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In spite of the widespread implementation of preventive strategies, the prevalence of healthcare-
associated infections (HAIs) remains high. The prevalence of multidrug resistant organisms is high in
HAIs. In 2019, the World Health Organization retained antimicrobial resistance as one of the ten issues
for global health. The development of vaccines may contribute to the fight against antimicrobial resis-
tance to reduce the burden of HAIs. Staphylococcus aureus, Gram negative bacteria and Clostridium difficile
are the most frequent pathogens reported in HAIs. Consequently, the development of vaccines against
these pathogens is crucial. At this stage, the goal of obtaining effective vaccines against S.aureus and
Gram negative bacteria has not yet been achieved. However, we can expect in the near future availability
of a vaccine against C. difficile. In addition, identifying populations who may benefit from these vaccines is
complex, as at-risk patients are not great responders to vaccines, or as vaccination may occur too late,
when they are already confronted to the risk. Vaccinating healthcare workers (HCWs) against these
pathogens may have an impact only if HCWs play a role in the transmission and in the pathogens acqui-
sition in patients, if the vaccine is effective to reduce pathogens carriage and if vaccine coverage is suf-
ficient to protect patients. Acceptance of these potential vaccines should be evaluated and addressed
in patients and in HCWs.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The global burden of healthcare-associated infections (HAIs)
[1,2] results in tremendous financial costs [3,4]. In spite of the
implementation of infection control strategies, HAIs prevalence
remains high, ranging between 4 and 10% in acute care settings
in Europe and in the United States of America [1,5,6]. In France, a
study conducted in 2017 including more than 80,000 patients
found an estimated prevalence of HAIs of 5.21% [1]. Urinary tract
infections, surgical site infections (SSI), pneumonia and bacteremia
were the major affected sites in France [1]. In the USA, pneumonia,
SSI and gastrointestinal infections were the major sites of HAIs [7].
Among patients with microbiologically documented HAIs, Escheri-
chia coli (E.coli), Staphylococcus aureus (S. aureus), Enterococcus fae-
calis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa) were
the most frequent pathogens isolated in France [1]. In the USA,
Clostridium difficile was responsible for 12.1% of the HAIs [7]. In
Asia, most HAIs were related to P. aeruginosa, Klebsiella species (K.
spp) and Acinetobacter baumannii (A. baumannii) [8].

While infection control measures play a crucial role in the pre-
vention of HAIs and the limitation of the diffusion of the involved
organisms, they are not sufficient to stem the burden of HAIs [9].
Moreover, HAIs are associated with a high prevalence of multidrug
resistant organisms (MDRO) [10,11]. In the WHO European Region
in 2020, third generation cephalosporin resistant E. coli and K.
pneumoniae accounted for more than 50% of the isolates in 13%
and 44% of the countries respectively [12]. Imipenem resistant A.
baumannii accounted for more than 50% of the isolates in 55% of
the European Countries [12]. Many of key factors contributing to
the development and spread of antimicrobial resistance are con-
centrated in healthcare settings (immunocompromised patient
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Table 1
The 10 more frequent pathogens responsible for HAI in France and existence of
corresponding vaccines in clinical development from Enquête nationale de prévalence
des infections nosocomiales et des traitements anti-infectieux en établissements de
santé, France, mai-juin 2017. Santé Publique France 2018 [11].

Pathogens Percentage of HAI
in France

Vaccine in clinical
development

WHO
priority list

Escherichia.coli 23.6 Yes Critical
Staphylococcus

aureus
13.8 Yes High

Enterococcus
faecalis

6.5 No

Pseudomonas
aeruginosa

6.3 Yes Critical

Klebsiella
pneumoniae

5.6 Yes Critical

Staphylococcus
epidermidis

5.4 No

Enterobacter
cloacae

3.8 No Critical

Proteus mirabilis 2.9 No Critical
Clostridium

difficile
2.3 Yes

Candida albicans 1.5 Yes
Enterococcus

faecium
1.5 No High
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populations, a large number of indwelling devices, and widespread
use of broad spectrum antibiotics. . .). To illustrate, in 2015 the
prevalence of antimicrobial use in the USA in acute care was esti-
mated to be at 49.5% [6].

Thus, the management of these MDRO related infections repre-
sents a challenge in the era of antimicrobial resistance threats [13].
Indeed, antimicrobial resistance was identified in 2019 as one of
the ten threats on the public health by the World Health Organiza-
tion (WHO) [14]. The limits of antimicrobial drugs for the treat-
ment of MDRO infections have in part been reached already and
deaths directly due to the lack of therapeutic options for treatment
of totally-drug resistant organisms infections have been reported
[15]. More broadly, mortality associated with MDRO infections (ei-
ther directly-one due to the resistance or indirectly-one due to the
comorbidities of the patients infected) have been estimated to
reach up to 12,500 deaths a year in France [16] and 35,000 deaths
a year in the USA [17]. In the European Union, in 2018, the Euro-
pean Center of for Diseases Prevention and Control had estimated
that MDRO causes 33,000 deaths a year [18]. Parallel to the
increase in antimicrobial resistance, the development of new
antimicrobials is rare [19] and thus alternative strategies are
urgently needed to prevent and treat HAIs.

Among these strategies, vaccines and passive immunization are
probably of the most attractive ones to decrease the overall burden
of bacterial disease and the associated need for antibiotics in the
context of HAIs [19]. Moreover, vaccines might be a mean to fight
antibiotic resistance, as was observed after the implementation of
the vaccine against Streptococcus pneumoniae in the general popu-
lation [20]. For more than a decade, immunological approaches to
reduce HAIs have been considered [21]. However, vaccine develop-
ment for HAIs, has been hampered by a poor understanding of cor-
relates of protection and the lack of predictive animal models e.g
for S. aureus vaccine [22].

In this narrative review, we focus on in-development vaccines
that are or could be used to prevent bacterial HAIs and to reduce
the burden of antimicrobial resistance. For this review, we first
identified last epidemiological data about HAI in Europe, and in
the USA. We searched on PUBMED and clinicaltrials.gov for
advances in vaccine clinical development against most frequent
HAIs bacterial pathogens since the publication of a previous pub-
lished narrative review [23]. For each pathogen, we used [the name
of the pathogens] and [vaccine] as keywords. Accurate articles
cited in selected articles were also read and integrated in the refer-
ence if they bring additional information.
Overview of potential vaccines against bacterial and fungal
healthcare-associated infections

In 2017, the WHO published a list of bacteria for which new
antibiotics were urgently needed, classifying pathogens on their
antimicrobial resistance level [24]. In addition to new antimicro-
bials, vaccines might contribute to reduce the burden of diseases
due to these pathogens, different reviews or reports brought a gen-
eral overview [25,26]. To illustrate this article, Table 1 depicted the
10 more frequent pathogens responsible for HAI in France. Vacci-
nes reached clinical development for 6 of these pathogens.
Staphylococcus aureus vaccines

S. aureus is a human commensal organism and also a pathogen.
Approximately 30% of the general population are colonized by S.
aureus [27]. In parallel, this bacterium can cause different types
of infections, ranging from noninvasive skin and soft tissue infec-
tions to bacteremia, endocarditis and osteomyelitis [28]. S. aureus
is one of the leading causes of HAIs, notably involved in devices-
2

related infections [5,7,11]. This pathogen also harbors resistance
to antibiotics and methicillin resistant S. aureus (MRSA) became
endemic in hospitals in the 1980s [28]. MRSA infections are chal-
lenging for antimicrobial therapy and associated with high rates
of mortality [29]. Due to enhanced infection control measures, an
encouraging decrease in the incidence of invasive MRSA HAIs over
the past decade have been observed [28]. Nevertheless in the USA,
MRSA continue to be a pathogen of concern [7]. In France, MRSA
represents 26% of S. aureus infections in the latest nosocomial
infection prevalence study [1]. Methicillin susceptible S. aureus
(MSSA) is therefore responsible for the majority of S. aureus HAIs.
Both MRSA and MSSA infections need to be considered in the
healthcare setting and need to be prevented. S. aureus is notably
the leading cause of surgical sites infections (SSI) and device-
related infections [30]. Huge costs are associated with the manage-
ment of S. aureus HAIs, for example central-line associated blood-
stream infections were estimated to cost from $10,000 to
$15,000 per episode [28]. Economic model analysis has shown that
a vaccine against S. aureus will be cost-effective [31,32].

However, developing a S. aureus vaccine has proved to be chal-
lenging. Firstly, as S. aureus is a commensal and a frequent patho-
gen, immune response pre-exists in human beings before
vaccination [33] and may interact with vaccine response. The bac-
terium is able to evade immune responses [34]. The impact of car-
riage on vaccine response and the role of vaccine on carriage has
not been considered for long time [22]. S. aureus HAIs are however
endogenous in 80% of cases [27] and so to prevent S. aureus HAIs,
we could then hypothesize that a vaccine that does not reduce car-
riage of the bacterium probably would be less effective. Secondly,
immune response to S. aureus involve not only humoral response
as though for long time, but also cellular response [22,35]. The
belief that humoral response is crucial in the immune response
against S. aureus leads to the development of vaccines based
mainly on humoral response. This belief is based on an error of
analysis of the risk factor of S. aureus infections among patients
with hypogammaglobulinemia, that was over-estimated [36].
Thirdly, S. aureus is a complex pathogen with many virulence fac-
tors and a variable expression of antigens [27]. Vaccines targeting
only one antigen were, as is now common knowledge, in fact
doomed to failure. Then, lack of predictive animal models was
highlighted by the absence of correlates of protection between

http://clinicaltrials.gov
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humans and rabbit or mouse models [22]. Although opsonophago-
cytic activity has proved to be a predictive biomarker for murine
models of infection, this activity has however not been translated
to humans’ protection. As a consequence, all the clinical trials using
this biomarker failed [36]. All these elements explain, at least in
part, the reasons for the failure of the first two S. aureus vaccines
that reached clinical phases, StaphVAX and V710. For the Pfizer
vaccine (SA4Ag), futility was the reason to discontinue the phase
IIb [37].

Different vaccines platforms have been evaluated against S. aur-
eus which are presented in Table 2.

StaphVAX from NABI biopharmaceuticals, was a vaccine which
targeted the capsular polysaccharides 5 and 8 of S. aureus, conju-
gated to the Pseudomonas exotoxoid A as protein carrier. Two clin-
ical trials were performed in hemodialysis patients. The tolerance
was good but the clinical endpoint - the reduction of S. aureus
bacteremia- was not achieved [38,39]. Consequently, further
development of this vaccine was stopped. Beyond the reasons for
the failures exposed above, suboptimal vaccine quality and a need
to expand the antigen composition of the vaccine were the reasons
given by investigators to explain this result. This vaccine had no
impact on the nasal carriage as it was observed in an ancillary
study [40].

The V710 trial from Merck, studied a vaccine that targeted IsdB,
an iron scavenger of S. aureus. A randomized clinical trial including
more than 8,000 adults scheduled for cardiac surgery was carried
out, the primary endpoint was the reduction of S. aureus SSI. The
trial was prematurely interrupted because of concerns about a 5-
fold increase in the mortality rate due to S. aureus infections in
the vaccine group, associated with a significant number of side
effects and a lack of efficacy [41]. These findings raise concern that
immune predispositions may adversely impact the safety and effi-
cacy of staphylococcal vaccines. This vaccine also had no impact on
S. aureus carriage [41].

The Pfizer’s SA4Ag was composed of 4 antigens: clumping factor
A, a virulence factor that allows S. aureus to bind to fibrinogen;
CP5; CP8 and the manganese transporter MntC. Three of these anti-
gens had already been tested and were associated with failures
[42,43]. Data from phase I/II revealed that the vaccine was well tol-
erated, and elicited robust humoral response but low cellular
response [44], this observation may in part explain the absence
of efficacy in clinical trials [37]. The impact of this type of vaccines
on S. aureus carriage was evaluated in a Phase I trial in Australia
evaluating safety and immunogenicity of a non-adjuvanted SA3AG
vaccine combining clumping factor A, CP5 and CP8 in healthy
adults [45]. In spite of immunogenicity, vaccine did not impact S.
aureus carriage and acquisition, around 30% of the study partici-
pants were S. aureus carriers at baseline [45].
Table 2
Overview of the Staphylococcus aureus vaccine candidates.

Potential Vaccine
platforms

Candidates

Recombinant proteins
(glycoconjugation)

StaphVax
V710
SA4Ag
NDV-3SA5Ag
(adjuvanted)
STEB-Vax
rFSAV
IBTV02

Whole cell vaccines
and Live-attenuated
vaccination

Lysigin and Startvac
(veterinary use)

Nucleic acid vaccines No current candidate
Extracellular vesicles No current candidate
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A phase I study using as vaccine antigen rAls3p-N (NDV-3,
Novadigm Therapeutics), an epitope shared by Candida and S. aur-
eus was completed and showed humoral (IgG and IgA) and cellular
response (TNF and IL17a) [46]. This approach is based on conver-
gent immunity, demonstrating the possibility of cross-kingdom
protection since Candida and S. aureus shared epitopes and have
a mucosal distribution [47]. A single-dose of this vaccine was eval-
uated in a phase II (randomized, double-blind, placebo controlled)
trial in 380 US militaries, endpoints were safety, immunogenicity
and efficacy [48]. This vaccine candidate seemed to be well toler-
ated and immunogenic in young adults (median age 20 years),
however, the frequency of S. aureus oral or nasal acquisition did
not differ between vaccine and placebo recipients (25.6% vs 29.1%).

A five antigen vaccine developed by GSK (GSK SA5Ag) entered
Phase I/II development in 2020, in healthy adults and adults under
50 years of age with history of skin soft tissue infections [49].

STEB-Vax was a recombinant Staphylococcal Enterotoxin B vac-
cine. Although Phase I results were obtained in 2016 and sup-
ported its continued clinical development, we did not identify
further clinical trials [50].

IBT-V02 (Integrated Biotherapeutics) targets six SA toxins
including the pore-forming toxins alpha hemolysin (Hla), Panton-
Valentine leukocidin (PVL), leukocidin AB (LukAB), and the super-
antigens toxic shock syndrome toxin-1 and staphylococcal entero-
toxins A and B. This vaccine will probably enter in clinical
development after the demonstration of efficacy in mice to prevent
soft and skin tissue infections due to S. aureus [51].

rFSAV (Olymvax) is a recombinant vaccine with 5 antigens: the
secreted factors a-hemolysin (Hla), staphylococcal enterotoxin B
(SEB) and the three surface proteins staphylococcal protein A
(SpA), iron surface determinant B N2 domain (IsdB-N2) and man-
ganese transport protein C (MntC) [52]. This vaccine protected
mice against lethal S. aureus sepsis and pneumonia.

Clostridium difficile vaccines

Clostridium difficile, a Gram-positive, spore-forming bacterium
is the leading cause of antibiotic-associated diarrhea and is associ-
ated with broad-spectrum antibiotic use, advanced.

age (>65 years), hospitalization, and underlying comorbidities.
C. difficile has mainly an endogenous origin [53], however cross
transmission from hands of HCWs may also occur [54]. In the
USA, C. difficile infections (CDI) represent the most common patho-
gen in HAIs [55]. In Europe, C. difficile represented the 8th most fre-
quently detected microorganism among HAIs in 2011–2012 [5]
and the incidence of CDI in hospitalized individuals was estimated
to be 2.9 per 10,000 patient-days in 2016 [56]. In France it repre-
sented around 2% of HAIs in 2017 among hospitalized patients
Company Phase of clinical
development

Nabi pharmaceuticals
Merck
Pfizer
Novadigm therapeutics
GSK
Integrated Biotherapeutics
Olymvax
Integrated Biotherapeutics

Stopped
Stopped
Stopped in phase IIb
Phase II
Phase I/II
Phase I completed
Phase II
Planned
Veterinary use
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[1]. Worldwide outbreaks involving the hyper-virulent strain BI/
NAP1/027, have also drawn attention to this pathogen, for which
treatment remains challenging. Antimicrobials are often associated
with recurrences of the infection and alternatives such as fecal
microbiota transplantation have been proposed [57]. The economic
burden of CDI, including the costs of complications and recurrence
that increase at each subsequent episode, has been estimated to be
$4.8 billion annually in the United States [58]. Using a model of
transmission, C. difficile vaccination appears, in a projected effec-
tiveness study, to be the most desirable strategy in settings or
patient groups where levels of broad-spectrum antimicrobial use
are high and difficult to reduce [59]. In addition, assuming an inci-
dence of CDI at 5 per 10.000 patient-days, an efficacy ranging from
60 to 90% and a vaccine coverage at 40% of high risk patients, vac-
cination against C. difficile is a cost-effective strategy in a hospital
setting [60]. A vaccine against CDI and CDI recurrence may there-
fore contribute to reduce the burden of HAIs.

Defense against C. difficile infection is primarily mediated by the
gut microbiota and its perturbation through the use of antibiotics
induces significant changes that favor C. difficile germination and
growth. The vegetative bacterium produces toxins that are respon-
sible for the pathogenesis [61]. Three toxins have been described:
toxin A, toxin B or the binary toxin notably released by the strain
BI/NAP1/027. While innate immune response is ineffective against
these toxins, adaptive immunity is effective and is the base of vac-
cines in current development [62,63]. Therefore, developed vacci-
nes focus on toxoid preparations of toxin A and toxin B
formulated with alum. The vaccine efficacy is correlated with
serum neutralizing antibodies against both toxins [62,63].

The preventive C. difficile vaccine developed by Sanofi Pasteur,
was a toxoid-based vaccine containing formalin-inactivated puri-
fied TcdA and TcdB adjuvanted with alum. A phase II successfully
conducted allowed to determine the better dose and showed no
safety concerns [64]. Three parenteral doses were administered
to achieve protective serum antitoxin antibody levels in the tar-
geted population. A phase III (Cdiffense) trial in patients aged
50–85 years at risk of infection, had estimated completion date
in October 2019. However in December 2017, this study was
stopped after an interim analysis for futility [65]. The results of this
phase III trial were published in 2021, and the vaccine candidate
was shown ineffective to prevent CDI [66]. CDI incidence was sim-
ilar in vaccine recipients and placebo group, and close to the
reported incidence in the USA. Different hypotheses could be made
to explain these results: observed immune response was lower
than expected and observed in Phase II trials, a rapid decrease in
immune response was observed after vaccination, a lower
response to toxin B was also observed. In addition, vaccination
might not induce appropriate immune response to effectively neu-
tralize toxins in the intestinal tract [66].

Pfizer is also developing a toxoid-based vaccine using geneti-
cally engineered toxoids A and B from a nontoxigenic C. difficile
host strain adjuvanted with alum [67]. Safety and immunogenicity
data were recently published [68]. Two vaccine schedule were
evaluated: three doses at Month 0, Month 1 and Month 3, or three
dose at Day 1, Day 8 and Day 30. This candidate vaccine seems to
be immunogenic in adults aged from 50 to 84 years, and safe.
Reactogenicity seems to be higher than expected in adults aged
from 50 to 64 years, and lower in adults over 65 years of age.
Interestingly, immune response seems to remain stable through-
out the study period (12 months) [68]. Three phase III trials are
ongoing worldwide and in the USA, one of these trials compare
the efficacy of a 2-dose vaccine schedule to a 3-dose vaccine sched-
ule. On the 1st of March 2022, in a press release, Pfizer announced
that although the primary endpoint was not reached in the Clover
clinical trial, the vaccine had reduced the severity and the duration
of CDI [69].
4

Valneva has completed a phase I and phase II study of a recom-
binant toxin domain, with or without aluminum hydroxide as an
adjuvant (VLA84). Good safety, tolerability, and immunogenicity
profiles were seen in both healthy adults and healthy at-risk volun-
teers aged 65 years and older [70]. Sustained immune response
was observed in healthy adults between 18 and 65 years of age,
whereas a decrease in toxin A and toxin B IgG levels was observed
in the elderly. To our knowledge, there are no ongoing further
studies, Valneva is searching for partners. Another vaccine devel-
oped by GlaxoSmithKline is currently in Phase I, targeting the F2
antigen of C. difficile [71].

These vaccines which induce an immune response against tox-
ins A and B may reduce the rate of C. difficile infection but are not
likely to prevent bacterium carriage. Colonization is a critical step
in C. difficile pathogenesis and excreted spores can serve as a signif-
icant reservoir of C. difficile in healthcare facilities [53,61], so a vac-
cine preventing or reducing carriage is eagerly awaited [72].
Vaccines against gram-negative bacteria involved in HAIs

Enterobacteriaceae represent up to 38% of HAIs in Europe [5]. In
France and in Europe, E. coli is the most frequently agent responsi-
ble for documented nosocomial infections [1,5] and it is the third
agent in the USA [55]. According to the European Centre for Dis-
ease Prevention and Control, the rate of E. coli resistant to cepha-
losporins of 3rd generation ranged, in 2020, from 6.6% in the
Netherlands to 41.4% in Bulgaria [73]. In Europe, the rate of
carbapenem-resistant Klebsiella pneumoniae ranged on 2020 from
0.1% in Finland to 66% in Greece [73]. Pseudomonas aeruginosa
and Acinetobacter baumanii are also often documented among HAIs
notably in intensive care units (ICU) patients [30]. These pathogens
are also frequently resistant to antimicrobials with respectively
31.8% and 81.2% of P. aeruginosa and A. baumanii isolates non sus-
ceptible to carbapenems [5]. As resistance against new antimicro-
bials is rising, the development of other strategies is warranted
[74].

Vaccines against extra-intestinal pathogenic E. coli are under
development. The ExPEC O-antigen, a component of the surface
lipopolysaccharide, is a promising vaccine target [75]. Janssen
had developed a 9-valent bioconjugated vaccine with P. aeruginosa
exoprotein A, currently entering in Phase III [76] in adults aged
60 years and older with a history of urinary tract infection in the
past 2 years. Primary endpoint will be occurrence of a first invasive
extraintestinal pathogenic E. coli disease event with microbiologi-
cal confirmation in blood, other sterile sites, or urine, caused by
9-valent extraintestinal pathogenic E. coli vaccine serotypes. The
4-valent form of this vaccine demonstrated its safety and its
immunogenicity in a Phase II trial, including adults (median age
55 years) and 68% of the participants were 50 years and older
[75]. Immune response seemed sustained across the time, but a
decrease in antibody titers was observed. In addition, vaccination
was not associated with changes in gut microbiome.

Different vaccine strategies against K. pneumoniae have been
investigated: whole cell vaccines and mixed bacterial vaccines,
capsular polysaccharides, Outer Membrane Vesicles (containing
lipids, cell wall structures, nucleic acids, and toxins), proteins
based formulations (outer membrane proteins, toxins, other pro-
teins like siderophores), ribosomal vaccines [77]. A tetravalent bio-
conjugate vaccine including O antigen-polysaccharides (GSK) is
entering in clinical phases with a Phase I/II trial [78]. To our knowl-
edge, it is the unique K. pneumoniae currently under clinical devel-
opment. Mixed bacterial vaccines were already investigated with
heterogeneous results [77].

Valneva developed IC43, a vaccine targeting 2 outer membrane
proteins OprF and OprI against P. aeruginosa. The target population
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was critically ill patients. Promising results were observed in phase
II with good rate of seroconversion using 2 doses 7 days apart and a
28-day mortality lower in all vaccine groups compared to placebo
(statistically significant for the non-adjuvanted vaccine compared
with placebo) [79,80]. A phase II/III randomized, placebo-
controlled, double-blind study was conducted in 800 mechanically
ventilated ICU patients at 52 trial sites in 6 European countries
[81]. All-cause mortality at day 28 was similar in placebo and
recipient groups, in spite of high immunogenicity. No differences
were observed for incidence of P. aeruginosa pneumonia or colo-
nization at day 14 and day 90. No differences were observed for
incidence of P. aeruginosa pneumonia or colonization at day 14
and day 90. Other vaccines are currently evaluated in pre-clinical
studies like: a live aroA-aroB attenuated Salmonella vaccine, live-
attenuated whole cell vaccines, and vaccines with different anti-
gens the iron acquisition protein Hit, or PA5340 combined with
PA3526-MotY, PcrV with CpG oligodeoxynucleotide, or the pilus
proteins PilQ and PilA [82]. To our knowledge, no clinical trial is
undergoing for these vaccines.

Acinetobacter baumannii was identified by WHO as one of the
three antibiotic-resistant bacterial species on its list of global prior-
ity pathogens for novel and effective treatment. Vaccines might be
useful approaches. Different technologies could be adequate [83].
To date, there is no vaccine in clinical development.
HCWs immunization to reduce the burden of HAI

There are two main reasons to consider HCWs immunization to
prevent HAI due to multidrug resistant or difficult to treat microor-
ganisms. First, HCWs are in contact with patients susceptible to
communicable diseases, sometimes immunocompromised, highly
susceptible to certain pathogens and/or not eligible for vaccina-
tions (like children under 6 months old). The concept of ‘‘herd
immunity” might be applied in the context of healthcare settings.
The risk of infections among susceptible individuals in a popula-
tion is reduced by the presence and the proximity of immunized
persons [84]. Vaccines may have an indirect effect by reducing
infectiousness, and consequently protect individuals that remain
susceptible [84]. Secondly, HCWs may be at high-risk of MDRO
acquisition and may have a direct benefit to vaccination. However,
an excess risk of MDRO colonization was not observed in an Amer-
ican study carried out in 400 HCWs and 400 controls, no difference
was observed between HCWs who reported caring for MDRO-
colonized patients, and HCWs who did not report [85].

Such a strategy will face different difficulties. First, vaccines
should have an impact on pathogens carriage in HCWs. Although
the primary source of S. aureus HAIs is endogenous [27], contacts
between patients and HCWs carrying S. aureus may facilitate inci-
dent colonization in patients [86,87]. HCWs have been reported as
a source of healthcare-associated S. aureus infections outbreaks
[88]. S. aureus carriage may concern more than 30% of HCWs
[88,89]. To be effective to prevent transmission between HCWs
and patients and consequently to reduce the number of HAIs
related to exogenous S. aureus infections in patients, a vaccine ded-
icated to HCWs need to have an impact on carriage. Until now, vac-
cines developed with released results had no impact on nasal
carriage [22]. Asymptomatic intestinal carriage of toxigenic C. dif-
ficile may concern 15% of the general population [90] and this
prevalence of carriage was found to be similar in HCWs [91]. We
did not identify published outbreaks caused by a strain carried
by a HCW. The impact of current vaccines in development on C. dif-
ficile carriage remains unclear. Moreover, the majority of C. difficile
transmissions are related to lack of hand hygiene with strains from
the patients or vomits [90]. Consequently, the impact of HCWs
immunization on the rate of C. difficile infections might be limited.
5

Implementation of an immunization program in HCWs to pre-
vent HAIs presents several difficulties. First, there are no interna-
tional guideline for HCWs immunization, some vaccines are
mandatory in several countries whereas they are only recom-
mended or not recommended at all elsewhere [92]. As in the gen-
eral population, vaccine hesitancy affects HCWs [93,94]. Fear of
side effects, negative experiences with vaccines, considering vacci-
nes as an invention of the pharmaceutical industry, additional doc-
tor’s appointment and feeling themselves at low risk of infection
were frequently reported as barriers to immunization in HCWs
[95,96]. During the COVID-19 pandemic, self-protection was one
of the main motivations to get vaccinated in HCWs [97]. Potential
acceptance of vaccines used to mainly protect patients is difficult
to estimate. Moreover, defining specific populations of HCWs (indi-
viduals working in ICU, in contact with immunosuppressed
patients, at-risk for severe infections HCWs) is crucial question.

Conclusion

In 2019, the World Health Organization estimated that by 2050,
10 millions of people will die each year from a drug-resistant dis-
ease [98]. The development of vaccines against pathogens involved
in HAIs may contribute to the response to this global challenge.
However, for most of the pathogens involved in HAIs vaccines
are not currently available and the development of effective vacci-
nes for S. aureus or Gram-negative bacteria remains challenging,
for C. difficile, the goal of obtaining a preventive vaccine seems to
be near. Many questions need to be addressed before completing
the availability of vaccines against HAIs. First, a great part of HAIs
is caused by commensal pathogens present prior to hospitalization
(endogenous infections). Consequently, vaccination of patients
during hospitalization comes too late, and immune response could
be impaired by pre-existing immunity and tolerance to microbiota
[77]. Secondly, definition of the at-risk populations, and anticipa-
tion of the at-risk situations (scheduled surgery, immunosuppres-
sive agents, hemodialysis) are crucial. Thirdly, HAI at-risk patients
are also patients who have experienced a weak response to vac-
cines. To circumvent this latter issue, there are two different strate-
gies: vaccination of HCWs, and identification of strategies to
enhance vaccine responses in elderly and immunocompromised
populations. Vaccination of HCWs may have an impact as observed
for vaccination against seasonal influenza. However, in the context
of HAIs prevention, the role of HCWs in the acquisition of patho-
gens by patients should be evident, the vaccine should have an
effect on the carriage of the pathogens, and the vaccine should
be safe as direct benefit for HCWs is uncertain. Then, an evaluation
of the acceptability of these potential vaccines both in patients and
HCWs is necessary whereas vaccine acceptance is challenging in
community settings. Until preventive vaccines are available, infec-
tion control measures continue to be crucial in the prevention of
HAIs and should be strengthen. As the spectrum of antimicrobial
resistance is not limited to humans, a OneHealth response is nec-
essary, and in parallel to the development of vaccines for humans,
development of vaccines for animals remains crucial.
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