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Abstract
Background: class III obese women, are at a higher risk of cesareansection during labor, and cesarean section is responsible for increasedmaternal and neonatal morbidity in this population. Objective: theobjective of this project was to develop a method with which to quantifycesarean section risk before labor. Methods: this is a multicentricretrospective cohort study conducted on 410 nulliparous class III obesepregnant women who attempted vaginal delivery in two French universityhospitals. We developed two predictive algorithms (a logistic regression anda random forest models) and assessed performance levels and comparedthem. Results: the logistic regression model found that only initial weightand labor induction were significant in the prediction of unplanned cesareansection. The probability forest was able to predict cesarean sectionprobability using only two pre-labor characteristics: initial weight and laborinduction. Its performances were higher and were calculated for a cut- pointof 49.5% risk and the results were (with 95% confidence intervals): areaunder the curve 0.70 (0.62,0.78), accuracy 0.66 (0.58, 0.73), specificity0.87

(0.77, 0.93), and sensitivity 0.44 (0.32, 0.55). Conclusions: this is an innovativeand effective approach to predicting unplanned CS risk in this population andcould play a role in the choice of a trial of labor versus plannedcesarean section. Further studies are needed, especially a prospective clinicaltrial. Funding: French state funds “Plan Investissements d’Avenir” andAgence Nationale de la Recherche.
Keywords: obesity, cesarean delivery, personalized medicine, random forests,machine learning, predictive model, predictor selection.



2

1 Introduction
Obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, is a major public health

hazard. [1] It is the most common medical condition in women of childbearing age
(with a prevalence of 39.7% in the United States) [2] and can have consequences for
both the mother and the child during pregnancy. [3] Moreover, the prevalence of
obesity among pregnant women is increasing worldwide. [4, 5] In 2009, obesity
rates for pregnant women were estimated to be 14.4% in France in 2021 {Cinelli,
2022 #3822} and 16.1% in Canada. [7] In the United States, 34.9% of women are
obese, and it was estimated that, in 2014, there were 1.1 million obese pregnant
women. [4] Thus, obesity in pregnancy will become more challenging with time.

It has been well established that, during pregnancy, obesity is associated with
increased maternal and fetal morbidity, such as gestational hypertension,
gestational diabetes, and large-for-gestational-age fetuses. [5, 8-11] Moreover,
obesity has an impact on delivery because it is an independent risk factor for cesarean
section (CS). [9, 12-15] Indeed, obese women are at higher risk of CS delivery as
compared to non-obese women. [9, 16] In addition to higher CS rates, the
scientific literature shows that CS in obese women is more likely to cause maternal
and neonatal morbidity. Indeed, obese women undergoing CS are at greater risk of
postoperative infection and thrombosis as compared to non-obese women. [9, 17, 18]
Infants of obese women more often require intensive care and have higher rates of
fetal compromise and meconium-stained liquid. [9]
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Obesity is defined in terms of three classes according to the World Health
Organization: class I as a BMI between 30.0 and 34.9 kg/m2, class II as a BMI
between 35.0 and 39.9 kg/m2, and class III as a BMI ≥ 40 kg/m2. [19] Studies suggest
that obesity-related risks during pregnancy increase with BMI and complications are
highest among class III obese women. Indeed, it has been shown [14] that CS risk
increases proportionally to BMI (between 2 and 5% for each 1 kg/m2 of BMI) and
rates are > 50% in laboring women with BMI ≥ 40 kg/m2. Also, the odds of CS
increase 3.5-fold for each BMI increase of 10 kg/m2. [20]

Finally, CS-related complications seem to be higher in cases of emergency or
unplanned CS as compared to elective or planned CS. [21, 22] These data indicate
that unplanned CS-related complication rates could be lowered if planned CS was
performed. Some studies have found that advanced maternal age, multiparity, and
unfavorable cervical dilation are independent risk factors in addition to BMI for
unplanned CS among class III obese pregnant women. [20] Despite the fact that the
risk factors are well known, there is insufficient evidence in the scientific literature
to allow clinicians to stratify the unplanned CS risk for obese women during labor
and, consequently, individualize those who are at a high risk and could thus be
counseled to choose planned CS before labor. Our objective was therefore to
develop a method with which to quantify CS risk among a population of class III
obese pregnant women before labor.
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2 Methods
2.1 Study Design
This is a multicentric, retrospective cohort study conducted on 410 women in two
French university hospitals (Strasbourg and Lille). It has been conducted following
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guidelines [23] and the Developmental and Exploratory Clinical Investigations of
DEcision support systems driven by Artificial Intelligence (DECIDE-AI). [24]

2.1.1 Eligibility Criteria
Eligibility criteria were as follows: 1) nulliparous women with BMI ≥ 40 kg/m2 at the
beginning of the pregnancy, 2) singleton pregnancies, 3) delivery in Strasbourg or
Lille University Hospitals after 22 weeks of gestation, and 4) attempted vaginal
delivery. Non-eligibility criteria were as follows: 1) stillbirth and medical interruption
of pregnancy and 2) planned cesarean sections and unplanned cesarean sections
before labor.

2.1.2 Data collection
In this retrospective study, data from two cohorts were used to evaluate the
cesarean risk for obese nulliparous women. The first cohort includes nS = 247

women who delivered at Strasbourg University Hospital between the 1st January
2009 and the 31st December 2019. The second data set contains nL = 163 women
who gave birth at Lille University Hospital between the 1st January 1997 and the 31st
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December 2014 (published in a previous study). [16] For each patient, maternal
characteristics (age, height, initial and final weight, gestational weight gain,
smoking, diabetes mellitus/gestational, and high blood pressure) and delivery
characteristics (labor onset, gestational age at delivery, epidural analgesia, mode of
delivery) were recorded. Epidural analgesia and height were subsequently excluded
from the analysis because they were not pertinent to the purposes of the model or
were redundant given other information (BMI).

2.1.3 Study endpoints
The primary endpoint was the quantification of unplanned CS risk. The secondary
endpoints were the performances of the developed predictive algorithm: sensitivity,
specificity, and positive and negative predictive values.

2.1.4 Ethics
This work was conducted according to the ethical standards of the French
Government Agency “Commission Nationale de l’Informatique et des Libertés
(CNIL)” and registered with Strasbourg University Hospital’s ethics committee (21-
025). It was also authorized for Lille University Hospital by the National Society of
Obstetrics and Gynecology’s “Collège National des Gynécologues Obstétriciens
Français (CNGOF)” Research Ethics Committee (CEROG OBS 2014-04-04).
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2.2 Statistical analysis and model development
The Strasbourg cohort was used as the training set to elaborate the predictive
models (as it was the one with most patient and more recent data), while the Lille
cohort was used to assess the performance of the predictive models. Two predictive
models were built. The first model was constructed by using classical logistic
regression, and the second model was built by using the probability forest
algorithm. [25] All the statistical analyses were performed in R statistical software
(Version 4.1.3). All the steps of the statistical analysis are described below. Details
on the development of the models are detailed in Supplementary Materials�
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3 Results
3.1 Cohort description
In total, 410 obese women were included in both centers. The study population is
described in Table 1. Among all women, 164 had unplanned CS (40%), while 246 had
vaginal delivery (60%). The mean BMI was 43.6 kg/m2 (range 40.0–59.6 kg/m2). In
the univariate analysis, higher maternal height (p-value = 0.001) and labor induction
(p-value < 0.001) were associated with unplanned CS delivery.

Before building the predictive models, we investigated whether there were
differences between centers (see Table 2) and discovered that maternal age and
diabetes prevalence were greater in Strasbourg (p-value = 0.004 and < 0.001,
respectively). Conversely, initial weight, BMI, and high blood pressure prevalence
were greater in Lille (p-value = 0.003, < 0.001, and 0.036, respectively). The delivery
mode was also different: we observed a higher rate of unplanned CS in Lille as
compared to Strasbourg (49.1% versus 34.0%; p-value = 0.002).

Predictive model training and testing were performed on n = 393 women
because the following statistical analyses were conducted only on complete cases
(the incomplete cases were as follows: sixteen missing values for gestational weight
gain and one for smoking status). The complete cases cohort is described in Tables
S1 and S2, and there were no significant differences as compared to the total
cohort. The training phase was performed by using the complete cases in the
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Strasbourg cohort (n = 233), while the performance of the predictive model was
assessed based on the complete cases in the Lille cohort (n = 160). For convenience,
in the following, the Strasbourg and Lille cohorts will always be used to refer to the
complete cases in both cohorts, respectively.

3.2 Classical Predictive Model for Delivery Prediction
We first built a predictive model by following a classical approach based on a logistic
regression with a stepwise variable-selection procedure. The logistic model that we
ultimately obtained consisted of four predictors, including three maternal
characteristics (initial weight, diabetes and age) and one delivery characteristic
(labor induction). The fitted model is described in Table 3. Note that, in the logistic
model, only the initial weight and labor induction seem to statistically significantly
influence the risk of unplanned CS. According to this model, the unplanned CS risk
decreased when the initial weight increased (OR[initial weight] = 0.97; 95%CI = 0.95
- 1.0; p-value = 0.031), whereas it increased greatly in the case of labor induction
(OR[labor induction] = 3.06; 95%CI = 1.66–5.84; p-value = < 0.001). Conversely,
maternal age and diabetes did not seem to impact delivery.

3.3 Probability Forest Model for Accurate Delivery Prediction
The probability forest obtained is based on only two predictors: one maternal
characteristic, initial weight, and one delivery characteristic, labor induction. These
two predictors represent the best subset of predictors selected by using VSURF,
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[26] and they are the two significant predictors included in the logistic model. Our
probability forest is built using the following tuned hyper-parameters: 100,000
trees; a minimum node size of 23; and a size of the subset of features used in the
split equal to 1. Note that the probability forest error remains stable starting from
20,000 trees. Nonetheless, because we were not limited by time, because the
construction of the probability forest model with the selected subset of predictors
and the tuned hyper-parameters was not time consuming (execution time:<5s), we
chose to use more trees so that the convergence of the probability forest error was
guaranteed. In this model, the most important predictor is labor induction, followed
by initial weight. According to this model, for any given value of initial weight, the
risk of unplanned CS delivery seems greater in the case of labor induction (see
Figure 1). The predicted CS risk does not seem to be linearly correlated with labor
induction and initial weight. For women with an initial weight inferior to 113kg or
superior to 130kg, the predicted CS risk seems to increase when the initial weight
increases, and this augmentation seems more important in the case of labor
induction. In contrast, for women with an initial weight between 113kg and 130kg,
the CS risk seems to decrease when the initial weight increases, regardless of labor
induction status. Note that the regression curve showing the predicted CS risk for
women with no labor induction must be interpreted with caution for women with
an initial weight greater than 130kg because the estimated local polynomial
regression curve depends on only a single observation.
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3.4 Predictive-model comparison
Table 4 and Figure 2 outline the performance of both the logistic model and the
probability random forest model. The two predictive models were built to estimate
and stratify individual unplanned CS risk among class III-obese pregnant women in
order to counsel them during a delivery planning consultation. Each model was
developed to predict the probability of unplanned CS, ranging from 0 to 1. Then, the
cut-point, which represents the threshold risk at which the CS risk is considered high
(and thus the model predicts a CS delivery), was determined using the Strasbourg
cohort. The cut-point for each model was selected so as to maximize the sensitivity
(i.e., the probability of correctly predicting CS delivery among obese pregnant
women who underwent CS delivery) while maintaining a specificity of at least 80%
(i.e., the probability of wrongly predicting CS delivery among women who had
vaginal delivery is less than 20%). Thus, the optimal cut-point in the probability
forest was calculated as 0.495. With this cut-point, in the probability forest, the
specificity for the Lille cohort was 87%, which means that false-positive rate was
13% (i.e., the risk of wrongly predicting CS delivery for women who had vaginal
delivery). Conversely, the sensitivity for the Lille cohort was 44%. The optimal cut-
point in the logistic model was 0.452. Based on this cut-point, the specificity of the
logistic model was quite similar to the one observed with the probabilistic forest
model, whereas the sensitivity for the Lille cohort was, in comparison, significantly
lower (0.18). Overall, the probability forest outperformed the logistic model in
terms of predictive performance levels (accuracy = 0.66 versus 0,55 ; AUC = 0.70,
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i.e., 0.60). The ROC curves drawn based on the training set are included in the
Appendix (see Figure S1).

4 Discussion
4.1 Principal findings

In this study, we wanted to identify a population of obese women at a high risk
of unplanned CS during labor, specifically this risk being high enough to suggest a
planned CS instead of a trial of labor. Classical statistical analysis failed to identify
specific maternal or pregnancy characteristics important enough to determine the
obstetric management of these women and accurately predict unplanned CS.
Consequently, we developed a machine learning-based algorithm to stratify the risk
of unplanned CS and tested it for both internal and external validation. This
innovative methodology allowed us not only to stratify and predict individual
unplanned CS risk for obese women during labor but also to gain insights into this
risk. Indeed, unlike the use of simple known risk factors (such as a given BMI
threshold or labor induction), the use of this type of approach makes it possible to
establish a quantified individual risk. This model is easy to use in clinical practice
because it only requires two parameters: initial weight and labor induction.
Therefore, it could be used via a simple interface (such as a web application) both
during a consultation and at the admission in the delivery room.
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4.2 Cesarean section in obese women
In this study, we found that labor induction significantly increased the risk of

cesarean section in a nulliparous patient with a BMI ≥ 40 kg/m2, which is consistent
with previously reported data. [13, 27-29] Interestingly, the predictive models (both
logistic and random forest) found that initial weight was inversely proportional to CS
risk. This can be explained by the fact that, among women with BMI ≥ 40 kg/m2,
those with extremely high BMI had higher rates of planned or unplanned CS before
a trial of labor, and were therefore excluded. Furthermore, the predictive model
also allowed us to individually quantify the unplanned CS risk with only pre-labor
data, which, to our knowledge, has never been accomplished before. Nonetheless,
the parameter that could limit clinical applications of such a model is false positives,
i.e., women predicted to have a high risk of unplanned CS who would otherwise
have had a vaginal delivery. This parameter is represented by the specificity: high
specificity means a low false positive rate. Indeed, false-negative women would
undergo a labor trial as standard clinical care, but false-positive women could
undergo unnecessary planned CS, which could be iatrogenic.

Based on actual scientific literature, class III obese women are at higher risk of CS
[37]. In a large retrospective cohort of 64,272 infants born to obese pregnant
women, published in 2012, the authors showed that, for nulliparous class III obese
women, scheduled CS accounted for 21.9% of deliveries, and emergency CS for
24.6%. [30] Moreover, planned and unplanned CS rates increased with BMI (p <
0.0001). [30] Within the perspective of reducing the rate of unplanned CS during
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labor without increasing the overall CS rate in a significant way, we opted for a
specificity threshold of 80%, which is proportional to the rate of planned CS in this
population. Based on this parameter, we attempted to maximize sensitivity, with the
goal of screening as many women as possible who will have an unplanned CS during
labor to reduce morbidity related to emergency CS.

It has been shown that CS is associated with more morbidity than vaginal
delivery in obese women. [17, 18] Conversely, without the specification of maternal
obesity, a recent meta-analysis showed that planned CS was associated with
significantly lower maternal and neonatal morbidity as compared to unplanned CS,
such as infection (relative risk [RR] = 0.44), postoperative fever (RR = 0.29), urinary
tract infection (RR = 0.31), wound dehiscence (RR = 0.67), disseminated
intravascular coagulation (RR = 0.34), reoperation (RR = 0.44), and infant mortality
(RR = 0.16). [22] Another study found similar outcomes in terms of post-operative
wound infection, post-partum hemorrhage and the necessity of blood transfusion,
urinary tract infection, fever, and maternal intensive care unit admission. Neonatal
outcomes such as birth asphyxia, meconium-stained liquid, and the need for
neonatal intensive care unit admission were also significantly higher when
unplanned CS was performed as compared to planned CS. [21] From these data, we
can extrapolate that similar maternal complication trends could be observed in
obese women, and even worse infant outcomes, such as the decision-incision time,
could be increased because of more problematic transfer. Also, incision-birth time
could also be lengthened because of surgical difficulties. [31]
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4.3 Clinical Implications
Based on the algorithm’s performance, the use of this model in routine practice

could decrease the rate of unplanned CS at the cost of a modest increase in the
overall CS rate. However, according to the scientific evidence, it seems that, in obese
patients, the benefits of avoiding one unplanned CS out of two outweigh the cost of
performing one unnecessary planned CS out of five women, considering both
maternal and neonatal outcomes. Nonetheless, it should be taken into account
when discussing obstetrical management in any individual situation. This model has
two important advantages in clinical practice. First, it is simple to use because it
requires only two parameters: initial weight and labor induction. Therefore, when
discussing the route of delivery with a pregnant woman with class III obesity, an
estimation of risk can be quickly obtained during the consultation. In addition, when
there is an indication of the need to perform labor induction at a specific time, for
example, because of overdue delivery, the risk can be estimated for each situation
(in the case of spontaneous labor, before the planned induction date or in case of
planned induction). This could allow better advice to be given to women at the end
of their pregnancy by proposing personalized management according to the term
and mode of onset of labor. For instance, a pregnant woman with a high risk of
cesarean section with the induction of labor but a low risk of cesarean section for
spontaneous labor could be advised to perform a trial of labor if she goes into
spontaneous labor and, if she arrives at the expected induction date without going
into spontaneous labor, opt for a scheduled cesarean section instead.
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Recently, different predictive models have been published in obstetrics that
allow delivery planning and enhance information quality during the consultation.
These models can predict delivery outcomes based on machine learning algorithms,
and they also employed random forest algorithms but with different clinical
objectives. [2, 32, 33] The performance levels of this kind of model are remarkable,
and some of them can already be used in clinical practice. Nonetheless, this
innovative approach must also meet several quality criteria, with some of them
being applicable to all clinical studies but others being specific to artificial-
intelligence-based models. For these reasons, this retrospective, population-based,
observational study was conducted according to a rigorous methodology, following
the STROBE checklist but also the CONSORT-AI guidelines [34] published in
September 2020, which specify the quality criteria to be applied to machine-learning
models developed within the framework of randomized trials, in particular the
performance of a test on a different cohort, allowing the internal validation to be
completed via an external validation. To date, no specific guidelines are available on
machine-learning models developed from retrospective cohort studies.

In order to meet important quality criteria, we included women from two
different centers and found that both cohorts were different in some regards, such
as age, initial weight, BMI, diabetes and high blood pressure prevalence, but also
regarding clinical practices, such as unplanned CS rates. These differences can be
explained by a center effect with different populations: Lille’s cohort had higher BMI
and diabetes, while Strasbourg’s cohort had more women with high blood pressure
and higher maternal age. Moreover, the center effect can also explain differences in
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clinical practices because unplanned CS indications may differ not only because of a
different population but also because of different internal protocols and obstetric
practices. Finally, these differences can also be explained by a time effect due to the
difference in years between the Strasbourg and Lille recruitment efforts, and the
evolution of practices during the study periods (particularly on labor induction
indications and techniques, still there was no evolution in CS rates in both cohorts,
results not shown). Within the context of this study, heterogeneity between training
and testing cohorts reinforces the value of the model in terms of external validation
and makes it more applicable to other centers. In contrast, the fact that the two
cohorts came from two different centers and time periods limited the model
because the pre-labor characteristics of the women in the Lille cohort were not all
available for the analysis. We therefore had to restrict the training variables of the
algorithm because we had only a small number of common variables between the
two cohorts. Some criteria of the Strasbourg patients that could be involved in the
risk of cesarean section could therefore not be tested, thus reducing the power of
the model (for example, uterine height, Bishop score at admission, and ultrasound
estimation of fetal weight).

4.4 Research Implications
Further investigations are needed within a prospective clinical trial to

investigate its performances in other cohorts. As this model was trained on two
French cohorts, supplementary data is needed to assess its validity in other
countries, given the fact that population and practices may differ. Moreover, other



17

pre-labor variables may be implicated in delivery prediction among this population
and may improve the prediction quality. Consequently, it is important to continue
these investigations to improve the model.

4.5 Limitations of the model
It must be noted that this model was developed based on pre-labor

characteristics because we wanted to discuss the unplanned CS risk before labor
and, eventually, suggest planned CS. It was therefore not possible to obtain a very
high accuracy for this predictive model because several parameters will only have an
effect at the time of labor and are not predictable: for example, an abnormality in
terms of fetal heart rate or a mechanical dystocia. The use of pre-labor data makes
model performance lower but more relevant in case of a choice between a trial of
labor and planned CS.

Moreover, the model was established only for nulliparous patients with class III
obesity (BMI ≥ 40 kg/m2). Therefore, it cannot be used for patients with a BMI
between 30 and 40 kg/m2 or for patients with a history of cesarean section, although
they are also among the patients most at risk of cesarean section during labor. It
must also be noted that, unlike Anglo-Saxon populations, the number of women
with extreme BMIs (> 50 kg/m2) is lower in France. Finally, the results of this model
should be interpreted with caution for women with initial weights > 130 kg and no
labor induction because the estimated regression curve depends only on a single
observation.
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4.6 Conclusions
Delivery planning in obese women is an everyday clinical challenge in

obstetrics, and each choice has its specifics advantages and risks. With its innovative
approach, this model is effective in predicting unplanned CS risk in nulliparous class
III obese women undergoing a trial of labor and could improve maternal and
neonatal outcomes due to unplanned CS-related morbidity in this population. Still,
this model is not reliable enough to become the sole element of obstetric decisions,
though it could be an additional argument for explaining unplanned CS risk and
participate in the choice of a trial of labor versus planned CS. Further investigations
are needed within a prospective clinical trial, because this model could be used to
meet the demand for patient information and risk calculation in a personalized
fashion.



19

References
[1] Bluher M. Obesity: global epidemiology and pathogenesis. Nat RevEndocrinol 2019;15(5):288-98.[2] Meyer R, Hendin N, Zamir M, Mor N, Levin G, Sivan E, et al. Implementationof machine learning models for the prediction of vaginal birth aftercesarean delivery. J Matern Fetal Neonatal Med 2022;35(19):3677-83.[3] Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short termand long term adverse consequences for mother and child. BMJ2017;356:j1.[4] Chen C, Xu X, Yan Y. Estimated global overweight and obesity burden inpregnant women based on panel data model. PLoS One2018;13(8):e0202183.[5] Kuitunen I, Huttunen TT, Ponkilainen VT, Kekki M. Incidence of obeseparturients and the outcomes of their pregnancies: A nationwide registerstudy in Finland. Eur J Obstet Gynecol Reprod Biol 2022;274:62-7.[6] Garabedian C, Servan-Schreiber E, Riviere O, Vendittelli F, Deruelle P.[Maternal obesity and pregnancy: Evolution of prevalence and of place ofbirth]. J Gynecol Obstet Biol Reprod (Paris) 2016;45(4):353-9.[7] Fuchs F, Senat MV, Rey E, Balayla J, Chaillet N, Bouyer J, et al. Impact ofmaternal obesity on the incidence of pregnancy complications in Franceand Canada. Sci Rep 2017;7(1):10859.[8] Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. Theincidence of co-morbidities related to obesity and overweight: a systematicreview and meta-analysis. BMC Public Health 2009;9:88.[9] Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated withobesity in pregnancy, for the mother and baby: a systematic review ofreviews. Obes Rev 2015;16(8):621-38.[10] Shin D, Song WO. Prepregnancy body mass index is an independent riskfactor for gestational hypertension, gestational diabetes, preterm labor,and small- and large-for-gestational-age infants. J Matern Fetal NeonatalMed 2015;28(14):1679-86.[11] Weiss JL, Malone FD, Emig D, Ball RH, Nyberg DA, Comstock CH, et al.Obesity, obstetric complications and cesarean delivery rate--a population-based screening study. Am J Obstet Gynecol 2004;190(4):1091-7.[12] Chu SY, Kim SY, Schmid CH, Dietz PM, Callaghan WM, Lau J, et al. Maternalobesity and risk of cesarean delivery: a meta-analysis. Obes Rev2007;8(5):385-94.[13] Heslehurst N, Simpson H, Ells LJ, Rankin J, Wilkinson J, Lang R, et al. Theimpact of maternal BMI status on pregnancy outcomes with immediateshort-term obstetric resource implications: a meta-analysis. Obes Rev2008;9(6):635-83.[14] Kominiarek MA, Vanveldhuisen P, Hibbard J, Landy H, Haberman S,Learman L, et al. The maternal body mass index: a strong association withdelivery route. Am J Obstet Gynecol 2010;203(3):264 e1-7.



20

[15] Sheiner E, Levy A, Menes TS, Silverberg D, Katz M, Mazor M. Maternalobesity as an independent risk factor for caesarean delivery. PaediatrPerinat Epidemiol 2004;18(3):196-201.[16] Borghesi Y, Labreuche J, Duhamel A, Pigeyre M, Deruelle P. Risk of cesareandelivery among pregnant women with class III obesity. Int J GynaecolObstet 2017;136(2):168-74.[17] Robinson HE, O'Connell CM, Joseph KS, McLeod NL. Maternal outcomes inpregnancies complicated by obesity. Obstet Gynecol 2005;106(6):1357-64.[18] Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, et al.Maternal obesity and pregnancy outcome: a study of 287,213 pregnanciesin London. Int J Obes Relat Metab Disord 2001;25(8):1175-82.[19] World Health Organization (WHO). Obesity and overweight. 2021.[20] Gunatilake RP, Smrtka MP, Harris B, Kraus DM, Small MJ, Grotegut CA, et al.Predictors of failed trial of labor among women with an extremely obesebody mass index. Am J Obstet Gynecol 2013;209(6):562 e1-5.[21] Darnal N, Dangal G. Maternal and Fetal Outcome in Emergency versusElective Caesarean Section. J Nepal Health Res Counc 2020;18(2):186-9.[22] Yang XJ, Sun SS. Comparison of maternal and fetal complications in electiveand emergency cesarean section: a systematic review and meta-analysis.Arch Gynecol Obstet 2017;296(3):503-12.[23] von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP,et al. The Strengthening the Reporting of Observational Studies inEpidemiology (STROBE) statement: guidelines for reporting observationalstudies. Lancet 2007;370(9596):1453-7.[24] Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al.Reporting guideline for the early-stage clinical evaluation of decisionsupport systems driven by artificial intelligence: DECIDE-AI. Nat Med2022;28(5):924-33.[25] Malley JD, Kruppa J, Dasgupta A, Malley KG, Ziegler A. Probabilitymachines: consistent probability estimation using nonparametric learningmachines. Methods Inf Med 2012;51(1):74-81.[26] Genuer R, Poggi J-M, Tuleau-Malot C. VSURF: An R package for variableselection using random forests. The R Journal 2015;7.[27] Brien C, Bel S, Boudier E, Deruelle P. [Caesarean risk factors during labor fora class III obese nulliparous]. Gynecol Obstet Fertil Senol 2021;49(6):517-21.[28] Gunatilake RP, Perlow JH. Obesity and pregnancy: clinical management ofthe obese gravida. Am J Obstet Gynecol 2011;204(2):106-19.[29] Poobalan AS, Aucott LS, Gurung T, Smith WC, Bhattacharya S. Obesity as anindependent risk factor for elective and emergency caesarean delivery innulliparous women--systematic review and meta-analysis of cohort studies.Obes Rev 2009;10(1):28-35.[30] Marshall NE, Guild C, Cheng YW, Caughey AB, Halloran DR. Maternalsuperobesity and perinatal outcomes. Am J Obstet Gynecol2012;206(5):417 e1-6.



21

[31] Abenhaim HA, Benjamin A. Higher caesarean section rates in women withhigher body mass index: are we managing labour differently? J ObstetGynaecol Can 2011;33(5):443-8.[32] Lindblad Wollmann C, Hart KD, Liu C, Caughey AB, Stephansson O,Snowden JM. Predicting vaginal birth after previous cesarean: Usingmachine-learning models and a population-based cohort in Sweden. ActaObstet Gynecol Scand 2021;100(3):513-20.[33] Lipschuetz M, Guedalia J, Rottenstreich A, Novoselsky Persky M, Cohen SM,Kabiri D, et al. Prediction of vaginal birth after cesarean deliveries usingmachine learning. Am J Obstet Gynecol 2020;222(6):613 e1- e12.[34] Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Spirit AI, et al.Reporting guidelines for clinical trial reports for interventions involvingartificial intelligence: the CONSORT-AI extension. Nat Med2020;26(9):1364-74.[35] Hosmer D, Lemeshow S, Sturdivant R. Applied Logistic Regression, ThirdEdition. 2013.[36] Breiman L. Random Forests. Machine Learning 2001;45(1):5-32.[37] Su X, Peña AT, Liu L, Levine RA. Random forests of interaction trees forestimating individualized treatment effects in randomized trials. Stat Med2018;37(17):2547-60.[38] Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification ofmicroarray data using random forest. BMC Bioinformatics 2006;7:3.[39] Howard J, Bowles M. The two most important algorithms in predictivemodeling today. Strata Conference presentation, February. Vol. 28. 2012.[40] Biau G, Scornet E. A random forest guided tour. TEST 2016;25(2):197-227.[41] Collett D. Modelling Binary Data. CRC Press; 2002.[42] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas undertwo or more correlated receiver operating characteristic curves: anonparametric approach. Biometrics 1988;44(3):837-45.



22

Tables
Table 1: Total cohort description according to the delivery mode

Variable Cesarean section
(N=164) Vaginal delivery(N=246) Total(N=410) P-Value

Mean (SD) 28.8 (5.1) 27.8 (5.1) 28.2 (5.1) 0.063Range 18 – 42 18 – 43 18 – 43Height (cm)
Mean (SD) 163.6 (5.9) 165.7 (7.0) 164.9 (6.6) 0.001Range 148 – 186 148 – 183 148 – 186Initial Weight (kg)
Mean (SD) 118.0 (13.9) 119.1 (12.9 118.7 (13.3)

Range 89 – 160 90 – 162 89 – 162 0.432
Body Mass Index (kg/m2)Mean (SD) 44.1 (4.2) 43.3 (3.4) 43.6 (3.8) 0.0501Range 40.0 – 59.6 40.0 – 56.3 40.0 – 59.6Gestational Weight Gain (kg)

Mean (SD)Range 6.4 (8.3)-19 – 30 5.6 (9.0)-36 – 29 5.9 (8.7)-36 – 30 0.389Unknown 5 11 16Smoking
No 132 (80.5%) 198 (80.8%) 330 (80.7%)Yes 32 (19.5%) 47 (19.2%) 79 (19.3%) 0.934Unknown 0 1 1Diabetes mel litus
No 131 (79.9%) 196 (79.7%) 327 (79.8%) 0.960Yes 33 (20.1%) 50 (20.3%) 83 (20.2%)High Blood Pressure
No 137 (83.5%) 203 (82.5%) 340 (82.9%Yes 27 (16.5%) 43 (17.5%) 70 (17.1%) 0.789

Labor inductionNo 48 (29.3%) 126 (51.2%) 174 (42.4%) <0.001Yes 116 (70.7%) 120 (48.8%) 236 (57.6%)Gestational age at delivery (weeks, days)
Mean (SD) 39w 6d (1w 5d) 39w 4d (2w 4d) 39w 5d (2w 2d) 0.257Range 31w 3d – 42w 1d 22w 0d – 42w 2d 22w 0d – 42w 2d

Comparison of maternal and labor characteristics according to the delivery mode in
the total cohort. Legend: SD = standard deviation

Age(years)
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Table 2: Total cohort description according to the center

Variable Lille(N=163)
Strasbourg Total P-value(N=247) (N=410)

Age (years)
Mean (SD) 27.3 (5.2) 28.8 (5.1) 28.2 (5.1) 0.004Range 18 – 40 19 – 43 18 – 43Height (cm)Mean (SD) 165.1 (6.6) 164.8 (6.7) 164.9 (6.6) 0.659Range 148 – 183 148 – 186 148 – 186
Mean (SD) 121.0 (13.9) 117.1 (12.7) 118.7 (13.3) 0.003Range 90 - 162 89 - 156 89 - 162

Mean (SD) 5.8 (8.7) 6.0 (8.7) 5.9 (8.7Range -18 – 27 -36 – 30 -36 – 30Unknown 3 13 16 0.790
Smoking

No 125 (76.7%) 205 (83.3%) 330 (80.7%)Yes 38 (23.3%) 41 (16.7%) 79 (19.3%) 0.096Unknown 0 1 1Diabetes
NoYes 108 (66.3%)55 (33.7%) 219 (88.7%)28 (11.3%) 327 (79.8%)83 (20.2%) < 0.001

High Blood Pressure
NoYes 143 (87.7%)20 (12.3%) 197 (79.8%)50 (20.2%) 340 (82.9%)70 (17.1%) 0.036

Delivery
Cesarean 80 (49.1%) 84 (34.0%) 164 (40.0%) 0.002Vaginal 83 (50.9%) 163 (66.0%) 246 (60.0%)Labor induction

No 75 (46.0%) 99 (40.1%) 174 (42.4%) 0.234Yes 88 (54.0%) 148 (59.9%) 236 (57.6%)Gestational age at delivery (weeks, days)
Mean (SD) 39w 6d (2w 0d) 39w 4d (2w 3d) 39w 5d (2w 2d) 0.277

Comparison of maternal, labor and delivery characteristics according to the center.
Legend: SD = standard deviation

InitialWeight(kg)

Range 22w0d–42w1d 22w5d–42w2d 22w0d–42w2d

BodyMassIndex(kg/m2)
Mean(SD) 44.4(4.4) 43.1(3.2) 43.6(3.8) <0.001Range 40.0-59.6 40.0–54.0 40.0–59.6Gestatio nalWeightGain(kg)
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Table 3: Final logistic model built on Strasbourg cohort
Variable Estimate (SE) Odds ratio (95%CI) P-value
Initial weight -0.03 (0.01) 0.97(0.95;1.00) 0.031
Labor induction 1.12 (0.32) 3.06(1.66;5.84) <0.001
Age 0.0484 (0.03) 1.05(0.99;1.11) 0.095
Diabetes 0.711 (0.48) 0.49(0.18;1.22) 0.142

Feature characteristics and weights in the logistic model. Legend: SE = standard
error; 95%CI = 95% confidence interval

Table 4: Model performances evaluated on the test cohort�
Model Prob forest Logistic model
Cut-point 0.495 0.452
AUC 0.70 (0.62, 0.78) 0.66 (0.58, 0.75)
Specificity 0.87 (0.77, 0.93) 0.90 (0.82, 0.96)
Sensitivity 0.44 (0.32, 0.55) 0.18 (0.10, 0.28)
Accuracy 0.66 (0.58, 0.73) 0.55 (0.47, 0.63)

Comparison of the performances of the two developed models (probability forest
and logistic regression). Legend: AUC = area under the curve
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Figures titles and legends

Figure 1: Predicted CS risk in the Strasbourg cohort for the probability forest modelaccording to the labor induction status and the initial weight�Note: the lines represents the estimated local polynomial regression curves with their95% confidence interval.

Figure 2: Receiver Operating Characteristic curve of the models on the test setLegend: the ROC curve of the probability forest model (solid line) and of the logisticmodel (dotted line) drawn on the test set. The black cross on each curve indicates theselected cut-point and its coordinates are the values of 1-specificity and thesensitivity measured in the test set.






