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Abstract

We analyze an optimization problem of the conductivity in a composite material arising in a heat
conduction energy storage problem. The model is described by the heat equation that specifies the
heat exchange between two types of materials with different conductive properties with Dirichlet-
Neumann boundary conditions on the external part of the domain, and on the interface characterized
by the resisting coefficient between the highly conductive material and the less conductive material.
The main purpose of the paper is to compute a shape gradient of an optimization functional in
order to accurately determine the optimal location of the conductive material using a classical shape
optimization strategy. We also present some numerical experiments to illustrate the efficiency of the
proposed method.

1 Introduction

Thermal energy storage (TES) plays a pivotal role in achieving effective and efficient heat generation and
utilization, especially when there is a spatial and temporal mismatch between heat supply and demand.
Among various heat storage processes, latent heat storage stands out, involving a phase transformation
of storage materials known as phase change materials (PCMs), typically transitioning between solid and
liquid states. Enhancing the thermo-physical properties of PCMs through special additives or composite
development is recognized as a scientific challenge to bridge the gap between TES targets and current
performance levels.

Additives, particularly carrier materials, play a crucial role in improving heat and mass transfer,
enhancing thermo-mechanical stability, preventing undesirable effects like segregation, or undercooling
in PCMs, and improving cyclability. One common experimental approach to boost heat transfer in heat
storage materials is through the addition of extended surfaces or encapsulated phase change materials.
Despite the attractive energy density of PCMs, they often exhibit low thermal conductivity. Therefore,
enhancing energy storage efficiency becomes imperative, and this can be achieved by incorporating
spherical or other shape capsules that improve conductivity properties. Naturally, the key question
revolves around studying the influence of the shape and position of capsules to accelerate the melting
process.

To answer this goal, a suitable optimization problem is considered for which different mathematical
tools can be used, like geometrical and topological shape optimization based on level set method (see
[7]). The main idea of this Eulerian approach is to represent the shape of the composite structure in
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an implicit way within a fixed meshed working domain. The level set function is then advected through
Eikonal Hamilton-Jacobi equation in which the normal velocity is provided by the shape derivative of the
cost function. The difficulties users have to cope with are listed by G. Allaire (see [2, 1] and references
therein). The challenge is, usually, to perform an appropriate interpolation scheme to smoothen the
discontinuous material parameters across the interfaces or to consider diffuse interfaces instead of sharp
ones.

Various techniques have been suggested in the literature, such as density-based methods (we list
essentially the Solid Isotopic Material with Penalization, SIMP, topology optimization method [4] and the
homogenized one [12]). The drawback of such methods is that they are not effective to capture precisely
interfaces unless dense girds at the vicinity of these ones are created. The phase field method (see [17])
is an interesting alternative to deal with diffuse interfaces in multimaterial structural optimization. In
recent years, original approach has been developed combining level set method and Extended Finite
Element Method (XFEM) in structural topology and shape optimization field that further accurate an
efficient issues. G. Allaire proposes a level set based mesh evolution method applied to multimaterials
compliance minimization [1]. The milestone of this approach is to adapt mesh at each stage of the
optimization process, so to obtain an exact meshed description of the shapes while benefiting the whole
flexibility of the level set method. An alternative to geometrical shape optimization is the topological
shape optimization, a recent mathematical technology championed by Sokolowski [16], Masmoudi [11],
etc.

In this article, we propose to take advantage of the spherical shape of the capsule to adopt the
strategy of computing a shape gradient of an optimization functional in order to compute accurately
the optimal location of the conductive material using a classical strategy of shape optimization. We
present an investigation of the optimization of the conductivity in a composite material. We consider the
composite material as the assembly of two or more materials that are not miscible, of a different nature,
and able to combine several mechanical or chemical characteristics specific to each component. Doing so,
the resulting material may have better overall thermo-physical properties than its constituent materials
and allow for a wider range of applications (see [15]). This is why in recent years, composite materials
have established themselves in many cutting-edge sectors such as space, aeronautics, shipbuilding or even
the automotive industry.

Often times the composite consists of a matrix of a given material (for example cement or carbon)
embedded with a second material to enhance a given characteristic such as thermal conductivity or the
resistance to fractures. In such case, when subject to a heat load, a temperature drop at the interface
between components of a composite is observed. We describe this discontinuity in the temperature
field using a thermal resistance which is known as inter-facial thermal resistance and which is the result
of two phenomena. The first is the thermal resistance observed when two components are in contact
as a result of poor mechanical and chemical bounds between the components. The second is when
there is a discontinuity in the thermal property of the components of the material such as the thermal
conductivity [13].

For composites subject to high temperatures, for example in applications for thermal energy storage
which is at the origin of our motivation, arrangements of fibers and their shape play a crucial role in the
effectiveness of the composite. Using experimental means in order to design the position and or optimal
shapes for such materials can become very expensive and time consuming.

It is therefore interesting to develop a theoretical argument to optimize the fiber placements within
the material without any modification of the topology, and this is precisely our goal. In Section 2, we
give the mathematical formalism for the unsteady heat conduction problem in a composite media with
thermal contact resistance at the interface between the components, and develop the theoretical approach
for the shape optimization problem in this context. Then in Section 3, numerical examples illustrate the
efficiency of the proposed method in the 2d setting when prescribing the shape of the fiber to be a disk
of prescribed radius.
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2 Mathematical setting and results

In this section we will present the optimization problem we are going to analyze and then introduce
the main result, the computation of the shape gradient of the optimization functional. In addition, we
consider the particular case in which the domain O is a ball. We will also give the proof of the main
result.

2.1 Statement of the problem

We consider the domain
Ω = (0, 1)2

and we decompose its boundary as follows:

∂Ω = Γ0 ∪ Γn, Γ0 = (0, 1)× {0}, Γn = ∂Ω \ Γ0.

Let κ > 1 be a (large) positive constant corresponding to the conductivity of the highly conductive
material, and R > 0 denotes a resisting coefficient between the highly conductive material and the less
conductive material, supposed to be of conductivity one.

Given a smooth open subset O of Ω with O b Ω, we set

S = Ω \ O (1)

and we consider the solution u = (uS , uO) of the following problem:

∂tuS −∆uS = 0, in (0, T )× S,
∂tuO − κ∆uO = 0, in (0, T )×O,
∂nuS = κ∂nuO, on (0, T )× ∂O,
R∂nuS = uO − uS , on (0, T )× ∂O,
∂nuS = 0, on (0, T )× Γn,

uS = UM , on (0, T )× Γ0,

(uS(0, ·), uO(0, ·)) = (0, 0), in S ×O.

(2)

Here, uS = uS(t, x) denotes the temperature in the less conductive material, which fills the set S,
uO = uO(t, x) denotes the temperature in the highly conductive material, which fills the set O, n
denotes the outward normal to S, and UM denotes a positive constant temperature.

To analyze the well-posedness issues for (2), it is useful to remark that the system can be fit into an
abstract form as

v′ + LOv = 0, t ∈ (0, T ), v(0) = −UM , (3)

where v corresponds to u by the relation v = (vS , vO) = (uS − UM , uO − UM ), and where LO is the
operator on L2(S)× L2(O) with the scalar product

〈(vS , vO), (wS , wO)〉L2(S)×L2(O) = 〈vS , wS〉L2(S) + 〈vO, wO〉L2(O),

(which of course can be identified with L2(Ω) with its usual scalar product) with domain

D(LO) = {(vS , vO) ∈ L2(S)× L2(O), with (∆vS ,∆vO) ∈ L2(S)× L2(O),

and ∂nvS = κ∂nvO and R∂nvS = vO − vS on ∂O, and ∂nvS = 0 on Γn, vS = 0 on Γ0}, (4)

defined by
LO(vS , vO) = (−∆vS ,−κ∆vO). (5)

One then easily checks that LO is positive self-adjoint: for all (vS , vO) and (wS , wO) in D(LO),

〈LO(vS , vO), (wS , wO)〉L2(S)×L2(O) =

∫
S
∇vS · ∇wS dx+ κ

∫
O
∇vO · ∇wO dx+

1

R

∫
∂O

[v][w] dσ,
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where [v] = vO − vS and [w] = wO − wS denote the jumps at the interface ∂O.

Accordingly, the well-posedness of (3) can be derived through standard arguments, see for instance
[6, Section 7.4], and we will not give more details about it here.

On the other hand, it is convenient to rewrite problem (2) in a variational form. In order to do this,
we introduce the space

H1
O(Ω) = {v = (vS , vO) ∈ L2(Ω) such that (vS , vO) ∈ H1(S)×H1(O), vs = 0 on Γ0},

and we rewrite the problem (2) in its variational form as follows: find u = (uS , uO) such that u−UM ∈
L2(0, T ;H1

O(Ω)) ∩H1(0, T ; (H1
O(Ω))′) and for all z ∈ H1

O(Ω), we have (equality in L2(0, T ))

d

dt

(
〈(uS , uO), (zS , zO)〉L2(S)×L2(O)

)
+

∫
S
∇uS · ∇zS dx+ κ

∫
O
∇uO · ∇zO dx+

1

R

∫
∂O

[u][z] dσ = 0 (6)

with
(uS(0), uO(0)) = (0, 0). (7)

It is also observed, since the unique non-trivial datum is UM , which is a positive constant temperature,
the solution u = (uS , uO) of (2) will be smooth in the following sense: uS ∈ C∞(S), uO ∈ C∞(O).
This can be checked using classical PDE arguments, for instance by constructing a smooth lifting ũM of
UM , compactly supported in a neighborhood of (0, T )× Γ0 not intersecting O, thus yielding u− ũM as
the solution of (2) with homogeneous Dirichlet boundary conditions on (0, T )×Γ0 and a smooth source
term localized in S and away from the interface ∂O. Classical strategies then apply immediately, see for
instance [8, Section 7.1.3].

The optimization problem we would like to address consists in studying the following functional:

J(O) =

∫ T

0

∫
S
|uS(t, x)− UM |2 dtdx, (8)

where uS satisfies (2) is depending on O through the definition of the sets O and S = Ω \ O (see (1))
and UM is the positive constant temperature appearing in the boundary condition on Γ0 in (2). In some
sense, this functional can be seen as an evaluation of the time needed for solutions of (2) to reach the
equilibrium (uS , uO) = (UM , UM ).

Therefore, the optimization problem we would like to establish is the following: find O ∈ Uad such
that

J(O) 6 J(O′) ∀O′ ∈ Uad, (9)

where Uad is suitable admissible set of domains for O.

Remark 2.1 Before going further, let us note that there could be many different functionals which
may be interpreted as an evaluation of the time needed for solutions of (2) to reach the equilibrium
(uS , uO) = (UM , UM ).

For instance, since LO is positive self-adjoint with compact resolvent, its spectrum is composed of a
sequence of eigenvalues λ1(O) 6 · · · 6 λj(O) 6 · · · → ∞ and corresponding eigenvectors (Φj(O))j∈N,
which form an orthonormal basis of L2(S)× L2(O). One easily checks that for all t > 0 we have

‖e−tLO‖L (L2(S)×L2(O)) = e−tλ1(O).

Therefore, another optimization problem of interest could be the minimization of the first eigenvalue
λ1(O) with respect to O in a suitable class of admissible domains. We did not explore this way so far,
since this is certainly a more intricate study that the one we propose here.

Additionally, let us remark that, for the application in mind, a change of phase appears when the
temperature gets close to the temperature UM , which yields to a non-linear parabolic model instead of
(2). With such non-linear equations, the above interpretation of the time needed to reach the equilibrium
in terms of the eigenvalue of the operator is not so evident. �
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2.2 Computation of the shape derivative: main result

For numerical approximation of the optimization problem (9), we compute the gradient of the functional
J at some open set O0 b Ω. Following the classical strategy of shape optimization, see e.g. [10], we
somehow embed a differential structure on the set of all open sets. This can be done as follows.

Given a smooth vector field f : Ω→ R2 such that f vanishes in a neighborhood of ∂Ω, we introduce
Xf as the flow corresponding to f , that is the solution of the following ordinary differential equations:

dXf

ds
(s, x) = f(Xf (s, x)), s ∈ R, x ∈ Ω,

Xf (0, x) = x, x ∈ Ω.
(10)

We then consider the family of open sets given by s 7→ Of,s = Xf (s,O0) and the following quantity:

d

ds
(J(Of,s)) |s=0, (11)

which, in some sense, corresponds to the derivative of J at O0 in the direction of (the deformation given
by) f .

Remark 2.2 Note that another possibility could be to set Õsf = (Id+ sf)(O0) for s in a neighborhood

of 0 and to analyze the derivability of s 7→ J(Õsf ) at 0, corresponding to X̃f (s, x) = x + sf(x) in a
neighborhood of ∂O0. Note that the two computations yield the same result for the derivative, since
what matters is the first order variation of O0 under the vector field f , see for instance [10, Remark
5.2.9]. �

According to the structure theorem [10, Proposition 5.9.1], we know that, if s 7→ J(Of,s) is differen-
tiable at s = 0 for all f , then we should have:

d

ds
(J(Of,s)) |s=0 = `(f · n|∂O), (12)

where ` is a linear form.
Our goal is to identify this linear form. More precisely, we show the following result:

Theorem 2.3 Let O0 be a smooth open domain of Ω with O0 b Ω, and f be a smooth vector field
vanishing in a neighborhood of ∂Ω. For convenience, we next denote O0 and S0 = Ω \ O0 simply by O
and S.

Let us denote by u = (uS , uO) the solution of (2), and introduce g = (gS , gO) the solution of the
adjoint problem 

−∂tgS −∆gS = (uS − UM ), in (0, T )× S,
−∂tgO − κ∆gO = 0, in (0, T )×O,
∂ngS = κ∂ngO, on (0, T )× ∂O,
R∂ngS = gO − gS , on (0, T )× ∂O,
∂ngS = 0, on (0, T )× Γn,

gS = 0, on (0, T )× Γ0,

(gS(T, ·), gO(T, ·)) = (0, 0), in S ×O.

(13)

We also introduce the smooth vector field τ : ∂O → R2 which is such that for all x ∈ ∂O, τ(x) is a
unit tangent vector of ∂O at x (the orientation is arbitrary).

Then we have the following formula:

d

ds
(J(Of,s)) |s=0 =

∫
∂O

f · n
∫ T

0

(
(uS − UM )2 + 2

(κ− 1

κ

) 1

R2
(gO − gS)(uO − uS)

− 2τ · ∇a− 2a div∂O τ + 2κD2uOn · n gO − 2D2uSn · n gS

)
dt dσ, (14)
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where a is given by

a = gSτ · ∇uS − κgOτ · ∇uO on (0, T )× ∂O, (15)

and div∂O is the tangential divergence of the vector field τ , i.e. if τ̃ is an extension of τ in a neighborhood
of ∂O, div∂O τ = div τ̃ −Dτ̃n · n = div∂O τ .

We will give the proof of Theorem 2.3 in Section 2.4.

Remark 2.4 The tangential divergence of τ does not depend on the extension τ̃ chosen to extend τ in
a neighborhood of ∂O and is intrinsic (see [10, Definition 5.4.6]). �

Let us note that in the formula (14), the term

∫ T

0

(
(uS − UM )2 + 2

(κ− 1

κ

) 1

R2
(gO − gS)(uO − uS)

− 2τ · ∇a− 2a div∂O τ + 2κD2uOn · n gO − 2D2uSn · n gS

)
dt

can be interpreted as the gradient of J in the following sense: if one starts from a smooth open domain
O included in Ω, to make the functional J decays, one should choose a small perturbation of O of the
form Xf (s,O) for s small (or (Id+ sf)(O)) for f chosen such that

f · n = −
∫ T

0

(
(uS − UM )2 + 2

(κ− 1

κ

) 1

R2
(gO − gS)(uO − uS)

− 2τ · ∇a− 2a div∂O τ + 2κD2uOn · n gO − 2D2uSn · n gS

)
dt,

with a as in (15).

When a large number of degrees of freedom is allowed to parametrize the shape of O, the formula (14),
which requires only the computation of the solution of (2) and of the solution of the adjoint equation
(13), is then much more efficient than doing a derivative free optimization of J , which can become very
costly for high number of parameters.

The drawback is that the derivative (14) requires the computation of the traces of D2uS and D2uO
on the interface (0, T ) × ∂O, which are delicate to compute and may require a highe order numerical
method to be computed properly.

2.3 Shape derivative when imposing that O is a ball

Let us consider the particular case of the shape derivative given by the formula (14) when we impose
that the set O is a ball of prescribed radius r > 0. We show below that the expression of the shape
derivative in (14) can be slightly simplified. We will use it in our numerical experiments presented in
Section 3.

Indeed, when O = B(x0, r) is the ball of the center x0 = (x0,1, x0,2) and radius r, we can choose on
O as tangential and normal vector fields to ∂O the following vectors, whose formula can be extended in
a neighborhood of ∂O as follows:

τ(x) =
1

|x− x0|

(
x2 − x0,2

−(x1 − x0,1)

)
=

(x− x0)⊥

|x− x0|
, n(x) = − 1

|x− x0|

(
x1 − x0,1

x2 − x0,2

)
= − (x− x0)

|x− x0|
,

so that
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div τ = 0, Dτn · n = 0, div∂O τ = 0, Dττ =
n

|x− x0|
.

Accordingly, for
a = τ · (gS∇uS − κgO∇uO),

we get

τ · ∇a = (τ · ∇gS)(τ · ∇uS)− κ(τ · ∇gO)(τ · ∇uO) +
1

r
(gS∂nuS − κgO∂nuO)

+ gSD
2uSτ · τ − κgOD2uOτ · τ

= (τ · ∇gS)(τ · ∇uS)− κ(τ · ∇gO)(τ · ∇uO) +
1

rR
(gS − gO)(uO − uS)

+ gSD
2uSτ · τ − κgOD2uOτ · τ.

Since for a square matrix A ∈ R2×2, Aτ · τ +An · n = tr (A), it follows that∫ T

0

(
(uS − UM )2 + 2

(κ− 1

κ

) 1

R2
(gO − gS)(uO − uS)

− 2τ · ∇a− 2a div∂O τ + 2κD2uOn · n gO − 2D2uSn · n gS

)
dt

=

∫ T

0

(
(uS − UM )2 + 2

(κ− 1

κR2
+

1

rR

)
(gO − gS)(uO − uS) (16)

+ 2κ(τ · ∇gO)(τ · ∇uO)− 2(τ · ∇gS)(τ · ∇uS) + 2κ∆uOgO − 2∆uS gS

)
dt.

Clearly, to compute it efficiently, even for balls, this requires the computation of traces of Laplacian for
solutions (uO, uS) and thus a refined precision close to the interface ∂O.

2.4 Proof of Theorem 2.3

The computation of the derivative (11) is done in several steps, that we briefly explain below.

For convenience, we fix a smooth vector field f ∈ W 2,∞(Ω) vanishing in a neighborhood of ∂Ω. To
do the computations, we express all the quantities J(Xf (s,O)), where Xf (s, ·) is the diffeomorphism in
(10), in the fixed domain O. For simplifying the notation, we will also simply denote Xf by X. We thus
express J(X(s,O)) in terms of

vs(t, y) = us(t,X(s, y)), y ∈ O, or equivalently us(t, x) = vs(t,X(−s, x)), x ∈ X(s,O),

where us denotes the solution of (2) with Os = X(s,O). This gives

J(X(s,O)) =

∫ T

0

∫
X(s,S)

|us(t, x)− UM |2 dtdx (17)

=

∫ T

0

∫
S
|us(t,X(s, y))− UM |2 |detDX(s, y)| dt dy (18)

=

∫ T

0

∫
S
|vs(t, y)− UM |2 |detDX(s, y)| dt dy. (19)

Accordingly, it will be important to compute vs and its derivative at s = 0, which will be the next steps.
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Step 1: Approach 1. Direct computation of vs from the variational formulation (6)–(7).

We start by remarking that for all s small enough, (usS , u
s
O) satisfies: for all zs ∈ H1

Os
(Ω), we have

d

dt

(
〈(usS , usO), (zsS , z

s
O)〉L2(Ss)×L2(Os)

)
+

∫
Ss
∇usS · ∇zsS dx+ κ

∫
Os

∇usO · ∇zsO dx+
1

R

∫
∂Os

[us][zs] dσs = 0. (20)

Accordingly, for z ∈ H1
O(Ω), since zs(x) = z(X(−s, x)) belongs to H1

Os
(Ω), the change of variable

formula gives (still in L2(0, T ))

d

dt

(∫
Ω

vs(t, y)z(y)Js(y) dy

)
+

∫
S
As(y)∇vsS · ∇zS dy + κ

∫
O
As(y)∇vsO · ∇zO dy +

1

R

∫
∂O

[vs][z] Js(y)dσ = 0, (21)

where 
Js(y) = detDX(s, y), y ∈ Ω,

As(y) = Js(y)DX(s, y)−1(DX(s, y)t)−1, y ∈ Ω,

Js(y) = Js(y)|(DX(s, y)t)−1ny|, y ∈ ∂O,

(22)

see [10, Proposition 5.4.3] for the last formula.

This variational formulation can be interpreted as follows:

Js(y)∂tv
s
S − div (As(y)∇vsS) = 0, in (0, T )× S,

Js(y)∂tv
s
O − κdiv (As(y)∇vsO) = 0, in (0, T )×O,

As(y)∇vsS · n = κAs(y)∇vsO · n, on (0, T )× ∂O,

RAs(y)∇vsS · n = (vsO − vsS)Js(y), on (0, T )× ∂O,

∂nv
s
S = 0, on (0, T )× Γn,

vsS = UM , on (0, T )× Γ0,

(vsS(0, ·), vsO(0, ·)) = (0, 0), in S ×O.

(23)

Step 2: Approach 2. Direct computations of vs from the equation (2).

We have that

∇xus(t, x) = DxX(−s, x)t∇yvs(t,X(−s, x)) =

(∑
k

∂ykv
s(t,X(−s, x))∂xjXk(−s, x)

)
j

.

Then, we can write

∆xu
s(t, x) = tr (DxX(−s, x)tD2

yv
s(t,X(−s, x))DxX(−s, x)) + ∆xX(−s, x) · ∇yvs(t,X(−s, x))

=
∑
j,k,`

∂yky`v
s(t,X(−s, x))∂xj

Xk(−s, x)∂xj
X`(−s, x) +

∑
j,k

∂ykv
s(t,X(−s, x))∂xjxj

Xk(−s, x)

and

nx =
DxX(−s,X(s, y))tny
|DxX(−s,X(s, y))tny|

with y = X(−s, x) for x ∈ ∂Os,
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where, for a matrix A, At denotes its transpose. Note that the last identity is standard and can be
deduced for instance from [10, Proposition 5.4.15].

Accordingly, the equations on us read as follows on vs = (vsS , v
s
O):

∂tv
s
S −

(
tr (DxX(−s,X(s, y))tD2

yv
s
S(t, y)DxX(−s,X(s, y))) + ∆xX(−s,X(s, y)) · ∇yvsS(t, y)

)
= 0

in (0, T )× S,

∂tv
s
O −κ

(
tr (DxX(−s,X(s, y))tD2

yv
s
O(t, y)DxX(−s,X(s, y))) + ∆xX(−s,X(s, y)) · ∇yvsO(t, y)

)
= 0

in (0, T )×O,

DxX(−s,X(s, y))tny ·DxX(−s,X(s, y))t∇yvsS(t, y)

= κDxX(−s,X(s, y))tny ·DxX(−s,X(s, y))t∇yvsO(t, y) on (0, T )× ∂O,

DxX(−s,X(s, y))tny
|DxX(−s,X(s, y))tny|

·DxX(−s,X(s, y))t∇yvsS(t, y) =
1

R
(vsO − vsS) on (0, T )× ∂O,

∂nv
s
S = 0, on (0, T )× Γn,

vsS = UM , on (0, T )× Γ0,

(vsS(0, ·), vsO(0, ·)) = (0, 0), in S ×O.
(24)

Remark 2.5 It is not clear at first glance that both equations (23) and (24) coincide, but this is in fact
the case. Indeed, writing Ãs(y) = DX(s, y)−1(DX(s, y)t)−1, and remarking that it coincides with the
matrix DX(−s,X(s, y))DX(−s,X(s, y))t, tedious computations yield that for all j ∈ {1, 2},

2∑
i=1

(
∂i(Ãs(y))i,j +

∂iJs(y)

Js(y)
(Ãs(y))i,j

)
= ∆xXj(−s,X(s, y)).

From this identity, writing the space operator in (23) under the form 1
Js

div (JsÃs∇·), it is easily seen
that both equations (23) and (24) are identical. �

Step 3: Derivation of vs at s = 0.

Under the form (23), it is easy to adapt the classical argument of implicit function theorem to prove
that vs is C1 in a neighborhood of s = 0 in L2(0, T ;H1

O(Ω)) ∩H1(0, T ; (H1
O(Ω))′), see for instance [10,

Proof of Theorem 5.3.2] for a similar argument.
We then compute its derivative w = (wS , wO) at s = 0. In order to do that, we simply perform a

Taylor expansion of the quantities appearing in (22):

Js(y) = 1 + sdiv f +O(s2),

As(y) = Js(y)(I − s(Df +Df t) +O(s2)),

Js(y) = Js(y)(1− sDfn · n+O(s2)),

where O(s2) are functions which are bounded by Cs2 as s→ 0.
Accordingly, w solves the variational formulation (always in L2(0, T )): for all z ∈ H1

O(Ω), we have

d

dt

(∫
Ω

wz + udiv (f)z dy

)
+

∫
S

(∇wS · ∇zS + (div (f)∇uS − (Df +Df t)∇uS) · ∇zS) dy

+ κ

∫
O

(∇wO · ∇zO + (div (f)∇uO − (Df +Df t)∇uO) · ∇zO) dy

+
1

R

∫
∂O

([w] + (div (f)−Dfn · n)[u])[z] dσ = 0.

(25)
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Thus, subtracting the variational formulation (6) satisfied by u and applied to div (f)z, we get, for all
z ∈ H1

O(Ω),

d

dt

(∫
Ω

wz dy

)
+

∫
S

(∇wS · ∇zS) dy −
∫
S

(∇uS∇ div (f)zS + (Df +Df t)∇uS · ∇zS) dy

+ κ

∫
O

(∇wO · ∇zO) dy − κ
∫
O

(∇uO∇div (f)zO + (Df +Df t)∇uO · ∇zO) dy

+
1

R

∫
∂O

[w][z] dσ − 1

R

∫
∂O

(Dfn · n)[u][z] dσ = 0. (26)

It is then easy to check that w satisfies the following:



∂twS −∆wS + 2D2uS : Df +∇uS ·∆f = 0, in (0, T )× S,

∂twO − κ∆wO + 2κD2uO : Df + κ∇uO ·∆f = 0, in (0, T )×O,

∂nwS − (Df +Df t)∇uS · n = κ∂nwO − κ(Df +Df t)∇uO · n, on (0, T )× ∂O,

∂nwS − (Df +Df t)∇uS · n =
1

R
(wO − wS)− Dfn · n

R
(uO − uS), on (0, T )× ∂O,

∂nwS = 0, on (0, T )× Γn,

wS = 0, on (0, T )× Γ0,

(wS(0, ·), wO(0, ·)) = (0, 0), in S ×O.

(27)

Note that, denoting by τ a tangential vector field to ∂O, using the interface conditions satisfied by u on
∂O, the interface conditions in (27) can be rewritten as


∂nwS − ((Df +Df t)τ · n)τ · ∇uS = κ∂nwO − κ((Df +Df t)τ · n)τ · ∇uO, on (0, T )× ∂O,

∂nwS − ((Df +Df t)τ · n)τ · ∇uS − ∂nuS(Dfn · n) =
1

R
(wO − wS), on (0, T )× ∂O.

(28)

Step 4: Computing the derivative of s 7→ J(X(s,O)) at s = 0.

Recalling (19), we have

d

ds
(J(X(s,O))) = 2

∫ T

0

∫
S
wS(uS − UM ) dt dy +

∫ T

0

∫
S
|uS − UM |2 div (f) dt dy

= 2

∫ T

0

∫
S

(wS − f · ∇uS)(uS − UM ) dt dy +

∫ T

0

∫
S

div
(
f(uS − UM )2

)
dt dy

= 2

∫ T

0

∫
S

(wS − f · ∇uS)(uS − UM ) dt dy +

∫ T

0

∫
∂O

f · n(uS − UM )2 dt dσ. (29)

Using the solution g = (gS , gO) of the adjoint equation (13), the first term in the derivative of s 7→
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J(X(s,O)) at s = 0 can be rewritten as follows:∫ T

0

∫
S

(uS − UM )(wS − f · ∇uS) dt dy

=

∫ T

0

∫
S

(−∂tgS −∆gS)(wS − f · ∇uS) dtdy +

∫ T

0

∫
O

(−∂tgO − κ∆gO)(wO − f · ∇uO) dtdy

=

∫ T

0

∫
S
gS((∂t −∆)(wS − f · ∇uS)) dtdy +

∫ T

0

∫
O
gO((∂t − κ∆)(wO − f · ∇uO)) dtdy

−
∫ T

0

∫
∂O

((∂ngS(wS − f · ∇uS)− κ∂ngO(wO − f · ∇uO))) dtdσ (30)

−
∫ T

0

∫
∂O

((κ∂n(wO − f · ∇uO)gO − ∂n(wS − f · ∇uS)gS)) dtdσ.

We next compute explicitly each term and simplify the terms in the right hand side of the identity in
(30) as much as possible.

First, we observe that (27) implies that

(∂t −∆)(wS − f · ∇uS) = 0 in (0, T )× S, (∂t − κ∆)(wO − f · ∇uO) = 0 in (0, T )×O. (31)

We should thus focus on the interface terms (IT in the following). Using the boundary conditions
∂ngS = κ∂ngO = (gO − gS)/R on the interface (0, T )× ∂O, we get:

IT =− (∂ngS(wS − f · ∇uS) + κ∂ngO(wO − f · ∇uO))

− (κ∂n(wO − f · ∇uO)gO + ∂n(wS − f · ∇uS)gS)

=
1

R
(gO − gS) ((wO − f · ∇uO)− (wS − f · ∇uS))

− κ∂nwO + ∂nwSgS + κ∂n(f · ∇uO)gO − ∂n(f · ∇uS)gS .

On one hand, recalling that

∂nwS − (Df +Df t)∇uS · n = κ∂nwO − κ(Df +Df t)∇uO · n =
1

R
(wO − wS)− Dfn · n

R
(uO − uS),

we have

− κ∂nwOgO + ∂nwSgS

= − 1

R
(gO−gS)(wO−wS)+

Dfn · n
R

(gO−gS)(uO−uS)−κ(Df+Df t)∇uO ·n gO+(Df+Df t)∇uS ·n gS .

On the other hand, computations also show that

κ∂n(f · ∇uO)gO − ∂n(f · ∇uS)gS

= κDf t∇uO · n gO −Df t∇uS · n gS + κD2uOf · n gO −D2uSf · n gS .

Accordingly, we obtain

IT = − 1

R
(gO − gS) (f · ∇uO − f · ∇uS)) +

Dfn · n
R

(gO − gS)(uO − uS)

+Df∇uS · n gS − κDf∇uO · n gO + κD2uOf · n gO −D2uSf · n gS .
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Introducing a tangential vector field τ to ∂O, and writing ∇u = n∂nu+ τ∂τu, we get

Df∇uS · n gS − κDf∇uO · n gO = Dfn · n(∂nuSgS − κ∂nuOgO) +Dfτ · n(∂τuSgS − κ∂τuOgO)

= −Dfn · n
R

(uO − uS)(gO − gS) +Dfτ · n(∂τuSgS − κ∂τuOgO),

so that

IT = − 1

R
(gO − gS) (f · ∇uO − f · ∇uS) +Dfτ · n(∂τuSgS − κ∂τuOgO)

+ κD2uOf · n gO −D2uSf · n gS . (32)

Using the convention of implicit summation, and setting a as in (15), we get from [10, Theorem
5.4.13] (here, H denotes the mean curvature of ∂O, and we choose an extension τ̃ of τ in a neighborhood
of ∂O that we still denote τ for simplicity) that∫

∂O
Dfτ · na dσ =

∫
∂O

∂jfiτjnia dσ

= −
∫
∂O

fi∂j(τjnia) dσ +

∫
∂O

(∂n(fiτjnia) +Hfiτjnia)nj dσ

=

∫
∂O

f · n(−∂j(τja) +Dτn · na) dσ −
∫
∂O

Dnτ · fa dσ

=

∫
∂O

f · n(−τ · ∇a− a(div τ −Dτn · n)) dσ −
∫
∂O

Dnτ · f a dσ.

Note that div τ −Dτn ·n = div∂O τ is the tangential divergence of τ and is independent of the extension
chosen for τ (recall Remark 2.4 and [10, Definition 5.4.6]).

From this identity, we deduce that∫
∂O

IT dσ =

∫
∂O

( 1

R
(gO − gS)f · (∇uS −∇uO) + f · n(−τ · ∇a− adiv∂O τ)−Dnτ · f a

+ κD2uOf · n gO −D2uSf · n gS
)
dσ

=

∫
∂O

(
f · n

( 1

R2
(gO − gS)(uO − uS)(1− 1/κ)− τ · ∇a− adiv∂O τ −Dnτ · na

+ κD2uOn · n gO −D2uSn · n gS
))
dσ

+

∫
∂O

f · τ
(

1

R
(gO − gS)τ · (∇uS −∇uO)−Dnτ · τ a+ κD2uOτ · n gO −D2uSτ · n gS

)
dσ.

Before going further, let us also immediately point out that

Dnτ · n = ∂jniτjni = τ · ∇
(
|n|2

2

)
= 0.

It is then interesting to consider the term involving f · τ , as this term should vanish for structural
reasons.

In order to do so, we differentiate the identity

∂nuS = κ∂nuO =
1

R
(uO − uS), on (0, T )× ∂O,

in the direction of τ , yielding the following identity

Dnτ · ∇uS +D2uSτ · n = κ(Dnτ · ∇uO +D2uOτ · n) =
1

R
τ · (∇uO −∇uS).

12



Therefore, recalling the definition of a in (15), we have

1

R
(gO − gS)τ · (∇uS −∇uO)−Dnτ · τ a+ κD2uOτ · n gO −D2uSτ · n gS

= gO

(
1

R
τ · (∇uS −∇uO) + (Dnτ · τ)κτ · ∇uO + κD2uOτ · n

)
+ gS

(
1

R
τ · (∇uO −∇uS)− (Dnτ · τ)τ · ∇uS −D2uSτ · n

)
= κgO(−Dnτ · n)∂nuO + gS(Dnτ · n)∂nuS = 0.

Accordingly the expression of the interface term simplifies and we get:∫
∂O

IT dσ =

∫
∂O

f · n
( 1

R2
(gO − gS)(uO − uS)(1− 1/κ)− τ · ∇a− a div∂O τ

+ κD2uOn · n gO −D2uSn · n gS
)
dσ.

Combining (29), (30), (31) and the above identity, we conclude

d

ds
(J(Of,s)) |s=0 =

∫ T

0

∫
∂O

f · n

(
(uS − UM )2 + 2

( 1

R2
(gO − gS)(uO − uS)(1− 1/κ)

− τ · ∇a− adiv∂O τ + κD2uOn · n gO −D2uSn · n gS
))

dt dσ.

as announced in the Theorem 2.3. �

3 Numerical results

In this section we test the theoretical result of Theorem 2.3. Therefore, we will consider along our
numerical study a geometry composed of a less conductive homogeneous material in a unit square sample
containing a disc filled with a more conductive material that acts like a catalyst to speed up the heat
conduction process.

A gradient algorithm based on the shape derivative adapted for the ball case and presented in Sec-
tion 2.3 will be used to obtain an optimal geometric layout. For all our test cases, the state problem
and the adjoint problem are solved using mixed finite element method with the first order finite Raviart-
Thomas finite elements for the heat flux and a piece-wise constant finite elements for the temperature
field (see [3, 5, 14]). The first order Euler backward method is used for time stepping. The presented
results are obtained using the free finite element software Freefem++ (see [9]).

Since we are imposing thatO is a ball of prescribed radius, we will use the computations in Section 2.3.
Also note that, to guarantee that O stays a ball at each step of the optimization process, we will choose
Xf under the form of translations, that is f a constant vector close to ∂O. Note that here, rotations are
irrelevant since rotation a ball does not modify its shape. Mathematically, this correspond to a vector
field f for which f · n = 0.

Accordingly, at each step of the optimization process, we will use the formula (16), in which we will
use ∆uS = ∂tuS and κ∆uO = ∂tuO on (0, T )× ∂O, which is true by taking the traces of the equations
of uS and uO in (2) on the interface (0, T ) × ∂O, and which seems to give more precise results in our
simulations.
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3.1 A validation case

The purpose of the first test case is to validate the implementation of the method. For this we will
consider a fabricated desired solution that we aim to reproduce thanks to our algorithm. This strategy
requires to consider a desired temperature state which depending on the time and space coordinates.
Although this case is outside the mathematical framework of Theorem 2.3, the proof of Theorem 2.3 can
be adapted to this test case easily, and this test case is good to validate our algorithm.

More precisely, we consider a desired geometrical layout with the disc at the top of the square
where the center coordinates of the disc are xD = 0.5 and yD = 0.75 and the radius is r = 0.2. The
corresponding temperature field at different time step is calculated by solving (2) with κ = 100, R = 10−2,
UM = 500 and T = 0.5 duration of the simulation. This information is stored as uD(t, x) and passed on
into the optimization problem: Minimize, among the sets O which are disks of radius r, the functional

J(O) =

∫ T

0

∫
S
|uS(t, x)− uD(t, x)|2 dtdx,

where uS(t, x) is depending on O through the definition of the sets O and S = Ω \ O.

Notice, that the proof of Theorem 2.3 can be adapted to calculate the gradient of this type of
functionals. The derivative is then calculated by replacing UM by uD in all the formulas in Theorem 2.3.
Consequently, the right hand side of the adjoint state problem (13) is modified and replaced by uS −uD
and the first part of the shape derivative in (14) is replaced by (uS − uD)2.

The gradient is initialized with an initial geometry with the disc at the bottom of the square with
center coordinates x0 = 0.5 and y0 = 0.2. At each step, first the state u is calculated with the current
geometrical layout by solving (2), next the adjoint state g is obtained by solving (13) using the state
data in the right hand side. Both problems are solved using the same values for κ, R, UM and T used to
calculate the temperature uD with the desired geometrical layout. Then the shape derivative is calculated
using the formula (16) and ∆uS = ∂tuS and ∆uO = ∂tuO on the interface. This choice reduces the
error on the shape derivative by replacing second order space derivatives with first order time derivative,
which is approximated with a first order Euler scheme. The shape derivative is then used to update the
current values of the coordinates of the center of the disc with respect to the constraints that require the
disc to stay within the square domain.

The progress of the positions of the disc can be seen in Figure 1 with the initial position of the disc
in the left figure, an intermediate position in the middle figure and the position at convergence in the
right figure which corresponds to the desired position of the disc.

Figure 1: Initial (left), intermediate (center) and final geometry (right) that corresponds to the desired
geometry.

The choice of the initial position with x0 = xD requires the gradient to move the position in the
y direction only. This is reported in Figure 2 where in the left side are presented the values of the y
component of the disc’s center with respect to the number of iterations and in the right side is the error
on the desired position at each iteration of the gradient. We can see that the gradient based on the shape
derivative presented in this paper is very effective and allows to obtain a desired geometry knowing the
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associated temperature field solution to (2) with very few iterations (less than 10) and with fairly good
accuracy with an error at convergence around 10−2.

0 1 2 3 4 5 6 7
Iterations

0.2

0.4

0.6

0.8

y
D

0 1 2 3 4 5 6 7

Iterations

0.01

0.1

1

Error

Figure 2: Values of y component of the disc’s center versus number of iterations (left), error on the
desired position at each iteration of the gradient (right).

3.2 An optimization test case

We consider the heat conduction problem described by equation (2) where O is a disc and UM is a known
constant temperature imposed at the lower side of the squared domain Ω containing O. The values for
the thermal conductivity κ, the thermal contact resistance R and the simulation time T are taken the
same as in the above test case. We consider solving the optimization problem consisting of identifying
the optimal position of the disc O inside the square that allows to minimize the fitness function J(O)
given in (8), i.e.

J(O) =

∫ T

0

∫
S
|uS(t, x)− UM |2 dtdx,

where uS satisfies (2) is depending on O through the definition of the sets O and S = Ω \ O. Note
that the Dirichlet boundary condition on the temperature in (2) is identical to the positive constant
temperature UM taken in the definition of J(O).

In contrast to the validation test case, the optimal position of the disc is not known in advance. The
optimization process is the same as in the validation test case described in the previous section, where at
each iteration we first solve the equation (2), and then the adjoint state equation (13). Next, the shape
derivative is calculated using the formula (16) from Section 2.3 and is used to update the coordinates
of the disc’s center. As in the validation case, the approximation ∆uS ≈ ∂tuS and ∆uO ≈ ∂tuO is
used. The fitness function is reevaluated using (8) and the process is repeated several times. It is also
noted that we have taken the length of the square is greater than the diameter of the disc which is kept
constant and corresponds to a volume of the disc equals to 10% of the total volume.

We plot in Figure 3 the iterations corresponding to two symmetric initial positions for the disc, one
on the top left corner, the other on the top right corner. Both test converge to the disc localized on
the bottom and centered. This symmetry could have been expected in view of the symmetry of the
problem, but we do not see any theoretical reasons to justify this property rigorously. Let us also notice
that there is no guarantee that our method converges to a global optimal/minimizer, since we have not
investigated the existence of a global optimal. However, in the ball class, we are minimizing a continuous
function dependent on parameters (position) in a compact set, and so there is a global minimum, even
if we do not know a priori whether our method converges to this global minimum. Nevertheless, when
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several distinct configurations all converge to the same thing, it is reasonable to believe that it is a global
minimum.

The obtained numerical results attest of the capabilities of the proposed method that allowed to
obtain an optimal solution regardless of the initial guess. They also suggest that an optimal geometrical
situation will correspond to the disc O closer to the border of the square at which the Dirichlet boundary
condition is imposed.

Figure 3: From top to bottom, initial, intermediate and final solutions. Left, initial disc in the top right
corner. Right, initial disc in the top left corner.

3.3 Mean temperature minimization case

For this third test we consider the same heat conduction problem as in the first test namely the heat
conduction problem described by equation (2) where O is a disc and UM is a known constant temperature
imposed at the lower side of the squared domain Ω containing O. The values for the thermal conductivity
κ, the thermal contact resistance R and the simulation time T are taken the same as in the above test
cases. We consider solving the minimization problem consisting of obtaining the optimal position of the
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disc O inside the square to minimize the quantity

J(O) =

∫ T

0

∫
S
|uS(t, x)|2 dtdx, (33)

where uS satisfies (2) is depending on O through the definition of the sets O. This can be seen as the
mean temperature in S over time.

Again, the computation of the derivative of the function J in (33) can be done as in the proof of
Theorem 2.3, as we have mentioned in Section 3.1.

The optimization process is the same as the above two tests with the initial position of the disc is at
the bottom of the square. The results are given in Figure 4. We observe that the optimal geometrical
layout is the one in which the disc is the farther from the heat source. This is quite reasonable since the
disc contains a very conductive material and the closer it is from the heat source, the faster it will be
heated and in turns increase the temperature in S, which is the opposite of what we want.

Figure 4: Minimization of the mean temperature in S overtime. Initial, intermediate and final solutions.
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