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Fig. 1. Left - a disk distribution input; middle - SING results, utilizing a disk distance from [Ecormier-Nocca et al. 2019], without any prior class information nor
post-processing. Increasing 𝜀 (left to right) yields nested proximity graphs and diverse clustering effects, represented in random colors; right - output clusters.

We introduce the Stability-Incorporated Neighborhood Graph (SING), a

novel density-aware structure designed to capture the intrinsic geometric

properties of a point set. We improve upon the spheres-of-influence graph

by incorporating additional features to offer more flexibility and control

in encoding proximity information and capturing local density variations.

Through persistence analysis on our proximity graph, we propose a new

clustering technique and explore additional variants incorporating extra

features for the proximity criterion. Alongside the detailed analysis and

comparison to evaluate its performance on various datasets, our experiments

demonstrate that the proposed method can effectively extract meaningful

clusters from diverse datasets with variations in density and correlation. Our

application scenarios underscore the advantages of the proposed graph over

classical neighborhood graphs, particularly in terms of parameter tuning.
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1 Introduction
Context and motivation. Clustering serves as a fundamental al-

gorithmic procedure in data analysis, extensively employed in ex-

tremely diverse fields such as biology, astronomy, art, medicine,

as well as computer graphics and vision. Despite these important

applications, existing clustering algorithms suffer from a variety of

drawbacks, and no universal solution has emerged. In this work,

we propose an intuitive proximity criterion, leading to a stable and

efficient clustering algorithm which consistently achieves accurate

grouping across diverse data types. Experimental results demon-

strate that our method, characterized by its simplicity and elegance,

matches or exceeds the performance of state-of-the-art clustering al-

gorithms across multiple application scenarios. It effectively handles

density variations and multi-class data while robustly extending to

noisy datasets using stable persistence-based parameter tuning.

Key Idea. The proximity criterion introduced in this paper repre-

sents a generalization of the classical neighborhood graph concept.

Instead of simply connecting each point to its nearest neighbor, we

utilize the distance to the nearest neighbor as a feature to determine

its proximity to other points. This approach elegantly incorporates

local density information into the proximity measure in a formal

manner, offering an intuitive improvement to traditional methods.

Validation via Clustering. Leveraging our proximity measure be-

tween element pairs allows for the application of various clustering

techniques that depend on element similarities in different manners.

For instance, in center-based algorithms like 𝑘-means, a small set of

potential cluster centers is initialized from the data and iteratively

refined. In affinity propagation, data points interact via a graph
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structure to select a subset of points as representatives. Our proxim-

ity criterion based on local density offers computational efficiency,

flexibility in terms of similarity constraints, and stability advantages

derived from the persistence analysis approach.

Stability via TDA tools. To better interpret our proximity criterion

and to incorporate stability and robustness of the induced clustering

with respect to noise on the overall data, we employ a common tool

in topological data analysis (TDA): Persistent Homology. Specifically,

we focus on order-one homology and the analysis of connected

components, which simplifies the process. Persistent diagrams allow

us to capture topological features of our proximity graph across

different scales, leading to optimal parameter values and offering

proven stability in the resulting clusters.

Highlights of Contributions. The proposed proximity graph is

characterized by its intuitive simplicity, ease of use, and adaptabil-

ity to high-dimensional spaces and non-Euclidean metrics. Unlike

many existing clustering methods, our SING clustering algorithm

does not require prior knowledge of the number of clusters, as

it optimizes the clustering outcome based on the stability of the

created clusters in terms of parameters and persistence lifespans.

Its stability is demonstrated based on the existing stability results

of persistent homology. It has remarkable flexibility in terms of

the type of distance that can be fed into it, opening up interesting

avenues of research for proximity adaptation. This includes consid-

eration for anisotropic metrics, surface curvature, or user-defined

local constraint encoding via distance prescription for interactive

analysis. We showcase the flexibility of our method via various

application scenarios employing different metrics or analytical ap-

proaches. While we mainly focus on applications related to stipple

clustering, our method finds broad applicability across different

domains, such as data segmentation, multi-class disk distribution

analysis, shape reconstruction, and network topology analysis. We

briefly investigate these tangent directions, and we leave further

exploration and research into metric choices as a potential source of

inspiration for future work in the CG community. The source code

is available online - https://github.com/dianam76/SING.

2 Related work
Let us briefly discuss two categories of related work in this context.

Proximity Graphs. A comprehensive overview of neighborhood

graphs is given in [Jaromczyk and Toussaint 1992]. The 𝜀-neighbor-

hood graph has the data points as vertices and connects every pair

of data points that are within distance 𝜀 of each other. The nearest

neighbor graph (NN) connects each point to its nearest neighbor,

while the minimum spanning tree (MST) connects all components

of the NN with minimum length edges. The relative neighborhood

graph (RNG) connects two points if no other point is closer to both

of them than their mutual distance. The Gabriel graph (GG) connects

two points if the smallest closed disk that contains them is empty

of other points. The Delaunay triangulation (DT) contains triangles

with circumcircles empty of other points. The 𝛼-complex is the

subset of the DT that can be enclosed in a disc with radius 1/𝛼 that is

empty of other points. The 𝛽-skeleton is a scale-invariant version of

𝛼-shapes containing those edges which make an angle with another

(a) SING clusters (with 𝜀 = 0.9) (b) Rips with distance = 1

Fig. 2. Connected components of SING compared to the Rips complex.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Persistence barcode

0

(a) Barcode for SING.
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(b) Barcode in the Euclidean distance.

Fig. 3. Barcodes of the Rips filtrations for SING and for the 𝜀-neighborhood
graph in the ambient Euclidean distance, respectively, on the data of Figure 2.
The barcode for SING indicates the possibility of having 3 or 4 clusters, while
the other barcode only indicates the possibility of having 3 clusters.

point smaller than 𝛽 . These proximity graphs are related in the

following way: NN ⊆ MST ⊆ RNG ⊆ GG ⊆ DT, with RNG and

GG as special cases of the 𝛽-skeleton family. The 𝛾-neighborhood

graph family [Veltkamp 1992] reduces to the 𝛽-skeleton, the DT,

or to the convex hull, depending on 𝛾 . The sphere-of-influence

graph (SIG) connects two points if their distance is less or equal to

the summed distances to their respective nearest neighbors. In the

planar case, the SIG has at most 𝑐𝑛 edges for 𝑛 points, with 𝑐 ≤ 17.5

[Avis and Horton 1985] and its construction time complexity is

𝑂 (𝑛 log𝑛) [Bentley and Ottmann 1979]. The 𝑘-th SIG extends the

sphere to contain 𝑘 nearest neighbors instead of just one [Guibas

et al. 1992]. The SIG was also applied in two parallel works for curve

reconstruction from points: [Marin et al. 2022] and [de Figueiredo

and Paiva 2022]. In [de Figueiredo and Paiva 2022], a parameterized

planar variation of the SIG is introduced, by intersecting it with the

Delaunay triangulation, making it suitable for 2D region boundary

extraction.

We will present the Stability-Incorporated Neighborhood Graph

(SING) as an extension of the SIG graph by incorporating additional

features that offer more flexibility and control in encoding proximity

information via local density encoding, alongwith stability results as

an inherent property, derived from a complementary TDA analysis.

Clustering. We recognize the impossibility of providing a compre-

hensive survey of existing work on clustering and focus on revisiting

the concepts most closely related to our context. Data-clustering

https://github.com/dianam76/SING
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algorithms have a rich history since the early works such as [Mac-

Queen et al. 1967], followed by significant research advancement,

including the introduction of spectral clustering [Shi and Malik

2000; Von Luxburg 2007], center-based methods [Banerjee et al.

2005; Teboulle 2007], mixture models [Fraley and Raftery 2002],

mean shift techniques [Comaniciu and Meer 2002], density-based

spatial clustering (DBSCAN) [Ester et al. 1996], single-linkage tech-

nique [Gower and Ross 1969], affinity propagation algorithms [Frey

and Dueck 2007], various adaptations of 𝑘-means clustering [Ahmed

et al. 2020], and innovations in feature selection [Witten and Tib-

shirani 2010], among others. Recent literature on learning-based

clustering, such as [Ahmed and Chew 2020; Chen et al. 2019], have

focused on 3D point clouds, along with surveys [Ran et al. 2023;

Ren et al. 2022].

Positioning wrt prior work. A popular proximity criterion that

considers local density is the k-NN graph. However, it may not

always be robust to noise in the data. On the other hand, the 𝜖-

neighborhood graph offers stability results and is known for its

resilience to noisy datasets but does not take local density into

account. Our new proximity formulation combines the advantages

of both approaches by integrating the local density considerations

of 𝑘NN with the robustness to noise inherent in the 𝜖-neighborhood

graph, also leading to a more comprehensive clustering solution,

see Figures 2-3. As a complementary note, our approach shares

similarities with diffusion distances used in spectral clustering, in

the sense that we first re-embed the data with a new metric or

dissimilarity, and then we use a standard clustering technique. What

distinguishes our approach from spectral clustering is its particular

simplicity, leading to an easy and scalable implementation. Notably,

spectral clustering typically involves diagonalizing the matrix of

the graph Laplacian operator, a process that does not scale well

as dataset sizes increase. We also note that the simplicity of our

proximity criterion distinguishes our clustering from ML-based

approaches, which necessitate extensive training.

3 Method: proximity criterion & TDA

3.1 Context: Extending the SIG criterion
We begin by defining the sphere-of-influence graph, which is the

foundation of our method. The SIG was first introduced as a prox-

imity graph used for clustering [Toussaint 1988] but differs from

widely used proximity graphs as it is not a subset of the Delaunay

triangulation. In SIG, two vertices are connected by an edge if the

distance between them is less than the sum of distances to their

respective nearest neighbors. More formally, we connect 𝑎 and 𝑏 if

d(𝑎, 𝑏) ≤ 𝑛𝑛(𝑎) + 𝑛𝑛(𝑏), (1)

where d(𝑎, 𝑏) is the distance between two points 𝑎 and 𝑏 and 𝑛𝑛(𝑎)
is the distance 𝑑 between 𝑎 and its nearest neighbor. This criterion

exists in any dimension and can be modified to account for different

types of data, such as disks, since the definition of the graph is

purely based on distances.

This definition can also be viewed as a symmetrization of the

nearest neighbor graph since the existence of an edge relies on

the properties of both endpoints. While this definition manages to

encode proximity well, as shown in [Marin et al. 2024], it cannot

0.0 0.2 0.4 0.6 0.8 1.0

Persistence barcode

0

0.0 0.2 0.4 0.6 0.8 1.0

Persistence barcode

0

Fig. 4. Persistence Barcode. The zoomed-in region shows the stable region
we are interested in. In a stable region, the number of connected components
does not change in the specific interval, meaning that, most probably, those
clusters carry some geometric meaning since 𝜀 needs to change a lot before
collapsing connected components.

adapt to varying properties of the data, such as different densities or

correlations. In this work, we consider an extension of this definition

from two aspects: by considering generalized distance functions d,

as well as by adding a parameter 𝜀 to Equation 1’s inequality:

d(𝑎, 𝑏) ≤ 𝜀 (𝑛𝑛(𝑎) + 𝑛𝑛(𝑏)) . (2)

This allows us to change the connectivity of the proximity graph,

capturing features with varying levels of significance. This parame-

ter offers a novel degree of flexibility on top of the distance function

d in defining the graph structure, allowing users to explore various

cluster configurations. In Section 4.3, we also explore the possibility

of employing local parameters. However, enabling users to select

a parameter (even at the global level) for each dataset type poses

challenges. Therefore, we offer an automatic parameter-tuning pro-

cedure based on tools from topological data analysis. As the creation

of edges and their regrouping in our proximity graph relies on 𝜀,

we employ persistent homology to identify meaningful values for

this parameter. We observe the formation of clusters (connected

components in the SING graph) and analyze their duration. In the

next sections, we first revisit key principles of Topological Data

Analysis before presenting our contributions.

3.2 Background in TDA
In this section, we briefly review some of the material in TDA that

will be used in the paper. For a more detailed introduction to the sub-

ject, we refer the reader to standard textbooks such as [Edelsbrunner

and Harer 2010; Oudot 2015].

A filtration F of a topological space 𝐾 over some totally ordered

set 𝑇 is a family (F𝑡 )𝑡 ∈𝑇 of subspaces of 𝐾 that are nested w.r.t.

inclusion, that is: ∀𝑡 ≤ 𝑡 ′ ∈ 𝑇, F𝑡 ⊆ F𝑡 ′ . F is simplicial if 𝐾 is a

simplicial complex and if every F𝑡 is a subcomplex of 𝐾 .

The (Vietoris-)Rips filtration VR is a popular choice of simplicial

filtration in TDA applications. Given a point cloud 𝑃 equipped with

a dissimilarity d, it is a filtration of the full simplex 𝐾 = 2
𝑃
(i.e., the

power set of 𝑃 viewed as a simplicial complex) indexed over𝑇 = R+
,

in which each simplex 𝜎 = {𝑝0, · · · , 𝑝𝑚} ⊆ 𝑃 appears at index 𝑡 =
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max0≤𝑖≤ 𝑗≤𝑚 d(𝑝𝑖 , 𝑝 𝑗 ). For any 𝑡 ∈ R+
, the subcomplex VR𝑡 (𝑃, d)

of 2
𝑃
formed by those simplices that appear before or at 𝑡 is called

the (Vietoris-)Rips complex of 𝑃 of parameter 𝑡 .

VR(𝑃, d)𝑡 generalizes the 𝑡-ball graph of 𝑃 in the following way:

the vertices represent the points of 𝑃 , and a simplex (not just an

edge) exists if and only if its diameter is smaller than 𝑡 . Varying the

value of 𝑡 from 0 to +∞ gives the Rips filtration of (𝑃, d).
When 𝐾 is a finite simplicial complex (as is the case, e.g., for the

Rips filtration and throughout this paper), applying homology in

degree 𝑟 with coefficients in some fixed field k to the filtration F
yields a family of finite-dimensional k-vector spaces connected by

k-linear maps. This family is called a persistence module. It is known
to admit in this setting a complete algebraic invariant called the

persistence barcode of F in degree 𝑟 , denoted B𝑟 (F), which takes the

form of a finite multiset of intervals [𝑎𝑖 , 𝑏𝑖 ), each of which encodes

the lifespan of some topological feature of degree 𝑟 appearing in the

filtration. Note that multiple features can have identical lifespans,

hence the multiset structure of the barcode. Topological features

can be, for instance, connected components (𝑟 = 0), handles/tunnels

(𝑟 = 1), enclosed voids (𝑟 = 2), or many other things. See Figure 4.

The persistence diagram of F in degree 𝑟 , noted PD𝑟 (F), is an
alternative graphical representation of the barcode as a multiset of

points above the diagonal 𝑦 = 𝑥 in the plane. More precisely, every

copy of the interval [𝑎𝑖 , 𝑏𝑖 ) in B𝑟 (F) becomes a copy of the point

(𝑎𝑖 , 𝑏𝑖 ) in PD𝑟 (F), and vice-versa. Throughout the paper, we will let
𝑟 = 0, focusing on connected components in the filtration, and we

will henceforth omit the parameter in our notations.

As multisets of points in the plane, persistence diagrams can be

viewed as discrete measures in which each diagram point has unit

mass. Such measures may have different total masses, therefore

using classic distances between probability measures requires some

adaptation. Typically, one enriches each diagram with infinitely

many copies of the diagonal𝑦 = 𝑥 to even out the total masses, mak-

ing no distinction between different infinite values. In this context,

the bottleneck distance is the Wasserstein distance W
∞

between the

enriched diagrams: d
b
(PD(F), PD(G)) := W

∞ (PD+ (F), PD+ (G)),
where PD

+ (·) denotes the persistence diagram enriched with infin-

itely many copies of the diagonal 𝑦 = 𝑥 .

The persistence barcode or diagram of the Rips filtration exhibits

the consistency (or lack thereof) of topological features hidden in the

dataset across scales, thus it helps identify relevant scales at which

to analyze or process the data. This methodology is backed by a

sound stability theory, in particular by the fact that the map sending

a point cloud 𝑃 to the persistence diagram of its Rips filtration is

provably Lipschitz continuous. In our proofs, we will use a more

generic version of this stability theory, phrased as follows:

Theorem 3.1 (stability [Cohen-Steiner et al. 2007]). Let 𝐾
be a finite simplicial complex, and let 𝑓 , 𝑔 : 𝐾 → R assign a real
value to each simplex in 𝐾 . Then, the two families of sublevel-sets
𝑓 −1 ((−∞, 𝑡]) and 𝑔−1 ((−∞, 𝑡]) for 𝑡 ranging over R define two sim-
plicial filtrations F,G of 𝐾 such that:

d
b
(PD(F), PD(G)) ≤ max

𝐾
|𝑓 − 𝑔|.

SING (𝜀 = 1.0) SING (𝜀 = 1.5) SING (𝜀 = 2.0)

NNG 𝑘NN (𝑘 = 2) DT

Fig. 5. As a proximity graph, SING encodes the evolution of various clusters
without being limited by a predefined number of neighbors (as kNN) and
offers more flexibility compared to Delaunay Triangulation (DT).

3.3 Key notion: density-sensitive semimetric
The proximity criterion introduced in Equation (2) can be interpreted

as measuring the dissimilarity
ˆ
d𝑃 (𝑎, 𝑏) between the points 𝑎, 𝑏

against a threshold 𝜀 as follows:

ˆ
d𝑃 (𝑎, 𝑏) :=

d(𝑎, 𝑏)
𝑛𝑛(𝑎) + 𝑛𝑛(𝑏) ≤ 𝜀. (3)

Observe that
ˆ
d𝑃 is a density-weighted version of the original met-

ric d: consider indeed the 1-dimensional nearest-neighbor density

estimator [Silverman 2018, §5.2], which is defined inversely propor-

tional to the distance to the nearest data point. Dividing the distance

d(𝑎, 𝑏) by 𝑛𝑛(𝑎) + 𝑛𝑛(𝑏) as in Equation (3) is equivalent, up to a

constant factor, to multiplying d(𝑎, 𝑏) by the harmonic mean of the

1-dimensional nearest-neighbor density estimates at 𝑎 and 𝑏.

We also note that
ˆ
d𝑃 is defined only when 𝑃 has at least 2 points,

otherwise 𝑛𝑛(·) itself is undefined. Note also that ˆd𝑃 is a semimetric,

not ametric, as it may not satisfy the triangle inequality. For instance,

taking 𝑃 = {−𝜂, 0, 1/2, 1, 1+𝜂} on the real line gives
ˆ
d𝑃 (0, 1) = 1/2𝜂

and
ˆ
d𝑃 (0, 1/2) + ˆd𝑃 (1/2, 1) = 2/(1+2𝜂), which infringes the triangle

inequality as soon as 𝜂 < 1/2 (and in fact makes the infringement as

bad as it can be since
ˆ
d𝑃 (0, 1) → +∞while

ˆ
d𝑃 (0, 1/2)+ˆd𝑃 (1/2, 1) →

2 as 𝜂 → 0). However, the triangle inequality will not be needed in

the following derivations.

3.4 SING and its connection to TDA
The Stability-Incorporated Neighborhood Graph (or SING for short)

of (𝑃, d) for parameter 𝜀 is defined as the 𝜀-neighborhood graph of 𝑃

in the semimetric
ˆ
d𝑃 . By design, its connectivity adapts to the local

density of the data. Moreover, it coincides with the 1-skeleton graph

of VR𝜀 (𝑃, ˆd𝑃 ), so one can use the Rips filtration of (𝑃, ˆd𝑃 ) and its

persistence diagram to determine a suitable value for parameter 𝜀.

Thus, the SING enjoys the same ease of use and flexibility as

𝜀-neighborhood graphs in general while addressing their lack of

sensitivity to the local density. Besides, as shown in Section 4.5

(Proposition 4.1), the Rips filtration associated with SING comes
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(a) SING with a single connected
component. Using radius infor-
mation, we further extract the
types of disks in the distribution.

(b) SING for 𝜀 = 0.55, where the
main clusters are already forming
- the main disks, along with grid
elements.

(c) Nearest Neighbor Graph does
not manage to capture enough
information to fully encode the
geometric features of the data.

(d) KNN for 𝑘 = 6 does not man-
age to capture all the large disk
connections, even if the grid pat-
tern is almost fully represented.

Fig. 6. Structured pattern data connected using various proximity graphs.

NNG SING

Fig. 7. Proximity graphs on pattern data perturbed with noise – SING still
captures the original connectivity, showcasing the stability of the method.
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Persistence diagram

(a) Confidence interval for given
dataset.

(b) Example of noisy results for 𝜀 =

0.5, within the noise interval.

Fig. 8. Stability: extracting a confidence interval for our method using TDA.
On the left, the red diagonal band spans the noisy values of our parameter,
while on the right, we showcase clustering results for a noisy value. Small
variations around this value result in multiple changes in terms of the
number of clusters and no clear cluster structure is visible.

with theoretical stability guarantees, as does the Rips filtration in

the ambient metric d, although in a weaker form.

Figure 3 illustrates the benefit of replacing the metric d by the

weighted semimetric
ˆ
d𝑃 in the 𝜀-neighborhood graph construction,

in terms of the expressivity of the persistence barcode of its associ-

ated Rips filtration, missing the possibility of the four clusters.

We note that for some contexts, wemight be interested in defining

the SING complex accordingly as the VR𝜀 (𝑃, ˆd𝑃 ), whose 1-skeleton,
as mentioned before, corresponds to our introduced SING graph.

This is nicely illustrated in our example of Figure 2. Interestingly, the

left-hand side figure shows both SING and the 𝜀-neighborhood graph

in the Euclidean distance, which coincide but, for different parameter

values. However, the range of values that produce this “good” graph

with SING is larger than its analog with the 𝜀-neighborhood graph

in the Euclidean distance—hence the interest in the SING. As a last

remark, let us once again highlight the flexibility of SING in terms

of the input metric. In a configuration similar to the one in Figure 2,

if the desired clusters are indeed the ones presented on the right,

incorporating an anisotropic metric favoring the diagonal direction

would also enable us to achieve this clustering while maintaining

stability.

4 SING Features and Advantages
We will now further analyze the graph and its properties, espe-

cially in comparison with other proximity graphs or other cluster-

ing techniques, highlighting the benefits of using such a stability-

incorporated neighborhood graph.

4.1 Intrinsic Geometric Features
The graph naturally encodes proximity, and even with a global 𝜀

parameter for the entire dataset, the graph definition still inherently

captures local density. Moreover, this graph is unlikely to suffer

from long edges spanning the entire input or extremely high-degree

nodes (except for adversarial cases – samples on a circle with the

center of the circle). Unlike 𝑘NN graphs, we do not impose strict

bounds on vertex degrees or distances between points. We compare

our graph to popular proximity graphs in Figure 5.

SING can effectively capture both complex and regular geometric

patterns, which are typically challenging to analyze and generate.

Figure 6 illustrates such a configuration, which finds motivation in

various contexts such as simulation. For example, in a spring system

aiming to preserve a specific shape, our proximity graph seems

more relevant to be employed for construction. Also, as expected,
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Fig. 9. Despite variations in density, our method (right) successfully extracts
the bird’s body as a single component, unlike DBSCAN (left), which sepa-
rates it based on density fluctuations. Additionally, our method effectively
distinguishes different parts of the feet into meaningful clusters. However,
certain dense regions pose challenges for our method to cluster in a mean-
ingful semantic way. Input point pattern from [De Goes et al. 2012].

in the presence of noise (as long as the extent is not too large), our

graph still captures the original shape of the data, Figure 7.

4.2 Other distances
Since the definition of our graph only depends on distance compu-

tations, it can be used in any metric space and with various distance

metrics. The persistence analysis benefits from the same advantages

of only requiring distances between vertices for the computation.

This flexibility allows us to compute the SING for other metrics,

such as the disk-based distance of [Ecormier-Nocca et al. 2019],

applied to disk distribution clustering. For two disks with radii 𝑟1
and 𝑟2, let 𝑑 be the distance between the disks’ centers, assuming,

without loss of generality, that 𝑟1 ≥ 𝑟2. Their disk distance is:

d𝑑𝑖𝑠𝑘𝑠 =


𝑓 /(4𝑟1 − 4𝑟2) 𝑑 ≤ 𝑟1 − 𝑟2
(𝑓 − 4𝑟1 + 7𝑟2)/(3𝑟2) 𝑟1 − 𝑟2 < 𝑑 ≤ 𝑟1 + 𝑟2
𝑓 − 4𝑟1 + 2𝑟2 + 3 otherwise,

(4)

𝑓 =max(𝑑 + 𝑟1 + 𝑟2, 2𝑟1) (extent) (5)

− clip(𝑟1 + 𝑟2 − 𝑑, 0, 2𝑟2) (overlap) (6)

+ 𝑑 + 𝑟1 − 𝑟2 . (7)

We feed this distance to our proximity criterion and conduct ex-

periments for disk distribution clustering. The original data includes

information about the class of each disk. However, in the absence of

such information, the SING is perfectly able to extract similarities

between different disks and output the relevant classification. This

is done by analyzing the persistence barcode of the data and using

the stable intervals as guidance for meaningful 𝜀 choices, leading

to relevant clustering of data, Figure 1. As can be seen in the final

result, the large disks are only connected to the smaller ones which

they overlap, while the outer smaller disks are all connected in a

single component, which exactly matches the input behavior. By

using further details from the distance metric (i.e., classifying edges

by the type of overlap they encode), we can easily extract the three

classes present in the input. However, this dataset also showcases

the limitations of a method that is only based on proximity – the

single disk in the top-left corner, which is too far away from disks

of similar class to be easily clustered with them.

4.3 Local density adaptation: flexible variant
Density constraints. In some point patterns, differentiating be-

tween different areas is not encoded by geometrically separating

the points from different sections but by changing the density of

the pattern (e.g., sparse points to represent the background of a

stipple art image). To allow for different density encodings in our

graph, we propose introducing a new parameter that enables edge

creation only if the density is similar enough. We implement this

by multiplying by the ratio between the nearest neighbors – Al-

gorithm 1. We raise this ratio to a user-defined power, enforcing

dissimilar densities to increase the measurement between points –

Figure 13. Setting the density parameter to 0 brings us back to the

original formulation.

ALGORITHM 1: Density SING computation.

Data: 𝑃 = {𝑝1, . . . , 𝑝𝑛 } ⊂ R2, density 𝜌

Result: SING = { (𝑎,𝑏 ) : 𝑎,𝑏 ∈ 𝑃, 𝑎 ≠ 𝑏}

SING := {};

Find 𝑛𝑛 (𝑝 )∀𝑝 ∈ 𝑃 ;
for each pair (a,b) | 𝑎,𝑏 ∈ 𝑃, 𝑎 ≠ 𝑏 do

ˆ
d𝑃 (𝑎,𝑏 ) := ∥𝑎 − 𝑏 ∥2/(𝑛𝑛 (𝑎) + 𝑛𝑛 (𝑏 ) ) ×
(max(𝑛𝑛 (𝑎), 𝑛𝑛 (𝑏 ) )/min(𝑛𝑛 (𝑎), 𝑛𝑛 (𝑏 ) ) )𝜌

end
𝑃𝐷 := ComputePersistenceDiagram(

ˆ
d𝑃 );

𝜀 := ExtractOptimalValue(𝑃𝐷) ;

for each pair (a,b) | 𝑎,𝑏 ∈ 𝑃, 𝑎 ≠ 𝑏 do
if ˆ

d𝑃 (𝑎,𝑏 ) ≤ 𝜀 then
SING := SING ∪{ (𝑎,𝑏 ) }

end
end

4.4 Complexity analysis
Nearest neighbor search complexity. Note that achieving sub-linear

query time for nearest neighbor search in arbitrary dimension is

a notoriously hard problem, especially in high dimensions, where

concentration-of-measure phenomena occur. In low dimensions,

there are classic data structures that allow for nearest neighbor

search in sub-linear time. For instance, in 2D, one can build a hierar-

chical Delaunay triangulation in 𝑂 (𝑛 log𝑛) time and then use it for

𝑂 (log𝑛) time nearest neighbor queries. In 3D, this approach already

has quadratic time complexity for the construction step in the worst

case. Lastly, in arbitrary dimensions, locality-sensitive hashing al-

lows achieving quasi-linear construction and then sub-linear query

time.

SING Complexity. For 𝜀 ≤ 1, the number of edges in SING is

linear in the input size, resulting in an efficient algorithm in terms

of space complexity. Regarding time complexity, the current 𝑂 (𝑛2)
implementation of the SING algorithm, outlined in Algorithm 1, may

be reduced to sub-quadratic construction time and even 𝑂 (𝑛 log𝑛)
time in small dimensions (typically 2D), using classic data structures.
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(b) Our dissimilarity semimetric

Fig. 10. Dendrograms representing single linkage clustering of the dataset presented in Figure 2. The single linkage connects components with minimal
distance, and the dendrogram illustrates the merging pattern. We observe that by using our semimetric, an additional large cluster (in blue) is formed. Thus,
our semimetric captures cluster formations that would be missed by the Euclidean one.

Fig. 11. Our clustering results (top) compared to DBSCAN (bottom). Our
method connects similar densities in a single connected component due to
the density-based proximity definition. The independent structures within
the same density clusters can further be decomposed into distance-only
connected components using a post-processing step.

4.5 Stability and Robustness
Let (𝑋, d) be a metric space. Given a point cloud 𝑃 in 𝑋 , i.e., a finite

subset 𝑃 ⊆ 𝑋 , we write |𝑃 | for its cardinality and 𝛿𝑃 for its minimum

pairwise distance: 𝛿𝑃 := min𝑝≠𝑞∈𝑃 d(𝑝, 𝑞) > 0. We equip the set

of point clouds in 𝑋 with the Wasserstein distance W
∞
, which is

valued in R+ ∪ {+∞} and is finite whenever the two point clouds

under consideration have the same cardinality:

∀𝑃,𝑄 ⊆ 𝑋, W∞ (𝑃,𝑄) :=
min

𝛾 : 𝑃→𝑄

bijection

max

𝑝∈𝑃
d(𝑝,𝛾 (𝑝)) if |𝑃 | = |𝑄 |

+∞ otherwise.

(8)

This turns the set of point clouds into an extended metric space.

Meanwhile, we equip the space of persistence diagrams with the

bottleneck distance d
b
. Our stability guarantees are stated as follows:

Proposition 4.1. The map 𝑃 ↦→ PD(VR(𝑃, ˆd𝑃 )) is continuous on
the subspace of point clouds of cardinality at least 2 in 𝑋 .

The condition that |𝑃 | ≥ 2 in the statement is not an artifact:

it comes from the fact that
ˆ
d𝑃 is not defined when |𝑃 | < 2 – see

Equation (3). The proof of Proposition 4.1 relies on the stability

theorem for persistence diagrams (Theorem 3.1) and is provided in

the supplemental material. Note that it requires the triangle inequal-

ity for the ambient metric d in 𝑋 . However, in practice, as in the

disk distance experiments, the proximity criterion is perfectly defin-

able for semimetrics on 𝑋 , leading to relevant graphs and desirable

clusters – Figure 7.

Remark. The stability guarantee offered for SING by Proposi-

tion 4.1 is weaker than the one known for 𝜀-neighborhood graphs

in the ambient metric d [Chazal et al. 2014]. Primarily because it is

only a continuity result, not a Lipschitz continuity result: our proof,

although not tight, exhibits enough of the structure of
ˆ
d𝑃 to suggest

that
ˆ
d𝑃 itself is not globally Lipschitz continuous but only locally

Lipschitz continuous, with a local Lipschitz constant that grows

with 1/𝛿𝑃 – see Equation 13 in the supplemental material. Secondar-

ily, our stability guarantee is expressed in terms of the Wasserstein

distance on point clouds in 𝑋 , not in terms of the usual Hausdorff

distance: in fact, there is no analog of Proposition 4.1 when the

space of point clouds in 𝑋 is equipped with the Hausdorff distance,

as showed by the following counterexample. Given any positive

𝜀 ≤ 1/3, consider two point clouds 𝑃 = {0, 1} and 𝑄 = {0, 1, 1 +
𝜀} on the real line R. Their Hausdorff distance is 𝜀. Meanwhile,

we have
ˆ
d𝑃 (0, 1) = 1/2 so PD(VR(𝑃, ˆd𝑃 )) = {(0, +∞); (0, 1/2)},

whereas
ˆ
d𝑄 (0, 1) = 1/(1 + 𝜀), ˆd𝑄 (1, 1 + 𝜀) = 1/2 and ˆ

d𝑄 (0, 1 + 𝜀) =
1 so PD(VR(𝑄, ˆd𝑄 )) = {(0, +∞); (0, 1/2); (0, 1/(1 + 𝜀))}, hence
d
b

(
PD(VR(𝑃, ˆd𝑃 )), PD(VR(𝑄, ˆd𝑄 ))

)
= 1−𝜀

2(1+𝜀 ) . This quantity goes

to 1/2 while the Hausdorff distance between 𝑃 and 𝑄 goes to zero

as 𝜀 → 0
+
. Thus, the map 𝑃 ↦→ PD(VR(𝑃, ˆd𝑃 )) is not continuous in

the Hausdorff distance.

5 Results and Validation
Parameters. In order to take advantage of the connection to TDA,

we employ further analysis to extract stable intervals for our pa-

rameter. In persistence analysis, components that disappear shortly

after creation are considered noise. Visually, the persistence diagram

encodes this as points very close to the diagonal. We aim to extract
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Fig. 12. Left to Right: Input stipples, Result of DBSCAN [Ester et al. 1996],
Our clustering result, Result after replacing our clusters with stamps.

a stable interval for our parameter, where we are certain, up to a

confidence ratio, that we will not encounter noisy components. We

do this by subsampling our input set multiple times, with repetition,

and computing the persistence diagram of each subset. We compute

the distance from each of these subsampled diagrams to the origi-

nal full input diagram and extract a band of possible noise around

the diagonal (Figure 8). We then consider viable 𝜀 values the ones

outside the computed noise band around the diagonal.

Performance & Implementation Details. All experiments were

performed using an AMD Ryzen 7 5800 CPU. We implemented

our method in python, using the Gudhi library for TDA and var-

ious packages from scikit and sclearn for data structures and

the methods we compared to. The runtime of our current, non-

optimized implementation spans from 1.5s for an input size of 500

points to 130s for 50k points. The source code is available online -

https://github.com/dianam76/SING.

Applications. In addition to introducing our proximity criterion,

we provide a category-based representation of its applications. Our

analysis and validation of this method span various applications,

including clustering and data segmentation, reconstruction (with a

specific focus on 2D), stipple art coloring or editing, and network

topology analysis, while briefly discussing potential advantages for

anisotropic clustering, which falls outside the paper’s scope.

5.1 Clustering and Data Segmentation
Clustering based on the SING-connected components integrates

local density considerations into the 𝜖-neighborhood graph and,

consequently, into the Rips complexes, providing a significant gen-

eralization, as discussed for the example of Figure 2. Moreover,

throughout our experimentation, we explored the most relevant

clustering methods in terms of local density consideration, including

𝑘-means, density-based spatial clustering of applications with noise

(DBSCAN), as well as the clustering induced by 𝜖-neighborhood

graphs. Among these, DBSCAN yielded the most optimal grouping

outcomes in general, and we compare our results to their clusters

in Figure 11. We analyze the evolution of our clusters compared to

Single Linkage [Gower and Ross 1969] in Figure 10, showing how

our proximity encoding captures more information about the input.

5.2 Multi-Class Disk Distribution Analysis
Distributions can also be represented through disk distribution,

where the radius of the data can encode additional information. For

example, the ecosystem examples presented in [Ecormier-Nocca

et al. 2019] encode the size of the natural elements such as vegetation

types. Such types of distributions are commonly used in artificial

ecosystem generation in tools such as Ecobrush [Gain et al. 2017].

Fig. 13. On the left, clustering results without the incorporation of the den-
sity parameter, where samples are linked based on our proximity criterion.
On the right, results incorporating the density parameter, effectively clus-
tering the spots on the giraffe. Following a connected-component-based
splitting, we can further refine the clustering.

For such disk distributions, the class of each disk has to be known

in advance to be able to extract intra- and inter-class relationships.

In Figure 1, we are able to extract the classes (as individual clusters)

given only the input coordinates and radii. We compute the persis-

tence barcode of our data by varying the 𝜀 parameter (as in Figure 4).

We then use the stable intervals in the diagram to guide the parame-

ter choice in the direction of the most meaningful clusters (Figure 1,

right). We could further group all large disks in the same class using

the topology of our SING graph (in this case, by observing they all

have the same type of connections), considering filters on the disk

distance if needed (in this case, the distance values reflect the fact

that all of their neighbors are placed inside the disk).

5.3 Stipple Art Manipulation
Stipples are patterns of points where the visual information is en-

coded through density and correlation. Clustering stippling patterns

into visually meaningful regions is challenging and does not neces-

sarily align with our visual perception. Despite this lack of ground

truth, SING clustering provides promising results, as showcased by

Figure 15. For challenging density-varying stipples, we use the SING

variation that accounts for the density parameter. Some examples

are shown in Figure 11, where our results for layer extraction are

similar to DBSCAN [Ester et al. 1996]. However, selecting parame-

ters for DBSCAN relies only on data properties, lacking an easily

inferred optimal parameter value, in contrast to our method. Note

Fig. 14. Left to Right: Input stipples, clustering result, the result after varying
color, the result after editing stipple size, replacing stipple with pattern.

https://github.com/dianam76/SING
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DBSCAN Ours

Fig. 15. A point pattern synthesized from an image, using the method in
[Huang et al. 2023], is segmented using the DBSCAN and SING clustering.

that connecting samples by local density may form small, packed

clusters, as seen in the cherry example. This can be adjusted via the

𝜖 parameter or interpreted as a feature in post-processing, given the

absence of a ground-truth segmentation in stipple art. Moreover,

in Figure 12, the slight variation in density is not captured by DB-

SCAN. Having such a layered representation allows for easy and

meaningful manipulation of the art, like editing the distribution

[Huang et al. 2023] and representation (see Figure 14). Automati-

cally generated stipple patterns that exhibit varying density require

more parameter tuning, as the difference between distinct portions

of the input image is not sharp, and changing density across an area

is used to illustrate various visual effects – Figure 9.

5.4 2D Reconstruction
Shape reconstruction is the process of identifying the shape induced

by a set of points [Methirumangalath et al. 2015; Thayyil et al. 2020,

2021]. This is a well-known ill-posed problem in Computational

Geometry, with applications in GIS. Thanks to SING, as shown

in Figure 16, we can easily group points in a meaningful manner

and then extract their boundary to determine the shape. Addition-

ally, with our SING variant, we can further extend the traditional

shape reconstruction problem by considering density variations

and approaching a level of efficiency closer to human perception

in this context. Extracting the boundary directly from our graph is

promising as well and worth future investigation.

5.5 Network Topology Analysis
Network graph analysis and classification involves understanding

the overall structure of the graph and making predictions based on

that structure [Kartun-Giles and Bianconi 2019]. In our geometric

context, we experiment on spatial networks, which have a clear

positional embedding. Leveraging our persistence-based proxim-

ity criterion, which effectively captures topological characteristics

across different scales, enables us to gain a comprehensive under-

standing of the graph’s shape and connectivity. As a result, our

approach encodes, under the same edge budget, a more meaning-

ful simplification of original data compared to the Rips complex,

capturing the original shape of the road network better - Figure 17.

(a) Boundary extraction
on stipple data.

(b) Boundary extrac-
tion after our cluster-
ing.

(c) Boundary extraction
after DBSCAN cluster-
ing.

Fig. 16. Boundary extraction of stipple art using Discern [Thayyil et al.
2021]. All boundary methods we have tested fail on inputs with multiple
densities. However, running them on clustered input results in meaningful
boundaries.

(a) Original road
network G.

(b) Rips complex
restricted to G.

(c) SING filtration on
the input graph.

Fig. 17. Network simplification under a fixed edge budget, utilizing the
Oldenburg road network [Mokbel et al. 2004]. Our results enable improved
overall connectivity in the generated network graph (decreasing the con-
nected components count – 1751 compared to 1839).

6 Discussion and Perspectives
Limitations. Figure 9 shows various clustering imperfections pro-

duced by our method. This is due to variations in the density infor-

mation and the fact that the current version of our method does not

incorporate explicit part labels or “semantic” knowledge. It also mo-

tivates a semantic extension of our work in order to disambiguate

such cases. Additionally, while the selection of a suitable value

for 𝜀 is largely guided by TDA, a comparable approach for deter-

mining the density parameter is currently lacking in our current

implementation. For further efficiency improvement, optimizing our

bottleneck distance computation could also lead to better runtime.

Future work. Subsampling and point set simplification both seem

to be natural contexts in which our proximity criterion can be for-

malized and employed. Surface curvature and anisotropic metrics

incorporation were already mentioned as promising inspirations for

future work. Another theoretical future direction would be to inves-

tigate whether the SING is a spanner and to characterize the corre-

sponding stretch factor. This is based on the fact that for 𝜀 tending

to infinity, SING approaches the complete graph – a 1-spanner from

a threshold 𝜀 value. Since our similarity metric extends straightfor-

wardly to higher dimensions with low computational cost, it would

also allow for the analysis of group behavior in animal swarms based

on object-detection input, for example. Furthermore, the improved
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connectivity can assist in creating richer features in images or point

data, such as for photogrammetry or training networks on point

data. This extension to higher dimensions and related application

scenarios are left for future work due to our current unoptimized

implementation and its being beyond this paper’s scope.
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