,583

i represents the ith neuron in the specified vector, with584

KCtoMBONi and APi in {0, 1}.585

The simulated oscillatory movements during learn-586

ing were obtained by rotating each captured image in587

steps, creating a sweep of rotations (θc) described by588

the following function:589

θc(n) = A · sin (n ·∆θ + φ) for n = 0, 1, 2, . . . ,
2A

∆θ
(2)

where A represents the oscillation amplitude, ∆θ the590

step size, and φ the phase shift. The step size was fixed591

at ∆θ = 5◦, with A = 45◦ for route MBONs and A =592

30◦ for place MBONs. The phase shift was φ = 180◦ 593

only for the homing task (Fig. 6). 594

For route learning, the model assumed the robot 595

perfectly aligned to the route being learned. The body 596

rotation was estimated as θ̂e = θe + θc, where therefore 597

θe = 0 during learning. The encoded binary image was 598

categorized based on the polarity of θ̂e, such that: 599

{

Learn(AP,KCtoMBONR), if θ̂e ≤ 0

Learn(AP,KCtoMBONL), if θ̂e ≥ 0
(3)

Here, the function Learn() follows equation 1. 600

Synaptic weights (KCtoMBON) were stored in CSR for- 601

mat, achieving significant data compression to 148 kilo- 602

bits independently of the route length, reducing memory 603

requirements by 99.97% from cumulative image storage. 604

This self-supervised model continuously learned visual 605

input at high throughput without memory overload, 606

as only novel views (i.e., newly recruited KCs) modu- 607

lated synapses. Several panoramic views were learned 608

to define the start and finish areas in their respective 609

MBONs, serving as motivational cues. 610

Exploitation process and control 611

architecture 612

During exploitation, the model calculated familiarity 613

scores (λ) by comparing the current input (AP ) with 614

each MBON’s synaptic weight matrix (KCtoMBON): 615

λ =
1

u

u
∑

i=1

APi ·KCtoMBONi (4)

This familiarity score, ranging from 0 (unfamiliar) 616

to 1 (familiar), was used to assess route alignment. 617

The lateralized difference in familiarities between the 618

left and right MBONs (λdiff = λL − λR), which indi- 619

cates whether the current view is more oriented to 620

the left or right of the route, guided the robot’s steer- 621

ing angle (ϕ). Meanwhile, the maximum familiarity 622

(λmax = max(λL, λR)), representing how familiar the 623

current view is, modulated its speed (v). 624

Thus, the control input U was defined as: 625

U =

[

v

ϕ

]

=

[

M ·Kv · sat(1− λmax)
M ·Kϕ · λdiff

]

(1)

Here, Kv and Kϕ are proportional gains that con- 626

trol linear and angular velocities, while the saturation 627

function (sat()) establishes a minimum throttle level, 628

ensuring minimum speed even at low familiarity lev- 629

els. The motivational state (M) regulated transitions 630

between behaviors based on a familiarity thresholds 631

within place-specific MBONs. During route following, 632

M was consistently set to 1. In homing experiments, 633

where the objective was to stop at the nest, M initially 634

started at 1 and switched to 0 once the familiarity of 635

the nest-specific MBON (λN ) fell below a fixed thresh- 636

old (p = 0.2), signaling arrival at the nest. For shuttling 637

tasks, M alternated between values of 1 and −1 as the 638
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robot reached each route extremity, driven by a famil-639

iarity thresholds of the two place-specific MBONs (λN640

and λF ).641

Theoretical analysis of the robot stability642

Stability in mobile agents, biological or robotic, is essen-643

tial for reliable, predictable behavior. In control theory,644

an agent’s motion is generally modeled as ẋ = f(x, U),645

where x is the state vector (e.g., position or velocity), U646

is the control input, and f describes system dynamics.647

A desired equilibrium point xe is achieved by defining a648

control input Ue such that f(xe, Ue) = 0, allowing the649

system to maintain stability and return to equilibrium650

after disturbances. Stability is typically assessed using651

a Lyapunov function [55], which ensures the system652

converges to a stable state over time.653

In contrast to conventional control approach, we654

applied a neuroethologically inspired control input655

derived from ant behavior, assessing stability via an656

a posteriori Lyapunov analysis. The robot’s motion657

was modeled in a Frenet frame, a moving reference658

frame coincident with the nearest point on the route,659

to minimize lateral and angular errors, defined by x =660

[d, θe]. Empirical data for stability assessment was col-661

lected in indoor and outdoor environments (paths of662

approximately 6 meters with 855 learned images each),663

providing distinct visual contexts (Figs. 2, 3). The664

robot’s equations of motion from a global to the Frenet665

frame are [66]:666





ṡ

ḋ

θ̇e



 =





v (cos θe − tanϕ sin θe)
v (sin θe + tanϕ cos θe)

v tanϕ
L



 , (5)

where s is the arc length along the route, d is the667

lateral error, and θe is the angular error.668

This kinematic model, along with by empirical669

observations (Fig. 3), enabled us to establish an asymp-670

totically stable domain for lateral and angular errors (d671

and θe), ensuring reliable route-following performance672

even with minor disturbances. The full theoretical sta-673

bility proof and derivations of the model in the frenet674

frame are provided in the Supplementary note 3 and 4.675

Antcar robot and ground truth system676

The experiments were conducted using Antcar (Fig.677

1 and Fig. 2a), a PiRacer AI-branded car-like robot.678

Antcar features four wheels, with two rear drive wheels679

powered by 37-520 DC motors (12V, 1:10 reduction680

rate) and a front steering mechanism controlled by681

an MG996R servomotor (9kg/cm torque, 4.8V). The682

robot’s chassis measures 13×24×19.6 cm and is powered683

by three rechargeable 18650 batteries (2600mAh, 12.6V684

output). Antcar’s primary sensor is a 220° Entaniya685

fisheye camera, mounted upward to capture panoramic686

images at 160 × 160px × 3 resolution and 30 Hz, pro-687

cessed using OpenCV on a Raspberry Pi 4 Model B688

(Quad-core Cortex-A72, 1.8GHz, 4GB RAM), running689

Ubuntu 20.04. Note that there was no closed-loop con-690

trol on the wheel rotation speed. Raspberry Pi manages691

real-time performance and controls the motors through692

a custom ROS architecture.693

Real-time communication is facilitated by ROS 694

Noetic, either via Wi-Fi (indoor) or a 4G dongle (out- 695

door). The robot can be controlled manually using 696

a keyboard, joystick or with GPS waypoint, but in 697

autonomous visual-only mode, it follows its own inter- 698

nal control law. Control inputs—steering angle (ϕ) and 699

throttle (v) are processed using the PyGame library. 700

Real-time data visualization and post-experiment mon- 701

itoring are achieved via Foxglove. 702

Antcar has a maximum velocity of 1.5 m/s and 703

a maximum steering angle of 1 rad, with a wheel- 704

base of 0.15 m. The robot’s configuration states q = 705

(x, y, θ) were tracked using different systems. Indoor 706

experiments utilized eighteen Vicon™ motion capture 707

cameras, with infrared markers on Antcar providing 708

precise tracking at 50 Hz with 1 mm accuracy. Out- 709

door experiments employed a GPS-RTK system with a 710

SparkFun GPS-RTK Surveyor, providing 14 mm accu- 711

racy at 2 Hz (GPS-RTK stands for Global Positioning 712

System - Real-Time Kinematic). Ground speed and 713

angular speed were calculated through position differen- 714

tiation. The base station used for GPS corrections was a 715

Centipede LLENX station located at 24 km (Aeroport 716

Marseille Provence) from the experiment site in Mar- 717

seille. Note that the ground truth acquisition system 718

was run on the Rapserry Pi along with the mushroom 719

body model. 720

Lateral error was calculated by finding the near- 721

est point on the learning route using the Euclidean 722

distance, with the shortest distance representing the 723

absolute lateral error. Angular error was defined as 724

the absolute difference in heading between the near- 725

est learning route point and the current position. The 726

euclidean distance between the agent and the Nest 727

or Feeder areas was calculated to estimate the dis- 728

tance when the robot switched behavior (i.e familiarity 729

dropped below the threshold). 730

Statistical informations 731

The errors used for statistics were recorded at each 732

command decision timing. Due to non-normality in 733

error values (with outliers retained), Box-Cox trans- 734

formations were applied to stabilize variance across 735

experiments, reducing the impact of outliers caused by 736

indoor obstacles that hid the robot from the motion 737

capture system or by GPS-RTK inaccuracies outdoors. 738

The groups was compared using the Kruskal-Wallis test 739

[67], and median values are reported with median abso- 740

lute deviation (MAD), as median ± MAD. The package 741

python SciPy [68] was used for the statistics. The overall 742

medians and bivariate distribution plots were weighted 743

by the number of measurements per experiment for the 744

Fig. 7. 745
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